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Abstract
Image registration is an inherently ill-posed problem that lacks the constraints needed for a unique
mapping between voxels of the two images being registered. As such, onemust regularize the
registration to achieve physicallymeaningful transforms. The regularization penalty is usually a
function of derivatives of the displacement-vector field and can be calculated either analytically or
numerically. The numerical approach, however, is computationally expensive depending on the
image size, and therefore a computationally efficient analytical framework has been developed. Using
cubic B-splines as the registration transform, we develop a generalizedmathematical framework that
supportsfive distinct regularizers: diffusion, curvature, linear elastic, third-order, and total
displacement.We validate our approach by comparing eachwith its numerical counterpart in terms
of accuracy.We also provide benchmarking results showing that the analytic solutions run
significantly faster—up to two orders ofmagnitude—than finite differencing based numerical
implementations.

1. Introduction

The goal of image registration is to find a geometric
transformation between corresponding image data
that brings them into a common coordinate frame. By
fusing multiple images, a physician gains a more
complete understanding of patient anatomy. The
images can be acquired using similar or different
imaging modalities—for example, CT or MRI—and
may represent different stages of growth or disease. A
registration is called rigid if the motion or change is
limited to global rotations and translations, and
deformable when the registration includes complex
local variations. Deformable registration is preferred
over rigidwhen locally precise alignment is needed; for
example, in image-guided surgery (Hartkens et al
2003) and image-guided radiotherapy (Zhang et al
2007).

Given a three-dimensional fixed image F with
voxel coordinates =x x x x, ,1 2 3( ) and voxel intensity
= xf F ( ), andmoving image M with voxel coordinates
¢ = ¢ ¢ ¢x x x x, ,1 2 3( ) and voxel intensity = ¢xm M ( )

representing the same underlying anatomy as F within
the image overlap domain W, the two images F and M
are said tobe registeredwhen the cost function

å Y=
WÎ

C f m, 1
T x

( ) ( )
( )

is minimized according to a similarity metric Y under
the coordinate mapping n= +T x x( ) . Here n is
the dense displacement field defined for every voxel

WÎx , which is assumed capable of providing a good
diffeomorphism from F to M . A diffeomorphism is a
globally one-to-one smooth and continuous mapping
with derivatives that are invertible (Ashburner 2007).
Deformable image registration is an inherently ill-
posed problem and so the unconstrained formulation
in (1) can lead to physically unrealistic transforms such
as the one shown infigure 1.Moving image, figure 1(b)
is registered to the fixed image, figure 1(a). However,
the resulting warped image figure 1(c) exhibits areas of
irregular compression and expansion that are marked
using red circles.

It is desirable to confine the solution space to pre-
vent physically unrealistic transforms This can be
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done by introducing a penalty term which regularizes
the transformation. We can modify (1) to include the
regularization term as

å nY= +
WÎ

C f m S, , 2
T x

( ) ( ) ( )
( )

where the smoothness nS ( ) is added to Y to drive T
to a physically meaningful coordinate mapping. Sev-
eral formulations for the regularization term S have
been developed in the literature. Rueckert et al (1999)
penalize high bending energy in thin-plate spines to
achieve smoother local deformations. This technique
is implemented within theMedical Image Registration
Toolkit (MIRTK). Rohlfing et al (2003) penalize local
deviations from a unity Jacobian determinate to
preserve incompressibility of volume regions since soft
tissue is incompressible for small deformations. Linear
elastic energy is minimized by Miller et al (1993) to
ensure that the deformation field generated by the
registration is physically smooth. Chun and Fessler
(2009) develop a regularizer based on sufficient condi-
tions to enforce local invertibility. Cahill et al (2009)
generalize the Demon’s algorithm (Thirion 1998) to
allow image-driven locally adaptive regularization.
Sorzano et al (2005) propose a regularizer based on the
curl and divergence of the underlying displacement
field as it is the measure of the true roughness of the
deformation. The use of Fourier methods to solve
partial differential equations of various standard
regularizers is studied by Cahill et al (2007). Burger
et al (2013) develop a regularizer based on hyper-
elasticity in the context of a mass-preserving registra-
tion problem. Using a Demons’ framework, Tustison
and Avants (2013) use the directly manipulated free-
form deformation as a regularizer for the resulting
displacement field to provide biologically plausible
solutions. Vishnevskiy et al (2016) use an isotropic
version of the total variation regularization to correctly
represent non-smooth displacement fields, that occur
at sliding interfaces in the thorax and abdomen
in image time-series during respiration. Schmidt-
Richberg et al (2012) and Delmon et al (2013)
proposed a direction-dependent regularization to
estimate slipping organ motion. Miura et al (2017) use

the anatomically constrained deformation algorithm
(ANACONDA) of RayStation, which penalizes invert-
ibility of the displacement field and any large shape
deviations to the region of interest. Fu et al (2018)
develop an adaptive direction dependent regulariza-
tion technique using a Gaussian isotropic filter and a
bilateral filter in order to preserve sliding motion.
Ghaffari and Fatemizadeh (2017) proposed a rank-
regularized sum of squared differences similarity
measure in order to overcome the challenge of
spatially varying intensity distortion. Mang and Biros
(2016) constrain the divergence of the velocity field to
control the compressibility of the displacement field
for a 2D case.

Returning to the regularized cost function in (2),
the penalty term nS ( ) can be calculated either numeri-
cally or analytically. The numerical approach, while
simple and flexible, is computationally expensive
depending on the image size, whereas the analytical
methods require solving a series of logical steps, but
are computationally inexpensive to solve. Moreover,
the numerical methods provide an approximate solu-
tion and the analytical methods give the exact solution
and therefore analytic methods are often preferred.
Shackleford et al (2012) have previously developed an
analytic method to calculate the bending energy of a
vector field that is parameterized via uniform cubic
B-spline basis function and report significant speedup
compared to the numerical counterpart. Along similar
lines, Shusharina and Sharp (2012) present an analytic
method to regularize the radial basis function.

While the above prior work has developed analytic
methods for specific types of regularizers, the novelty
of this paper lies in the development of a generalized
mathematical framework for this problem. Using cubic
B-splines as the deformable registration transform,
our framework accommodates five distinct types of
regularization: diffusion (Thirion 1998), curvature
(Modersitzki 2004), linear elastic (Broit 1981), third-
order (Lellmann et al 2013), and total displacement. In
addition to exhibiting improved computational effi-
ciency with respect to numerical approaches, a key
advantage of our approach is the ability to seamlessly

Figure 1.Example of intra-subject registration demonstrating the need for regularization.
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combine multiple regularizers to realize custom or
domain-specific smoothness constraints as dictated by
the underlying registration problems at no additional
cost in performance.

The paper is organized as follows. Section 2 dis-
cusses the relevant theory and the regularizers of inter-
est. Section 3 develops the framework and its analytical
solution; which is validated and benchmarked in
section 4.We conclude the paper in section 5.

2. Background

Here we describe the formulation of the diffusion,
curvature, linear elastic, third-order, and total displa-
cement regularizers for a three-dimensional displace-
ment field parameterized by a uniform cubic B-spline
basis function.

For volumetric or 3D registration, the displace-
ment field at any given voxel is determined by the
43= 64 control points in the immediate vicinity of the
voxel. We use the term tile to denote the set of voxels
which receives local support from the same set of 64
control points. The tile forms the backbone of an ana-
lytic expression for the continuous displacement field
n . B-spline interpolation is performed for each vector
within a tile using the 64 control-point coefficients
that provide local support for the operation. The
B-spline interpolation yielding the first component of
the displacement vector for a voxel located at x is

åå ån b b b=
= = =

x u u u p 3
l m n

l m n l m n1
0

3

0

3

0

3

1 2 3 1, , ,( ) ( ) ( ) ( ) ( )

where p1 is one of the 64 B-spline coefficients used to
interpolate the n1 component of the displacement
vector n for the voxel located at x. The bl, bm, and bn

terms represent the uniform cubic B-spline basis
functions in the x1, x2, and x3 directions, respectively,
and u1, u2, and u3 represent the normalized local
coordinates of the voxel within its tile (Shackleford
et al 2010). The uniform cubic B-spline basis function
bl along the x1direction is given by

b =

-
=

- +
=

- + + +
=

=

u

u
l

u u
l

u u u
l

u
l

1

6
0

3 6 4

6
1

3 3 3 1

6
2

6
3

4l 1

1
3

1
3

1
2

1
3

1
2

1

1
3

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

( )

( )

( )

and similarly for bm and bn in the x2 and x3 directions
respectively. The displacement vector components n2

and n3 in the remaining two directions are calculated
similarly. The optimizer updates the B-spline coeffi-
cients during each iteration until an optimal registra-
tion between the moving and fixed images is achieved.
The regularization penalty term is a function of the
displacement vector field i.e., a function of the

B-spline coefficients. Thus, the regularization penalty
term for the entire deformation may be expressed as a
sum of the regularization penalty terms over all tiles.
Therefore, our approach is to develop an operator that
computes the penalty term for a tile as a function of its
B-spline control points.

We now describe the five regularizers of interest.
The functions in (5) describe the first, second, and
third-order partial derivatives of the displacement
field, which are the building blocks of these regular-
izers:

n
n

n
n

n
n n

n
n

=
¶
¶

=
¶

¶ ¶

=
¶
¶

¶
¶

=
¶

¶ ¶ ¶

f x
x

f x x
x x

f x x
x x

f x x x
x x x

,

, ,

, ,

, , , 5

i j
i
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i j k
i

j k

i j k
i

j

i

k

i j k q
i

j k q

1

2

2
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4

3

( )

( )

( )

( ) ( )

2.1.Diffusion regularizer
Thirion originally introduced the demons algorithm
as a diffusion process (Thirion 1998) and in later work,
Modersitzki coined the term diffusion regularizer
(Modersitzki 2004) since this gradient-based partial
differential equation was viewed as a generalized
diffusion equation. The penalty term is given by

ò å n=
W =

xS f x d, , 6
i j

i j1
, 1

3

1
2( ) ( )

where W denotes the image region over which the
regularization penalty is to be calculated.

2.2. Curvature regularizer
A curvature regularizer uses second-order derivative
terms and aims to reduce the bending energy of the
displacement field (Modersitzki 2004). The penalty
term is specified as

ò å n=
W =

xS f x x d, , . 7
i j k

i j k2
, , 1

3

2
2( ) ( )

2.3. Linear elastic regularizer
The penalty term is given by

ò å ån n= +
W = = ¹

xS f x f x x d, , , ,

8
i j

i j
i j k j k

i j k3
, 1

3

1
2

, , 1,

3

3( ) ( )

( )

which aims to strike a balance between the global
registration achieved via affine mapping versus the
more local elastic registration (Broit 1981).

2.4. Third-order regularizer
The penalty term is specified in terms of third-order
derivative terms as
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ò å n=
W =

xS f x x x d, , , . 9
i j k o

i j k o4
, , , 1

3

4
2( ) ( )

2.5. Total displacement regularizer
The penalty term is specified in terms of themagnitude
of the displacement vector field at each voxel as

ò å n=
W =

xS d . 10
i

i5
1

3
2 ( )

Combining the above-described regularizers, the total
smoothness penalty S for the unified framework can
be expressed as

m m m m m= + + + +S S S S S S , 111 1 2 2 3 3 4 4 5 5 ( )

where m1, m2, m3, m4, and m5 are the weights corresp-
onding to the diffusion, curvature, linear-elastic,
third-order, and total displacement regularizers,
respectively. In the simplest case, one regularizer can
be chosen over the others; for example, setting m2, m3,
m4, and m5 to zero chooses the diffusion regularizer.
Other regularizers can be selected similarly. Several
other regularizers can be derived using this framework
as long as the regularizer penalty terms consist of a
product of two partial derivative terms of the displace-
ment field from (5) or one of the components of the
displacementfield.

3.Development of analytical algorithm

The analytic algorithm developed in this section
comprises the following three major steps: (1) taking
the first, second, or third-order derivative of the
displacement vector field; (2) squaring or multiplying
the derivative terms; and (3) integrating the products
of the derivative terms over a tile. The various
derivative terms that constitute (11) are recast as
simple matrix operations that can be efficiently
performed using Basic Linear Algebra Subprograms
(BLAS). The algorithmic steps are described in greater
detail below.

When represented sparsely via the uniform cubic
B-spline basis, the displacement field n is para-
meterized by the set of B-spline basis coefficients p1,
p2, p3, where

= = =p p p

p

p

p

p

p

p
, ,

12

I J K I J K I J K

1 2 3

1,0,0,0

1, , ,

2,0,0,0

2, , ,

3,0,0,0

3, , ,

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )

  

are the control points that define the displacement field
within a single tile. For cubic B-splines, = = =I J K 2.
The tile has dimensions of = ´ ´r r r r1 2 3 mm3. To
express the first component of the displacement field n1

as a function of p1, we start with thematrix B containing
the coefficients for the cubic B-spline basis function as
described in (4) and matrix R1 which controls for tile
size as

=

- -
-

-

=

B
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( )

We also generate the matrix Dd( ) which is defined
for dÎ [0, 3] as

D D

D D

= =

= =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0

,

0 0 0 0
0 0 0 0
2 0 0 0
0 6 0 0
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0 0 0 0
0 0 0 0
0 0 0 0
6 0 0 0
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Matrices Q1, Q2, and Q3 can nowbe calculated as

D D
D

= =
=

d d d d

d d

Q BR Q BR

Q BR

, ,

and ,
151 1 2 2

3 3

( )
( ) ( ) ( ) ( )

( ) ( )

to provide a convenientmethod for obtaining the first,
second, and third-order derivatives, n¢, n and n‴,
respectively, with respect to the Euclidean basis as
required by the calculation of the smoothness penalty.
For example, Q1

0( ) is used when n is needed as is, and
Q1

1( ), Q1
2( ) and Q1

3( ) are usedwhen the first, second, and
third derivatives, respectively, of n are needed in
the calculations. These matrices also map the domain
of the B-spline basis function to lie in the interval
[0, 1]. Now, the vector n1 may be expressed at a
point =x x x x, ,1 2 3 using the 64 B-spline coefficients
supporting x as the tensor product:

å å å ån =
= = = =

Q x Q x Q xp

16
i j k

i j k
a b c

1 1 2 2 3 31
, , 0

3

, ,
0

3
0

0

3
0

0

3
0

( )

( ) ( ) ( )

where the four rows of dQ1
( ) can be separated into

vectors as

=d

d

Q

q

q

q

q
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⎥

( )( )

( )

Wedefine

=x x x x1 18T
1 1 1

2
1
3[ ] ( )

Cartesian basis vectors x2 and x3 are defined simi-
larly. Finally, vectors n2 and n3 are defined in a similar
fashion to n1 to complete the B-spline interpolation
operation.
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Now that we have the basic mathematical frame-
work in place, the next steps of the algorithm are
designed to calculate the various squared and product
terms listed in (11)—specifically, to square or to mul-
tiply theå å åd d dQ Q Q1 2 3

( ) ( ) ( ) sub-term in (16).
A ´4 4 matrix is calculated as the outer product

X = Äd d
q q , 19a b a b1, , 1, 1,

i j ( )

where Îa b, 0, 1, 2, 3{ } and Îi j, 1, 2, 3{ }. Here,
di and dj are the same when taking the square of the
derivative termwhereas they are different when taking
the product of two distinct terms—which is the case
for the linear elastic regularizer. The d terms indicate
the variable on which the partial derivative of the
displacement field is obtained. For example, if i is 1,
the partial derivative is taken with respect to the first
component, and so on. The matrices X a b2, , and X a b3, ,

for the second and third components can be calculated
similarly. For ease of readability, the d terms are not
included in the follow-up equations.

Taking the outer product of the Cartesian basis
vector x1 as defined in (18) with itself results in a 4×4
matrix

= Ä =X x x

x x x

x x x x

x x x x

x x x x

1

, 201 1 1

1 1
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2
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⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

( )

and X2 and X3 can be obtained similarly. Taking the
Hadamard product of (19) and (20) results in a 4×4
matrix

y X= X . 21a ba b 1 11, , , , ( )

The elements of y a b1, , can be combined into a matrix
G1, where each element G a b,1( ) is formed as

åå yG =
= =

a b i j, , . 22
i j

a b1
1

4

1

4

1, ,( ) ( ) ( )

Since there are 16 combinations for a and b, G1 is a
4×4matrix; G2 and G3 are obtained similarly, allowing
for the desired compositematrix operator

G G G G= Ä Ä , 231 2 3 ( )

to calculate the smoothness metric over a tile, for the
specified choice of dʼs, as

ò å Gp p xd . 24
i
T

j

r r r

0,0,0

, ,1 2 3

( )

Since B-spline coefficients are constants, we can
rewrite the above expression as

å p Vp , 25
i
T

j ( )

where ò G=V xd
r r r

0,0,0

, ,1 2 3
and Îi j, 1, 2, 3. The

smoothness penalty S for the entire volume can be
calculated as the sumof all its constituent tiles.

This analytic implementation is extremely mem-
ory efficient. The 32 V matrices each having dimen-
sions of 64×64 corresponding to every term in the
five regularizers are calculated beforehand and reused

in the entire optimization process. During the optim-
ization step, only p VpT is calculated for each tile
according to (25). The overall memory requirement is
512 kB (32×V = 32× 64× 64× 4kB).

3.1. Illustrative examples
Given the above-described formalism, the generalized
equation for squaring or multiplying the various
derivative terms can bewritten in terms of the B-spline
basis coefficients and the compositematrix operator G
as

n n
G¶

¶

¶

¶
= d d´p p

x x
, 26

i
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n ,i j⎜ ⎟
⎛
⎝
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⎠

( )( )

where n determines the order of the partial derivative
and d d d d= , ,i i j k1 1 1( ) and d d d d= , ,j i j k2 2 2( ). Indivi-
dual terms of di depend on the variable on which the
partial derivative of the displacement field is obtained.
For example, d = 1i1 if the partial derivative is taken
with respect to the first component. For the squared
terms, di and dj are the same. The terms corresp-
onding to the diffusion, curvature, linear-elastic,
third-order, and total displacement regularizers are
described by the following equations using the appro-
priate d values discussed earlier in (19) and (26).
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Using similar reasoning, the linear elastic regulariza-
tion penalty would be computed as the sum of twelve
vector-matrix-vector products of the form p VpT .

4. Experiments and results

We quantify the performance of the developed meth-
ods in terms of accuracy and speedup. The DIR-Lab
dataset used in our experiments consists of 4D-CT
images from ten patients who were treated for
malignancies in the esophagus or lung (Castillo et al
2009). The CT images weremasked to only include the
lungs, trachea, and bronchi. Themaximum inhalation
phase (fixed image) was registered with the maximum
exhalation phase (moving image) for intra-subject
registrations. Five of the ten studies have volumes of
512×512×128 voxels with a physical separation of
0.92×0.92×2.5 mm, and the remaining volumes have
256×256×94 voxels. In each case, 300 landmark
points were placedwithin the lung by amedical expert.
Figure 2 shows a coronal slice for an intra-subject
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registration example with a landmark point overlaid.
The moving landmarks are warped using the under-
lying transformation T to get the warped landmarks.
Registration accuracy is measured as the average
separation between the fixed and warped landmark
points.

The regularizers developed in this paper have been
implemented within Plastimatch, an open source soft-
ware for image computation with focus on high-per-
formance volumetric registration of medical images.
Plastimatch is distributed under a BSD-style license
and can be downloaded from www.plastimatch.org.
The fixed and moving images are registered using a
three-stage pyramidal registration approach. Grid spa-
cing for the first and second stage was kept constant at
100 mm and 80 mm, respectively. Grid spacing for the
third stage was varied from a coarse value of 60 mm to
a finer value of 10 mm. Registrations are performed
using the mean-squared error similarity metric, pena-
lized by Sn with weight mn. Referring to (11), we
choose a single regularization strategy over others by
setting the remaining weights to zero. For example,
setting m1, m3, m4, and m5 to zero chooses the curvature
regularizer. The B-spline coefficients P describing the
transform T are optimized via the L-BFGS-B optimi-
zer using an analytically computed cost function and
gradient.

Accuracy is measured using the mean landmark
separation (MLS) between the inhale landmarks and
warped exhale landmarks (or vice versa) after registra-
tion, and smoothness is measured using theminimum
Jacobian determinant of the resulting displacement

vector field over the entire volume. Experiments were
performed to assess both quantities as a function of
control-point spacing aswell as mn.

Table 1 shows the relative difference (in %)
between the MLS achieved by the analytic and
numeric implementations. Themaximum relative dif-
ference of 7.4% occurs for the third-order regularizer.
This is because voxels located along the image bound-
aries are not used to calculate the smoothness penalty
in case of the finite differencing numeric solutions.
Figure 3 shows accuracy and smoothness results for
the curvature, linear elastic, and third-order regular-
izers. For a given control-point spacing, a desirable mn

is one which produces the best compromise between a
smallMLS and smooth T . A smooth T can be inferred
by a positive minimum Jacobian determinant. A
smooth nonrigid transformation ensures that the
warped image after registration is free from unrealistic
compression and/or expansion artifacts (Chun and
Fessler 2009). Considering the curvature regularizer,
for example, the MLS achieved when m = -102

3 is
very similar without application of any regularization
penalty, and smaller weights need not be explored.
Conversely, the MLS achieved when m = 102

3 is
nearly equal to theMLS prior to registration and chan-
ges little when m2 is increased further. Thus, weights
larger than 103 are not shown. Lower and upper
bounds for the weights of the remaining four regular-
izers are determined similarly. Additionally looking at
the minimum Jacobian determinant heatmaps from
figure 3(b), the increased need for regularization at
smaller control point spacing can be inferred. The

Figure 2.Example of intra-subject registration showing a coronal slice of the (a)fixed, (b)moving, and (c)warped images, with the
corresponding selected landmark point overlaid.

Table 1.Relative difference (in%) betweenMLS achieved by the proposed analytic schemes versus numerical finite differencing
of the displacement field.

Volume size Grid spacing Diffusion Curvature Elastic Third-order Tot. displacement

256 × 256 × 94 20 × 20 × 20 1.5 1.9 1.3 0.9 4.4

256 × 256 × 94 30 × 30 × 30 0.1 3.1 0.2 3.9 4.1

512 × 512 × 128 20 × 20 × 20 2.3 2.3 3.0 7.4 1.9

512 × 512 × 128 30 × 30 × 30 5.9 2.0 3.9 5.7 2.9
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minimum Jacobian determinant of the resulting dis-
placement vector field without any regularization pen-
alty is negative for control point spacing of 10 mm for
all the three regularizers shown. This is due to the
higher degrees of freedom available to the displace-
ment vector field at such smaller control point
spacing.

Table 2 summarizes the results for each of the ten
cases by providing the least MLS achieved and the
registration configuration used. Curvature regularizer
works best for most of the cases, but other registration

problems may be best optimized with a different reg-
ularization choice.

The effect of the penalty factor for the curvature
regularizer m2 on the transformation T is qualitatively
shown in figures 4(c)–(d). The inhaled and exhaled
thoracic volumes are registered using a B-spline con-
trol-point spacing of 10×10×10 mm while varying
mn, and the resulting transform exhibits increased
smoothness upon application of the penalty term.
Taking the curvature regularizer, for example, we see
in figure 3(a)—left that for a control point spacing of
10 mm, theMLS is comparable when m2 is either

-10 3

or -10 2. Inspecting the minimum Jacobian determi-
nant in figure 3(b)—left, we see that the minimum
Jacobian determinant is negative when m2 is -10 3,
which indicates a non-smooth displacement field and
is positive when m2 is

-10 2, which indicates a smooth
displacement field. This makes m = -102

2 a better
choice for the regularization penalty term. This can
also be verified by comparing figures 4(c) and (d).
Quantitatively, if the registration accuracy in terms of
MLS is the same, the smooth displacement field with a
positive minimum Jacobian determinant is preferred.
A similar effect is observed for the other four
regularizers.

The main advantage of an analytic regularization
method is significantly reduced computational time

Figure 3.Mean landmark separation (a) andminimum Jacobian determinant of the transformT (b) as a function of B-spline control-
point spacing and theweightμn, over the 10 thoracic cases using curvature (left), linear elastic (middle), and third-order (right)
regularizer for themasked images.

Table 2. LowestMLS value achieved for each of the ten cases and the
corresponding registration configuration.

Case#
MLS

(mm) Regularizer (μ)
Grid

spacing (mm)

1 1.15 Diffusion (10−2) 30

2 1.28 Diffusion (10−3) 10

3 1.52 Linear Elastic

(10−8)
10

4 1.56 Curvature (10−1) 20

5 1.80 Curvature (10−2) 10

6 1.56 Curvature (10−1) 10

7 1.74 Curvature (10−2) 10

8 1.49 Curvature (10−2) 10

9 1.50 Third-order (1) 10

10 1.42 Curvature (10−2) 10
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compared to the numerical approach. Computation
times incurred by the analytic solutions depend only
on the number of tiles defined by the B-spline control-
point spacing and not on the number of voxels, drasti-
cally reducing the complexity. The composite V
matrices can be calculated once for each control point
spacing and reused throughout the optimization.

Table 3 lists the execution times incurred by the
analytic regularization and corresponding speedup
compared to numerical solutions based on finite differ-
encing. The benchmarking results reported here were
performed using a machine equipped with dual Intel
Octo-core Xeon processors clocked at 2.4 GHz and
512 GB of main memory. Examining the third column
of the table, note that execution time for a given volume
size and grid spacing is the same for any of the analytic
regularizers. This is because there is one composite
matrix V per partial derivative for a total of 32 such
matrices in the generalized framework, all of which are
computed irrespective of the regularizer to be used. The
regularizer of interest is later selected by setting a non-
zero weight to the corresponding term in (11). Col-
umns four through eight of the table list speedup over
numerical implementations of the various regularizers.
We consider single-threaded implementations here.
Speedup depends on three factors: volume size, grid
spacing, and complexity of the numerical solution. For
a volume size of 512×512×128 voxels with a grid spa-
cing of 20×20×20mm. The B-spline grid has 7744
tiles; with grid spacing 30×30×30mm it has 3177 tiles.
In theory, execution time is linear with the number of
tiles.

Referring back to table 3, third-order and curva-
ture regularizers exhibit higher speedup than the other
regularizers due to the high complexity of their num-
erical solution. For example, for a grid-spacing of
20 mm, the analytic form of the curvature regularizer
executes in 450 ms whereas the numerical form
requires 6.2 s. On the other hand, the analytic form of
the total displacement regularizer executes in 450 ms
but the numeric form only takes 380 ms because reg-
ularization involves simply summing the squared vec-
tor-fieldmagnitude at each voxel as per (10).

Finally, the analytical formulation developed in
the previous section is easily parallelized. Returning to
(25), this expression can be calculated for each tile in
parallel to calculate partial sums which can then be
reduced to a single value to obtain the smoothness
penalty for the entire volume. We compare the execu-
tion time incurred by the single-threaded imple-
mentation against a multi-threaded one using
OpenMP. Execution time for a 512×512×128 image
is shown in figure 5 as a function of the number of tiles
in the image as well as the number of threads (from
one to sixteen) for the linear-elastic regularizer.
Experiments are repeated twenty times to avoid any
discrepancy in the timings caused by a cold cache and
figure 5 shows average execution times. The effect of
varying the control-point grid spacing on the execu-
tion time of the analytic implementation of the linear-
elastic regularizer for different number of threads can
be seen in figure 5(a). Notice the nearly linear speed-
up of about 16x when the number of threads is
increased to sixteen, which is the number of cores
available on the system used to produce these

Figure 4.Coronal slice showing: (a) thefixed and themovingCT images overlaid; (b) displacement field generatedwithout
regularization; (c)–(d)displacement field generated by the curvature regularizer for different values ofμ2. The displacementfield
shown in black indicates displacement less than 1 mm, green indicates displacement of around 2 mm, yellow indicates displacement
of around 5 mm, and red indicates displacement greater than 10 mm.

Table 3.Execution times for the analyticmethods and corresponding speedup over numerical approach.

Volume size Grid spacing Analytic (s) Diffusion Curvature Elastic Third-order Tot. displacement

256×256×94 20×20×20 0.43 4.3x 13.8x 4.3x 29.6x 0.8x

256×256×94 30×30×30 0.14 13.6x 42.7x 13.3x 91.6x 2.6x

512×512×128 20×20×20 1.63 6.3x 19.8x 6.3x 41.9x 1.5x

512×512×128 30×30×30 0.67 15.6x 48.2x 14.7x 100.4x 2.9x
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benchmarks. Figure 5(b) shows variation in execution
time as a function of thread count, for specific grid-
spacing settings. Execution time decreases when the
control-point grid spacing is increased since this redu-
ces the number of tiles in the overall image. Since the
underlying implementation of all five regularizers is
similar, so no comparison of performance is provided.

5. Conclusions

We have developed a fast and general framework
which supports five unique regularizers to calculate
the smoothness penalty using an analytical approach
—specifically, by deriving composite matrix opera-
tors that operate on a set of 64 B-spline control points
to calculate the regularization penalty within a given
region of support. In terms of accuracy, the max-
imum relative difference between the analytical and
numerical solutions was 7.4%. Furthermore, the
analytic solutions run up to two orders of magnitude
faster than finite differencing based numerical solu-
tions. Fast analytical methods such as these provide
effective regularization without imposing a compu-
tational burden to the deformable image registration
pipeline.
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