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Abstract: Recent explosions with devastating consequences have re-emphasized the relevance of

fire safety and explosion research. From earlier works, the severity of the explosion has been said to

depend on various factors such as the ignition location, type of a combustible mixture, enclosure

configuration, and equivalence ratio. Explosion venting has been proposed as a safety measure

in curbing explosion impact, and the design of safety vent requires a deep understanding of the

explosion phenomenon. To address this, the Explosion Venting Analyzer (EVA)—a mathematical

model predicting the maximum overpressure and characterizing the explosion in an enclosure—has

been recently developed and coded (Process Saf. Environ. Prot. 99 (2016) 167). The present work

is devoted to methane explosions because the natural gas—a common fossil fuel used for various

domestic, commercial, and industrial purposes—has methane as its major constituent. Specifically, the

dynamics of methane-air explosion in vented cylindrical enclosures is scrutinized, computationally

and experimentally, such that the accuracy of the EVA predictions is validated by the experiments,

with the Cantera package integrated into the EVA to identify the flame speeds. The EVA results for

the rear-ignited vented methane-air explosion show good agreement with the experimental results.
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1. Introduction

Recent explosions in Beirut, Lebanon [1], Baltimore, MD, USA [2], and Ajman, UAE [3],
which all occurred within one week in August 2020, and claimed numerous lives and ex-
pensive properties, reinitialize the importance of fire safety, with a focus on scrutinizing
of the nature of the explosions. Specifically, understanding the dynamics of an accidental
gaseous explosion would provide a way to develop innovative solutions to prevent subse-
quent explosions. These novel solutions can help to reduce the frequency of occurrence
and mitigate the impacts of an explosion. This is a vital research area, since fossil fuels are
still much employed in everyday lives at homes, offices, and industries, which sometimes
requires storing them in small quantities.

Explosion venting has been a way of suppressing the drastic effects of an accidental
explosion by reducing the maximum overpressure in the enclosure. Earlier studies on this
topic have spanned from the works of Bradley and Mitcheson [4,5] to that of Mulpuru and
Wilkin [6], along with subsequent collaborative efforts to develop a model predicting the
dynamics of explosion for a hydrogen-air mixture. Other empirical models developed to
predict the pressure evolution as well as the peak overpressures in an enclosure included
(though not limited to) the FM Global models by Bauwens et al. [7–9], which were based
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on the experimental works on hydrogen and hydrocarbon explosions. In particular, it has
been suggested that external explosion, flame-acoustic interaction, and the flame wrinkling
caused by obstacles are responsible for the multiple peak overpressures noticed in the pres-
sure history. Molkov and Bragin [10] also developed a model predicting peak overpressure
for vented hydrogen-air explosion based on the turbulent Bradley number, which was
presumed to correlate with the overpressure in an enclosure. Sinha et al. [11] have devel-
oped another model predicting vented hydrogen-air explosion, based on the external cloud
formation and explosion. In another work of the same team, a simple model was created to
predict the peak pressure in the vented explosions of hydrogen-air and hydrocarbon-air
mixtures [12]. Here, simplifying assumptions were employed to generate a single equation
to predict the overpressure in the vented explosions based on four parameters: two of
these parameters depended on the fuel properties, which could be pre-calculated, while
the other two were functions of the enclosure geometry. Such a reduced simple model
minimizes the numerical efforts needed to estimate the maximum overpressure resulting
from the gas explosion in an enclosure. The experimental works [7–9,13–18] on hydrogen-
air, hydrocarbon-air, and natural-gas-air explosions, employing various geometries and
conditions, have been used to validate some of the models predicting the dynamics of
gaseous explosions. The drawbacks of an explosion experiment, which includes requir-
ing ample time, difficulty in setting-up an experiment, coupled with severity associated
with the experiment in the case of an accident, actually makes it a dangerous venture.
Computational Fluid Dynamics (CFD) applications were also used in modelling gaseous
explosions [19], but they also required a lot of computational time and resources.

To reduce such a demands in the computational time and costs, Ugarte et al. [20] devel-
oped and coded a reduced-order transient model named the Explosion Venting Analyzer
(EVA), which was built-up on the earlier explosion predicting model equations [6] and is
able to promptly predict hydrogen explosions in spheres, cuboids, and cylindrical geome-
tries. A subsequent work by Sezer et al. [21] extended the EVA to predict hydrocarbon
(methane and propane) explosions. It should be noted that the EVA has undergone various
modifications for better prediction accuracy, including the formulations for the flame shape
and the burning velocity as well as the addition of the new enclosure geometry. While
Sezer et al. [21] validated and established the EVA capability of predicting hydrocarbon
explosion experiments in a cuboid enclosure, later, the experimental work of Kodakoglu
et al. [22] analyzed methane-air explosions in a cylindrical geometry. Therefore, the present
work extends and employs the EVA to model the conditions and geometry of Ref. [22],
which resembles a typical configuration of tubes and pipelines used for the natural gas
supply. Specifically, the pressure evolution and peak pressure results from the EVA are
tabulated and validated by the experimental data [22] in order to ascertain the accuracy of
the EVA prediction in this geometry.

It is noted that the flame velocity model embedded in the EVA is based on the experi-
mental correlations for a specific fuel mixture composition and its range of equivalence
ratios. While the EVA can predict the explosion dynamics for various fuel mixtures, experi-
mental correlations for the flame speeds are usually not available for most fuel mixtures,
which therefore limits the EVA. Therefore, to fix this uncertainty, the Cantera package [23]
is integrated with the EVA to compute the flame speeds, with the results being in good
agreement with the available experimental correlations. As a result, by integrating Cantera
with the EVA, the earlier limitation of the EVA usability, being restricted to a small range of
the fuel mixture compositions and equivalence ratios, is removed.

In the present study, a physics-based phenomenological tool that can potentially
simulate the explosion dynamics of any fuel mixture composition and its equivalence
ratios is developed. This transient reduced-order model predicting explosions can then be
utilized to determine the maximum overpressure when designing safety vents employed
to mitigate the consequences of explosions.
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2. Model Description

The mathematical model employed in this work, the EVA, was developed by Ugarte
et al. [20] and it has undergone several modifications as mentioned in Ref [21]. The EVA is
a transient, reduced-order model used to predict the maximum (over)pressure, the mass
transfer, and the flame speed during explosions in vented and unvented enclosures. The
EVA is capable to estimate the explosion characteristics in various geometries by solving
the mass and energy balance equations, along with the burning rate formulations, as
summarized below.

The mass balance:

d

dt

(

mu

mi

)
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d

dt
(n) +
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Here, t and m stand for the time and mass, respectively, the subscripts u, b, v, and i
designate the unburned, burned, vented, and initial conditions, P = P/Pi is instantaneous-
to-initial pressures ratio, V is the initial volume occupied by the burnt gas, and γu = Cp/Cv

represents the specific heat ratio of the unburnt gas, employed from the NASA-CEA
solver [24] embedded in the EVA to calculate the thermal-physical properties of the respec-
tive fuel-air mixtures.

The burning rate formulation:
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Equation (3) determines the rate at which the burnt matter is generated, as a function
of the burning velocity with respect to the fuel mixture denoted as ST , the surface area of
the flame front A, and the initial volume of the fuel mixture denoted as Vi. The term K in
Equation (3) is used to specify the type of gas vented, with K = 0 if the unburned gas is
vented, and K = 1 if the burnt gas is vented.

The energy balance:
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b = (euo − ebo + T0

[

CVb
− CVu

]

)/CVu Ti, V = Vb/Vi. (5)

Here, eo is specific energy of formation, along with the reference temperature T0, the
specific heat at constant volume CV , and the specific heat ratio of the burnt gas γb. Further
details of the original EVA model are given in Refs. [20,21].

2.1. Models for the Flame Shape

The flame shape is one of the major parameters imposed into the EVA solver, being
either spherical or ellipsoidal. The latter is one of the modifications made to the original EVA
platform. It is noted that the pioneering Mulpuru–Wilkin predictive explosion model [6]
considered a spherical flame shape. Such a choice was suitable to predict the explosion
dynamics in the configuration used in the experimental work, as there was good match
between the experimental work and the model. However, for most geometries, the spherical
flame assumption is not accurate, leading to a notable discrepancy between the results of
the predictive explosion model as compared to the experimental results.

According to Ref. [21], the flame shape influences the maximum peak pressure values
as well as the explosion behavior. In particular, the ellipsoidal shape of the flame front
in Ref. [21] provided better predictions of the explosion characteristics in the cylindrical
geometry as compared to the spherical flame shape. Therefore, in the present work, where a
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Table 1. The peak pressures as well as the errors of the approaches for the rear-ignited (RI) stoichio-

metric (φ = 1) methane-air explosions in the cylindrical enclosures.

Vent Area (cm2)

Peak Pressure (bar-g) Error (%)

Experiment EVA
EVA +

Cantera
EVA

EVA +
Cantera

Av = 67.9—the small vent (SV) 0.031 0.036 0.046 16.12 48.39

Av = 88.6—the medium vent (MV) 0.015 0.023 0.029 53.33 93.33

Av = 132.7—the large vent (LV) 0.016 0.010 0.013 37.5 18.75

4. Conclusions

The present work showcased the capability of using the Explosion Venting Analyzer
(EVA) model [20,21] to predict the pressure evolution in the process of methane-air mixture
explosions in vented cylindrical vessels. The EVA results are validated by the experimental
measurements [19,22]. It is shown that the EVA over-predicts the peak pressure for small
and medium vent area of 67.9 cm2 and 86.6 cm2 but under-predicts the peak pressure
when the vent area is as large as 132.7 cm2. This might have resulted from the combustion
instabilities or other factors not accounted by the EVA. Regarding the pressure evolution
with time, for a small vent, 67.9 cm2, the EVA predicted faster pressure raise than that in the
experiments [22], while for the 86.6 cm2 and 132.7 cm2 vent areas, the EVA results generally
agree with the experimental data. Also, Cantera was integrated with the EVA to compute
the laminar flame velocity. As a result, the EVA-Cantera model predicts higher overpressure
as compared to the original EVA. Overall, the EVA is proven to be an acceptable model
as its results have good match with the experimental values. This therefore demonstrate
the usability of the EVA in determining the peak pressures of gas explosions in cylindrical
enclosure.
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