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Ecography Understanding how species ranges shift as climates rapidly change informs us how
2022: 05450 to effectively conserve vulnerable species. Species distribution models (SDMs) are an
doi: 10.1111/ecog.05450 important method for examining these range shifts. The tools for performing SDMs

are ever improving. Here, we present the megaSDM R package. This package facilitates
Subject Editor: Thiago F. Rangel realistic spatiotemporal SDM analyses by incorporating dispersal probabilities, creat-
Editor-in-Chief: ing time-step maps of range change dynamics and efficiently handling large datasets
Jens-Christian C Svenning and computationally intensive environmental subsampling techniques. Provided a list
Accepted 14 September 2021 of species and environmental data, megaSDM synthesizes GIS processing, subsam-

pling methods, MaxEnt modelling, dispersal rate restrictions and additional statistical
tools to create a variety of outputs for each species, time period and climate scenario
requested. For each of these, megaSDM generates a series of distribution maps and
outputs visual representations of statistical data. megaSDM offers several advantages
over other commonly used SDM tools. First, many of the functions in megaSDM
natively implement parallelization, enabling the package to handle large amounts of
data efficiently without the need for additional coding. megaSDM also implements
environmental subsampling of occurrences, making the technique broadly available
in a way that was not possible before due to computational considerations. Uniquely,
megaSDM generates maps showing the expansion and contraction of a species range
across all considered time periods (time-maps), and constrains both presence/absence
and continuous suitability maps of species ranges according to species-specific disper-
sal constraints. The user can then directly compare non-dispersal and dispersal-limited
distribution predictions. This paper discusses the unique features and highlights of
megaSDM, describes the structure of the package and demonstrates the package’s fea-
tures and the model flow through examples.
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Background

Increasing greenhouse emissions continue to influence global
climate. The ability of species to track these changes and
persist in suitable habitats may determine if they are able to
avoid extinction within the next century. Understanding the
dynamics of species’ range expansions and contractions in the
context of a rapidly shifting climate is of paramount impor-
tance. Researchers often use species distribution modelling
to predict suitable habitats for species for use in research
and management. Species distribution models (SDMs),
also known as ecological niche models or habitat suitability
models, use the environmental conditions at geo-referenced
species observations (hereafter, occurrences or occurrence
points) to estimate suitable habitats and provide hypotheses
for the spatial distribution of the species (Varela et al. 2014).
In addition, SDMs are frequently extrapolated for past or
future climates, making predictions about how a species
range might change under different environmental condi-
tions and how these ranges interact with the existing net-
work of protected areas and regions of high human impact
(Elith et al. 2010).

Researchers have begun applying SDMs over multi-
ple time steps to gauge the stability of transitory habitats
(i.e. habitats that are suitable for a species for only a brief
amount of time) (Early and Sax 2011, Huang et al. 2020),
for many species simultaneously (Lehtomiki et al. 2019),
and for species that are constrained by their dispersal ability
(Schloss et al. 2012). However, the availability of statistical
software aimed at investigating these intricate questions has
lagged behind the field. For example, no software tools have
yet been developed to investigate transitory range dynamics,
and many of the tools currently in use do not natively imple-
ment the newest methods for accurate modelling. Recent R
packages have been developed that incorporate some com-
ponents of these advances such as species-specific dispersal
rate (e.g. ‘MIGCLIM’; Engler et al. 2012) and a variety of
options for occurrence and background subsampling (e.g.
‘ecospat’; Di Cola et al. 2017). However, no SDM software
is yet able to efficiently implement environmental subsam-
pling and integrate dispersal ability to evaluate changes in
habitat suitability for many species and climate models at
once, nor display the results of such analyses in an easily
interpretable manner.

Here, we present the R package megaSDM, which applies a
new, efficient implementation of environmental subsampling,
the generation of distribution maps (using the MaxEnt soft-
ware by default) showing dispersal-constrained range shifts
across multiple time steps, and native parallel processing. This
package provides an improvement in the implementation and
efficiency of investigations of species range shifts (Fig. 1). It
integrates multi-step range movements and species-specific dis-
persal rate to predict with greater accuracy how species ranges
and richness will respond on the landscape to the dynamic
pressures of current and future climate change (Fig. 2).
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Figure 1. Simplified flowchart of megaSDM, showing each of the
package’s main functions and example outputs.
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Figure 2. Output ‘time maps from the createTimeMaps() function in megaSDM, detailing range shifts for Franklin's ground squirrel
Poliocitellus franklinii across two different climate scenarios (RCP4.5 and RCP8.5; Riahi et al. 2011, Thomson et al. 2011, respectively) and
for three separate times (2010, 2050 and 2070). Blue regions indicate areas of expansion, red regions indicate areas of contraction and
purple/pink areas indicate areas of momentary fluctuations among the three times (e.g. expansion from 2010 to 2050 followed by contrac-
tion from 2050 to 2070). Yellow areas remain occupied throughout the entire time period. The maps in the right column constrain range
expansion to the average dispersal rate of P franklinii (1.23 km year™'; Schloss et al. 2012).

Package highlights

megaSDM has many innovative features for modelling spe-
cies range dynamics, but its most important ability is to effi-
ciently synthesize the SDMs for many species, time periods
and climate scenarios, outputting unique maps describing
the changes in species ranges in response to environmental
changes (Fig. 2). These maps succinctly represent transi-
tory range dynamics, where the range of a species expands
briefly before contracting again, or vice versa. Transitory
range dynamics such as those can significantly influence the
availability and accessibility of habitat for range-contracting
species (Huang et al. 2020). Although some packages can
effectively display unidirectional range shifts (e.g. ‘kuenm,
Cobos et al. 2019), no other SDM software generates maps
that display these transitory range dynamics.

In generating these range maps, megaSDM can also inte-
grate dispersal limitations into SDMs using probability func-
tions. Some R packages incorporate dispersal rate into binary
SDMs that show presence and absence (e.g. ‘MIGCLIM’;
Engler et al. 2012). However, applying dispersal rate prob-
abilities to continuous habitat suitability models has not
achieved widespread use, despite the profound effects of
varying thresholds on the interpretation of binary species dis-
tributions (Norris 2014). megaSDM allows for the integra-
tion of dispersal ability into continuous climate suitability
models, offering a more nuanced take on dispersal limitations

(Fig. 3). To do this, megaSDM uses a new metric, called
‘invadable suitabilitcy’, which incorporates both continu-
ous habitat suitability and the dispersal ability of a species.
Invadable suitability represents the potential for a species to
expand its range into new territory given changing condi-
tions. Given a user-provided set of dispersal data in distance
per time-step (per year), invadable suitability is calculated by
multdiplying the habitat suitability (generated in the SDM) by
the probability of dispersal as a function of distance. mega-
SDM models both invadable suitability and the standard
dispersal-constrained presence/absence species distribution
maps (similar to those created by MIGCLIM) over multiple
dispersal events (Fig. 2).

megaSDM also implements several improvements on
strategies for reducing spatial or environmental bias in the
SDMs themselves. Several papers have demonstrated that an
environmental-subsampling technique mitigates sampling
bias and improves model performance (Varela et al. 2014,
Castellanos et al. 2019), but this has thus far not been widely
implemented, largely due to computational challenges.
megaSDM is the first to allow multivariate environmen-
tally stratified filtering of occurrence and background points
prior to modelling. megaSDM can also generate background
(pseudo-absence) points in several different ways, including a
new technique that spatially weights the background points
by increasing the density of the background points within
a buffer around the occurrences (Fig. 4). Other R packages
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(Riahi et al. 2011) without incorporating dispersal from the 2010 modelled distribution (a) and (b) ‘invadable suitability’ by multiplying
the dispersal probability function (red curve) by the suitability data given an average dispersal rate of 1.23 km year™ since 2010 (Schloss et al.
2012). The red curve approximates the probability of dispersal to at least a given distance using a gamma distribution.

allow some of these strategies (e.g. ‘dismo’ (Hijmans et al.
2017) can generate random or spatially constrained back-
ground points). However, no one package has yet to merge
spatial and environmental filtering of background points.
The efficient implementation of these features within
megaSDM has been achieved through the employment of

(a) “random” method

(b) “spatially constrained” method

native, multi-core parallel processing within the individual
functions. This integrated parallelization allows users to
simultaneously analyse the species of interest in batches,
without requiring the users to edit the native functions,
change the workflow (e.g. running a single species at a time)
or apply multi-core parallelization outside of the function
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Figure 4. Diagrams detailing the different methods of generating background points available in the BackgroundPoints() function in
megaSDM. Panel (a) shows the ‘random’ generation method, where 10 background points (black x’s) are sampled randomly throughout the
training area (grey polygon) without considering the locations of the occurrence points (black dots). The other commonly used technique
for generating background points is the ‘spatially constrained” method, in which a buffer is constructed around the occurrence points (b,
blue polygon), and the 10 background points are only sampled within the buffer (b, black asterisks). The ‘combined’” method (c) generates
a proportion (given as an argument to the function) of the background points from within the buffer (black asterisks) and the rest from the

entire study area (black x’s), providing a spatial weighting scheme.



(which runs more slowly than parallelizing within each func-
tion). See the Supporting information for details on the rela-
tionship between parallel processing and total analysis time
for the entire workflow of megaSDM.

Package structure
Structure and configuration of the package

megaSDM comprises a set of independent functions that
together perform occurrence and GIS data manipulation,
distribution modelling and data analysis (Table 1). These
functions are modular, constructed as ‘building-block’ func-
tions that each contain one aspect of SDM generation and
evaluation that can be mixed and matched according to the
requirements of the project, but we also provide a cohesive
workflow that assists in the entire process of species distri-
bution modelling (Fig. 1, Supporting information; also see
the package vignette, Supporting information). megaSDM
provides options to manipulate the environmental data,
download and filter occurrence points or create background
points. Subsequent functions model habitat suitability for
all species across all time steps and climate scenarios and
provide options to calculate summary statistics for each spe-
cies distribution, create maps showing the transitory range
dynamics of each species and calculate species richness for
each combination of times and scenarios. Finally, if the user
provides information about the average yearly dispersal rate
for the species, megaSDM can apply a dispersal-rate con-
straint to each output.

Data inputs

Ata minimum, megaSDM must be provided with 1) a vector
of species names to be analysed and 2) sets of environmental
raster layers covering the geographic region of interest for
cach desired time period, whether those are future or past
climate scenarios. However, this package can incorporate
many other types of provided data. First, users may provide
their own species occurrence data instead of using mega-
SDM'’s built-in OccurrenceCollection() function to down-
load species observations. Dispersal rates for each species (in
km per year) may also be provided, for the dispersalRate(),
createTimeMaps() and createRichnessMaps() functions
to incorporate dispersal limitations into the model predic-
tions generated by the MaxEntProj() function. Users may
also provide background points, shapefiles for each species
outlining a portion of the training map for selecting back-
ground points, or even SDM-generated habitat suitability
maps created elsewhere for statistical analysis and map gen-
eration. The documentation of each function and the exam-
ple workflow provided as a vignette with the download of
the package give instructions on how to format all optional
data. Refer to these guides and the documentation provided
with the package functions for more detailed description of
input data options.

Model flow and example

Most of the functions in megaSDM can be used to conduct
single, stand-alone analyses (e.g. performing environmental
subsampling of occurrences or evaluating the effects of dis-
persal limitations on projected suitable habitat). Alternatively,
these functions can be linked together easily to create an entire,
self-contained workflow (Fig. 1; Supporting information). To
demonstrate the flexibility and functionality of megaSDM
and to discuss the workflow of the functions, we have applied
megaSDM to a set of test data (Fig. 5). These test data consist
of a list of 165 native North American mammals and a set
of bioclimatic variables, downloaded from WorldClim 1.4
<www.worldclim.org/version1> (Fick and Hijmans 2017,
WorldClim 2.0). All examples highlighting a single species
use the results for Poliocitellus franklinii (Franklins ground
squirrel; Fig. 2, 3). Figure 1 provides a simplified flowchart of
the main functions in this package (a more detailed flowchart
may be found in the Supporting information).

We have also provided a user example (Supporting infor-
mation) that is installed with the package as a vignette and
found on GitHub (<hteps://github.com/brshipley/mega-
SDM/megaSDM_vignette.html>). The user example can be
run after setting the working directory at the beginning of the
provided script. Using five mammal species and one subspe-
cies that reside in the southeast United States, this example
quickly demonstrates many of the features of megaSDM and
the inputs necessary to run each function.

Data gathering

GIS environmental layer manipulation TrainStudyEnv() and
PredictEnv()

The TrainStudyEnv() and PredictEnv() functions manipulate
the input environmental data. These data provide the inde-
pendent variables used to generate a relationship between
species occurrence and the environmental/climatic factors.
TrainStudyEnv() re-projects, clips and resamples the cur-
rent environmental data, resulting in environmental layers
with consistent projection, resolution and extent. Similarly,
PredictEnv() takes the forecasted/hindcasted environmental
rasters and projects, clips and resamples them to the param-
eters of the current data.

Species occurrences OccurrenceCollection()

The OccurrenceCollection() function acts as a wrap-
per for the occ_search() function in the rgbif package
(Chamberlain et al. 2019), making the function more efhi-
cient for a large number of species. OccurrenceCollection()
allows the user to directly download species occurrence date
from the Global Biodiversity Information Facility (GBIF)
<www.gbif.org>. Although we suggest that users carefully
vet all occurrence information used in SDM analyses, this
step can be useful for preliminary analyses or for educa-
tional and training purposes. Users can also directly input a
table of species occurrence data for use with the remainder
of the functions.



Table 1. A list and description of the stand-alone functions that are contained within the megaSDM package.

Function

Description

TrainStudyEnv

PredictEnv

OccurrenceCollection

OccurrenceManagement

BackgroundBuffers

BackgroundPoints

VariableEnv

MaxEntModel

nullAUC

MaxEntProj

createTimeMaps

additionalStats

dispersalRate

createRichnessMaps

Project/clip training and study environmental layers: projects, clips and resamples environmental layers for
the training area (i.e. where the model will be trained) and study area (i.e. where the parameters of the
model will be applied and habitat suitability will be predicted) of an SDM analysis.

Project, clip and store forecasted/hindcasted environmental rasters for SODM prediction: takes lists of
RasterStacks that correspond to future or past time periods of a single climate model (e.g. RCP4.5,
CCSM3), ensures that the environmental variables are the same as those that the model will be trained on,
and projects, clips and resamples these layers to the characteristics of a given study region.

Download and vet GBIF occurrence data: takes a list of species and collects occurrence data from GBIF
(Global Biodiversity Information Facility, <www.gbif.org>). Acts as a wrapper for rgbif::occ_search;
however, this function is more efficient for a large number of species. It also checks the taxonomy of the
given species list against the GBIF taxonomy, renaming or merging taxa if necessary. Furthermore, this
function vets the occurrence data, removing occurrence points that are of insufficient quality for species
distribution modelling. For a full list of issues removed by this package, refer to Supporting information.
Further vetting may be done by the user. Finally, it provides the number of occurrences found within given
training and study areas.

Manage and environmentally filter occurrence points: takes a set of occurrence points (whether downloaded
from GBIF or provided), standardizes the column headings for effective use in species distribution
modelling, and, if requested, extracts the values of each environmental variable used in the modelling for
each occurrence point and environmentally subsamples the data (Varela et al. 2014).

Create buffers for spatially constrained background point generation: takes a list of occurrence point files
and generates buffer shapefiles around each set of points. These buffers will be used if spatially
constrained background points are required. The radius of the buffer can be defined as a single value for
all species or as a distinct value for each species. If no radius values are given, the distances between the
occurrence points themselves inform the buffer radius.

Generate background points for species distribution modelling: generates a set of species-specific
background points using one of several methods. These points can be randomly generated across a given
training area, or if environmental data are provided, environmental subsampling (sensu Varela et al. 2014)
can be conducted. If a list of buffers around the occurrence points of each species are provided, this
function will conduct spatially constrained sampling within the buffer.

Use species-specific sets of environmental data for SDMs: using environmental variables that are specific to
each species can help to make more informative species distribution models. This function prepares
Maxent inputs for the modelling of each species based upon a unique subset of the environmental
variables.

Model species distributions with MaxEnt using parallel processing: takes occurrence points and background
points of many species and models them using the MaxEnt algorithm, parallelizing the process across
multiple computer cores.

Generate null distribution models for AUC comparison: one way to use AUC values to examine presence-
only model predictions is to generate model replicates using randomly generated occurrence data and
evaluating their performance using a subset of the real occurrence data. This function generates null
models and calculates the test AUC values when applied to the subset of real occurrence data for
comparison with the model training on the actual data. This method was developed by Bohl et al. (2019).

Construct ensemble models and project habitat suitability to current, past and future climates: conducts
ensemble modelling on all replicates of the MaxEnt model by calculating the median habitat suitability for
each pixel across all replicates. Next, the function generates binary presence/absence maps by applying a
given threshold to the data. These processes are repeated for each scenario/time period combination
provided.

Create maps describing species range shifts across many time periods: creates maps describing species
range shifts across multiple time periods. These maps detail the step-wise expansions and contractions of
the species distribution through those time-steps, allowing for the visualization of both unidirectional
range shifts and more complex dynamics (e.g. a range expansion followed by a range contraction).

Generate other statistics for species range shifts: generates graphs showing the changes in range size and
position between the data the model was trained on and future or past projections of species ranges.

Constrain modelled species distributions by dispersal rate: incorporates the ability of a species to disperse
over time into projected habitat suitability models and presence/absence maps. The probability of
dispersal per year as a function of distance is modelled using an exponential distribution, and summed
together to create a probability of dispersal for the intervals between each provided time step. Dispersal-
constrained binary (presence and absence) maps are generated, as well as continuous maps of ‘invadable
suitability’

Create regular and dispersal-constrained richness maps from stacked SDMSs: This function stacks binary
(presence/absence) species distribution maps to create richness maps for a list of species. If higher taxa are
provided, separate richness maps for each higher taxon will be created in addition to the full species
richness maps. Given hindcasted/forecasted binary maps, future/past species richness will also be
calculated. Finally, provided distribution maps that are constrained by dispersal rate, compares between
the dispersal-constrained and regular richness maps.




If the user wishes to use the package to download species
occurrence data, they must provide a list of species and the
geographic extent from which the occurrence points will be
downloaded. The function will then download occurrence
points of each species to be analysed from GBIE the world’s
largest digital repository of biodiversity information (Telenius
2011). However, GBIF often contains incomplete or inaccu-
rate results for some species (Beck et al. 2013), which may
lead to inaccurate distribution models in those regions (Ferro
and Flick 2015). This package increases the overall quality
of the downloaded occurrence data by filtering out lower-
quality data (e.g. duplicate observations, occurrence points
with an improper datum conversion, rounded latitude/lon-
gitude coordinates). This is an additional improvement over
simply using the rgbifi:occ_search() function, providing
a more rigorous assessment of where each species has been
observed. For a complete list of GBIF error codes filtered
out by this package, see Supporting information. If users
provide their own occurrence dataset, they can bypass the
OccurrenceCollection() function.

Data preparation

Environmental subsampling OccurrenceManagement()

Study design, sampling constraints and observer errors invari-
ably lead to biases in occurrence data (Boakes et al. 2010).
Biased input data decrease the overall accuracy of SDMs
(Phillips et al. 2009, Beck et al. 2013, Varela et al. 2014).
Therefore, the biases implicit in the collected or downloaded
occurrence data must be accounted for (Phillips et al. 2009).
The OccurrenceManagement() function in megaSDM,
employs a method developed by Varela et al. (2014) and mod-
ified by Castellanos et al. (2019) to mitigate environmental
and spatial biases within the occurrences by environmentally
filtering the occurrence data. First, the environmental values
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for each occurrence point are divided into a desired number
of bins such that the total number of bins possible is (nbins)
A (number of environmental variables), although in practice
many of these bins will be empty (Castellanos et al. 2019).
This method can cither be implemented on the raw data
or conducted using a scaled principal component analysis
(PCA) on the climatic values from each occurrence point,
which has been demonstrated to perform better than envi-
ronmentally filtering with unscaled data (Castellanos et al.
2019). A desired number of the PC axes are then designated
as a parameter in the function or, if not given, the package
will include PC axes until more than 95% of the climatic
variance is explained. If categorical environmental variables
are supplied, the PCA is not conducted and the data are sub-
sampled using their original values.

Next, a single occurrence point from each n-dimensional
bin is extracted for use in subsequent steps, resulting in a sub-
set of occurrence points filtered by environment. This method
of filtering allows for the removal of environmentally/climati-
cally clustered or oversampled records while maintaining the
total range of environments a species was found in Varela et al.
(2014). Furthermore, this method does not require a priori
knowledge of sampling effort. Models applying this method
significantly outperform those using both random subsam-
pling and geographic/spatial filtering (Fourcade et al. 2014,
Varela et al. 2014, Castellanos et al. 2019).

Background sampling BackgroundBuffers(),
BackgroundPoints()

There are two well-established strategies for selecting back-
ground points for SDMs (Barbet-Massin et al. 2012). The
first method (hereafter called the ‘random” method) involves
randomly selecting background points throughout the entire
area of interest (Fig. 4a). Although this method is simple and
easy to implement, if the occurrence data are spatially biased
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Figure 5. Species richness maps generated from SDMs of 165 North American mammal species for 2010 (a) and the RCP 8.5 climate
scenario for 2070 (b—c; Riahi et al. 2011). For (b), dispersal ability is not considered. For (c), range expansions are constrained by average
dispersal rates (km year™), calculated by Schloss et al. (2012), and distance from the species distribution in 2010. Map (d) shows the dif-
ference between the dispersal-applied richness map (b) and the map for which dispersal rate is not applied (c). The list of species modelled

may be found in the Supporting information.



(e.g. greater densities of occurrence points in more easily
accessed areas), the model may overestimate the environmen-
tal suitability of those regions (Lobo et al. 2010, Kramer-
Schadt et al. 2013). To counteract this spatial bias, a second
method (hereafter, ‘spatially-constrained’) only generates
background points that are located within a certain buffer
distance around the occurrence points (Fig. 4b), allowing the
spatial bias of the set of background points to mirror that of
the occurrence points themselves. The ‘spatially-constrained’
method decreases the effects of spatial bias in occurrence sam-
pling and can increase model accuracy over the first method
(Barve et al. 2011, Fourcade et al. 2014). However, when
modelling multiple species, distributed across a large study
area, this method is susceptible to extreme extrapolation
errors and overfitting (Radosavljevic and Anderson 2014).

The BackgroundPoints() function in megaSDM allows
users to apply either strategy for selecting background points,
in addition to a new, ‘combined’ method that attempts to
minimize the error in both methods. The ‘combined’ method
samples a desired (user-defined) proportion of the back-
ground points from within a buffer around the occurrences
and the rest of the background points from the entire study
area (including the buffered area; Fig. 4c). This provides a
de facto spatial weighting scheme, operating similarly to
more widespread methods of mitigating spatial sampling bias
through background point generation (Kramer-Schadt et al.
2013, Senay et al. 2013, Fourcade et al. 2014). Although
anecdotal evidence suggests that it may decrease extrapola-
tion errors in models of small species ranges in a large study
area, this particular spatial weighting scheme is still experi-
mental, and no rigorous tests have yet been conducted.

For the creation of ‘spatially-constrained” or ‘combined’
background sampling schemes, ~megaSDM can either
use buffers input by the users or it can create buffers. The
BackgroundBuffers() function generates a buffer around each
occurrence point. The radius of these buffers can be manually
defined or be proportional to the 95% quantile of the dis-
tance to nearest neighbour for each poin, therefore exclud-
ing outlier points (Fig. 4b—c).

Although the most appropriate method for generating
background points is still a matter of discussion (Barbet-
Massin et al. 2012, Senay et al. 2013, Liu et al. 2019),
background points should be generated with similar biases
(or lack thereof) as the occurrence points used in the model
(Phillips et al. 2009). Therefore, if environmental filtering
was conducted on the occurrence points (removing environ-
mental biases), the background points within and outside
the buffers should also be environmentally filtered, creating
an even spread across available environmental space while
retaining the spatial weighting.

Because each species is likely to have different environ-
mental requirements, using a species-specific subset of envi-
ronmental layers can additionally increase SDM accuracy and
predictive ability (Elith et al. 2006, Austin and Niel 2011).
This is often time-consuming to do manually (particularly
when modelling many species at once), so the [VariableEnv]
function provides a way to automate such a process. In this

function, the user designates which environmental variables
should be used for each species as an argument.

Modelling

MaxEnt modelling, subsampling and replication
MaxEntModel()

After generating environmentally filtered and subsampled
occurrence and background points for each species, the
MaxEntModel() function in megaSDM estimates habitat
suitability using the MaxEnt modelling technique, which
applies maximum entropy methods and machine learning
to produce estimates of habitat suitability and distribution
(Phillips et al. 2006). MaxEnt has consistently exhibited high
accuracy in a variety of species distribution modelling tasks,
regularly outperforming other SDM techniques (Elith et al.
2006, Phillips and Dudik 2008, Feng et al. 2019). Many
researchers ensemble the results of several different modelling
methods (e.g. generalized linear models, random forests), cre-
ating a consensus model. However, each additional method
used introduces different types of error and uncertainty into
the consensus model (Elith et al. 2010). Therefore, rather
than aggregating multiple methods, this package relies solely
on MaxEnt. However, the package is able to conduct all rel-
evant analyses with habitat suitability models that were not
derived from MaxEnt specifically (e.g. the consensus model
outputs from the ‘ecospat’ (Di Cola et al. 2017) or ‘biomod2’
(Thuiller et al. 2019) R packages).

Because parameter tuning is essential for accurate spe-
cies distribution modelling in MaxEnt (Radosavljevic and
Anderson 2014), this function allows for the manipulation of
several MaxEnt parameters including regularization (penal-
izing complex models) and which features should be used
to construct the models. To generate SDMs that are statisti-
cally rigorous, megaSDM allows replication with subsequent
ensembling. During the modelling, the MaxEnt program can
hold back a random subset of the occurrence data to be used
for model evaluation and validation. This replication can be
conducted multiple times for each set of validation occur-
rence data. Alternatively, spatial cross-validation can be con-
ducted by a priori defining a set of validation points as an
argument to the MaxEntModel() function.

Outputs

Continuous and binary distribution mapping nullAUC(),
MaxEntProj()

After all replicates of the species have been modelled, mega-
SDM allows for a few strategies for evaluating each model
replicate. The validation AUC values for each replicate are
calculated in MaxEntModel(). A high validation AUC value
generally indicates that the model is able to discern back-
ground records from true occurrences, and AUC values are
commonly used in validating SDMs (Marmion et al. 2009).
However, absolute comparisons between the AUC values of
presence-background models such as MaxEnt may be unten-
able, because AUC values are highly influenced by factors



such as the geographical extent of the model and the propor-
tion of presences to background points (Lobo et al. 2008,
Jiménez-Valverde 2012). They instead must be compared to
null models, where multiple replicates of occurrence points
are randomly placed throughout the training area and eval-
uated on either the same set of cross-validation folds used
for the MaxEntModel() function (Bohl et al. 2019) or, if
‘testsamples’ is not given as an argument, to a random sub-
set of the null data (Raes and ter Steege 2007). It can then
be determined whether a given model has a higher valida-
tion AUC than some percentage (i.e. 95%) of the validation
AUCG:s calculated for the null models. This method can be
conducted easily in megaSDM, using the nullAUC() func-
tion. Once these species-specific thresholds are defined (if
requested), the MaxEntProj() function removes model rep-
licates that contain a validation AUC value lower than a
desired threshold.

After model evaluation, MaxEntProj() projects all models
onto environmental rasters of all time periods and climate
scenarios, and ensembles all replicate maps by taking the
median value of each pixel. A median consensus model is
always more accurate than at least 50% of the replicates, and
median ensembling reduces the effect of outliers (Aradjo and
New 2007).

megaSDM’s MaxEntProj() function can create individual
species maps comprised of continuous habitat suitability val-
ues or of binary habitat suitability maps, indicating that the
species is predicted to be present or absent from each raster
pixel for each provided time period and climate scenario. To
create the binary maps, megaSDM applies a threshold to the
continuous habitat suitability data given, creating a binary
distribution map of locations where a species is anticipated to
be either present (suitability > threshold) or absent (suitability
< threshold). Although the choice of threshold can dramati-
cally affect the accuracy of the model (Norris 2014), binary
distribution models are often necessary for examining disper-
sal rate and conducting areal statistics. megaSDM can imple-
ment several commonly used threshold values. However, the
default threshold is the ‘maximum test sensitivity and specific-
ity’ logistic threshold, which attempts to maximize both speci-
ficity and sensitivity of the receiver operating curve generated
by MaxEnt. This threshold is particularly effective at generat-
ing binary maps for presence-only data, and models applying
this technique consistently outperformed models using other
provided thresholds (Liu et al. 2015).

Time maps createTimeMaps()

If the user includes data for multiple time steps, mega-
SDM can generate maps for each species and climate sce-
nario, detailing the step-wise expansions and contractions
of the species distribution through those time-steps (Fig. 2).
Studies using SDMs to predict future species ranges pre-
dominantly assume that the range shifts associated with
future climate dynamics will be unidirectional (Bennett et al.
2019, He et al. 2019). However, unidirectional range shifts
are not always observed because of non-uniform changes in
atmospheric and ocean circulation, oscillations in radiative

forcing (MacMartin et al. 2013) and spatial heterogeneity
(Walther 2010, Terray 2012). These non-linear changes in
climate result in transitory fluctuations in species ranges (e.g.
intermittent expansions during a steady period of contrac-
tion) (Early and Sax 2011). Secondary range dynamics like
this influence the habitat area that is functionally accessible
to a species, as opposed to areas that have suitable habitat but
are not accessible (i.e. regions that are not contiguous with
the current species range) (Early and Sax 2011). Therefore,
any examination of the actual ability of species to respond to
long-term climatic changes must include these range shifts
(Brown and Yoder 2015). The createTimeMaps() function
combines the set of binary distribution maps generated across
all time steps into a single raster file displaying the regions
vacated and migrated to during each time period (Fig. 2). The
value of each raster pixel is given as code describing presence
(1) and absence (0) for each time step. For example, a code of
‘101° would suggest that a species vacated and then returned
to that location (called ‘wane-wax’ in the PDF map files gen-
erated by this function). Individual raster maps for each time
period are provided for the user to conduct additional analy-
ses and desired (for example, generating more detailed spatial
statistics on changes in range size or range centroid, or evalu-
ating the coincidence and range overlaps of multiple species
through time).

Dispersal rate dispersalRate()

If dispersal rate data are provided and added as a param-
eter in the additionalStats() and createTimeMaps() func-
tions, those functions will repeat their analyses, applying a
dispersal constraint on the projected range expansions from
the binary presence—absence model generated for the first
time-step. Many recent studies using SDMs to predict range
shifts assume that species can colonize any suitable habitat,
regardless of distance from the original range (Ureta et al.
2018). However, this assumption does not reflect how species
ranges actually track climatic changes along the landscape
(Schloss et al. 2012, Holloway et al. 2016). Incorporating
species-specific dispersal rates into SDMs can provide a more
accurate estimate of the habitats available for a species in the
context of dynamic climates and habitat change (Barve et al.
2011, Uribe-Rivera et al. 2017).

The dispersalRate() function uses dispersal rate data pro-
vided by the user and applies exponential distributions to
model the probability of dispersal as a function of distance
per unit time. Although each species is likely to have a unique
probability distribution, exponential distributions are com-
monly used to model dispersal across taxa, including the pos-
sibility of rare, distant dispersal events (Sutherland et al. 2000,
Truvé and Lemel 2003, Nathan et al. 2012, Aparicio et al.
2018). This dispersal probability is then applied to the contin-
uous habitat suitability maps, based on the distance away from
the modelled binary species distribution at the first time-step.
Suitable areas are therefore constrained by the ability of the
species to expand its range, and creating an estimate of ‘invad-
able suitability’, incorporating both habitat suitability and
the constraints of dispersal (Fig. 3). This new metric provides



information on the areas of suitable habitat that would be
attainable by a range-shifting species without assisted migra-
tion. In addition, the dispersalRate() function multiplies the
dispersal probability by the binary distribution maps, creating
dispersal-constrained presence/absence distributions.

Additional statistics additionalStats()

When the binary distribution maps for each time period, cli-
mate scenario and species have been created (with dispersal
constraints applied, if necessary), the additionalStats() func-
tion calculates summary statistics. First, the overall area of the
binary distribution (in units of raster pixels) is calculated, and
the function creates bar graphs of the binary range area across
each provided time period and climate scenario. The percent
change in range area is also calculated and displayed in a bar
graph. Finally, additionalStats() calculates the centroid of the
species range (the mean latitude and longitude of the occu-
pied pixels) for each time and scenario. If dispersal rate has
been applied, the additionalStats() function also compares
the range sizes with and without dispersal constraints.

Species richness createRichnessMaps()

The final step of the workflow shown in the vignette is the
createRichnessMaps() function, which uses generated (or
user-provided) binary distribution maps to analyse changes
in species richness through time. Understanding the spatial
and temporal patterns and trends of species richness is a fun-
damental question in a wide range of scientific and public
policy disciplines (Blackburn and Gaston 1996, Murphy
and Romanuk 2014). Recently, researchers in these fields
have begun to apply species distribution modelling to exam-
ine spatial trends in alpha (local) species richness (e.g. the
R package SSDM, Schmitt et al. 2017). Species richness
estimates are generated by stacking and summing the thres-
holded binary distribution models from many individual
species (Ferrier and Guisan 2006, but see Calabrese et al.
2014, Scherrer et al. 2018, Del Toro et al. 2019). However,
the effect of dispersal constraints on the temporal dynamics
of species richness is still under-studied (Schloss et al. 2012).
createRichnessMaps() sums the generated binary distribu-
tion models of all species for each time period and climate
scenario, creating richness maps showing the responses of
species richness to temporal climate changes (Fig. 5a-b). In
addition, if the dispersal rate has been analysed for each spe-
cies, this function generates dispersal-constrained richness
maps (Fig. 5¢) and calculates the differences between total
dispersal and dispersal-constrained scenarios across all times
and climate scenarios (Fig. 5d).

Example results

In our example, using 165 North American mammals, we
ran through this entire workflow using the extent of North
America as the training and the study areas. We environ-
mentally filtered the occurrence and background points,
generating 5000 background points using the ‘combined’

spatial weighting scheme. All other settings were set to the
provided defaults (see the documentation of each function).
Dispersal rate data were gathered from Schloss et al. (2012).
Supporting our expectations and the results of Schloss et al.
(2012), we found a predicted decline in overall species rich-
ness from 2010 to 2070 across North America, and a small
but visible shift northward (Fig. 5a-b). Many species were
unable to colonize all of the available suitable habitat in
2070, leading to marked discrepancies between the disper-
sal-constrained and the regular richness map (Fig. 5b—c).
Dispersal limitations had the largest effect on richness in the
north-western Great Plains and the lower Canadian Shield,
concordant with the results of Schloss et al. (2012) (Fig. 5d).

Package installation and availability

This package, vignette and all related information are free
and open-source under the MIT License and are available
for download on GitHub (<https://github.com/brshipley/
megaSDM/>). Further instructions on how to use megaS-
DM’s functions can be found by working through the vignette
provided with the function (megaSDM_vignette, also found
as an html file on GitHub). For details about the package
dependencies of megaSDM and the citations of the package
versions applied, see Supporting information and the descrip-
tion page for the package.

To cite megaSDM or acknowledge its use, cite this
Software note as follows, substituting the version of the appli-
cation that you used for ‘version 1.0:

Shipley, B. R. et al. 2022. megaSDM: integrating dispersal and
time-step analyses into species distribution models. — Ecography

2022: e05450 (ver. 1.0).
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