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A B S T R A C T   

Indium based semiconductors are promising materials for thermoelectric devices. Efficiency of a thermoelectric 
material can be improved by minimizing the lattice thermal conductivity (k). Using first-principles calculations, 
we report ~20% reduction in in-plane thermal conductivity of Indium arsenide (InAs) with 3% biaxial 
compressive strain. At 300 K, the bulk thermal conductivity of 33.85 Wm−1K−1 computed for unstrained indium 
arsenide (InAs) is reduced to 27 Wm−1K−1 for the 3% biaxially strained InAs. Systematic analysis of the effect of 
applied biaxial strain on phonon group velocities and phonon scattering rates of longitudinal (LA) and transverse 
(TA) acoustic phonon modes is carried out. Our results shed a light on modulating thermal conductivity of 
materials through biaxial strain.   

1. Introduction 

Thermoelectric (TE) materials, which are capable of converting heat 
into electric current through Seebeck effect, draw significant attention 
among researchers due to the eco-friendly energy conversion [1–3]. The 
efficiency of a thermoelectric material is expressed by dimensionless 
figure of merit (ZT = σS2T/ k), where σ is the electrical conductivity, S is 
the Seebeck coefficient, T is the temperature and k is the thermal con
ductivity [5]. High ZT can be obtained by either increasing the power 
factor (σS2) [6,7] or by minimizing lattice thermal conductivity [8,9]. 
Over the years, several materials have been reported with high ther
moelectric performance such as PbTe [10], SnSe [11], Bi2Te3 [12], PbS 
and SiGe alloys [13]. PbTe and PbS are used as thermoelectric materials 
because of their very good electrical conductivity and low thermal 
conductivity [14,15]. The key strategy to improve figure of merit 
without affecting electrical conductivity and Seebeck coefficient is to 
reduce the lattice thermal conductivity. Thermal conductivity can be 
reduced by introducing disorder which leads to increase in phonon 
scattering. Strain engineering is another promising approach to modify 
thermal conductivity by controlling the phonon bandgap between 
acoustic and optical phonons. In a recent work, increase in thermal 
conductivity of BP is reported through biaxial compressive strain [16]. 
Increase and decrease in thermal conductivity of wurtzite gallium 
nitride have been reported for 5% biaxial compression and biaxial ten
sion respectively [17]. Effects of biaxial strain on thermal conductivity 

modulation is yet to be explored for thermoelectric materials. 
Indium Arsenide (InAs) is a direct band gap semiconductor with high 

electron mobility and is used for field effect transistors, quantum-well 
structures, and substrate for magnetic field sensors, lasers and de
tectors because of its large Hall coefficient [18,19]. Indium Arsenide 
based thermoelectric materials [20,21] with a power factor of 10-3 W/ 
mK [2] were observed over a temperature range of 300 to 600 K. An 
order of increase in power factor was observed at 20 K in InAs nanowires 
[22]. In this work, we report 20% reduction in in-plane thermal con
ductivity of InAs through 3% biaxial compressive strain. Reduction in 
thermal conductivity is due to increase in phonon scattering rate and 
decrease in phonon group velocities of both TA and LA phonons. 

2. Methodology 

Lattice thermal conductivity(k) of Indium Arsenide (InAs) is calcu
lated using first principles calculations [23] by solving Phonon Boltz
mann Transport Equation (PBTE) [24] in single mode relaxation time 
approximation (SMRT) [25] and also exactly using an iterative solution 
[26]. Thermal conductivity(k) based on solving PBTE in SMRT 
approximation is given as 

k =
ℏ2

NΩkbT2

∑

λ
c2

αλω2
λnλ(nλ + 1)τλ (1)  
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where, ℏ,N,Ω,kb,T, c, ω, n, and τ are the are the plank constant, size of 
the q-point mesh, primitive unit cell volume, Boltzmann constant, ab
solute temperature, phonon group velocities, phonon frequencies, Bose- 
Einstein equilibrium populations, and the relaxation time respectively. 
2nd and 3rd order force constants were derived from the density func
tional theory (DFT) [27] using QUANTUM ESPRESSO [28]. Norm- 
conserving pseudopotentials were used in the local density approxima
tion (LDA) [29] and with a plane-wave cut off of 90 Rydberg. Cubic InAs 
was relaxed until the residual stress and forces acting on the atoms 
became zero. The computed equilibrium lattice constant of 5.967 Å is in 
good agreement with the previously reported first-principles values 
[30]. A Monkhorst k-point mesh of 12 × 12 × 12 were used to describe 
the electronic properties during self-consistent calculations [31]. To 
compute the dynamical matrix and 2nd order force constants 8 × 8 × 8 q- 
grid were used. 4 × 4 × 4 q-grid were used to compute the 3rd order force 
constants using QUANTUM ESPRESSO D3Q [32,33] package. Acoustic 
sum rules were imposed on both 2nd and 3rd order force constants. 
Phonon group velocities, frequencies and Bose-Einstein populations 
were calculated using 2nd order force constants and phonon lifetimes 
were calculated using both 2nd and 3rd order interatomic force constants. 
30 × 30 × 30 q-mesh was used to calculate phonon linewidths and 
thermal conductivity and the solution of Boltzmann transport equation 
was found to be converged after 8 iterations. 

To study the effect of strain, 3% biaxial compressive strain was 

applied along x-y direction and the structure was relaxed in z-direction 
to eliminate residual stress. Phonon dispersions for the unstrained and 
3% biaxial strained InAs are compared in Fig. 1. We can observe changes 
in phonon band gap between acoustic and optical phonons. Phonon 
band gap for the unstrained InAs is 18.65 cm−1, while for 3% biaxially 
strained case, it was found to be reduced by 11.62% to 16.48 cm−1. For 
ease of discussion, we have presented data for unstrained and 3% biaxial 
compressive strain and additional thermal transport data for 1% and 2% 
biaxial compressive strains are shown in supplementary information 
(S1). We have also reported the electronic properties such as band 
structure (S2), electrical conductivity (S3a) and Seebeck coefficient 
(S3b) in the supplementary information. 

3. Results 

3.1. Lattice thermal conductivity 

Lattice thermal conductivity of InAs was calculated by solving 
Boltzmann transport equation (BTE) using both single mode relaxation 
approximation and exactly using iterative solution [34]. For conve
nience, we have shown only the exact solution in Fig. 2a. The computed 
values are shown in Fig. 2a and are in good agreement with the previ
ously reported [4] first principles calculations for unstrained InAs. At 
300 K, thermal conductivity(k) of unstrained InAs is 33.85 Wm-1K−1 

Fig. 1. Indium Arsenide with a) 0% and b) 3% strain c) Phonon dispersion and density of states for unstrained and 3% biaxially compressed InAs..  

Fig. 2. a) In-plane and out-of-plane thermal conductivity of 0%, 3% biaxially compressed InAs which is in good agreement with Ref. [4] at 0% strain. b) TA, LA and 
optical phonon mode contribution to overall thermal conductivity. 
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which is reduced to 27 Wm-1K−1 along in-plane direction (a decrease of 
20.23%). 

Fig. 2b shows the mode contribution of TA, LA and optical phonons 
to overall thermal conductivity. We can observe a reduction in thermal 
conductivity in both TA and LA phonon modes with strain. With 3% 
biaxial compressive strain, thermal conductivity (k) of TA phonon mode 
contribution drops from 18.17 Wm-1K−1 to 15.06 Wm-1K−1 and LA 
phonon mode drops from 12.68 Wm-1K−1 to 9.82 Wm-1K−1. Optical 
phonon modes have less than ~2.5% contribution to overall thermal 
conductivity. To understand this reduction in thermal conductivity, we 
compare the phonon linewidths (inverse of phonon lifetime) and 
phonon group velocities of TA and LA phonon modes, as shown in 
Fig. 3a and b respectively. From 3a we can observe an increase in 
phonon scattering rates of both TA and LA phonon modes with 3% 

biaxial compressive strain. In Fig. 3b, a small reduction in phonon group 
velocity of LA phonons is observed. Hence, k reduction of both TA and 
LA phonons are due to the combined effect of increase in phonon scat
tering rate and decrease in phonon group velocity. 

Intrinsic three-phonon anharmonic phonon scattering can be cate
gorized into absorption and decay processes. During the absorption 
process, a phonon mode (qω) scatters by absorbing another phonon 
mode (q′ω′) and yielding a higher energy phonon mode (q′′ω′′). During 
the decay process, a phonon mode (qω) decays into two lower energy 
phonons. Both absorption and decay processes satisfy energy and mo
mentum conservation. For example, an absorption process has to satisfy 
both energy (ω + ω′=ω′′) and momentum (q + q′ = q′′) conservation. 
Similarly, decay process has to satisfy energy (ω = ω′+ω′′) and mo
mentum (q = q′ + q′′) conservation. 

Fig. 3. a) Phonon linewidth (inverse of lifetime) and b) average phonon group velocity of InAs with 0% and 3% strain.  

Fig. 4. a) and b) Total scattering rate of TA and LA phonon modes, respectively, c) and d) dominant scattering channels of TA and LA phonon modes, respectively, e) 
and f) scattering of TA phonon modes due to a+a→ a and a+ a→ o, respectively, g) and h) scattering of LA phonons due to a→a+a and a+a→o respectively for the 0% 
and 3% biaxial compressive strained InAs. 
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Fig. 4a and b represent the total scattering rate of TA and LA mode 
for unstrained and strained cases along Γ-X. For the 3% biaxial 
compressive strain, we can observe an increase in total scattering rate of 
TA phonons throughout Γ-X. To elucidate this increase in TA phonon 
modes, we have analyzed the dominant scattering channels of TA 
phonon modes as shown in Fig. 4c. Fig. 4c and d represent all the 
possible phonon scattering channels of TA and LA phonon mode for 
unstrained InAs such as, a) an acoustic mode decaying into two acoustic 
phonons (a → a + a), b) an acoustic phonon absorbing an optical phonon 
to yield higher energy optical phonon (a + o → o), c) an acoustic phonon 
absorbing another acoustic phonon yielding higher energy optical 
phonons (a + a → o) and d) an acoustic phonon absorbing another 
acoustic phonons yielding a higher energy acoustic phonon (a + a → a). 

From Fig. 4c, we can observe that, the dominant phonon scattering 
channels of TA modes are a + a→ a and a + a →o. The scattering rates of 
both these modes increase with applied strain (shown in Fig. 4e and f). 
For an example, at q = 0.55 (reduced units) along Γ-X, scattering due to 
a + a →o mode is found to increase by 50%. Dominant scattering 
channels for LA phonons are a + a →o and a→a + a (Fig. 4d). The effect 
of strain on these channels is shown in 4 g and f. k reduction of LA 
phonons is due to the combined effect of reduction in phonon group 
velocities and increase in phonon scattering. 

4. Conclusion: 

In summary, using first-principles calculations and by solving 
Phonon Boltzmann Transport Equation iteratively, we have studied the 
thermal transport in biaxially strained Indium Arsenide (InAs). Thermal 
conductivity (k) of 3% biaxial compressively strained InAs reduced by 
~20% along in-plane direction. Phonon group velocity and phonon 
scattering rate of TA and LA phonon modes upon strain were investi
gated and our first principles calculations reveal that reduction in k is 
due to a combination of increase in phonon scattering rate and decrease 
in phonon group velocity of both TA and LA phonons. These results 
provide an avenue for improving the thermoelectric performance by 
reducing the lattice thermal conductivity through biaxial strain. 
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