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In this work, we report thermal conductivity(k) of magnesium telluride (MgTe) with various crystallographic
phases such as rocksalt, zincblende, wurtzite and nickel arsenic (NiAs) using density functional theory and
Boltzmann transport equation. Our first principles calculations result shows the low thermal conductivity of
MgTe with knias < Krocksalt < Kwurtzite < Kzincblende- W€ Systematically investigated the phonon group velocity,
phonon scattering rate and mode contributed thermal conductivity of transverse acoustic (TA), longitudinal
acoustic (LA) and optical phonons. Our first principles calculations shows that ultra-low thermal conductivity of
2.645 Wm 'K~ for NiAs phase is due to the dominant scattering of TA and LA phonons by low frequency optical
phonons. We also analyzed the length dependence thermal conductivity of MgTe at nanometer length-scales. At
nanometer length scales such as 50 nm for NiAs phase, room temperature thermal conductivity of less than 1.4

Wm 'K ~! shows a promising nature of MgTe for thermoelectric applications.

1. Introduction

Magnesium chalcogenides-based semiconductors have attracted
both scientific and technological applications [1-3]. Magnesium [4-7]
and Telluride [8-14] based thermoelectric and photovoltaic materials
are getting attention among the scientific community due to its ultra-low
thermal conductivity and tunable electronic bandgap. Magnesium
telluride(MgTe) is extensively studied for its structural [1,2,15,16],
electronic [1-3,15], elastic [15], magnetic [1,2], optical [15] and
vibrational [3,17] properties. Despite these extensive studies, thermal
conductivities of MgTe are unknown and inspiring us to compute it for
all the crystalline phases. Thermal conductivity of a material is critical
for wide varieties of application such as thermal management system
[18-25], thermoelectrics [26-28], opto-electronics [29] and solar cells
[30,31] etc., MgTe are known to exist in four crystalline phases such as
zinc-blende (ZB), rocksalt (RS), wurtzite (WZ) [3,32,33] and nickel
arsenic (NiAs). In this work, we report bulk and nanoscale thermal
conductivity of all the four crystalline phases of MgTe using density
functional theory and phonon Boltzmann transport equation. We also
report an ultra-low thermal conductivity of MgTe at nanometer length
scales. We systematically investigated the elastic constants, phonon
group velocity, phonon bandgap and phonon scattering rate (inverse of
phonon lifetime) for all the crystalline phases. At 300 K, bulk thermal
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conductivity of 2.645(NiAs), 6.26(RS), 8.83(WZ) and 10.05(ZB)
Wm K1 shows that MgTe will be a promising thermoelectric material.
These results have important implications for applications of MgTe in
thermoelectric energy conversion techniques, solar-cells and other
opto-electronics.

2. Computational methods

All the first principles calculations were performed using QUANTUM
ESPRESSO [34] package. Norm-conserving pseudopotential with local
density approximation (LDA) [35] exchange-correlation functional is
used to approximate the MgTe. The geometry of the zinc-blende and
rocksalt MgTe with 2 atoms (4 atoms for wurtzite and NiAs) unit cell
were optimized until forces on all atoms were less than 10~ Ry/bohr.
Plane-wave energy cutoff of 80 Ry and 8 x 8 x 8(12 x 12 x 8)
Monkhorst-Pack [36] k-point mesh were used integrate over the Bril-
louin zone. Relaxed structure with equilibrium lattice constants of MgTe
with different lattice crystal phases are shown in Fig. 1 and also listed in
Table 1 which are in excellent agreement with previously published
values G.P.Srivatsava et al. [3] (see Fig. 2).

Lattice thermal conductivity(k) was computed by solving phonon
Boltzmann transport equation (PBTE) [37] in both single mode relaxa-
tion approximation (SMRT) and iteratively using a variational method.
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Fig. 1. a-d): Crystal structure of MgTe with crystalline phases; NiAs (a = 7.8585 bohr, c/a = 1.6281), wurtzite (a = 8.5287 bohr, c/a = 1.6286), rocksalt (a =

11.0985 bohr) and zincblende (a = 12.073 bohr) respectively.

Table 1

Lattice constants, Bulk modulus(B), Youngs modulus(E), Shear modulus(G) and poisson’s(v) ratio of MgTe with different crystal phase.
S. No Crystal phase a (bohr) c/a B (GPa) E(GPa) G(GPa) 0
1. Nickel arsenic (NiAs) 7.8585 1.6281 52.82 63.97 24.64 0.2981
2. Waurtzite (WZ) 8.5287 1.6286 38.97 44.92 17.18 0.3076
3. Rocksalt (RS) 11.0985 52.7 86.12 35.07 0.2276
4. Zincblende (ZB) 12.073 38.39 37.1 13.88 0.3367

Expression for thermal conductivity (k) obtained by solving PBTE in the
single mode relaxation time (SMRT) approximation [38] is given by,

n 2 o -
kazmgv{ua)lm m+1)1 (@D)]

where, a, #,N Q,kp,T, are the cartesian direction, Planck constant, size of
the q mesh, unit cell volume, Boltzmann constant, and absolute tem-
perature respectively. A represents the vibrational mode (gj) (q is the
wave vector and j represent phonon polarization). w; n;, and vy, (= 0
®,/0q) are the phonon frequency, equilibrium Bose-Einstein population
and group velocity along cartesian direction a, respectively of a phonon
mode A. w;n,;, and cyare derived from the knowledge of phonon
dispersion computed using 2nd order IFCs. 7; is the phonon lifetime and
is computed using the equation,
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where, %is the anharmonic scattering rate based on the lowest order

three phonon interactions and Vs(—2, l’,/l") are the three-phonon
coupling matrix elements computed using both harmonic (2nd deriva-
tive of energy) and anharmonic (3rd derivative of energy) interatomic
force constants. 2nd and 3rd order interatomic force constants were
derived from density-functional perturbation theory (DFPT) [39,40].
Harmonic force constants for ZB and RS systems were calculated on 8 x 8
x 8(9 x 9 x 6 for WZ and NiAs) q-grid. Anharmonic force constants for ZB
and RS were computed on a 4 x 4 x 4 (3 x 3 x 2 for WZ and NiAs) q point
grid using D3Q [37,41,42] package within QUANTUM-ESPRESSO.
Acoustic sum rules were imposed on both harmonic and anharmonic

interatomic force constants. Phonon linewidth and lattice thermal con-
ductivity were calculated using ‘thermal2’ package within QUANTUM
ESPRESSO. For these calculations, 30 x 30 x 30(for ZB and RS) and 30 x
30 x 20(for WZ and NiAs) q -mesh was used and iterations in the exact
solution of the PBTE were performed until Ak between consecutive it-
erations diminished to below 1.0e>. k values were converged after 5
iterations. Casimir scattering [43] is imposed to include the effect of
boundary scattering for computing length dependent thermal conduc-
tivity in the nanoscales. Elastic constants were computed using ‘ther-
mo_pw’  package in QUANTUM-ESPRESSO; Voigt-Reuss-Hill
approximation [44] was used to calculate Bulk modulus, Shear modulus
(G), Young’s Modulus(E) and Poisson’s ratio(v).

3. Results and discussion

Phonon dispersion and phonon density of states for the four crys-
talline phases of MgTe is shown in Fig. 2 which are in good agreement
with previous work [3]. Structural parameters such as Young’s modulus
(E), Bulk modulus(B), Shear modulus(G) and Poisson’s ratio computed
based on Voigt-Ruess-Hill approximation are listed in Table 1 which are
also in excellent agreement with the previously published work [3,17]
for all the four crystalline phases of MgTe.

Lattice thermal conductivity(k) calculated by solving the phonon
Boltzmann transport equation (PBTE) is shown in Fig. 3. Fig. 3a and b
represents the temperature dependent lattice thermal conductivity of
MgTe with different crystalline phase by solving the PBTE iteratively
and at SMA. SMA results are just 5% less than that of the iterative so-
lutions. At 300 K, full iterated thermal conductivity(k) of MgTe is as
follows: knias(2.645 Wm 'K 1)<kps(6.26 Wm 'K™!) < kwz(8.83
Wm 'Kk < kz5(10.05 Wm'K™1). These low thermal conductivity of
less than ~10 Wm 'K~ shows the promising nature of MgTe in ther-
moelectric applications. k of 10.05 Wm 'K ! for the zincblende phase
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Fig. 3. a Temperature dependent lattice thermal conductivity by solving the PBTE iteratively b) at single mode relaxation time approximation (SMA) c¢) Length
dependence thermal conductivity at room temperature (300 K) for MgTe with different crystalline phase.
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Fig. 5. Spectral distributions of thermal conductivity in MgTe with different
crystalline phase.

MgTe is 3.8 times of the k of NiAs phase. This is due to the large phonon
bandgap (~100 cm™') which eliminates the phonon scattering rates.
Whereas ultra-low thermal conductivity of 2.645 Wm 'K ! for the NiAs
phase is due to the acoustic phonons are scattered by low frequency
optical phonons because of the less phonon bandgap (~25 cm™1). To
explain this, we have analyzed the mode contributions thermal con-
ductivity of transverse acoustic (TAj, TA), longitudinal acoustic (LA)
and optical phonon modes, phonon group velocities, phonon linewidths
(scattering rates) and its spectral distribution.

Fig. 4 represents the thermal conductivity contribution from each
phonon mode along L and || to the c-axis (For cubic MgTe k along L - c-
axis and II - c-axis are same) at single-mode relaxation time approxi-
mation. For the cubic systems, optical phonon contributions are less
than ~3.5%. Whereas optical phonons has a major contributions in both
wurtzite and NiAs crystal phase due to the low frequency optical pho-
nons. For an example, 1.245 Wm 'K ™! along the c-axis for with NiAs
phase is 34.2% to its overall thermal conductivity and is higher than
both TA and LA phonon modes. Likewise, 2.404 Wm ™K ! along L -c-
axis is 27.5% to its overall thermal conductivity in wurtzite MgTe. To
understand this, we plotted a spectral distribution of thermal conduc-
tivity over the entire frequency (Fig. 5) and we can observe that, low
frequency optical phonons has significant contributions to its overall

thermal thermal conductivity. Whereas in cubic (NiAs and ZB) MgTe, TA
modes between 25 and 75 cm ™! has a major contribution to its overall
thermal conductivity. To illustrate this further, we have plotted the
phonon group velocities and phonon linewidths for all the crystalline
phases in Fig. 6 and Fig. 7.

Fig. 6 a-d represents the phonon group velocities of MgTe with
different crystalline phase. We can observe that, low frequency optical
phonons (less than 130 cm™?) has a considerable phonon group veloc-
ities to that of the acoustic phonons in NiAs and wurtzite phase. Fig. 7 a-
d shows the phonon linewidth for MgTe with different crystalline phase.
In cubic systems, zincblende has the lowest phonon linewidth (less than
2 ecm™?) for acoustic modes due to large phonon bandgap and has the
highest thermal conductivity (~10 Wm™'K™!) whereas TA phonons in
rocksalt has one order of magnitude higher scattering rate than of the
zincblende and has low thermal conductivity. Likewise, TA and LA
phonons in NiAs has 8 times scattering rate than its counterpart wurtzite
structure. Optical phonons in NiAs has considerable phonon lifetime
(inverse of scattering rate) and hence has a significant contribution to its
overall thermal conductivity.

For the nanostructures, length dependent thermal conductivity of
MgTe between 30 nm and 1000 nm is computed by introducing the
boundary/Casimir scattering and is shown in Fig. 3c. At 300K and at
100 nm, zincblende has a maximum thermal conductivity of ~4
Wm 'K ~! shows the promising nature of MgTe for the thermoelectric
applications.

4. Conclusion

In this work, thermal conductivity of magnesium telluride (MgTe)
with four crystalline phases; zincblende, rocksalt, wurtzite and nickel
arsenic were computed by first principles calculations with phonon
Boltzmann transport equations. Our first principles calculations shows a
low thermal conductivity of less than ~10 Wm 'K ! for all the crys-
talline phase of MgTe. We systematically investigated the phonon group
velocity, phonon scattering rate and mode dependent thermal conduc-
tivity of MgTe. Our first principles calculations shows that, NiAs and
wurtzite has significant contributions from optical phonons than ZB and
rocksalt. At nanometer length scales such as 50 nm for NiAs phase,
thermal conductivity of less than 1.4 Wm 'K ~! shows a promising na-
ture of MgTe for thermoelectric applications.
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Fig. 6. Phonon linewidths of MgTe for the crystalline phase a) nickel arsenic (NiAs) b) rocksalt (RS) ¢) wurtzite (WZ) and zincblende (ZB) at 300K.
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Fig. 7. Phonon group velocity of MgTe with crystalline phase a) nickel arsenic (NiAs) b) rocksalt (RS) b) wurtzite (WZ) d) zincblende (ZB) at 300K
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