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Electronic nematicity refers to a spontaneous rotational- 
symmetry-breaking phase in solids driven by electronic corre-
lations1. It was initially discovered in a few fine-tuned systems, 

such as the quantum Hall states of the two-dimensional electron 
gas2,3 and the field-induced metamagnetic state in Sr3Ru2O7 (ref. 4), 
but its existence was later observed in the broader class of strongly 
correlated systems, including iron-based5,6 and copper-based7,8 
high-temperature superconductors and more recently in 
magic-angle-twisted bilayer graphene9. In almost all cases, the first 
signature of nematicity has been the onset of large resistivity anisot-
ropy, which is regarded as a proxy of the nematic order parameter. 
The correspondence between the nematicity and transport anisot-
ropy originates from symmetry considerations. The nematic order 

parameter ψ and the resistivity anisotropy η =

ρxx−ρyy
ρxx+ρyy

 (where ρij 

is the resistivity tensor) belong to the same irreducible representa-
tion of the high-symmetry point group, hence in the infinitesimal 
limit they are linearly proportional to each other with linear pro-
portionality coefficient k10 (η = kψ). Nevertheless, the resistivity is 
not a thermodynamic variable and depends on extrinsic properties 
such as disorder11–14. Therefore, a key question is to what extent a 
transport coefficient can represent the order parameter beyond 
the infinitesimal limit. This question is especially important for 
two-dimensional systems such as graphene where thermodynamic 
measurements are difficult.

Here we examine this question in a model system for the study 
of nematic phase transitions, the iron pnictide superconductor15,16. 
Because of the electron–lattice coupling, the nematicity in iron pnic-
tides has been clearly observed in both transport anisotropy and 
structural thermodynamic variables. Above the phase transition, the 
diverging nematic susceptibility can be seen in the Curie–Weiss tem-
perature dependence of both the 2m66 elastoresistivity coefficient17 

and the softening of the shear modulus18 C66. Below the phase transi-
tion, the nematic order parameter also generates a large spontaneous 
resistivity anisotropy6,19 ηS and a spontaneous structural distortion20,21 
εS. Each of these four quantities are usually measured separately due 
to the incompatible sample preparation needed for standard tech-
niques, which makes a quantitative comparison difficult. In particu-
lar, the spontaneous resistivity anisotropy ηS is notoriously difficult 
to measure close to the phase transition, because the stress required 
to detwin the sample always induces additional resistivity anisotropy 
due to the softening of C66 and the divergence of 2m66. To our knowl-
edge, no study of iron pnictides has ever reported any two of the above 
quantities within a single sample. In this work, we perform measure-
ments of 2m66, C66, ηS and εS using the technique of elasto X-ray dif-
fraction all within one single-crystal sample of Ba(Fe0.96Co0.04)2As2, 
located on the underdoped side of the phase diagram with nematic, 
antiferromagnetic and superconducting transition temperatures 
at TS = 73.8 K, TN = 64 K and TC = 13 K, respectively (Fig. 1a). With 
our unprecedented multi-modal measurement, we show the four 
quantities perfectly follow a mean-field temperature dependence. 
Furthermore, the ratio of transport to structural quantities is a con-
stant across the phase transition, suggesting that the resistivity anisot-
ropy behaves just like a thermodynamic variable even for large values 
of the nematic order parameter. While the 2m66, C66, ηS and εS can be 
well described by the Landau free energy framework, two unexpected 
findings stand out. First, using the C66 and 2m66 data from the previ-
ous studies17,22, we discovered a strong doping dependence of the ratio 
between transport and structural quantities, increasing by more than 
fivefold towards optimal doping. Second, when driving the system 
deep into the nonlinear regime with large uniaxial stress, we found 
that the resistivity anisotropy shows a non-saturating behaviour that 
is drastically different from the dampened response of the lattice. 
Possible implications of these two unusual phenomena are discussed.
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elasto X-ray diffraction
To simultaneously assess the electronic and structural response to 
stress in a single-crystal sample, we have developed an experimen-
tal platform, elasto X-ray diffraction, that combines electrical trans-
port with in-situ uniaxial stress tunability via a Razorbill CS-100 
strain device23 fully integrated with X-ray diffraction measure-
ments at beamline 6-ID-B at the Advanced Photon Source (Fig. 1b; 
Methods). This platform allows us to measure the lattice constants, 
orthorhombic twin domain populations and electrical resistiv-
ity simultaneously while the uniaxial stress is continuously tuned 
to detwin the sample and enhance the orthorhombicity. At fixed 
temperatures from 66 K to 140 K, X-ray diffraction and transport 
measurements were made by ramping the strain from maximum 
compression to maximum tension and back. Uniaxial stress was 
applied along the tetragonal [1 1 0]T direction, which we defined as x̂.  
The nominal strain is defined as εnomxx =

ΔL
L0 , where L0 is the size 

of the gap between two titanium plates on which the sample was  
glued with Stycast epoxy. The displacement ΔL was determined 
from a capacitance strain gauge. The four-wire electrical contact 

geometry enables the simultaneous resistance measurements along 
the stress axis.

Nematic fluctuations: shear modulus and elastoresistivity
We focus first on the structural and electronic response to applied 
stress above the nematic transition, where there are no ortho-
rhombic domains. We define εxx =

Δa
a0  and εyy =

Δb
b0  as the 

X-ray-diffraction-measured strains of the in-line ([1 1 0]T) and 
transverse ([–1 1 0]T) lattice constants, respectively. At 130 K the 
lattice constants show a nearly linear response to εnomxx , while just 
above the transition at 74 K the response becomes strongly nonlin-
ear, with an enhanced response at εnomxx = 0 (Fig. 2a). This results 
in the strain transmission dεxx

dεnomxx
 and the induced B2g orthorhombicity 

ε =
1
2 (εxx − εyy) becoming increasingly nonlinear with cooling 

(Supplementary Fig. 2). The rate of change of the in-plane transverse 
strain to in-line strain dεyy

dεxx
 approaches a peak value of −1 with cooling 

to TS and decreases to its high-temperature value at large ε (Fig. 2b).
We extract the shear modulus from Poisson’s ratio (

νxy = −

dεyy
dεxx

|ε=0
)

 using C66 = (50.5 GPa) 1−νxy
1+νxy

, where the mag-
nitude is determined from other elastic modulus terms using 
ultrasound data from the literature22 (Supplementary Discussion 
Section VII). In Fig. 2c, C66 diminishes to nearly zero at TS (black 
dots). Fitting C66 with a Curie–Weiss temperature dependence, 
C66 = C66,0 – A(T – T*)–1 (red line; see Methods), yields a fitted value 
of the bare shear modulus C66,0 = 38.8 ± 4.7 GPa in agreement with 
the high-temperature ultrasound data22. The extracted bare nem-
atic transition temperature, T* = 50 ± 8.3 K is considerably larger 
than the values obtained from several other shear modulus mea-
surements5,18,24,25, where TS – T* ≈ 40–50 K, yet as we discuss below, 
it agrees well with the T* obtained from the simultaneous elastore-
sistance measurement. A major difference is that in the previously 
reported measurements, C66 is reduced but non-zero at the transi-
tion, possibly due to local strain inhomogeneities and resulting 
domain microstructures adding a small background signal near the 
transition25. Since C66 varies most rapidly near the transition, this 
difference may strongly influence the Curie–Weiss fitting, hence the 
discrepancy in T*.

We next turn to the resistivity response to strain. The resistivity 
ρxx versus εnomxx  is increasingly nonlinear with cooling (Fig. 2d). In 
particular, near the phase transition, ρxx shows a kink-like behaviour 
as εnomxx  increases from zero to positive, and an inflection point at 
large negative values of εnomxx . Intriguingly, while still being nonlin-
ear, the kink and inflection point of ρxx vanish when plotted against 
the simultaneously measured orthorhombicity ε (Fig. 2e), and ρxx 
can be well fitted by a second-order polynomial (Supplementary 
Fig. 3). This stark contrast indicates that the anomalies observed 
in ρxx versus εnomxx  are artefacts of the nonlinear strain transmis-
sion, highlighting the importance of in-situ X-ray measurements. 
The second-order polynomial can be understood from a symmetry 
analysis by decomposing the in-line resistivity dependence on the 
B2g orthorhombicity as

ρxx (ε) = ρ0

(

1+mB2g
B2gε +mB2g,B2g

A1g
ε2
)

, where ρ0 is the zero-stress 

resistivity, mB2g
B2g = 2m66 is the linear coefficient with (odd) B2g 

symmetry and mB2g,B2g
A1g

 is the quadratic coefficient with (even) A1g 
symmetry. Consistent with previous work26, mB2g,B2g

A1g
 has a large 

magnitude near the transition. As we cannot perform a simultane-
ous bidirectional transport measurement with this set-up, we isolate 
the B2g component and extract the 2m66 elastoresistivity coefficient 

at each temperature using 2m66 =
d
dε

(

Δρxx
ρ0

)

|ε=0, which diverges 

towards the transition (Fig. 2f). We analyse this temperature depen-
dence with the same Curie–Weiss model as that used for the shear 
modulus and find it is well described with a similar T* = 48.9 ± 7.1 K 
(Fig. 3e, blue line, R2 > 0.95). Therefore, we demonstrate that  
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Fig. 1 | Nematic-elastic-transport coupling. a, The x–T phase diagram 
of Co-doped baFe2As2. magenta, grey and blue markers show nematic, 
antiferromagnetic (SDW) and superconducting (SC) transitions. Inset is 
a representation of the electronic nematicity (magenta, quantified by the 
nematic order parameter ψ) aligned with the orthorhombic lattice (black, 
quantified by the in-plane orthorhombicity ε). b, Schematic of the sample 
measurement geometry and strain device. Uniaxial stress is applied along 
the tetragonal [110]T direction. In-line resistivity ρxx measures ρa of the A 
domain and ρb of the b domain.
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both 2m66 and C66 within a single sample show the same mean-field 
temperature dependence, confirming that both have a linear pro-
portionality to a common driver, namely the nematic fluctuations.

While the 2m66 and C66 extracted near the zero-strain limit 
show good agreement with mean-field behaviour, that is no lon-
ger the case in the large strain limit where nematic fluctuations are 
expected to be heavily dampened. The Fig. 2e inset shows the resis-
tivity anisotropy η =

ρxx(ε)−ρxx(−ε)

ρxx(ε)+ρxx(−ε)
, defined as the normalized resis-

tivity difference at equal in-plane orthorhombicity between tension 
and compression, and its strain derivative dη

dε
, which corresponds to 

the induced nematic order parameter and nematic susceptibility 
at finite strain (note that dη

dε
|ε=0 =

d
dε

(

Δρxx
ρ0

)

|ε=0 = 2m66). At 

temperatures near or below TS, η shows no sign of saturation as ε 
exceeds 0.18% (the spontaneous orthorhombicity at T = 8 K, which 
is also the maximum value of spontaneous orthorhombicity for this 
doping concentration). This non-saturating behaviour is in sharp 
contrast to the structural counterpart, where dεyy

dεxx
 dampens rap-

idly towards its high temperature value (Fig. 2b). Although in the 
large-stress limit, dεyy

dεxx
 and dη

dε
 no longer simply relate to C66 and 2m66, 

which are response functions defined in the zero-stress limit, the 
striking difference between dεyy

dεxx
 and dη

dε
 is unexpected. This peculiar 

finding will be revisited in the Discussion section.

Spontaneous elastoresistivity
Next, we extract the spontaneous orthorhombicity εS and spontane-
ous resistivity anisotropy ηS in the nematic ordered phase. We focus 
on the 10 K range below TS but above TN because the long-range 
antiferromagnetic order induces shifts in the orthorhombicity20,21 
and reconstructs the Fermi surface leading to additional resistivity 

anisotropy effects27–30. Upon cooling the sample below TS = 73.8 K, 
the single peak of the (2 2 12)T reflection splits into two peaks cor-
responding to the aA and bB orthorhombic lattice constants of the 
A and B domains, respectively, indicating the formation of struc-
tural twin domains (Fig. 3a). As is often done for a free-standing 
crystal21, we define the spontaneous orthorhombicity as εS = aA−bB

aA+bB  

in the zero-stress limit. Within the purely nematic phase, εS is well 
fitted to a mean-field 

√

TS − T  temperature dependence (Fig. 3f).
The presence of twin domains causes transport measurements 

to average over the resistivities along the two domain directions. 
This presents a substantial experimental challenge to obtaining the 
resistivity anisotropy of the orthorhombic unit cell, which we over-
come by precisely strain detwinning the sample. Figure 3c–e shows 
detwinning results for a representative temperature (66 K). The 
peak positions and intensities (IA and IB) are shown in Fig. 3c. Strain 
homogeneity is confirmed by a nearly constant Bragg peak width 
throughout the nominal strain range (Fig. 3d). The relative volume 
fraction of the A domain is determined as DA =

(

IA
IA+IB

)

× 100%, 

which varies smoothly between 0% and 100% with applied stress, 
that is, between the B and A monodomains (Fig. 3e, right). While 
the sample is mostly detwinned over a relatively small strain range, 
the last ~10% volume fraction of the minor domain is detwinned 
over larger strain values where the in-line lattice constant becomes 
highly susceptible to applied strain. Therefore, we find that we can 
mostly, but not fully, detwin the sample without inducing additional 
lattice distortions, which warrants consideration for the design and 
interpretation of future experiments involving the uniaxial stress 
detwinning of structural domains.
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Fig. 2 | Shear modulus and elastoresistivity. a, Unidirectional lattice constant strains εxx and εyy versus nominal strain εnomxx  at T = 74 K (black) and 130 K 
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2
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 versus ε. c, The shear modulus C66 

extracted from νxy = −

dεyy

dεxx
|ε=0; error bars are the standard deviation of a small strain range linear regression (Supplementary Discussion Section VI). 

d,e, Longitudinal resistivity ρxx versus εnomxx  (d) and ρxx versus ε (e). Inset to e shows the resistivity anisotropy η =
ρxx(ε)−ρxx(−ε)

ρxx(ε)+ρxx(−ε)
 and the derivative dη

dε
 at 

T = 74 K. f, The 2m66 elastoresistivity extracted from dρ/ρ0
dε

|ε=0; lower/upper error bars show the value of dρ/ρ0
dε

 determined at ε = ±0.01%. Fit lines in c and 
f are described in the main text. Grey lines in b and e show the 8 K zero-stress value of in-plane orthorhombicity, ε = 0.18%.

NaTuRe MaTeRiaLS | VOL 20 | NOVember 2021 | 1519–1524 | www.nature.com/naturematerials 1521

http://www.nature.com/naturematerials


Articles Nature Materials

The spontaneous resistivity anisotropy ηS =
ρa−ρb
ρa+ρb

 results from 
the different resistivities along the a and b orthorhombic lattice 
vector directions, ρa and ρb. Due to the network of twin domains 
running at 45° to the length of the sample31, the current takes non-
trivial paths, which results in a nonlinear dependence of ρxx on DA 
(Supplementary Fig. 7a). We approach the problem from two direc-
tions. First, we start in a zero nominal strain state and detwin the 
sample just until the lattice begins to deform (at 85% and 93% full 
detwinning to the compressive B and tensile A domains, respec-
tively; Supplementary Fig. 6). This is the closest condition to a single 
domain state without lattice distortion that we can achieve experi-
mentally. The extracted ρa and ρb (Fig. 3b) yield values of ηS that 
are well fit to 

√

TS − T  (Fig. 3g). Alternatively, we can extract ηS by 
starting in the fully detwinned regime and linearly fitting the resis-
tivity anisotropy η down to εS. The resulting values of ηS are also well 
fit by 

√

TS − T  (Supplementary Fig. 7bd). The ηS values obtained 
by these two approaches agree within 5%, suggesting that the rem-
nant minor domain has a minimal impact on the transport. This 
result stands in sharp contrast to earlier works using fixed-strain/
stress detwinning in a clamp or horseshoe device6,11,19,32–35, which 
generally found a large resistivity anisotropy above TS from the 
strain-induced 2m66 that mixes with the detwinned domain ηS below 
TS, preventing a determination of the real mean-field development 
of ηS. Thus, our elasto X-ray diffraction technique allows for a pre-
cise measurement of the spontaneous elastoresistivity transport 
coefficient, defined as a resistivity anisotropy ηS and structural order 
parameter εS driven by the system itself in the zero-stress limit. In 
the next section, we describe the physical interpretation of the spon-
taneous elastoresistivity and how it is related to 2m66 and C66 above  
the transition.

Transport–structural proportionality
The shared mean-field temperature dependence of ηS and εS below 
the transition echo the shared Curie–Weiss temperature depen-
dence of the 2m66 and C66 above the transition, demonstrating the 
one-to-one correspondence between the transport and structural 
coefficients. The remaining question is whether this one-to-one 
correspondence is continuous across the phase transition. In Fig. 4b 

we plot the spontaneous elastoresistivity ηS
εS

 and 2m66
(

1− C66
C66,0

)

−1
. 

These two quantities are the ratios between the dimensionless trans-
port and structural coefficients below and above TS, respectively. We 
find that both quantities show almost no temperature dependence, 
and their temperature-averaged values are in strong agreement, 

with ηS
εS

= 142.6± 20.7 and 2m66
(

1− C66
C66,0

)

−1
= 142.9± 29.7. 

This agreement suggests that for the entire temperature range of this 
study, the resistivity anisotropy behaves like a thermodynamic order 
parameter for all practical purposes. We note that this relationship is 
valid even at the lowest measured temperature within the pure nem-
atic phase, 66 K, where the orthorhombicity reaches ~40% of its satu-
ration value at base temperature, well beyond the infinitesimal limit.

We now show that ηS
εS

 and 2m66
(

1− C66
C66,0

)

−1
 can be taken as 

the relative coupling of nematicity to the conducting electrons 
compared to the lattice. We consider the Landau free energy that 
describes a nematic phase transition with a bilinear coupling to the 
lattice (full derivation in Methods):
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where λ is the nemato-elastic coupling constant. Minimizing the 
free energy below the phase transition, we obtain the primary nem-
atic order parameter ψS ∝

√

TS − T  which induces a secondary 
order parameter, the spontaneous orthorhombicity εS =

λ
C66,0

ψS. 

Combined with the linear nemato-transport relation ηS = kψS, we get 
ηS
εS

=
k
λ
C66,0. Minimizing the free energy above the phase transition 

yields a Curie–Weiss nematic susceptibility dψ

dε
=

λ
a(T−T∗), which 

results in 2m66 = k λ
a(T−T∗) and C66

C66,0
= 1− λ

C66,0
λ

a(T−T∗) . From 

this we find 2m66
(

1− C66
C66,0

)

−1
=

k
λ
C66,0, identical to ηS

εS
 below the 

transition (Fig. 4a). If we ignore C66,0, which is a material specific 
parameter not related to nematicity, we have a simple physical 

interpretation of ηS
εS

 and 2m66
(

1− C66
C66,0

)

−1
; they measure the ratio 

of the nemato-transport coupling constant k and nemato-elastic 
coupling constant λ.

Discussion
Extensive measurements of 2m66 and C66 have been made across 
the phase diagram of Ba(Fe1–xCox)2As2. In Fig. 4c we plot the fitted 
Curie constant 

(

k λ
a
)

 for the 2m66 data from ref. 17 and 
(

λ
C66,0

λ
a

)

 for the 

C66 data from the literature24, which demonstrates that while 
(

k λ
a
)

 

is enhanced towards the optimal doping, 
(

λ
C66,0

λ
a

)

 is not similarly 

enhanced. This observation suggests that the enhancement of 2m66 
with doping is due not only to an enhancement of nematic fluctua-
tions themselves but also due to a relative enhancement of nematic 
coupling to conduction electrons over the lattice. Indeed, we find 
that 2m66

(

1− C66
C66,0

)

−1
, or k

λ
C66,0, increases by more than a factor 

of five towards the optimal doping. Given that C66,0 shows only weak 
doping dependence22, the increase of k

λ
C66,0 can only come from 

the relative increase of k over λ, a condition that favours the super-
conducting pairing by nematic fluctuations36. A similar conclusion 
was made in a recent work comparing the doping evolution of the 

elastocaloric effect and elastoresistivity in this same system37, which 
found evidence for a diminishing value of λ with doping towards 
optimal. Further, elastoresistivity measurements have shown a 
similar increase of k λ

a near quantum critical points across systems 
as diverse as La(Fe1–xCox)AsO and FeSe1–xSx, suggesting that this 
enhancement of nematic-transport coupling near the quantum 
critical point may be quite general in the iron-based superconduc-
tors38,39 (Supplementary Fig. 10).

The efficacy of resistivity anisotropy as a representation of 
a thermodynamic order parameter and its breakdown in the 
large-stress limit has a profound implication to the microscopic 
mechanism of nematicity. In the framework of Boltzmann trans-
port theory, resistivity anisotropy is determined by the anisotropy 
of elastic and inelastic scattering rates and Fermi surfaces. Several 
theoretical studies have argued that anisotropic spin fluctuations, 
the leading candidate of the microscopic mechanism of nematic-
ity in iron pnictides, generate anisotropy in both elastic and inelas-
tic scattering12,13,40. This picture provides a natural explanation for 
the non-saturating resistivity anisotropy in the large-stress limit. 
The large stress shifts the antiferromagnetic transition to a higher 
temperature, which increases the spin fluctuations41 and hence 
induces additional resistivity anisotropy. This is a nonlinear effect 
that arises from the intertwined nature of vestigial nematicity42, 
which is not captured in the Landau free energy discussed above. 
We note that this highly nonlinear nemato-elastic coupling has 
also been observed in a recent elasto scanning tunnelling micros-
copy measurement43. Further, a recent study of FeSe shows a 
similar breakdown of transport–structural correspondence as the 
order parameter grows beyond 50%, which may be related to the 
unusual spin fluctuations in this system44. Future study using elasto 
X-ray diffraction on multiple material systems will help clarify  
this issue.

From the experimental perspective, the use of X-ray diffraction 
gives unprecedented detail in the detwinning process itself and 
reveals highly nonlinear structural and electronic responses close 
to the phase transition. While similar uniaxial stress approaches 
have been used recently to explore interesting properties in iron 
pnictides and beyond41,45–52, this work highlights the importance 
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Fig. 4 | Transport–structural ratio equivalence. a, For T < TS, the spontaneous nematic order parameter ψS ∝

√

TS − T  drives the linear proportional 
spontaneous orthorhombicity εS = λ

C66,0
ψS and spontaneous resistivity anisotropy ηS = kψS, yielding a temperature-independent ratio ηS

εS
. For T > TS the 

diverging nematic susceptibility dψ

dϵ
= λ

a(T∗−T)
 drives the diverging elastoresistivity 2m66 = k dψ

dϵ
 and the softened shear modulus C66 = C66,0 − λ

dψ

dϵ
. 

The ratio 2m66

(

1−
C66
C66,0

)

−1

 is thus also temperature independent. If the nematic-elastic (λ) and nematic-transport (k) proportionality coefficients are 

constant across the phase transition, both ratios equate at TS with a value k
λ
C66,0. b, The measured ratios ηS

εS
 (gold) and 2m66

(

1−
C66
C66,0

)

−1

 (black) 

versus temperature (error bars are from error propagation of each quantity). c, The Curie constants from Curie–Weiss fits to 2m66 (blue) and C66 (red) 
across the underdoped side of the phase diagram. Data from refs. 17,22 (in main text). Dashed lines are a guide to the eye, and solid vertical line is at optimal 
Co doping xop = 0.067 ± 0.02. Open symbols are from this work. error bars are from standard deviation of the fit.
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of in-situ microscopic measurement of structurally complex  
quantum materials.
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Methods
Sample preparation. Single-crystal samples of Ba(Fe0.96Co0.04)2As2 were 
grown from an FeAs flux as described elsewhere17. The primary sample 
used in X-ray measurements was prepared as a thin bar of dimensions 
2.0 mm × 0.57 mm × 0.07 mm and cut along the Fe–Fe bonding direction. Gold 
wires were glued with DuPont 4929 silver epoxy underneath the sample to not 
obstruct the X-ray diffraction off the top surface of the crystal. Measurements of 
the resistivity coefficient ρxx aligned along the stress axis were performed using a 
standard four-point measurement and an SR830 lock-in amplifier.

X-ray diffraction. X-ray diffraction measurements were performed at the 
Advanced Photon Source, beamline 6-ID-B, at Argonne National Laboratories. 
X-rays of energy 11.215 keV illuminated an area 500 μm × 500 μm, fully 
encompassing a cross section of the middle of the crystal where strain transmission 
is highest. The sample and strain device were mounted on a closed-cycle cryostat. 
Gaussian fits to the tetragonal (2 2 12)T, (–1 1 14)T and (0 0 14)T reflections were 
used to determine the orthorhombic lattice constants in the direction of applied 
stress (aA and bB), in-plane transverse to the stress (aB and bA) and normal to the 
plane (c), corresponding to the x̂, ŷ and ẑ directions, respectively.

Fitting parameters. Below are the fitting parameters used in Figs. 2c, 2f, 3f and 3g, 
respectively:

C66 = C66,0 +
(

A
T−T∗

)

; T* = 50.0 ± 8.3 K, A = –933 ± 51 GPa K, 

C66,0 = 38.8 ± 4.7 GPa, R2 = 0.98.
2m66 = 2m66,0 +

(

A
T−T∗

)

; T* = 48.9 ± 7.1 K, A = –4,237 ± 330 K, 
2m66,0 = –14.3 ± 8.5, R2 = 0.95.

εS = A
√

73.8 K − T , A = 0.000290 ± 0.0000006 K−1/2, R2 = 0.99.
ηS = A

√

73.8 K − T , A = 0.0421 ± 0.0022 K−1/2, R2 = 0.97.
The 2m66 data from ref. 17 for 4.7% Co doping were reevaluated to yield fit 

values:
2m66 = 2m66,0 +

(

A
T−T∗

)

; T* = 36.4 K ± 0.9 K, A = –4,150 ± 135, 
2m66,0 = –23.1 ± 1.0, R2 = 0.99.

Domain detwinning video. A video of the detwinning process is available online. 
At 66 K, strain is applied through a loop from maximum compression to maximum 
tension and back. In the video, the top plot shows the log-scale intensity of the 
split (2 2 12)T peak across the whole area detector (‘chi’ versus 2θ). The shifts in 
intensity across the ‘chi’ direction (y axis) indicate small reorientations of crystal 
grains, which are summed at each value of 2θ to obtain the total intensity used 
in the middle plot and the main text’s Fig. 3. The middle plot shows Gaussian fits 
to the chi-summed intensity versus 2θ. The bottom plot shows that the relative 
amplitudes of the Gaussian fits yield the relative population of the A domain 
(

DA =
IA

IA+IB × 100%
)

 versus the measured nominal strain.

Free energy derivation. Here we discuss in more detail the Landau free energy 
described in the main text:

F =
a(T − T∗

)

2
ψ
2
+

b
4

ψ
4
+

C66,0

2
ε
2
− λψε − hε

In the high-symmetry (tetragonal) phase, there is no static nematic order 
(<ψ> = 0). An applied stress h causes the orthorhombicity to become non-zero, 
which creates nematic order. Minimizing the free energy first with respect to ψ and 
then to ε and taking the ψ = 0 limit yields the zero-stress nematic susceptibility, 
dψ

dε
=

λ
a

(

1
T−T∗

)

. Taking the resistivity anisotropy η =
ρxx−ρyy
ρxx+ρyy

 to be linearly 
proportional to the nematic order parameter, η = kψ, the elastoresistivity  
coefficient 2m66 becomes linearly proportional to the nematic susceptibility, 
2m66 =

dη

dε
= k dψ

dε
. To obtain the renormalized shear modulus C66, we minimize 

the free energy with respect to ε and then to ψ and use dhdψ
=

dε
dψ

dh
dε

=
C66

(

dψ

dε

) to 

obtain C66 = C66,0 − λ
dψ

dε
.

Below the nematic transition under zero stress (h = 0), the nematic order 
parameter becomes spontaneously non-zero (ψS) which drives the spontaneous 
orthorhombicity (εS). Minimizing the free energy with respect to ε yields the 
magnitude of the orthorhombicity, εS =

λ
C66,0

ψS. Assuming the spontaneous 
resistivity anisotropy remains proportional as well (ηS = kψS), the ratio 
ηS
εS

=
k

(

λ

C66,0

) becomes temperature independent and independent of the 

nematic order parameter. Subbing ε =
λ

C66,0
ψ  into the free energy and 

minimizing with respect to ψ, we obtain

ψ

(

a
(

T − T∗

−

λ2

aC66,0

)

+ bψ
2
)

= 0

As the second term in the outer brackets is always positive (since b > 0 
is required for stability), we find ψ may have a non-zero value only for 
T < T∗

+
λ2

aC66,0
= TS, yielding an enhanced nematic transition temperature TS. 

The nematic order parameter grows with a mean-field temperature dependence 
as ψS =

√ a
b (TS − T), resulting in mean-field temperature dependencies 

of εS and ηS.
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