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A B S T R A C T   

Portable Raman instruments provide quick, nondestructive analysis of organic and inorganic compounds, making 
it widely applicable in various disciplines. However, the instrument’s accuracy when analyzing pure, or multiple 
component mixtures is still an aspect that needs improvement. This study explored machine learning algorithms 
to classify single compounds, binary, ternary, and quaternary mixtures by the compound name, and the com-
pound’s class, using seized drugs and common diluents as a model. The accuracies were ≥ 93% for most pure, 
binary mixtures, and quaternary mixtures algorithms. Therefore, incorporating machine learning algorithms in 
portable instruments, can improve the detection of unknown substances with high accuracies.   

1. Introduction 

Portable instruments are becoming more prevalent due to their 
ability to provide quick results on-the-spot [1–3]. While data can be 
acquired in a short time, the specificity and accuracy of these in-
struments and the safety of the operators remain important. Portable 
analytical techniques for on-site applications include electrochemical 
systems [4], paper-based analytical devices [5,6], mass spectrometry 
methods [7], and spectroscopy methods [8]. In particular, scenarios 
where analysis requires packages to be opened at point-of-contact areas, 
the risk of exposure to unknown substances by personnel remains high. 
Raman spectroscopy provides unique advantages over other techniques 
due to its ability to be noninvasive [9] and even to analyze substances 
through packaging [10,11], thereby minimizing the risk of exposure to 
operators. For example, the Agilent Resolve Handheld Raman—a 
spatially offset Raman spectrometer (SORS) which allows subsurface 
analysis, is capable of analyzing explosives, drug precursors, toxic in-
dustrial chemicals, chemical warfare agents, and narcotics through 
packaging such as colored plastic and glass, paper, sacks, cardboard and 
fabric [11]. Conventional Raman systems are better suited for analysis 
through clear plastic bags and vials, and translucent packaging. Portable 
Raman systems have proved useful for the molecular identification of 
minerals [12], analysis of biomaterials [13], food quality monitoring 
[14,15], and analysis of drugs [3,16]. Raman spectroscopy is broadly 
applied in chemistry, biochemistry, biology, and medicine [17] due to 

its ability to provide a structural fingerprint by which molecules can be 
identified. Nonetheless, the instrument’s accuracy is dependent on the 
incorporated algorithms that return an identification for an unknown 
compound. 

Organic molecules, when stimulated by an excitation source such as 
a laser, results in a photon frequency shift due to the vibration produced 
by the interaction between the applied electromagnetic field and the 
electronic charge, which is unique to the molecule. Depending on the 
functional groups in the molecule, it may undergo symmetric, asym-
metric stretching, or bending. These factors influence the Raman shifts 
and peak shapes and intensities observed in the resulting Raman spec-
trum. Unknown compounds can be compared to the vibrational signa-
tures in a library. A common metric used for spectral comparisons is the 
hit quality index (HQI) where 1.0 represents a perfect correlation and 
0.0 represents poor correlation [18]. A threshold for a ‘match’ or ‘no 
match’ result can be predetermined by the user based on the application. 
For example, in forensic science where mixtures are commonly 
encountered in seized drugs, a threshold of 85% for the HQI may be 
selected, but in the pharmaceutical industry where purer substances are 
encountered, the threshold might be 95% [19]. Spectra can be pre-
processed to reduce the baseline by computing the first derivative to 
allow for higher discrimination [18]. One drawback to using the HQI is 
that incorrect identifications of similar compounds with small spectra 
differences may result [20]. Other metrics for spectral comparison 
include Pearson’s correlation—where a value of 1 represents a perfect 
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correlation and −1 represents a poor correlation, and cosine similar-
ity—where 0 represents poor correlation and 1 represents perfect cor-
relation [21]. However, these methods work well when there is a linear 
relationship between spectral features but can perform poorly with 
complex spectra of multiple mixtures. 

One method used to recognize spectral features, otherwise difficult 
to visualize by the naked eye, is machine learning. Developed algorithms 
are trained to extract relevant features or patterns in complex spectra 
and predict the classes of new compounds, thereby improving detection, 
identification, and classification. Several supervised and unsupervised 
algorithms have been used in combination with spectroscopic data, 
including principal component analysis, k-nearest neighbors (kNN), 
random forests (RF), support vector machines (SVM) and deep learning 
methods [22–24]. 

Deep learning methods— an important branch of machine learning, 
are becoming more prevalent over traditional classification methods due 
to their ability to extract relevant information about labeled data in 
more complex datasets which contain non-linearly separable classes. 
Two algorithms used for Raman spectroscopy include artificial neural 
networks (NN) and convolutional neural networks (CNN) which are 
mathematically modeled after the nervous system [25]. CNNs are 
preferably used for image classification and object recognition over 
NNs—which can lead to overfitting, making CNNs ideal for spectral 
comparison [26] as spectra can be considered fingerprints of molecules 
or crystalline materials. A smart Raman spectrometer was developed to 
analyze pure compounds, binary and ternary mixtures with 99.9%, 
96.7%, and 85.7% accuracy, respectively using a CNN [27]. 

Whereas many of these techniques have been used post acquisition of 
the spectra [24,28–32], few have incorporated these methods in 
portable Raman instruments [19,33]. Additionally, the combination of 
existing spectral comparison methods with classification techniques 
have not been explored. When machine learning algorithms are utilized, 
the main goal is to report a compound, but misclassification is common 
when new compounds are absent from the instrument’s library, or the 
trained model has not seen the new compound. 

In this study, we evaluate the accuracy of six machine learning 
algorithms— kNN, naïve bayes (NB), RF, SVM, NN, and CNN, on pure 
drug spectra, binary, ternary and quaternary mixtures and compare 
their accuracy to a recently validated portable Raman instrument which 
uses a HQI algorithm [34]. The findings presented here can be easily 
adapted to many other materials and applications. 

2. Methods 

2.1. Spectra acquisition 

Spectra were acquired using a TacticID portable Raman spectrometer 
with a 300 mW, 785 nm laser, and 9 cm−1 resolution (B&W Tek, New-
ark, DE). As previously described [34], spectra were measured for 14 
drugs and 15 diluents (Supplementary Table 1), using a laser power of 
60 and 90%. The powder sampled were measured through glass vials 
and 2 mil plastic bags. A total of 444 pure spectra were collected. 

The spectra were baseline corrected and truncated to include Raman 
shifts from 176 to 2000 cm−1. A Savitsky-Golay filter was applied to 
smooth the spectra with a 5 point window length and third order 
polynomial. 

2.2. Spectral comparison 

The cosine similarity and Pearson’s correlation were used to 
compare an authentic test set of pure compounds (referred to as 
authentic pure set). These compounds included acetaminophen, 
benzocaine, boric acid, caffeine, diphenhydramine, levamisole, lido-
caine, maltose, mannitol, myo-inositol, phenacetin, and procaine. 
Spectra were acquired in triplicate through 2 mil plastic bags and the 
instrument was operated at 90% power. A second database was created 

comprising of the first derivative of the spectra from Section 2.1 and 
comparisons to the test spectra were reported. 

2.3. Pure spectra algorithms 

Data augmentation is common when spectra are limited for training 
machine learning algorithms (MLA) [30]. Therefore, 444,000 spectra 
were created by multiplying each spectrum by 1000 random numbers 
between 0 and 1. This introduced variation in the spectra and simulated 
instances where there might be suppression of signals, hence training 
the algorithms under the worst-case scenario. Each spectrum was 
normalized to its maximum intensity. 

Six machine learning algorithms including k-nearest neighbors 
(kNN), naïve bayes (NB), support vector machine (SVM), random forest 
(RF), neural network (NN), and convolutional neural network (CNN) 
were explored. Scikit-learn v 0.24.1 [35] in python was used for kNN, NB, 
SVM and RF classifiers. NN and CNN were based on Keras v 2.4.0 with 
Tensorflow v 2.4.1 backend [36]. Two models were created for each 
algorithm—one based on the compounds (n = 29) where the output is 
the compounds listed in Supplementary Table 1 and the second based 
on the compounds’ class (n = 17), also listed in Supplementary Table 1. 
Training was performed on 80% of the data in each class and testing on 
20% using the stratify argument in the train_test_split function in Scikit- 
learn. The optimized parameters for all machine learning algorithms can 
be found in the supplementary document. 

The authentic pure set was used to evaluate the models. Two 
drugs—diphenhydramine (antihistamine), and mannitol (sugar) were 
not included in the training data and misclassification of these sub-
stances were expected with the models trained based on the compounds. 
However, we evaluated their classification based on the drug class. 

2.4. Binary mixture algorithms 

Simulated binary mixtures of the drugs and diluents from Section 
2.2 were created using Eq. (1). 
Mixture = (drug*r)+ (diluent*(1 − r) ) (1) 

Where r = [0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 
0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95], drug and diluent are 
the spectrum of each drug or diluent, respectively, and mixture is the 
resulting spectrum. Machine learning algorithms including SVM, kNN, 
CNN, NN, NB and RF were first evaluated on this simulated dataset 
(binary mix #1). A second dataset (binary mix #2) was created by 
applying a Fast Fourier transformation (FFT) to the spectra and multi-
plying each intensity by a random number between 0.8 and 1.2 as an 
additional data augmentation technique, adding unequal variation to 
the spectra. The two datasets were combined, and algorithms were 
selected to evaluate the data based upon the reported accuracy on binary 
mix #1 and the time taken to train the models. Therefore, NB was not 
selected due to poor accuracy and RF due to longer training times. The 
combined binary mixtures dataset contained 1,152,312 spectra with 224 
unique binary compound mixtures and 88 binary compound class mix-
tures. A list of the mixtures can be found in Supplementary Table 2. 
Model parameters can also be found in the supplementary document. 

To demonstrate the accuracy of the models, spectra from authentic 
in-house binary drug: diluent mixtures (n = 186) previously acquired 
using the TacticID instrument [34] were used to evaluate the algorithms 
and to compare with the instrument’s reported results. The drug: diluent 
ratios were 1:4, 1:7, 1:10, and 1:20. As an example, for a 1:7 ratio, 10 mg 
of the drug and 70 mg of the diluent were mixed prior to analysis. 
Selected classifiers which included SVM, kNN, NN, and CNN were used 
to test the authentic in-house mixtures. The accuracy of the predictions 
was based on the three highest probabilities that a compound belonged 
to a class. 
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2.5. Ternary mixtures 

Selected ternary mixtures were created from the spectra in Section 
2.1. using Eq. (2).  

The resulting spectra were processed using the Fast Fourier Trans-
formation (FFT) and multiplied by a random number between 0.8 and 

1.2 as a data augmentation technique which introduced unequal vari-
ations in peak intensities. A total of 829,440 spectra were created and 
there were 60 ternary compound mixtures and 50 ternary compound 
class mixtures. A list of the mixtures can be found in Supplementary 

Table 3 and 4. The evaluated algorithms included CNN, kNN, NN, and 
SVM. Additional information about the architecture of the models can 
be found in the supplementary document. 

Fig. 1. (A)– Illustration of the resulting spectra when a methamphetamine (Meth) spectrum is multiplied by 0.13, 0.35, 0.46, 0.54, 0.77, 0.87, 0.90. (B)–Comparison 
of maltose (Malt) and morphine (Mor) spectrum. (C)– Illustrations of the resulting simulated spectra for morphine (multiplied by 0.1, 0.3, 0.6, 0.9) and maltose 
(multiplied by 0.9, 0.7, 0.4, 0.1). (D)– The spectrum of acetaminophen before (Acet_Orig) and after Fast Fourier transformation (Acet_FFT). (E)–Creation of a ternary 
mixture of codeine, diltiazem, and levamisole with the codeine signal suppressed to 5% of the original spectrum. (F)–Creation of a quaternary mixture containing 
buprenorphine, acetaminophen, caffeine, and procaine with 5% suppression of the buprenorphine signal. 

TernaryMixture = (drug*0.05)+

(

diluent1*(1 − 0.05)

2

)

+

(

diluent2*(1 − 0.05)

2

)

(2)   
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2.6. Quaternary mixtures 

Three subsets of quaternary mixtures were created from the spectra 
in Section 2.1 using Eq. (3). The value 0.05 was selected to simulate the 
effect of high signal suppression of the drug in comparison to the dilu-
ents, as is usually the case in street drug mixtures, although this meth-
odology can be easily generalized to other compounds. The spectra were 
also processed using the FFT prior to evaluation using machine learning 
algorithms created for classification by compound mixture and com-
pound class mixture. SVM, kNN, CNN and NN were used to evaluate the 
data. 

Subset 1 contained 4 quaternary mixtures of cocaine with acet-
aminophen, diltiazem, and hydroxyzine. See Supplementary Table 5 
for additional information about the mixtures. A total of 663,552 spectra 
were created in this set. 

Subset 2 comprised of 1,327,104 spectra. Quaternary mixture com-
binations were created with the drug as buprenorphine and naltrexone 
and the diluents as acetaminophen, caffeine, procaine, and maltose. This 
resulted in 8 compound mixtures and a complete description can be 
found in Supplementary Table 6. 

The quaternary mixtures in subset 4 contained codeine and 
morphine as drugs, and acetaminophen, caffeine, lidocaine, maltose as 
diluents. A total of 8 compound mixture classes (Supplementary 
Table 7) were created with 1,327,104 spectra. A summary of the 
methods is shown in Supplementary Figure 1 and additional details 
about the architectures of the models can be found in the supplementary 
document.  

3. Results 

3.1. Spectra Creation and comparison 

A visual representation of the pure simulated spectra and binary, 
ternary, and quaternary mixtures recreation is shown in Fig. 1. Mixtures 
were created to represent complex combinations of drugs and diluents 
that represent common street drugs as well as worst case scenarios. 
Multiplication of the pure spectra by numbers between 0 and 1 resulted 
in a relative suppression or scaling of the signal intensities (Fig. 1A). 
Fig. 1B shows the individual spectrum of maltose and morphine and the 
differences in the number, shape, and intensity of the peaks character-
istic of each compound. When the mixtures were simulated, the peak at 
1640 cm−1 for morphine decreased relative to the diluent— maltose, 
when the ratio of maltose to morphine was higher (Fig. 1C). For 
example, when the morphine spectrum was multiplied by 0.90 and the 
maltose spectrum multiplied by 0.10, then combined, the resulting 
spectrum demonstrated more features similar to morphine. Fig. 1D 
shows the effect of applying the Fast Fourier transformation to the 
spectra. Some peak intensities are higher whereas others are lower than 
those in the original spectrum. Additionally, noise is added in random 
portions of the spectrum. Fig. 1E and 1F demonstrate the spectrum of a 
ternary and quaternary mixture, respectively. The deliberate suppres-
sion of the drug spectrum in relation to the diluents in both the ternary 
and quaternary mixture makes it difficult to identify the Raman bands 
unique to the drugs—codeine for the ternary mixture, and buprenor-
phine for the quaternary mixture. 

The cosine similarity and Pearson’s correlation coefficient for the 
authentic pure set is shown in Supplementary Figure 2. Although lower 

scores were observed when making comparisons of the first derivative 
spectra, all scores were greater than 0.90 with the cosine similarity, and 
greater than 0.86 with the Pearson’s correlation. Comparisons on the 
pure test set using the cosine similarity resulted in methamphetamine 
having the highest similarity to diphenhydramine (0.820), and sorbitol 
having the highest similarity to mannitol (0.878). When comparisons 
were made using the first derivative algorithm combining the cosine 
similarity, the results were the same between mannitol and sorbitol, but 
the score was 0.640. Diphenhydramine was also most similar to fentanyl 
(0.717) using the first derivative comparison. The Pearson’s correlation 
resulted in mannitol and sorbitol being most similar (0.817 and 0.640 
for the original spectra and first derivative spectra algorithms respec-
tively). Fentanyl and methamphetamine were also reported as the 
closest compounds to diphenhydramine. Although the first derivative 
provides lower correlation scores than the original spectral correlations, 
they are not markedly different. 

3.2. Pure spectra 

Exploratory analysis of the 444 pure spectra using PCA of the original 
spectra and the first derivative spectra is shown in Supplementary 
Figure 3. Plots of the first two principal components of the original 
spectra labeled by compound and class show overlap of the clusters 
making PCA a challenge for classification of this dataset. The explained 
variance in the first two components were 34% and 9%. Although some 
clusters are more separated when the first derivative of the spectra is 
computed (Supplementary Figure 3C, 3D), others still overlap. Linear 

discriminant analysis (LDA) results in higher separation of the classes, 
but overlap is still observed for few drugs and classes (Supplementary 
Figure 4). As a result, neither PCA nor LDA were used for further eval-
uation of the data in this study. Various machine learning algorithms 
were then evaluated in the pure spectra dataset, as explained below. 

The performance of the method was evaluated as correct identifi-
cation or accuracy. Correct identification was evaluated for the 
authentic datasets (pure and binary mixtures) where True positives and 
False negatives were considered. The models created from the simulated 
data were evaluated using accuracy. True positive, False positive, and 
their respective True negative and False negative were used in the 
calculation of accuracy (Supplementary Equation (1)). 

The average accuracies of the kNN, RF and CNN algorithms for 
compound and compound class were 100% (Table 1). The SVM resulted 
in 99% accuracy for both models whereas the NN resulted in 98% for the 
compound model and 99% for the class model. The NB models resulted 
in the lowest accuracies for both models—68% for compound and 67% 
for compound class. Complete classification reports can be found in 
Supplementary Tables 8 – 19. 

All models except the NB algorithm were used to evaluate the 
authentic pure set. Only the CNN resulted in 100% correct identification 
for both compound and class (Table 1). This also included correctly 
classifying diphenhydramine and mannitol by compound class even 
though they were not included in the training data. However, they were 
misclassified by compound because the training data did not contain 
their labels. The RF model resulted in correct identifications of 97% for 
compounds and 94% for compound classes. The next best model—kNN, 
resulted in 93% correct identification for compounds and 86% for 
compound classes. The model with the lowest correct identification for 
reporting compounds and class was the SVM with 80% and 56%, 
respectively. Although at least 80% correct compound identification in 

QuaternaryMixture = (drug*0.05)+

(

diluent1*(1 − 0.05)

3

)

+

(

diluent2*(1 − 0.05)

3

)

+

(

diluent3*(1 − 0.05)

3

)

(3)   
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the top 3 hits was observed for all models, only the CNN resulted in the 
top hit corresponding to the ground truth compounds. 

The accuracy and loss plots during training and testing of the CNN 
model are shown in Supplementary Figure 5. Although the model was 
created with 100 epochs, the implementation of early stopping to pre-
vent overfitting meant that after 25 to 30 epochs, the training auto-
matically stopped. The training accuracy remained between 99.7 and 
99.9% after 5 epochs for the compound model (Supplementary 
Figure 5A). The testing accuracy fluctuated between 99.6 and 99.9% 
while the training loss continued to decrease from 0.030 to 0.005. A 
similar pattern was observed for the compound class model, but the 
testing accuracy fluctuated between 99.5 and 99.9% after 30 
epochs.0.030 to 0.005. A similar pattern was observed for the compound 
class model, but the testing accuracy fluctuated between 99.5 and 99.9% 
after 30 epochs. 

3.3. Binary mixtures 

All models demonstrated at least 95% accuracy for compound mix-
tures or class mixtures except NB which had 47% accuracy with class 
mixtures (Table 2). The RF, NB and CNN all had 100% accuracy with the 
compound mixtures whereas only the RF, and CNN resulted in 100% 
accuracy for the class mixtures model. 

Training for the CNN algorithm stopped after 17 and 16 epochs for 
the compound mixtures, and class mixtures model, respectively. Sup-
plementary Figure 6 demonstrates an increase in training and testing 
accuracies while the loss decreased, indicating no overfitting. 

3.4. Application to authentic In-house binary mixtures 

The correct identification rates for the authentic in-house mixtures 
when using selected models was compared to results previously reported 
for the TacticID Raman [34]. The reported identification rates in Table 3 
considers the presence of the ground truth in the top 3 hits. The top 3 hits 
were determined based on the classification probability as shown in 
Table 4. For example, a mixture containing morphine and maltose 
resulted in the correct mixture as hit #1 because of the highest proba-
bility they belonged to that class. However, the ground truth was re-
ported as hit #2 in one instance (Table 4) with a probability of 0.003. 

The authentic in-house mixtures were evaluated using the developed 
pure spectra algorithms to demonstrate the importance of model selec-
tion based on the application. The SVM and RF models resulted in the 
highest correct identifications for both drug and diluent in the top 3 
hits—26% and 16%, respectively (Table 3). The SVM was the only al-
gorithm that outperformed the HQI, with 51% correct identification for 
drug only compared to 30% with the HQI. Although, the Raman in-
strument does not report the class of unknown compounds, the pure 
spectra algorithms by compound class all provided correct identifica-
tions greater than 74% for diluents only and performed poorly for drug 
classification (≤54%). 

The correct identification improved when the binary mixtures 
models were used to assess the authentic in-house mixtures. All binary 
mixtures models demonstrated correct identifications at least double 
that which was observed with the Raman instrument (Table 5). Greater 
than 70% correct drug classification was observed for most algorithms 
compared to 30% with the HQI, and greater than 90% correct diluent 

classification for most algorithms as compared to 89% identification of 
the diluent with the HQI. Moreover, all the algorithms were able to 
correctly detect at least one compound or class in the mixture. The class 
mixtures correct identification rates cannot be compared with the 
Raman instrument because the instrument only reports the drug based 
on spectral similarity. However, the CNN and NN performed better than 
the other algorithms for drug class identification with 78% and 77%, 
respectively. The correct diluent class identification was ≥ 90% for all 
algorithms. 

3.5. Ternary and quaternary mixtures 

Molecular analysis of multiple component mixtures can be chal-
lenging using portable Raman spectroscopy as the signal of compounds 
in a lower percentage can be masked by compounds that are present in 
higher percentages. Therefore, investigating the performance of the al-
gorithms on more complex mixtures is critical in understanding their 
applicability as screening tools. 

In general, the tested algorithms successfully identified ternary 
mixtures. An example of the accuracy and validation loss plots during 
training and testing the ternary mixtures CNN algorithm is shown is 
Supplementary Figure 7. Training stopped after 16 – 20 epochs when the 
validation loss no longer decreased, and when the accuracy remained 
between 98.5% and 99.6%. 

Evaluation of ternary mixtures using selected algorithms resulted in 
the kNN performing the worst with 83% accuracy for compound mix-
tures and 84% for compound class mixtures (Table 6). An accuracy 
greater than 95% was observed with all other models with the CNN’s 
performance at 100%. 

Interestingly, accuracy of identification of quaternary mixtures 
ranged from 93 to 100%, depending on the model and subset. The ac-
curacy for all models on subset 1 was 100%, at least 99% on subset 2, 
and at least 93% on subset 3 (Table 7). The lowest accuracy for the 
compound mixtures model was observed with the NN. 

4. Discussion 

The CNN algorithm performed better than the other algorithms in 
detecting the authentic pure test compounds and their class with 100% 
correct identification (Table 1). The RF algorithm also produced a 
comparable but lower correct identification of 97%. The use of a linear 
kernel with the SVM models suggested our data was linearly separable 
due to the high accuracies observed in this study. The inclusion of a 
model trained by compound class proved to be useful in understanding 
the potential identity of an unknown compound when the HQI search 
results in no matches. This is particularly useful when Raman is used as a 
quick screening tool for drug identification. The two examples used in 
this study—diphenhydramine and mannitol, were correctly classified by 
their compound class using the CNN model, even though they were 
misclassified when tested using the compound model. Discrimination of 
three novel psychoactive substances (NPS) families—12 fentanyl related 
compounds, 8 synthetic cathinones, and 10 synthetic cannabinoids, was 
achieved using PCA [37]. The authors’ intended use of this application 
was for law enforcement and customs officers where a diversity of 
controlled substances or counterfeits is encountered. The challenge with 
the use of PCA is when compounds of other drug families are 

Table 1 
Comparison of the algorithms’ accuracy and evaluation of the models on an authentic pure test dataset. The pure test set accuracy is based on compound’s presence in 
the top three hits.   

kNN NB RF SVM NN CNN  
Compound Class Compound Class Compound Class Compound Class Compound Class Compound Class 

Model Accuracy (%) 100 100 68 67 100 100 99 99 98 99 100 100 
Pure Test Set Correct 

identification (%) 
93 86 — — 97 94 80 56 90 86 100 100  
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encountered, accuracy can suffer. We demonstrate in Supplementary 
Figure 3 the difficulty in separating multiple clusters using PCA and we 
believe it is not the ideal method for classification although it can be 
used for feature selection with other algorithms. LDA provided better 
class separation than PCA and reasonable accuracy (Supplementary 
Table 20)—96%, 88%, 91%, and 78% for single compounds, single 
classes, binary compound mixtures, and binary compound class mix-
tures, respectively, but emphasis was given to machine learning classi-
fiers due to their higher accuracies with more complex datasets. Organic 
molecules which are structurally different by a functional group are of 
interest especially in forensic science, where new drug analogues are 
constantly emerging as a way of evading local laws and regulations. 
Although our study is not focused on differentiating between functional 
groups, a study using CNN demonstrated 100% accuracy in discrimi-
nating between toluene, aniline, o-xylene which differ by the number 
and position of a methyl group [30]. 

In many laboratories especially in forensic science, the ability to 
identify a controlled substance from seized materials using portable 
Raman instruments can provide more effective decision-making onsite 
and more efficient processing of cases at points of entry, such as customs. 
However, it is a challenge because most drug cases involve impure 
substances where the controlled drug is of a lower percentage making 
detection by conventional Raman difficult. For this reason the use of 
portable Raman is considered a screening tool requiring further confir-
mation using an additional technique. During a presumptive stage, ac-
curacies above 70% are acceptable to inform the user about a potential 
drug or compound of interest. The rapid and non-destructive nature of 
portable Raman makes it an ideal technique to make quick sampling and 
investigative decisions at the point of contact, with minimal sample 
manipulation and under safe conditions to the operators. Similarly, in 
counterfeit pharmaceutical products, the high percentage of excipients 
may mask the active pharmaceutical ingredients. Therefore, we decided 
to calculate correct identification of the in-house binary mixtures test set 
based on its presence in the top three hits, accounting for uncertainties 
in classification. The instrument’s accuracy for detecting the drug—a 
controlled substance in the mixtures, using the HQI algorithm was 30%, 
and lower than all the evaluated machine learning algorithms (Table 5). 
The NN and CNN models resulted in the highest correct identification 
rate—73% and 69% for drug only, and 65% and 64% for both com-
pounds, respectively. 

The success of the CNN algorithm for pure compounds and mixtures 
has been supported by several studies [22–24,27,29,30,32,38]. In one 
study, a smart Raman instrument was developed and the reported ac-
curacy for ternary mixtures was 85.7% but 100% was observed with our 
CNN algorithm although the tested compounds were different [27]. The 
architecture of the CNN model reported by the authors contained 9 
layers possibly due to the complexity of the acquired spectra, and 
incorporated dropout to prevent overfitting. Our CNN model consisted 
of no more than 5 layers, and without dropout as there was no indication 
of overfitting. Additionally, the authors only reported compound mix-
tures, but we also report compound class mixtures. However, despite the 
algorithm used, sampling is also important. Some studies used solvent 
mixtures which allows for a more homogeneous sampling which results 
in spectra that better represent the contents. Fan et al evaluated binary 
mixtures of polyacrylamide and sodium acetate but at a 1:1 ratio with a 
100% true positive rate [23]. Our test mixtures included ratios of 1:4, 
1:7, 1:10 and 1:20 where the controlled drug was present in a smaller 
percentage, simulating what can be expected in street drugs. The correct 
identification rates for the drug in the authentic mixtures decreased as 
the drug: diluent ratios increased with all algorithms, demonstrating the 
difficulty in detecting low concentration compounds in mixtures. 
Although, several measurements are required when performing analysis 
using portable Raman instruments to account for inhomogeneous sam-
ples, the acquired data may still be unrepresentative of the compounds 
in the mixture. One method that addresses this issue is the orbital raster 
scanning technique which allows the Raman instrument’s laser to sweep Ta
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over large areas of the sample to yield an average spectrum [39,40]. 
However, evaluating the accuracy of this technique with machine 
learning would have to be studied and compared to conventional Raman 
instruments. The simulated complex mixtures data demonstrated that if 
measurements capture all components in a sample, the algorithm will 

detect them with high accuracy. An alternative to conventional Ram-
an—surface enhanced Raman spectroscopy (SERS) requires collection of 
a small sample dissolved in a solvent prior to analysis. This technique 
can provide more representative information about the components of a 
mixture even when the target substance is in low quantities, but can be 

Table 3 
Correct identification rates of the in-house binary mixtures dataset using the pure spectra algorithms for classification. The results are based on the presence of the 
mixtures in the top 3 hits.   

HQI kNN RF SVM NN CNN 
Correct 
Identification 
(ID, %)  

Compound 
Mixtures 

Class 
Mixtures 

Compound 
Mixtures 

Class 
Mixtures 

Compound 
Mixtures 

Class 
Mixtures 

Compound 
Mixtures 

Class 
Mixtures 

Compound 
Mixtures 

Class 
Mixtures 

Drug 30 24 19 24 42 51 54 15 12 30 22 
Diluent 89 80 81 89 96 74 77 75 77 75 78 
Drug and 

Diluent 
19 5 1 16 38 26 32 2 1 5 1 

At least one 
compound/ 
class 

99 99 99 97 100 99 98 88 89 100 100  

Table 4 
Example of generated table for CNN drug algorithm evaluation on in-house mixtures. (Mor- morphine, malt- maltose, 4MEC- methylethcathinone, 4MMC- 4- 
methylmethcathinone).  

Ground Truth Hit #1 Hit #2 Hit #2 Hit #1 Probability Hit #2 Probability Hit #3 Probability 
Mor– Malt Mor–Malt 4MMC–Malt 4MEC–Malt  0.996  0.004  0.000 
Mor–Malt Mor–Malt 4MMC–Malt 4MEC–Malt  0.986  0.014  0.000 
Mor–Malt 4MMC–Malt Mor–Malt 4MEC–Malt  0.997  0.003  0.000  

Table 5 
Correct identification rates for the in-house binary mixtures using the simulated binary mixtures algorithms in comparison to the Raman instrument built-in hit quality 
index (HQI). The NB models were not evaluated as the other algorithms resulted in higher identification rates for both compound and compound class. The RF al-
gorithm was not evaluated on the in-house mixtures. The correct identification was based on the true compound/ class being in the top 3 hits.   

HQI kNN SVM NN CNN   
Compound 
Mixtures 

Class 
Mixtures 

Compound 
Mixtures 

Class 
Mixtures 

Compound 
Mixtures 

Class 
Mixtures 

Compound 
Mixtures 

Class 
Mixtures 

Drug (%) 30 59 60 61 73 73 77 69 78 
Diluent (%) 89 90 90 94 95 92 95 95 93 
Both (%) 19 49 50 55 68 65 72 64 72 
At least one 

compound/Class 
(%) 

99 100 100 100 100 100 100 100 100  

Table 6 
Accuracy of ternary mixtures models.   

kNN SVM NN CNN  
Compound 
Mixtures 

Class 
Mixtures 

Compound 
Mixtures 

Class 
Mixtures 

Compound 
Mixtures 

Class 
Mixtures 

Compound 
Mixtures 

Class 
Mixtures 

Accuracy 
(%) 

83 84 99 99 95 99 100 100  

Table 7 
Accuracy of quaternary mixtures models.   

kNN SVM NN CNN  
Compound 
Mixtures 

Class 
Mixtures 

Compound 
Mixtures 

Class 
Mixtures 

Compound 
Mixtures 

Class 
Mixtures 

Compound 
Mixtures 

Class 
Mixtures 

Subset 1 Accuracy 
(%) 

100 100 100 100 100 100 100 100 

Subset 2 Accuracy 
(%) 

100 100 100 100 99 100 100 100 

Subset 3 Accuracy 
(%) 

97 100 99 100 93 100 99 100  
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risky when performed outside a controlled environment if the operator 
is exposed to unknown compounds [41–43]. 

A comparison of the effect of training with the mixtures models 
(Table 5) or pure models (Table 3) to predict the compounds in the test 
mixtures demonstrated the importance of having the appropriate model 
in the library. For example, if ternary mixtures are being tested, the 
models should be trained on ternary mixtures. If the pure model which 
returns a single compound is used on mixtures, a result for the com-
pound most representative of the spectrum will result, as demonstrated 
by the accuracy of the diluent in Table 3. Additionally, the algorithms 
detected differences in spectra of ternary and quaternary mixtures, that 
would otherwise be challenging to observe by inspection, with high 
accuracies (~83–100%, Table 6 and 7). Depending on the application, if 
the number of component mixtures is known, algorithms can be 

designed to meet this expectation. For example, if the number of mix-
tures in street drugs does not typically exceed 5 compounds, then 
training algorithms to detect more than 4 components would not be 
necessary. 

We propose the use of models created to report single compounds, 
single compound classes, binary, ternary, and quaternary mixtures using 
the CNN algorithm due to the high correct identification rates and ac-
curacy reported in this study. Instead of implementing these classifica-
tion techniques post processing, they can be incorporated into portable 
instruments and depending on the application, provide both spectral 
correlation information using the HQI, cosine similarity or Pearson’s 
correlation, and classification as demonstrated by the proposed work-
flow in Fig. 2. One advantage of this classification and reporting work-
flow, is the gain of feedback to the end-user. When the identity of a 

Fig. 2. An example of a workflow that can be implemented in portable Raman instruments. If the intended application requires a numerical value for spectral 
correlation, a similarity metric can provide a HQI for pure compounds and spectral weight for mixtures. Machine learning algorithms can also be incorporated for 
identification of the compounds and their classes. In the final report, a summary of the potential hits and their respective class probabilities is reported. 
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compound is unknown and misclassified by the conventional HQI, 
having a built-in CNN algorithm can provide additional information 
about drug classes and potential mixtures. For example, when pure PB- 
22 was analyzed using the portable Raman instrument, it was reported 
as BB22 using the HQI due to the similarity between their spectra. 
Nonetheless, using the machine learning algorithm for compound class 
classified it as a synthetic cannabinoid even though it was absent from 
the library. 

It should be noted that depending on the application, the proposed 
approach still has some limitations. For example, in the pharmaceutical 
industry where purer compounds are encountered and Raman is the 
primary technique used, instead of using the top three hits (Table 4), the 
top hit might be more important. On the other hand, in forensic science, 
where portable Raman is used as a screening method, it might be 
acceptable to consider the top three hits as potential compounds since 
confirmation using a secondary technique would be required before 
reporting components of seized materials. One of the drawbacks of using 
machine learning algorithms on large datasets is that it requires high 
computing capabilities as observed with Random Forests in this study. 
However, given portable instruments such as the TacticID have Wi-Fi 
capabilities, access to a server can be used to train the algorithms on 
new data and be used to perform searches. In future studies, other data 
augmentation parameters such as Raman shift offset can be used in 
training the models to increase their robustness. Additionally, creation 
of authentic ternary and quaternary mixtures can be created to 
demonstrate the capability of the algorithms as more complex drug: 
diluent mixtures have previously reported in casework [44]. 

Machine learning which detects minor differences in spectra of 
complex mixtures outperformed the HQI algorithm incorporated in a 
portable Raman system. Implementation of machine learning algorithms 
capable of detecting single compounds, mixtures, and their classes can 
provide useful screening information about unknown compounds or 
molecules. Although, our proposed approach provides a probability for 
each hit, when needed, a spectral correlation technique can be used. 
Furthermore, having these methods built into the instrument eliminates 
the need to first export the data for post processing, and does not require 
separate libraries to be installed on the instrument as models can be 
trained offline then transferred to the device. Reporting the accuracy of 
the models as shown in Fig. 2, size of the training, and testing data re-
sults in more transparent reporting of results. The concept proposed in 
this study will therefore benefit applications where portable Raman 
instruments are used for compound screening including forensic science, 
medicine, and pharmaceutical industries. 

5. Conclusion 

Six machine learning algorithms—kNN, NB, RF, SVM, NN, and CNN 
were investigated and compared to a portable Raman instrument’s ac-
curacy in detecting pure powders, binary, ternary, and quaternary 
mixtures in this study. The CNN performed better than all algorithms 
with 100% correct identification for pure substances by compound and 
class. Both the NN and CNN resulted in superior correct identification on 
the authentic binary mixtures data— 65% and 64%, respectively in 
detecting both compounds in comparison to 19% observed in the 
portable Raman instrument. Improved accuracy in the binary simulated 
mixtures was observed, ranging from 83 to 100%, depending on the 
model and algorithm used, with superior performance observed for 
CNN. The CNN also provided the highest accuracy on the ternary and 
quaternary mixtures—100%, demonstrating its ability to provide com-
pound and class information on samples that simulate common seized 
drugs formulations. 

We propose the use of the HQI for spectral correlation and CNN 
models in portable Raman instruments to provide preliminary infor-
mation about the identity of a compound and its class. Incorporating 
machine learning algorithms into portable Raman systems can enhance 
the response and feedback provided to law enforcement and scientists at 

the laboratory and onsite, facilitating more efficient and safer decision- 
making during sampling and investigative stages. The methods proposed 
here are broadly applicable to other materials and disciplines that use 
Raman spectroscopy as a rapid method for point-of-contact analysis. 
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