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Collective behaviour is common in bacteria', plants?, and animals®, and thus across ecosys-
tems, from biofilms* to citiesS. With collective behaviour, social interactions among indi-
viduals propagate to affect the behaviour of groups, while group-level responses in turn
affect individual behaviour. These cross-scale feedbacks between individuals, populations
and their environments can provide fitness benefits, such as efficient exploitation of uncer-
tain resources®, as well as costs, such as increased resource competition”-3. While the social
mechanics of collective behaviour are increasingly well-studied, its ecological significance re-
mains poorly understood’. Here we introduce collective movement into a model of consumer-
resource dynamics to demonstrate that collective behaviour can attenuate consumer-resource
cycles and promote species coexistence. We focus on collective movement as a particularly
well-understood example of collective behaviour’. Adding collective movement to canoni-
cal unstable ecological scenarios causes emergent social-ecological feedback which mitigates
conditions that would otherwise result in extinction. Collective behaviour could play a key

role in the maintenance of biodiversity.
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Introduction

The mechanisms that underpin ecosystem stability and species coexistence are well studied, but
not yet well understood'®!2. Ecological models that integrate species interaction rates to match
abundance data indicate that extant ecosystems must persist despite: (i) population oscillations—
driven by environmental fluctuations, and nonlinear effects of abundance on recruitment—which

increase the risk of stochastic extinction'3~1°

and (i1) competition among species for limited re-
sources, which promotes diversity loss via competitive exclusion!”"!°. The challenges to stability
and coexistence can be summarized by two ecological “paradoxes:” the paradox of enrichment'?
addresses the prevalence of conditions that should result in destabilizing population oscillations,
and the paradox of the plankton'® addresses the longstanding puzzle of how diverse ecological
communities can persist although many ecologically similar species are competing for a limited
range of resources'!"1%2°, Stability and coexistence are hypothesized to rely on countervailing pro-

21-23

cesses which attenuate population cycles” =, and which give each species a positive population

growth rate whenever their abundance becomes low!% 1220,

Spatial and temporal heterogeneities in species abundance and recruitment play a key role
in determining stability and coexistence. When local conditions experienced by individuals differ
systematically from their population averages, the ecological impacts of hotspots (e.g., of recruit-
ment or resource consumption) are not necessarily balanced by the impacts of coldspots. This
can result in stability and coexistence outcomes that might not be possible under homogeneous

conditions**?>. In many cases spatiotemporal structure promotes stability and coexistence, while
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homogeneous environments tend to be less stable®.

While spatiotemporal ecosystem structure is obviously impacted by exogenous drivers such
as ocean currents, rainfall patterns or habitat fragmentation, collective behaviour generates spa-
tiotemporal patterns that significantly modify the impacts of exogenous drivers, as seen in swarms
of insects®, schools of fish® or migrating flocks?® and herds?”-?®. Spatiotemporal heterogeneities
generated by collective behaviour can have ecosystem consequences. For example, group forma-
tion has been linked to the stability of predator-prey dynamics for lions and wildebeest in the
Serengeti’. Ecosystem states can in turn affect collective dynamics, such as through density-
dependent transitions from disordered to ordered group behaviour, which are common in taxa
that exhibit collective behaviour®?. For example, locust swarms emerge at critical densities when
locust populations transition to collective motion®’. Ecosystem state thus plays a key role in reg-
ulating collective behaviour, and collective behaviour can in turn impact ecosystem states. How-
ever, the consequences of feedback between collective behaviour and ecosystem dynamics remain

largely unexplored®'—33.

Here we demonstrate the ecological potential of this feedback by adding collective behaviour
to a simple food web model**%, focusing on the particularly common and well-studied case of
collective movement®. Our results show that collective behaviour fundamentally alters stability
and coexistence outcomes in canonical ecosystems, and provides a resolution to both the paradox
of enrichment and the paradox of the plankton via a social-ecological feedback loop inherent to

resource consumption and recruitment in collective groups. The effects of collective movement
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on stability and coexistence are distinct from previously-described effects of spatial aggregation
on ecosystem processes, and open new avenues for a predictive understanding of stability and

biodiversity through the quantitative study of social-ecological dynamics.

Results

Consumer-resource model We consider a simple ecosystem with two consumer species, P and

@, feeding on a resource species R in a homogeneous environment:

O bp(R)P —mP

L ba(R)Q ~ mQ M
dR R

R R (1 _ E) — fo(R)P — fo(R)Q

where 0 is the resource conversion efficiency, m is the consumer mortality rate, and r and K are
the maximum per-capita recruitment rate and carrying capacity of the resource population. The
per-capita resource consumption rate of consumer j is given by its functional response f;(R) =
a;jR/(1 4 a;hR), where h is the handling time and a; = ec; is the hazard of encounter (e) and
subsequent capture (c;). We assume the two consumer species differ only with respect to their
capture efficiencies c;. This model is commonly used to study the paradox of enrichment and the

paradox of the plankton!?!3 .

To add collective behaviour we represent equation (1) using an individual-based simulation
in which consumer and resource individuals occupy a square landscape with side length L and pe-
riodic boundary conditions (Methods). We use a landscape that is large relative to an individual’s

4
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powers of movement and in which behavioural dynamics are fast relative to trophic dynamics.
Absent collective behaviour, individuals move independently and exhibit diffusive mixing at the
population level. All trophic and behavioural interactions occur within an individual’s interaction
radius p, yielding a constant expected encounter hazard of ¢y = mp?/L? for ensembles of inde-
pendent individuals (note we use several flavours of e to represent different views of the encounter
rate, including ey and, below, an effective encounter rate e that is estimated from data; see Methods
for details). New individuals arise at a random location within a distance p of their parent. Fol-
lowing a consumption event the consumer involved reproduces with probability b. The consumer
then waits an average handling time of h before being eligible for consumption again. With col-
lective behaviour, each individual avoids collisions, moves towards, and aligns with its conspecific

neighbours (within a distance p) according to a well-studied model of collective movement’®37,

We first consider the impact of collective behaviour on the paradox of enrichment, consid-
ering the model with only one consumer species, P. In ecosystems composed of independent
individuals, increasing resource carrying capacity (/) causes consumer and resource populations
to oscillate with increasing amplitude (Fig. 1a). In contrast, these limit cycles are attenuated with
collective behaviour in the consumer (Fig. 1b), or in both the consumer and the resource (SI), lead-
ing to long-term persistence under levels of enrichment that would cause ensembles of independent

individuals to go extinct.

We next examined how collective behaviour alters species coexistence by simulating ex-

ploitative competition between a superior consumer (P) and an inferior one (()) that has a lower
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Figure 1: Collective behaviour promotes ecosystem stability and species coexistence. a,b. Bifurcation
diagram showing how minimum and maximum consumer population sizes respond to increasing resource
carrying capacity (K') in numerical solutions of eqn 1 (lines) and in the agent-based model without collective
behaviour (a, black squares) versus when collective behaviour is present in the consumer (b, red points). The
carrying capacity at which limit cycles are analytically expected (K *) is shown as a vertical line. Variations
in population sizes for K < K™ are due to demographic stochasticity in the agent-based model. ¢. With two
consumers, the competitively superior consumer P excludes the inferior consumer () in the absence of col-
lective behaviour. d. With collective behaviour in the consumer, both consumer species persist indefinitely.

See Table 1 for simulation parameters.
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capture efficiency, cg /cp < 1, but is otherwise identical. In the absence of collective behaviour,
this results in the exclusion of the inferior competitor—a key feature of the paradox of the plankton'
and also at the core of ecological®® and evolutionary'’ theory. The presence of collective behaviour
fundamentally changes this outcome, allowing long-term persistence of both consumer species on

a single resource (Fig. 1c,d).

Social-ecological feedback The impacts of collective behaviour on ecosystem stability and species
coexistence share a common mechanism—an emergent social-ecological feedback loop involving

resource encounter rate and the number and size of collective consumer groups.

In populations of independent consumers, per-capita resource encounter rate e is stationary
over time and identically distributed across subsets of the population (i.e. e ~ e for independents;
Extended Data figure 1). However, when consumers form social groups, systematic differences
emerge in access to resources, indicated by the fact that resource densities are significantly lower
in the vicinities of non-feeding consumers (Extended Data figure 2). This disparity causes a de-
crease in per-capita resource encounter rate averaged over the consumer population that scales with
the number and size of collective groups, attaining the lowest values when the population forms
into fewer, larger groups, and the highest values when the population is composed of many small
groups (Fig. 2a, Extended Data figure 2, Extended Data figure 3). In collective consumers, eco-
logical dynamics (per-capita resource encounter rate, and thus consumer recruitment) are therefore

affected by social conditions (the number and size of social groups).

The social structure of the collective consumer population varies in turn with the abundance



S o | M
3 (L g @
= s &
;4 ppitgttt |8
=1 o = o _|
S og |° ﬁ“} E ©
o S 3 o _|
5 © s -
8 - < o
|.IC.| o - 7
< 9]
g - e
o Social —> Ecological 3 :
T T T T T T S T T T T
0 5 10 15 20 25 30 1000 1500 2000 2500 3000
Number of consumer groups, G Time
b d
o
o o s 4 — R
8 _—b w esources
§ o _F —— Consumers
e a7 £
(o] [0}
5 Q- —= N
E fr— § 8
@ w0 | _——s—o—— 5 S 7
c - D — — s 3
Q —_— =]
o - 2
5 2 &
=
E Y& . -
S o Ecological —> Social
z o o o -
T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 1000 1500 2000 2500 3000
Resources, R Time

Figure 2: A social-ecological feedback loop stabilizes ecosystems with collective consumers. The system
is enriched to K = 12000, which would result in extinction for populations of independent individuals
(Fig. 1). a. With collective consumers, the per-capita encounter rate varies with the number of consumer
groups, rather than remaining stationary around ey (Extended Data figure 1). b. The number of consumer
groups varies in turn with the abundance of resources, creating a feedback between resource abundance and
consumption beyond what would occur through resource limitation alone. Lines span interquartile ranges.
¢.,d. Concordant cycles in resource abundance and the number of consumer groups. Red line in ¢ shows a
rolling average over 10 time units. Similar results are obtained when the timescale for behavioural decisions
At, the consumer’s mortality rate m and its conversion efficiency b are all decreased by a factor of 10,
speeding up behaviour and slowing consumer demography by an order of magnitude (Extended Data figure

4).
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of resources, indicating that social dynamics are reciprocally affected by ecological conditions.
Both the size and number of consumer groups varies with the abundance of resources (fig 2b-d,
Extended Data figure 2, Extended Data figure 3). The number and size of groups is determined
by the rates of group fusion (when two groups combine to form one), group fission (when one
group splits into two) and extinction (when a group of size one goes extinct). We hypothesize
that resource abundance affects groups number and size by shifting the balance between rates of
group fission and extinction to favor more, smaller groups when resources are abundant (SI). In
resource-rich environments, singleton groups are more likely to grow via reproduction before they
go extinct, and fast-growing groups are more likely to undergo fission. Consistent with our hy-
pothesis, there are more consumer groups for the same number of consumers when more resources

are present (Extended Data figure 5).

To summarize the social-ecological feedback loop, the number and size of collective con-
sumer groups impacts resource uptake (with more efficient uptake when there are many small
groups), and resource abundance in turn affects the number and size of collective groups (with
more and smaller groups favoured when resources are more abundant). This attenuates popula-
tion cycles by reducing resource consumption when resources are scarce to a greater degree than
would occur with independent consumers via resource limitation alone*®. By causing systemati-
cally higher encounter rates when consumer population sizes become small, this social-ecological
feedback also allows the coexistence of collective consumer species where competitive exclusion

would otherwise prohibit it (Extended Data figure 1, Fig. 1cd).
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An unanticipated result is obtained by fitting a constant effective encounter rate e to match
the ecosystem model (eqn. 1) to the simulation data, and examining the critical value of resource
enrichment at which limit cycles are predicted to begin, /K*. The critical value K* is inversely
proportional to e, so changing the encounter rate changes the level of enrichment at which popu-
lation cycles are predicted. Without collective behaviour, the effective encounter rate € recovers
the expected value e ~ e, as required. In this case K" is invariant to changes in resource enrich-
ment (K'). By contrast, in collective consumers the effective encounter rate € is tuned to the level
of resource enrichment (i.e. € % eg) and K* thus varies with K. Remarkably, increasing levels
of enrichment cause emergent decreases in the effective encounter rate of collective consumers
that keep the system at or just below the value of K™ at which destabilizing limit cycles would

otherwise begin (Fig 3).

Discussion

We have described ecosystem impacts of collective behaviour driven by emergent hierarchies in
access to resources and reproductive opportunities, and thus by general processes associated with
complex social groups*’. These processes are distinct from the stabilizing effects of aggregation
which have been previously described? in that they involve the emergence of dynamic aggregation
patterns tuned to population dynamics via social-ecological feedback (Fig. 2). These respond via

collective cognition to changing ecological conditions at other trophic levels (Fig 2,3).

Individuals in our model interact spatially to modulate intra- and inter- specific competition,

10
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Figure 3: With collective consumers, enrichment is itself associated with an increase in the critical value
of enrichment at which population cycles begin (K*), following approximately K* ~ K (red dots). In
contrast, the bifurcation point is fixed for independent consumers (black squares). The diagonal line is the
1:1 line. The horizontal line shows the theoretical value for K* derived from eqn 1. At each value of K, an
agent-based simulation was run, an effective € was calculated from the output, and the squares/circles are

the resulting critical K *(e) when all other parameter values unchanged (eqn. 5 in Methods).

11
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a feature shared in common with other cross-scale ecosystem models, such as the perfect plasticity
approximation (PPA*!) of forest ecosystem dynamics which assumes trees place their canopies to
minimize competitive overlap with neighbouring crowns. However, whereas modulation of intra-
and inter- specific competition is a hardwired assumption of the PPA, in our model competition
modulation is an emergent property of collective behaviour via dynamic adjustments in the size

and structure of social groups.

Taken together, our results indicate that the widespread existence of collective behaviour
in ecosystems could play a key role in their stability and diversity. Quantifying the mechanisms
of interaction between social and trophic dynamics has applications to controlling the spread of

44,45, and

infectious diseases*?, managing fisheries®**3, forecasting coupled biogeochemical cycles
predicting the formation, growth and dissolution of human social groups including firms*® and

societies?’. In its ubiquity, its fundamental impacts on biological systems, and its potential to

enhance forecasting, collective behaviour may be an important element of the rules of life.

12
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s Data availability Output from the agent-based simulations are located at www.github.com/BenjaminDalziel/colle

169 €cosystems

170 Code availability Simulation code and scripts for statistical analysis are located at www.github.com/BenjaminDa

171 €cosystems

172 Agent-based simulation The position x; of individual 7 changes over time according to

Xi<t + At) = X; + 8V; (t) (2)

173 where s represents scalar speed and v; velocity (direction of movement), scaled each time step to

172 have unit magnitude. Velocity evolves according to

Vit + At) = (v)i(t) +nz(t) 3)

175 where (v); represents expected resultant velocity (described below), ) is a scalar noise parameter
176 and z(t) is a random variable drawn from a standard bivariate normal distribution (zero mean, unit

177 variance in each coordinate).

178 An individual’s expected resultant velocity (v); is affected by its current velocity and pos-
179 sibly by the positions and velocities of its conspecific neighbors. When collective behaviour is
is0 absent, (v);(t) = v;(t) and so v;(t + At) = v;(t) + nz(t). When collective behaviour occurs,
181 (v);(t) is influenced by social interactions as each individual avoids collisions, move towards, and
12 aligns with its conspecific neighbors according to the Couzin model*®3’. We tracked the result-
183 ing collective groups by assigning conspecific individuals to the same group if and only if they

13
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interacted behaviourally during a given time step, with individuals assigned to their own group
by definition. To track groups computationally we used an adaption of methods for equivalence

classes3®48,

Because species capable of conspecific behavioural responses will likely also respond to
nearby resources or predation risk, we also investigated behavioural responses between consumer
and resource individuals (regardless of whether collective behaviour is active) by including pursuit
and avoidance terms in (v);. In these simulations, consumers turn toward resource individuals in

their local neighborhood, while resource individuals orient away from consumers (SI).

At each time step of length At, each resource individual reproduces with probability r (1 — =
and each consumer individual dies with probability mA¢t. If a resource individual is within a dis-
tance p of a consumer who is not in the handling state from a previous consumption event, the
resource is captured with probability c;At. Handling consumers become eligible for consumption

with probability A1 At.

Crucially, the landscape is large and behaviour is fast, relative to lifespan of a consumer
(50 time units; Table 1): moving in a straight line, it would take a consumer approximately their
entire lifespan to cross the arena diagonally and the periodicity of consumer-resource cycles is
approximately 6 consumer lifetimes. Similar results to those shown in Fig 2 are obtained when
the timescale for behavioural decisions At, consumer mortality rate m and conversion efficiency
b are all decreased by a factor of 10, thus speeding up behaviour and slowing consumer demog-

raphy by an order of magnitude, suggesting these results do not depend on the ratio of timescales

14
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between behavioural and ecological processes (Extended Data figure 3). Table 1 shows simulation
parameters used in the main text. Sensitivity analysis, full computer code and simulation output is

provided in the SI.

Encounter rate In model (1) the encounter rate e in the functional responses f represents the
instantaneous per-capita hazard that a random consumer individual and a random resource indi-
vidual will be separated by a distance of less than p. The encounter rate is a constant in the
canonical ecosystem model represented by eqn 1, which assumes random mixing, implying that
conspecifics behave independently from one another. In this case the value of e is constant, given
by eq = wp?/L? . With collective behaviour, we demonstrate that e varies predictably with the
number of collective groups. Finally, we fit a constant effective encounter rate € to simulation
data with collective behaviour active, representing the best constant encounter rate to capture the

dynamics of the ecosystem model with collective behaviour using methods described below.

The critical level of enrichment K™ at which limit cycles arise in model (1) through a Hopf bifur-
cation depends on the value of e. From the standard analysis of the Rosenzweig-MacArthur model
we know that as enrichment is varied, the bifurcation occurs when the predator nullcline intersects

the peak of the prey nullcline. This happens at the K* that satisfies
1/1 2m
K=-(-4——"7 4
T (h Tz hm) X

Analysis of agent-based simulations Encounter rate is estimated from the agent-based simulation

as

1
= iy 2 )

15
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where n;; is number of resource individuals in range of the ith consumer individual of type j, C}

is the abundance of that type, and R is the abundance of the resource.

1.dG;

We estimated per-capita recruitment rate ;i

from the (discrete-time) abundances in the agent-

ac;

based simulation using %7 = % log C; ~ % where y = log C; observed from the agent-based
J

simulation.

We estimate effective encounter rate under collective behaviour, é, by fitting the analytical model
to abundance time series from the agent-based simulation, with all parameters fixed to their true

values except for e. Specifically, we choose € to minimize the loss function
h*(8) = (po — pa)* + (ky = 119)” + (00 — 02)* + (0 — 03)° (6)

where the observed values x = log(R) and y = log(C};) = log(P) are from the simulation, = and
1y refer to the corresponding values predicted by eqn 1 using € instead of e, and p and o represent
means and standard deviation over time. We used the optimize() function in R to search for the

value of e that minimized h on the interval (0.25¢q, 1.5¢).

16
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Table 1: Simulation parameters used in main text

Parameter Value Interpretation
R(0) 1000 Initial resource population size
P(0) 100 Initial consumer population size - stability experiments
P(0) 10 Initial superior consumer population size - coexistence experiments
Q(0) 10 Initial inferior consumer population size - coexistence experiments
At 0.1 Time step
r 0.03 Maximum per-capita rate of increase in resource population
2000-8000 Carrying capacity - stability experiments
2000 Carrying capacity - coexistence experiments
K* 3395.305  Value of K where limit cycles begin given cp, h, b, m, pand L
p 5 Radius of attraction, alignment and resource encounter
00 1 Radius at which collision avoidance is triggered
AbOpan 1 Maximum turn rate in radians
cp 0.015 Probability per unit time of capture given encounter for the superior consumer
cQ 0.0135 Probability per unit time of capture given encounter for the inferior consumer
cq/ep 0.9 Relative capture efficiency of the inferior consumer
b 0.3 Probability that a resource consumption event will produce a new consumer
m 0.02 Consumer mortality rate. Mean consumer lifespan = 1/m
h 5 Consumer handling time
sc 3 Speed of consumer individuals
SR 1 Speed of resource individuals
n 1 Noise in consumer and resource velocities
L 100 Arena length
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