Chemical Physics Letters 787 (2022) 139283

ELSEVIER

Contents lists available at ScienceDirect
Chemical Physics Letters

journal homepage: www.elsevier.com/locate/cplett

it CHEMICXL

Check for

Implementing machine learning for the identification and classification of  [&&s
compound and mixtures in portable Raman instruments

Travon Cooman °, Tatiana Trejos“, Aldo H. Romero ", Luis E. Arroyo ™"

@ Department of Forensic and Investigative Science, West Virginia University, United States
Y Physics and Astronomy Department, West Virginia University, United States

ARTICLE INFO ABSTRACT

Keywords:

Machine learning

Neural networks

Portable Raman spectrometer
Seized drugs

Portable Raman instruments provide quick, nondestructive analysis of organic and inorganic compounds, making
it widely applicable in various disciplines. However, the instrument’s accuracy when analyzing pure, or multiple
component mixtures is still an aspect that needs improvement. This study explored machine learning algorithms
to classify single compounds, binary, ternary, and quaternary mixtures by the compound name, and the com-
pound’s class, using seized drugs and common diluents as a model. The accuracies were > 93% for most pure,

binary mixtures, and quaternary mixtures algorithms. Therefore, incorporating machine learning algorithms in
portable instruments, can improve the detection of unknown substances with high accuracies.

1. Introduction

Portable instruments are becoming more prevalent due to their
ability to provide quick results on-the-spot [1-3]. While data can be
acquired in a short time, the specificity and accuracy of these in-
struments and the safety of the operators remain important. Portable
analytical techniques for on-site applications include electrochemical
systems [4], paper-based analytical devices [5,6], mass spectrometry
methods [7], and spectroscopy methods [8]. In particular, scenarios
where analysis requires packages to be opened at point-of-contact areas,
the risk of exposure to unknown substances by personnel remains high.
Raman spectroscopy provides unique advantages over other techniques
due to its ability to be noninvasive [9] and even to analyze substances
through packaging [10,11], thereby minimizing the risk of exposure to
operators. For example, the Agilent Resolve Handheld Raman—a
spatially offset Raman spectrometer (SORS) which allows subsurface
analysis, is capable of analyzing explosives, drug precursors, toxic in-
dustrial chemicals, chemical warfare agents, and narcotics through
packaging such as colored plastic and glass, paper, sacks, cardboard and
fabric [11]. Conventional Raman systems are better suited for analysis
through clear plastic bags and vials, and translucent packaging. Portable
Raman systems have proved useful for the molecular identification of
minerals [12], analysis of biomaterials [13], food quality monitoring
[14,15], and analysis of drugs [3,16]. Raman spectroscopy is broadly
applied in chemistry, biochemistry, biology, and medicine [17] due to
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its ability to provide a structural fingerprint by which molecules can be
identified. Nonetheless, the instrument’s accuracy is dependent on the
incorporated algorithms that return an identification for an unknown
compound.

Organic molecules, when stimulated by an excitation source such as
a laser, results in a photon frequency shift due to the vibration produced
by the interaction between the applied electromagnetic field and the
electronic charge, which is unique to the molecule. Depending on the
functional groups in the molecule, it may undergo symmetric, asym-
metric stretching, or bending. These factors influence the Raman shifts
and peak shapes and intensities observed in the resulting Raman spec-
trum. Unknown compounds can be compared to the vibrational signa-
tures in a library. A common metric used for spectral comparisons is the
hit quality index (HQI) where 1.0 represents a perfect correlation and
0.0 represents poor correlation [18]. A threshold for a ‘match’ or ‘no
match’ result can be predetermined by the user based on the application.
For example, in forensic science where mixtures are commonly
encountered in seized drugs, a threshold of 85% for the HQI may be
selected, but in the pharmaceutical industry where purer substances are
encountered, the threshold might be 95% [19]. Spectra can be pre-
processed to reduce the baseline by computing the first derivative to
allow for higher discrimination [18]. One drawback to using the HQI is
that incorrect identifications of similar compounds with small spectra
differences may result [20]. Other metrics for spectral comparison
include Pearson’s correlation—where a value of 1 represents a perfect
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correlation and —1 represents a poor correlation, and cosine similar-
ity—where 0 represents poor correlation and 1 represents perfect cor-
relation [21]. However, these methods work well when there is a linear
relationship between spectral features but can perform poorly with
complex spectra of multiple mixtures.

One method used to recognize spectral features, otherwise difficult
to visualize by the naked eye, is machine learning. Developed algorithms
are trained to extract relevant features or patterns in complex spectra
and predict the classes of new compounds, thereby improving detection,
identification, and classification. Several supervised and unsupervised
algorithms have been used in combination with spectroscopic data,
including principal component analysis, k-nearest neighbors (kNN),
random forests (RF), support vector machines (SVM) and deep learning
methods [22-24].

Deep learning methods— an important branch of machine learning,
are becoming more prevalent over traditional classification methods due
to their ability to extract relevant information about labeled data in
more complex datasets which contain non-linearly separable classes.
Two algorithms used for Raman spectroscopy include artificial neural
networks (NN) and convolutional neural networks (CNN) which are
mathematically modeled after the nervous system [25]. CNNs are
preferably used for image classification and object recognition over
NNs—which can lead to overfitting, making CNNs ideal for spectral
comparison [26] as spectra can be considered fingerprints of molecules
or crystalline materials. A smart Raman spectrometer was developed to
analyze pure compounds, binary and ternary mixtures with 99.9%,
96.7%, and 85.7% accuracy, respectively using a CNN [27].

Whereas many of these techniques have been used post acquisition of
the spectra [24,28-32], few have incorporated these methods in
portable Raman instruments [19,33]. Additionally, the combination of
existing spectral comparison methods with classification techniques
have not been explored. When machine learning algorithms are utilized,
the main goal is to report a compound, but misclassification is common
when new compounds are absent from the instrument’s library, or the
trained model has not seen the new compound.

In this study, we evaluate the accuracy of six machine learning
algorithms— kNN, naive bayes (NB), RF, SVM, NN, and CNN, on pure
drug spectra, binary, ternary and quaternary mixtures and compare
their accuracy to a recently validated portable Raman instrument which
uses a HQI algorithm [34]. The findings presented here can be easily
adapted to many other materials and applications.

2. Methods
2.1. Spectra acquisition

Spectra were acquired using a TacticID portable Raman spectrometer
with a 300 mW, 785 nm laser, and 9 cm ™! resolution (B&W Tek, New-
ark, DE). As previously described [34], spectra were measured for 14
drugs and 15 diluents (Supplementary Table 1), using a laser power of
60 and 90%. The powder sampled were measured through glass vials
and 2 mil plastic bags. A total of 444 pure spectra were collected.

The spectra were baseline corrected and truncated to include Raman
shifts from 176 to 2000 cm™!. A Savitsky-Golay filter was applied to
smooth the spectra with a 5 point window length and third order
polynomial.

2.2. Spectral comparison

The cosine similarity and Pearson’s correlation were used to
compare an authentic test set of pure compounds (referred to as
authentic pure set). These compounds included acetaminophen,
benzocaine, boric acid, caffeine, diphenhydramine, levamisole, lido-
caine, maltose, mannitol, myo-inositol, phenacetin, and procaine.
Spectra were acquired in triplicate through 2 mil plastic bags and the
instrument was operated at 90% power. A second database was created
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comprising of the first derivative of the spectra from Section 2.1 and
comparisons to the test spectra were reported.

2.3. Pure spectra algorithms

Data augmentation is common when spectra are limited for training
machine learning algorithms (MLA) [30]. Therefore, 444,000 spectra
were created by multiplying each spectrum by 1000 random numbers
between 0 and 1. This introduced variation in the spectra and simulated
instances where there might be suppression of signals, hence training
the algorithms under the worst-case scenario. Each spectrum was
normalized to its maximum intensity.

Six machine learning algorithms including k-nearest neighbors
(kNN), naive bayes (NB), support vector machine (SVM), random forest
(RF), neural network (NN), and convolutional neural network (CNN)
were explored. Scikit-learn v 0.24.1 [35] in python was used for kNN, NB,
SVM and RF classifiers. NN and CNN were based on Keras v 2.4.0 with
Tensorflow v 2.4.1 backend [36]. Two models were created for each
algorithm—one based on the compounds (n = 29) where the output is
the compounds listed in Supplementary Table 1 and the second based
on the compounds’ class (n = 17), also listed in Supplementary Table 1.
Training was performed on 80% of the data in each class and testing on
20% using the stratify argument in the train test split function in Scikit-
learn. The optimized parameters for all machine learning algorithms can
be found in the supplementary document.

The authentic pure set was used to evaluate the models. Two
drugs—diphenhydramine (antihistamine), and mannitol (sugar) were
not included in the training data and misclassification of these sub-
stances were expected with the models trained based on the compounds.
However, we evaluated their classification based on the drug class.

2.4. Binary mixture algorithms

Simulated binary mixtures of the drugs and diluents from Section
2.2 were created using Eq. (1).

Mixture = (drug*r) + (diluent*(1 —r)) 1)

Where r = [0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50,
0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95], drug and diluent are
the spectrum of each drug or diluent, respectively, and mixture is the
resulting spectrum. Machine learning algorithms including SVM, kNN,
CNN, NN, NB and RF were first evaluated on this simulated dataset
(binary mix #1). A second dataset (binary mix #2) was created by
applying a Fast Fourier transformation (FFT) to the spectra and multi-
plying each intensity by a random number between 0.8 and 1.2 as an
additional data augmentation technique, adding unequal variation to
the spectra. The two datasets were combined, and algorithms were
selected to evaluate the data based upon the reported accuracy on binary
mix #1 and the time taken to train the models. Therefore, NB was not
selected due to poor accuracy and RF due to longer training times. The
combined binary mixtures dataset contained 1,152,312 spectra with 224
unique binary compound mixtures and 88 binary compound class mix-
tures. A list of the mixtures can be found in Supplementary Table 2.
Model parameters can also be found in the supplementary document.

To demonstrate the accuracy of the models, spectra from authentic
in-house binary drug: diluent mixtures (n = 186) previously acquired
using the TacticID instrument [34] were used to evaluate the algorithms
and to compare with the instrument’s reported results. The drug: diluent
ratios were 1:4, 1:7, 1:10, and 1:20. As an example, for a 1:7 ratio, 10 mg
of the drug and 70 mg of the diluent were mixed prior to analysis.
Selected classifiers which included SVM, kNN, NN, and CNN were used
to test the authentic in-house mixtures. The accuracy of the predictions
was based on the three highest probabilities that a compound belonged
to a class.
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2.5. Ternary mixtures

Selected ternary mixtures were created from the spectra in Section
2.1. using Eq. (2).

1.2 as a data augmentation technique which introduced unequal vari-
ations in peak intensities. A total of 829,440 spectra were created and
there were 60 ternary compound mixtures and 50 ternary compound
class mixtures. A list of the mixtures can be found in Supplementary

Chemical Physics Letters 787 (2022) 139283

1-0.05 1-0.05
TernaryMixture = (drug*0.05) + (diluentl*(iz)) + (diluentZ*%)

The resulting spectra were processed using the Fast Fourier Trans-
formation (FFT) and multiplied by a random number between 0.8 and
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Fig. 1. (A)-Illustration of the resulting spectra when a methamphetamine (Meth) spectrum is multiplied by 0.13, 0.35, 0.46, 0.54, 0.77, 0.87, 0.90. (B)-Comparison
of maltose (Malt) and morphine (Mor) spectrum. (C)- Illustrations of the resulting simulated spectra for morphine (multiplied by 0.1, 0.3, 0.6, 0.9) and maltose
(multiplied by 0.9, 0.7, 0.4, 0.1). (D)~ The spectrum of acetaminophen before (Acet_Orig) and after Fast Fourier transformation (Acet_FFT). (E)-Creation of a ternary
mixture of codeine, diltiazem, and levamisole with the codeine signal suppressed to 5% of the original spectrum. (F)-Creation of a quaternary mixture containing
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SVM. Additional information about the architecture of the models can
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2.6. Quaternary mixtures

Three subsets of quaternary mixtures were created from the spectra
in Section 2.1 using Eq. (3). The value 0.05 was selected to simulate the
effect of high signal suppression of the drug in comparison to the dilu-
ents, as is usually the case in street drug mixtures, although this meth-
odology can be easily generalized to other compounds. The spectra were
also processed using the FFT prior to evaluation using machine learning
algorithms created for classification by compound mixture and com-
pound class mixture. SVM, kNN, CNN and NN were used to evaluate the
data.

Subset 1 contained 4 quaternary mixtures of cocaine with acet-
aminophen, diltiazem, and hydroxyzine. See Supplementary Table 5
for additional information about the mixtures. A total of 663,552 spectra
were created in this set.

Subset 2 comprised of 1,327,104 spectra. Quaternary mixture com-
binations were created with the drug as buprenorphine and naltrexone
and the diluents as acetaminophen, caffeine, procaine, and maltose. This
resulted in 8 compound mixtures and a complete description can be
found in Supplementary Table 6.

The quaternary mixtures in subset 4 contained codeine and
morphine as drugs, and acetaminophen, caffeine, lidocaine, maltose as
diluents. A total of 8 compound mixture classes (Supplementary
Table 7) were created with 1,327,104 spectra. A summary of the
methods is shown in Supplementary Figure 1 and additional details
about the architectures of the models can be found in the supplementary
document.
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scores were observed when making comparisons of the first derivative
spectra, all scores were greater than 0.90 with the cosine similarity, and
greater than 0.86 with the Pearson’s correlation. Comparisons on the
pure test set using the cosine similarity resulted in methamphetamine
having the highest similarity to diphenhydramine (0.820), and sorbitol
having the highest similarity to mannitol (0.878). When comparisons
were made using the first derivative algorithm combining the cosine
similarity, the results were the same between mannitol and sorbitol, but
the score was 0.640. Diphenhydramine was also most similar to fentanyl
(0.717) using the first derivative comparison. The Pearson’s correlation
resulted in mannitol and sorbitol being most similar (0.817 and 0.640
for the original spectra and first derivative spectra algorithms respec-
tively). Fentanyl and methamphetamine were also reported as the
closest compounds to diphenhydramine. Although the first derivative
provides lower correlation scores than the original spectral correlations,
they are not markedly different.

3.2. Pure spectra

Exploratory analysis of the 444 pure spectra using PCA of the original
spectra and the first derivative spectra is shown in Supplementary
Figure 3. Plots of the first two principal components of the original
spectra labeled by compound and class show overlap of the clusters
making PCA a challenge for classification of this dataset. The explained
variance in the first two components were 34% and 9%. Although some
clusters are more separated when the first derivative of the spectra is
computed (Supplementary Figure 3C, 3D), others still overlap. Linear

1-0.05 1-0.05 1-0.05
QuaternaryMixture = (drug*0.05) + (diluentl"‘%) + <diluen12*(37)> + (diluent3*%> 3)

3. Results
3.1. Spectra Creation and comparison

A visual representation of the pure simulated spectra and binary,
ternary, and quaternary mixtures recreation is shown in Fig. 1. Mixtures
were created to represent complex combinations of drugs and diluents
that represent common street drugs as well as worst case scenarios.
Multiplication of the pure spectra by numbers between 0 and 1 resulted
in a relative suppression or scaling of the signal intensities (Fig. 1A).
Fig. 1B shows the individual spectrum of maltose and morphine and the
differences in the number, shape, and intensity of the peaks character-
istic of each compound. When the mixtures were simulated, the peak at
1640 cm™! for morphine decreased relative to the diluent— maltose,
when the ratio of maltose to morphine was higher (Fig. 1C). For
example, when the morphine spectrum was multiplied by 0.90 and the
maltose spectrum multiplied by 0.10, then combined, the resulting
spectrum demonstrated more features similar to morphine. Fig. 1D
shows the effect of applying the Fast Fourier transformation to the
spectra. Some peak intensities are higher whereas others are lower than
those in the original spectrum. Additionally, noise is added in random
portions of the spectrum. Fig. 1E and 1F demonstrate the spectrum of a
ternary and quaternary mixture, respectively. The deliberate suppres-
sion of the drug spectrum in relation to the diluents in both the ternary
and quaternary mixture makes it difficult to identify the Raman bands
unique to the drugs—codeine for the ternary mixture, and buprenor-
phine for the quaternary mixture.

The cosine similarity and Pearson’s correlation coefficient for the
authentic pure set is shown in Supplementary Figure 2. Although lower

discriminant analysis (LDA) results in higher separation of the classes,
but overlap is still observed for few drugs and classes (Supplementary
Figure 4). As a result, neither PCA nor LDA were used for further eval-
uation of the data in this study. Various machine learning algorithms
were then evaluated in the pure spectra dataset, as explained below.

The performance of the method was evaluated as correct identifi-
cation or accuracy. Correct identification was evaluated for the
authentic datasets (pure and binary mixtures) where True positives and
False negatives were considered. The models created from the simulated
data were evaluated using accuracy. True positive, False positive, and
their respective True negative and False negative were used in the
calculation of accuracy (Supplementary Equation (1)).

The average accuracies of the kNN, RF and CNN algorithms for
compound and compound class were 100% (Table 1). The SVM resulted
in 99% accuracy for both models whereas the NN resulted in 98% for the
compound model and 99% for the class model. The NB models resulted
in the lowest accuracies for both models—68% for compound and 67%
for compound class. Complete classification reports can be found in
Supplementary Tables 8 - 19.

All models except the NB algorithm were used to evaluate the
authentic pure set. Only the CNN resulted in 100% correct identification
for both compound and class (Table 1). This also included correctly
classifying diphenhydramine and mannitol by compound class even
though they were not included in the training data. However, they were
misclassified by compound because the training data did not contain
their labels. The RF model resulted in correct identifications of 97% for
compounds and 94% for compound classes. The next best model—kNN,
resulted in 93% correct identification for compounds and 86% for
compound classes. The model with the lowest correct identification for
reporting compounds and class was the SVM with 80% and 56%,
respectively. Although at least 80% correct compound identification in
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Table 1
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Comparison of the algorithms’ accuracy and evaluation of the models on an authentic pure test dataset. The pure test set accuracy is based on compound’s presence in

the top three hits.

kNN NB RF

SVM NN CNN

Compound Class Compound Class

Compound  Class

Compound Class Compound Class Compound Class

Model Accuracy (%) 100 100 68 67 100
Pure Test Set Correct 93 86 — — 97
identification (%)

100 99 99 98 99 100 100
94 80 56 90 86 100 100

the top 3 hits was observed for all models, only the CNN resulted in the
top hit corresponding to the ground truth compounds.

The accuracy and loss plots during training and testing of the CNN
model are shown in Supplementary Figure 5. Although the model was
created with 100 epochs, the implementation of early stopping to pre-
vent overfitting meant that after 25 to 30 epochs, the training auto-
matically stopped. The training accuracy remained between 99.7 and
99.9% after 5 epochs for the compound model (Supplementary
Figure 5A). The testing accuracy fluctuated between 99.6 and 99.9%
while the training loss continued to decrease from 0.030 to 0.005. A
similar pattern was observed for the compound class model, but the
testing accuracy fluctuated between 99.5 and 99.9% after 30
epochs.0.030 to 0.005. A similar pattern was observed for the compound
class model, but the testing accuracy fluctuated between 99.5 and 99.9%
after 30 epochs.

3.3. Binary mixtures

All models demonstrated at least 95% accuracy for compound mix-
tures or class mixtures except NB which had 47% accuracy with class
mixtures (Table 2). The RF, NB and CNN all had 100% accuracy with the
compound mixtures whereas only the RF, and CNN resulted in 100%
accuracy for the class mixtures model.

Training for the CNN algorithm stopped after 17 and 16 epochs for
the compound mixtures, and class mixtures model, respectively. Sup-
plementary Figure 6 demonstrates an increase in training and testing
accuracies while the loss decreased, indicating no overfitting.

3.4. Application to authentic In-house binary mixtures

The correct identification rates for the authentic in-house mixtures
when using selected models was compared to results previously reported
for the TacticID Raman [34]. The reported identification rates in Table 3
considers the presence of the ground truth in the top 3 hits. The top 3 hits
were determined based on the classification probability as shown in
Table 4. For example, a mixture containing morphine and maltose
resulted in the correct mixture as hit #1 because of the highest proba-
bility they belonged to that class. However, the ground truth was re-
ported as hit #2 in one instance (Table 4) with a probability of 0.003.

The authentic in-house mixtures were evaluated using the developed
pure spectra algorithms to demonstrate the importance of model selec-
tion based on the application. The SVM and RF models resulted in the
highest correct identifications for both drug and diluent in the top 3
hits—26% and 16%, respectively (Table 3). The SVM was the only al-
gorithm that outperformed the HQI, with 51% correct identification for
drug only compared to 30% with the HQI. Although, the Raman in-
strument does not report the class of unknown compounds, the pure
spectra algorithms by compound class all provided correct identifica-
tions greater than 74% for diluents only and performed poorly for drug
classification (<54%).

The correct identification improved when the binary mixtures
models were used to assess the authentic in-house mixtures. All binary
mixtures models demonstrated correct identifications at least double
that which was observed with the Raman instrument (Table 5). Greater
than 70% correct drug classification was observed for most algorithms
compared to 30% with the HQI, and greater than 90% correct diluent

classification for most algorithms as compared to 89% identification of
the diluent with the HQI. Moreover, all the algorithms were able to
correctly detect at least one compound or class in the mixture. The class
mixtures correct identification rates cannot be compared with the
Raman instrument because the instrument only reports the drug based
on spectral similarity. However, the CNN and NN performed better than
the other algorithms for drug class identification with 78% and 77%,
respectively. The correct diluent class identification was > 90% for all
algorithms.

3.5. Ternary and quaternary mixtures

Molecular analysis of multiple component mixtures can be chal-
lenging using portable Raman spectroscopy as the signal of compounds
in a lower percentage can be masked by compounds that are present in
higher percentages. Therefore, investigating the performance of the al-
gorithms on more complex mixtures is critical in understanding their
applicability as screening tools.

In general, the tested algorithms successfully identified ternary
mixtures. An example of the accuracy and validation loss plots during
training and testing the ternary mixtures CNN algorithm is shown is
Supplementary Figure 7. Training stopped after 16 — 20 epochs when the
validation loss no longer decreased, and when the accuracy remained
between 98.5% and 99.6%.

Evaluation of ternary mixtures using selected algorithms resulted in
the kNN performing the worst with 83% accuracy for compound mix-
tures and 84% for compound class mixtures (Table 6). An accuracy
greater than 95% was observed with all other models with the CNN’s
performance at 100%.

Interestingly, accuracy of identification of quaternary mixtures
ranged from 93 to 100%, depending on the model and subset. The ac-
curacy for all models on subset 1 was 100%, at least 99% on subset 2,
and at least 93% on subset 3 (Table 7). The lowest accuracy for the
compound mixtures model was observed with the NN.

4. Discussion

The CNN algorithm performed better than the other algorithms in
detecting the authentic pure test compounds and their class with 100%
correct identification (Table 1). The RF algorithm also produced a
comparable but lower correct identification of 97%. The use of a linear
kernel with the SVM models suggested our data was linearly separable
due to the high accuracies observed in this study. The inclusion of a
model trained by compound class proved to be useful in understanding
the potential identity of an unknown compound when the HQI search
results in no matches. This is particularly useful when Raman is used as a
quick screening tool for drug identification. The two examples used in
this study—diphenhydramine and mannitol, were correctly classified by
their compound class using the CNN model, even though they were
misclassified when tested using the compound model. Discrimination of
three novel psychoactive substances (NPS) families—12 fentanyl related
compounds, 8 synthetic cathinones, and 10 synthetic cannabinoids, was
achieved using PCA [37]. The authors’ intended use of this application
was for law enforcement and customs officers where a diversity of
controlled substances or counterfeits is encountered. The challenge with
the use of PCA is when compounds of other drug families are
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Table 2

Reported accuracy for the algorithms used to evaluate the simulated binary mixtures dataset. The NB and RF algorithms were only evaluated on binary mix #1 (spectra multiplied by numbers between 0.05 and 0.95).

CNN

NN

SVM

RF

NB

kNN

Class Compound Class Compound Class Compound Class Compound Class Compound Class
Mixtures Mixtures Mixtures Mixtures Mixtures

Compound
Mixtures

Mixtures

Mixtures

Mixtures

Mixtures

Mixtures

Mixtures

100

100

97

95

929

99

100

100

47

100

29

Accuracy

(%)
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encountered, accuracy can suffer. We demonstrate in Supplementary
Figure 3 the difficulty in separating multiple clusters using PCA and we
believe it is not the ideal method for classification although it can be
used for feature selection with other algorithms. LDA provided better
class separation than PCA and reasonable accuracy (Supplementary
Table 20)—96%, 88%, 91%, and 78% for single compounds, single
classes, binary compound mixtures, and binary compound class mix-
tures, respectively, but emphasis was given to machine learning classi-
fiers due to their higher accuracies with more complex datasets. Organic
molecules which are structurally different by a functional group are of
interest especially in forensic science, where new drug analogues are
constantly emerging as a way of evading local laws and regulations.
Although our study is not focused on differentiating between functional
groups, a study using CNN demonstrated 100% accuracy in discrimi-
nating between toluene, aniline, o-xylene which differ by the number
and position of a methyl group [30].

In many laboratories especially in forensic science, the ability to
identify a controlled substance from seized materials using portable
Raman instruments can provide more effective decision-making onsite
and more efficient processing of cases at points of entry, such as customs.
However, it is a challenge because most drug cases involve impure
substances where the controlled drug is of a lower percentage making
detection by conventional Raman difficult. For this reason the use of
portable Raman is considered a screening tool requiring further confir-
mation using an additional technique. During a presumptive stage, ac-
curacies above 70% are acceptable to inform the user about a potential
drug or compound of interest. The rapid and non-destructive nature of
portable Raman makes it an ideal technique to make quick sampling and
investigative decisions at the point of contact, with minimal sample
manipulation and under safe conditions to the operators. Similarly, in
counterfeit pharmaceutical products, the high percentage of excipients
may mask the active pharmaceutical ingredients. Therefore, we decided
to calculate correct identification of the in-house binary mixtures test set
based on its presence in the top three hits, accounting for uncertainties
in classification. The instrument’s accuracy for detecting the drug—a
controlled substance in the mixtures, using the HQI algorithm was 30%,
and lower than all the evaluated machine learning algorithms (Table 5).
The NN and CNN models resulted in the highest correct identification
rate—73% and 69% for drug only, and 65% and 64% for both com-
pounds, respectively.

The success of the CNN algorithm for pure compounds and mixtures
has been supported by several studies [22-24,27,29,30,32,38]. In one
study, a smart Raman instrument was developed and the reported ac-
curacy for ternary mixtures was 85.7% but 100% was observed with our
CNN algorithm although the tested compounds were different [27]. The
architecture of the CNN model reported by the authors contained 9
layers possibly due to the complexity of the acquired spectra, and
incorporated dropout to prevent overfitting. Our CNN model consisted
of no more than 5 layers, and without dropout as there was no indication
of overfitting. Additionally, the authors only reported compound mix-
tures, but we also report compound class mixtures. However, despite the
algorithm used, sampling is also important. Some studies used solvent
mixtures which allows for a more homogeneous sampling which results
in spectra that better represent the contents. Fan et al evaluated binary
mixtures of polyacrylamide and sodium acetate but at a 1:1 ratio with a
100% true positive rate [23]. Our test mixtures included ratios of 1:4,
1:7, 1:10 and 1:20 where the controlled drug was present in a smaller
percentage, simulating what can be expected in street drugs. The correct
identification rates for the drug in the authentic mixtures decreased as
the drug: diluent ratios increased with all algorithms, demonstrating the
difficulty in detecting low concentration compounds in mixtures.
Although, several measurements are required when performing analysis
using portable Raman instruments to account for inhomogeneous sam-
ples, the acquired data may still be unrepresentative of the compounds
in the mixture. One method that addresses this issue is the orbital raster
scanning technique which allows the Raman instrument’s laser to sweep
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Table 3
Correct identification rates of the in-house binary mixtures dataset using the pure spectra algorithms for classification. The results are based on the presence of the
mixtures in the top 3 hits.
HQI kNN RF SVM NN CNN
Correct Compound Class Compound Class Compound Class Compound Class Compound Class
Identification Mixtures Mixtures Mixtures Mixtures Mixtures Mixtures Mixtures Mixtures Mixtures Mixtures
(ID, %)
Drug 30 24 19 24 42 51 54 15 12 30 22
Diluent 89 80 81 89 96 74 77 75 77 75 78
Drug and 19 5 1 16 38 26 32 2 1 5 1
Diluent
At least one 99 99 99 97 100 99 98 88 89 100 100
compound/
class
Table 4
Example of generated table for CNN drug algorithm evaluation on in-house mixtures. (Mor- morphine, malt- maltose, 4MEC- methylethcathinone, 4MMC- 4-
methylmethcathinone).
Ground Truth Hit #1 Hit #2 Hit #2 Hit #1 Probability Hit #2 Probability Hit #3 Probability
Mor- Malt Mor-Malt 4MMC-Malt 4MEC-Malt 0.996 0.004 0.000
Mor-Malt Mor-Malt 4MMC-Malt 4MEC-Malt 0.986 0.014 0.000
Mor-Malt 4MMC-Malt Mor-Malt 4MEC-Malt 0.997 0.003 0.000
Table 5

Correct identification rates for the in-house binary mixtures using the simulated binary mixtures algorithms in comparison to the Raman instrument built-in hit quality
index (HQI). The NB models were not evaluated as the other algorithms resulted in higher identification rates for both compound and compound class. The RF al-
gorithm was not evaluated on the in-house mixtures. The correct identification was based on the true compound/ class being in the top 3 hits.

HQI kNN SVM NN CNN
Compound Class Compound Class Compound Class Compound Class
Mixtures Mixtures Mixtures Mixtures Mixtures Mixtures Mixtures Mixtures
Drug (%) 30 59 60 61 73 73 77 69 78
Diluent (%) 89 90 90 94 95 92 95 95 93
Both (%) 19 49 50 55 68 65 72 64 72
At least one 99 100 100 100 100 100 100 100 100
compound/Class
(%)
Table 6
Accuracy of ternary mixtures models.
kNN SVM NN CNN
Compound Class Compound Class Compound Class Compound Class
Mixtures Mixtures Mixtures Mixtures Mixtures Mixtures Mixtures Mixtures
Accuracy 83 84 99 99 95 99 100 100
(%)
Table 7
Accuracy of quaternary mixtures models.
kNN SVM NN CNN
Compound Class Compound Class Compound Class Compound Class
Mixtures Mixtures Mixtures Mixtures Mixtures Mixtures Mixtures Mixtures
Subset 1 Accuracy 100 100 100 100 100 100 100 100
(%)
Subset 2 Accuracy 100 100 100 100 99 100 100 100
(%)
Subset 3 Accuracy 97 100 929 100 93 100 929 100

(%)

over large areas of the sample to yield an average spectrum [39,40].
However, evaluating the accuracy of this technique with machine
learning would have to be studied and compared to conventional Raman
instruments. The simulated complex mixtures data demonstrated that if
measurements capture all components in a sample, the algorithm will

detect them with high accuracy. An alternative to conventional Ram-
an—surface enhanced Raman spectroscopy (SERS) requires collection of
a small sample dissolved in a solvent prior to analysis. This technique
can provide more representative information about the components of a
mixture even when the target substance is in low quantities, but can be
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risky when performed outside a controlled environment if the operator
is exposed to unknown compounds [41-43].

A comparison of the effect of training with the mixtures models
(Table 5) or pure models (Table 3) to predict the compounds in the test
mixtures demonstrated the importance of having the appropriate model
in the library. For example, if ternary mixtures are being tested, the
models should be trained on ternary mixtures. If the pure model which
returns a single compound is used on mixtures, a result for the com-
pound most representative of the spectrum will result, as demonstrated
by the accuracy of the diluent in Table 3. Additionally, the algorithms
detected differences in spectra of ternary and quaternary mixtures, that
would otherwise be challenging to observe by inspection, with high
accuracies (~83-100%, Table 6 and 7). Depending on the application, if
the number of component mixtures is known, algorithms can be
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designed to meet this expectation. For example, if the number of mix-
tures in street drugs does not typically exceed 5 compounds, then
training algorithms to detect more than 4 components would not be
necessary.

We propose the use of models created to report single compounds,
single compound classes, binary, ternary, and quaternary mixtures using
the CNN algorithm due to the high correct identification rates and ac-
curacy reported in this study. Instead of implementing these classifica-
tion techniques post processing, they can be incorporated into portable
instruments and depending on the application, provide both spectral
correlation information using the HQI, cosine similarity or Pearson’s
correlation, and classification as demonstrated by the proposed work-
flow in Fig. 2. One advantage of this classification and reporting work-
flow, is the gain of feedback to the end-user. When the identity of a

1. Single Compound
Analysis

Spectral Similarity
* HQl

Machine Learning
® Compound algorithm

® Compound class algorithm

Report

ADMIN 13:26 EDT

2022/06/07

CNN Compound CNN Class
HQl Model Model
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Morphine: 0.1 Analgesic: 0.1

- CNN compound model trained on 355,200 spectra
and tested on 88,800 spectra with 100% accuracy.

- CNN class model trained on 355,200 spectra and tested
on 88,800 spectra with 100% accuracy.

Back

Fig. 2. An example of a workflow that can be implemented in portable Raman instruments. If the intended application requires a numerical value for spectral
correlation, a similarity metric can provide a HQI for pure compounds and spectral weight for mixtures. Machine learning algorithms can also be incorporated for
identification of the compounds and their classes. In the final report, a summary of the potential hits and their respective class probabilities is reported.



T. Cooman et al.

compound is unknown and misclassified by the conventional HQI,
having a built-in CNN algorithm can provide additional information
about drug classes and potential mixtures. For example, when pure PB-
22 was analyzed using the portable Raman instrument, it was reported
as BB22 using the HQI due to the similarity between their spectra.
Nonetheless, using the machine learning algorithm for compound class
classified it as a synthetic cannabinoid even though it was absent from
the library.

It should be noted that depending on the application, the proposed
approach still has some limitations. For example, in the pharmaceutical
industry where purer compounds are encountered and Raman is the
primary technique used, instead of using the top three hits (Table 4), the
top hit might be more important. On the other hand, in forensic science,
where portable Raman is used as a screening method, it might be
acceptable to consider the top three hits as potential compounds since
confirmation using a secondary technique would be required before
reporting components of seized materials. One of the drawbacks of using
machine learning algorithms on large datasets is that it requires high
computing capabilities as observed with Random Forests in this study.
However, given portable instruments such as the TacticID have Wi-Fi
capabilities, access to a server can be used to train the algorithms on
new data and be used to perform searches. In future studies, other data
augmentation parameters such as Raman shift offset can be used in
training the models to increase their robustness. Additionally, creation
of authentic ternary and quaternary mixtures can be created to
demonstrate the capability of the algorithms as more complex drug:
diluent mixtures have previously reported in casework [44].

Machine learning which detects minor differences in spectra of
complex mixtures outperformed the HQI algorithm incorporated in a
portable Raman system. Implementation of machine learning algorithms
capable of detecting single compounds, mixtures, and their classes can
provide useful screening information about unknown compounds or
molecules. Although, our proposed approach provides a probability for
each hit, when needed, a spectral correlation technique can be used.
Furthermore, having these methods built into the instrument eliminates
the need to first export the data for post processing, and does not require
separate libraries to be installed on the instrument as models can be
trained offline then transferred to the device. Reporting the accuracy of
the models as shown in Fig. 2, size of the training, and testing data re-
sults in more transparent reporting of results. The concept proposed in
this study will therefore benefit applications where portable Raman
instruments are used for compound screening including forensic science,
medicine, and pharmaceutical industries.

5. Conclusion

Six machine learning algorithms—kNN, NB, RF, SVM, NN, and CNN
were investigated and compared to a portable Raman instrument’s ac-
curacy in detecting pure powders, binary, ternary, and quaternary
mixtures in this study. The CNN performed better than all algorithms
with 100% correct identification for pure substances by compound and
class. Both the NN and CNN resulted in superior correct identification on
the authentic binary mixtures data— 65% and 64%, respectively in
detecting both compounds in comparison to 19% observed in the
portable Raman instrument. Improved accuracy in the binary simulated
mixtures was observed, ranging from 83 to 100%, depending on the
model and algorithm used, with superior performance observed for
CNN. The CNN also provided the highest accuracy on the ternary and
quaternary mixtures—100%, demonstrating its ability to provide com-
pound and class information on samples that simulate common seized
drugs formulations.

We propose the use of the HQI for spectral correlation and CNN
models in portable Raman instruments to provide preliminary infor-
mation about the identity of a compound and its class. Incorporating
machine learning algorithms into portable Raman systems can enhance
the response and feedback provided to law enforcement and scientists at

Chemical Physics Letters 787 (2022) 139283

the laboratory and onsite, facilitating more efficient and safer decision-
making during sampling and investigative stages. The methods proposed
here are broadly applicable to other materials and disciplines that use
Raman spectroscopy as a rapid method for point-of-contact analysis.
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