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Understanding how species ranges shift as climates rapidly change informs us how 
to effectively conserve vulnerable species. Species distribution models (SDMs) are an 
important method for examining these range shifts. The tools for performing SDMs 
are ever improving. Here, we present the megaSDM R package. This package facilitates 
realistic spatiotemporal SDM analyses by incorporating dispersal probabilities, creat-
ing time-step maps of range change dynamics and efficiently handling large datasets 
and computationally intensive environmental subsampling techniques. Provided a list 
of species and environmental data, megaSDM synthesizes GIS processing, subsam-
pling methods, MaxEnt modelling, dispersal rate restrictions and additional statistical 
tools to create a variety of outputs for each species, time period and climate scenario 
requested. For each of these, megaSDM generates a series of distribution maps and 
outputs visual representations of statistical data. megaSDM offers several advantages 
over other commonly used SDM tools. First, many of the functions in megaSDM 
natively implement parallelization, enabling the package to handle large amounts of 
data efficiently without the need for additional coding. megaSDM also implements 
environmental subsampling of occurrences, making the technique broadly available 
in a way that was not possible before due to computational considerations. Uniquely, 
megaSDM generates maps showing the expansion and contraction of a species range 
across all considered time periods (time-maps), and constrains both presence/absence 
and continuous suitability maps of species ranges according to species-specific disper-
sal constraints. The user can then directly compare non-dispersal and dispersal-limited 
distribution predictions. This paper discusses the unique features and highlights of 
megaSDM, describes the structure of the package and demonstrates the package’s fea-
tures and the model flow through examples.
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Background

Increasing greenhouse emissions continue to influence global 
climate. The ability of species to track these changes and 
persist in suitable habitats may determine if they are able to 
avoid extinction within the next century. Understanding the 
dynamics of species’ range expansions and contractions in the 
context of a rapidly shifting climate is of paramount impor-
tance. Researchers often use species distribution modelling 
to predict suitable habitats for species for use in research 
and management. Species distribution models (SDMs), 
also known as ecological niche models or habitat suitability 
models, use the environmental conditions at geo-referenced 
species observations (hereafter, occurrences or occurrence 
points) to estimate suitable habitats and provide hypotheses 
for the spatial distribution of the species (Varela et al. 2014). 
In addition, SDMs are frequently extrapolated for past or 
future climates, making predictions about how a species 
range might change under different environmental condi-
tions and how these ranges interact with the existing net-
work of protected areas and regions of high human impact 
(Elith et al. 2010).

Researchers have begun applying SDMs over multi-
ple time steps to gauge the stability of transitory habitats 
(i.e. habitats that are suitable for a species for only a brief 
amount of time) (Early and Sax 2011, Huang et al. 2020), 
for many species simultaneously (Lehtomäki  et  al. 2019), 
and for species that are constrained by their dispersal ability 
(Schloss et al. 2012). However, the availability of statistical 
software aimed at investigating these intricate questions has 
lagged behind the field. For example, no software tools have 
yet been developed to investigate transitory range dynamics, 
and many of the tools currently in use do not natively imple-
ment the newest methods for accurate modelling. Recent R 
packages have been developed that incorporate some com-
ponents of these advances such as species-specific dispersal 
rate (e.g. ‘MIGCLIM’; Engler et al. 2012) and a variety of 
options for occurrence and background subsampling (e.g. 
‘ecospat’; Di Cola et al. 2017). However, no SDM software 
is yet able to efficiently implement environmental subsam-
pling and integrate dispersal ability to evaluate changes in 
habitat suitability for many species and climate models at 
once, nor display the results of such analyses in an easily 
interpretable manner.

Here, we present the R package megaSDM, which applies a 
new, efficient implementation of environmental subsampling, 
the generation of distribution maps (using the MaxEnt soft-
ware by default) showing dispersal-constrained range shifts 
across multiple time steps, and native parallel processing. This 
package provides an improvement in the implementation and 
efficiency of investigations of species range shifts (Fig. 1). It 
integrates multi-step range movements and species-specific dis-
persal rate to predict with greater accuracy how species ranges 
and richness will respond on the landscape to the dynamic 
pressures of current and future climate change (Fig. 2).

Figure 1. Simplified flowchart of megaSDM, showing each of the 
package’s main functions and example outputs.
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Package highlights

megaSDM has many innovative features for modelling spe-
cies range dynamics, but its most important ability is to effi-
ciently synthesize the SDMs for many species, time periods 
and climate scenarios, outputting unique maps describing 
the changes in species ranges in response to environmental 
changes (Fig. 2). These maps succinctly represent transi-
tory range dynamics, where the range of a species expands 
briefly before contracting again, or vice versa. Transitory 
range dynamics such as those can significantly influence the 
availability and accessibility of habitat for range-contracting 
species (Huang  et  al. 2020). Although some packages can 
effectively display unidirectional range shifts (e.g. ‘kuenm’, 
Cobos et al. 2019), no other SDM software generates maps 
that display these transitory range dynamics.

In generating these range maps, megaSDM can also inte-
grate dispersal limitations into SDMs using probability func-
tions. Some R packages incorporate dispersal rate into binary 
SDMs that show presence and absence (e.g. ‘MIGCLIM’; 
Engler et al. 2012). However, applying dispersal rate prob-
abilities to continuous habitat suitability models has not 
achieved widespread use, despite the profound effects of 
varying thresholds on the interpretation of binary species dis-
tributions (Norris 2014). megaSDM allows for the integra-
tion of dispersal ability into continuous climate suitability 
models, offering a more nuanced take on dispersal limitations 

(Fig. 3). To do this, megaSDM uses a new metric, called 
‘invadable suitability’, which incorporates both continu-
ous habitat suitability and the dispersal ability of a species. 
Invadable suitability represents the potential for a species to 
expand its range into new territory given changing condi-
tions. Given a user-provided set of dispersal data in distance 
per time-step (per year), invadable suitability is calculated by 
multiplying the habitat suitability (generated in the SDM) by 
the probability of dispersal as a function of distance. mega-
SDM models both invadable suitability and the standard 
dispersal-constrained presence/absence species distribution 
maps (similar to those created by MIGCLIM) over multiple 
dispersal events (Fig. 2).
megaSDM also implements several improvements on 

strategies for reducing spatial or environmental bias in the 
SDMs themselves. Several papers have demonstrated that an 
environmental-subsampling technique mitigates sampling 
bias and improves model performance (Varela  et  al. 2014, 
Castellanos et al. 2019), but this has thus far not been widely 
implemented, largely due to computational challenges. 
megaSDM is the first to allow multivariate environmen-
tally stratified filtering of occurrence and background points 
prior to modelling. megaSDM can also generate background 
(pseudo-absence) points in several different ways, including a 
new technique that spatially weights the background points 
by increasing the density of the background points within 
a buffer around the occurrences (Fig. 4). Other R packages 

Figure 2. Output ‘time maps’ from the createTimeMaps() function in megaSDM, detailing range shifts for Franklin's ground squirrel 
Poliocitellus franklinii across two different climate scenarios (RCP4.5 and RCP8.5; Riahi et al. 2011, Thomson et al. 2011, respectively) and 
for three separate times (2010, 2050 and 2070). Blue regions indicate areas of expansion, red regions indicate areas of contraction and 
purple/pink areas indicate areas of momentary fluctuations among the three times (e.g. expansion from 2010 to 2050 followed by contrac-
tion from 2050 to 2070). Yellow areas remain occupied throughout the entire time period. The maps in the right column constrain range 
expansion to the average dispersal rate of P. franklinii (1.23 km year−1; Schloss et al. 2012).
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allow some of these strategies (e.g. ‘dismo’ (Hijmans  et  al. 
2017) can generate random or spatially constrained back-
ground points). However, no one package has yet to merge 
spatial and environmental filtering of background points.

The efficient implementation of these features within 
megaSDM has been achieved through the employment of 

native, multi-core parallel processing within the individual 
functions. This integrated parallelization allows users to 
simultaneously analyse the species of interest in batches, 
without requiring the users to edit the native functions, 
change the workflow (e.g. running a single species at a time) 
or apply multi-core parallelization outside of the function 

Figure 3. Output maps showing continuous habitat suitability (0–1) for P. franklinii for the year 2070 using the RCP 8.5 climate scenario 
(Riahi et al. 2011) without incorporating dispersal from the 2010 modelled distribution (a) and (b) ‘invadable suitability’ by multiplying 
the dispersal probability function (red curve) by the suitability data given an average dispersal rate of 1.23 km year−1 since 2010 (Schloss et al. 
2012). The red curve approximates the probability of dispersal to at least a given distance using a gamma distribution.

Figure  4. Diagrams detailing the different methods of generating background points available in the BackgroundPoints() function in 
megaSDM. Panel (a) shows the ‘random’ generation method, where 10 background points (black x’s) are sampled randomly throughout the 
training area (grey polygon) without considering the locations of the occurrence points (black dots). The other commonly used technique 
for generating background points is the ‘spatially constrained’ method, in which a buffer is constructed around the occurrence points (b, 
blue polygon), and the 10 background points are only sampled within the buffer (b, black asterisks). The ‘combined’ method (c) generates 
a proportion (given as an argument to the function) of the background points from within the buffer (black asterisks) and the rest from the 
entire study area (black x’s), providing a spatial weighting scheme.
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(which runs more slowly than parallelizing within each func-
tion). See the Supporting information for details on the rela-
tionship between parallel processing and total analysis time 
for the entire workflow of megaSDM.

Package structure

Structure and configuration of the package

megaSDM comprises a set of independent functions that 
together perform occurrence and GIS data manipulation, 
distribution modelling and data analysis (Table 1). These 
functions are modular, constructed as ‘building-block’ func-
tions that each contain one aspect of SDM generation and 
evaluation that can be mixed and matched according to the 
requirements of the project, but we also provide a cohesive 
workflow that assists in the entire process of species distri-
bution modelling (Fig. 1, Supporting information; also see 
the package vignette, Supporting information). megaSDM 
provides options to manipulate the environmental data, 
download and filter occurrence points or create background 
points. Subsequent functions model habitat suitability for 
all species across all time steps and climate scenarios and 
provide options to calculate summary statistics for each spe-
cies distribution, create maps showing the transitory range 
dynamics of each species and calculate species richness for 
each combination of times and scenarios. Finally, if the user 
provides information about the average yearly dispersal rate 
for the species, megaSDM can apply a dispersal-rate con-
straint to each output.

Data inputs

At a minimum, megaSDM must be provided with 1) a vector 
of species names to be analysed and 2) sets of environmental 
raster layers covering the geographic region of interest for 
each desired time period, whether those are future or past 
climate scenarios. However, this package can incorporate 
many other types of provided data. First, users may provide 
their own species occurrence data instead of using mega-
SDM’s built-in OccurrenceCollection() function to down-
load species observations. Dispersal rates for each species (in 
km per year) may also be provided, for the dispersalRate(), 
createTimeMaps() and createRichnessMaps() functions 
to incorporate dispersal limitations into the model predic-
tions generated by the MaxEntProj() function. Users may 
also provide background points, shapefiles for each species 
outlining a portion of the training map for selecting back-
ground points, or even SDM-generated habitat suitability 
maps created elsewhere for statistical analysis and map gen-
eration. The documentation of each function and the exam-
ple workflow provided as a vignette with the download of 
the package give instructions on how to format all optional 
data. Refer to these guides and the documentation provided 
with the package functions for more detailed description of 
input data options.

Model flow and example

Most of the functions in megaSDM can be used to conduct 
single, stand-alone analyses (e.g. performing environmental 
subsampling of occurrences or evaluating the effects of dis-
persal limitations on projected suitable habitat). Alternatively, 
these functions can be linked together easily to create an entire, 
self-contained workflow (Fig. 1; Supporting information). To 
demonstrate the flexibility and functionality of megaSDM 
and to discuss the workflow of the functions, we have applied 
megaSDM to a set of test data (Fig. 5). These test data consist 
of a list of 165 native North American mammals and a set 
of bioclimatic variables, downloaded from WorldClim 1.4 
<www.worldclim.org/version1> (Fick and Hijmans 2017, 
WorldClim 2.0). All examples highlighting a single species 
use the results for Poliocitellus franklinii (Franklin’s ground 
squirrel; Fig. 2, 3). Figure 1 provides a simplified flowchart of 
the main functions in this package (a more detailed flowchart 
may be found in the Supporting information).

We have also provided a user example (Supporting infor-
mation) that is installed with the package as a vignette and 
found on GitHub (<https://github.com/brshipley/mega-
SDM/megaSDM_vignette.html>). The user example can be 
run after setting the working directory at the beginning of the 
provided script. Using five mammal species and one subspe-
cies that reside in the southeast United States, this example 
quickly demonstrates many of the features of megaSDM and 
the inputs necessary to run each function.

Data gathering

GIS environmental layer manipulation TrainStudyEnv() and 
PredictEnv()
The TrainStudyEnv() and PredictEnv() functions manipulate 
the input environmental data. These data provide the inde-
pendent variables used to generate a relationship between 
species occurrence and the environmental/climatic factors. 
TrainStudyEnv() re-projects, clips and resamples the cur-
rent environmental data, resulting in environmental layers 
with consistent projection, resolution and extent. Similarly, 
PredictEnv() takes the forecasted/hindcasted environmental 
rasters and projects, clips and resamples them to the param-
eters of the current data.

Species occurrences OccurrenceCollection()
The OccurrenceCollection() function acts as a wrap-
per for the occ_search() function in the rgbif package 
(Chamberlain et al. 2019), making the function more effi-
cient for a large number of species. OccurrenceCollection() 
allows the user to directly download species occurrence date 
from the Global Biodiversity Information Facility (GBIF) 
<www.gbif.org>. Although we suggest that users carefully 
vet all occurrence information used in SDM analyses, this 
step can be useful for preliminary analyses or for educa-
tional and training purposes. Users can also directly input a 
table of species occurrence data for use with the remainder 
of the functions.
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Table 1. A list and description of the stand-alone functions that are contained within the megaSDM package.

Function Description

TrainStudyEnv Project/clip training and study environmental layers: projects, clips and resamples environmental layers for 
the training area (i.e. where the model will be trained) and study area (i.e. where the parameters of the 
model will be applied and habitat suitability will be predicted) of an SDM analysis.

PredictEnv Project, clip and store forecasted/hindcasted environmental rasters for SDM prediction: takes lists of 
RasterStacks that correspond to future or past time periods of a single climate model (e.g. RCP4.5, 
CCSM3), ensures that the environmental variables are the same as those that the model will be trained on, 
and projects, clips and resamples these layers to the characteristics of a given study region.

OccurrenceCollection Download and vet GBIF occurrence data: takes a list of species and collects occurrence data from GBIF 
(Global Biodiversity Information Facility, <www.gbif.org>). Acts as a wrapper for rgbif::occ_search; 
however, this function is more efficient for a large number of species. It also checks the taxonomy of the 
given species list against the GBIF taxonomy, renaming or merging taxa if necessary. Furthermore, this 
function vets the occurrence data, removing occurrence points that are of insufficient quality for species 
distribution modelling. For a full list of issues removed by this package, refer to Supporting information. 
Further vetting may be done by the user. Finally, it provides the number of occurrences found within given 
training and study areas.

OccurrenceManagement Manage and environmentally filter occurrence points: takes a set of occurrence points (whether downloaded 
from GBIF or provided), standardizes the column headings for effective use in species distribution 
modelling, and, if requested, extracts the values of each environmental variable used in the modelling for 
each occurrence point and environmentally subsamples the data (Varela et al. 2014).

BackgroundBuffers Create buffers for spatially constrained background point generation: takes a list of occurrence point files 
and generates buffer shapefiles around each set of points. These buffers will be used if spatially 
constrained background points are required. The radius of the buffer can be defined as a single value for 
all species or as a distinct value for each species. If no radius values are given, the distances between the 
occurrence points themselves inform the buffer radius.

BackgroundPoints Generate background points for species distribution modelling: generates a set of species-specific 
background points using one of several methods. These points can be randomly generated across a given 
training area, or if environmental data are provided, environmental subsampling (sensu Varela et al. 2014) 
can be conducted. If a list of buffers around the occurrence points of each species are provided, this 
function will conduct spatially constrained sampling within the buffer.

VariableEnv Use species-specific sets of environmental data for SDMs: using environmental variables that are specific to 
each species can help to make more informative species distribution models. This function prepares 
Maxent inputs for the modelling of each species based upon a unique subset of the environmental 
variables.

MaxEntModel Model species distributions with MaxEnt using parallel processing: takes occurrence points and background 
points of many species and models them using the MaxEnt algorithm, parallelizing the process across 
multiple computer cores.

nullAUC Generate null distribution models for AUC comparison: one way to use AUC values to examine presence-
only model predictions is to generate model replicates using randomly generated occurrence data and 
evaluating their performance using a subset of the real occurrence data. This function generates null 
models and calculates the test AUC values when applied to the subset of real occurrence data for 
comparison with the model training on the actual data. This method was developed by Bohl et al. (2019).

MaxEntProj Construct ensemble models and project habitat suitability to current, past and future climates: conducts 
ensemble modelling on all replicates of the MaxEnt model by calculating the median habitat suitability for 
each pixel across all replicates. Next, the function generates binary presence/absence maps by applying a 
given threshold to the data. These processes are repeated for each scenario/time period combination 
provided. 

createTimeMaps Create maps describing species range shifts across many time periods: creates maps describing species 
range shifts across multiple time periods. These maps detail the step-wise expansions and contractions of 
the species distribution through those time-steps, allowing for the visualization of both unidirectional 
range shifts and more complex dynamics (e.g. a range expansion followed by a range contraction).

additionalStats Generate other statistics for species range shifts: generates graphs showing the changes in range size and 
position between the data the model was trained on and future or past projections of species ranges.

dispersalRate Constrain modelled species distributions by dispersal rate: incorporates the ability of a species to disperse 
over time into projected habitat suitability models and presence/absence maps. The probability of 
dispersal per year as a function of distance is modelled using an exponential distribution, and summed 
together to create a probability of dispersal for the intervals between each provided time step. Dispersal-
constrained binary (presence and absence) maps are generated, as well as continuous maps of ‘invadable 
suitability’

createRichnessMaps Create regular and dispersal-constrained richness maps from stacked SDMs: This function stacks binary 
(presence/absence) species distribution maps to create richness maps for a list of species. If higher taxa are 
provided, separate richness maps for each higher taxon will be created in addition to the full species 
richness maps. Given hindcasted/forecasted binary maps, future/past species richness will also be 
calculated. Finally, provided distribution maps that are constrained by dispersal rate, compares between 
the dispersal-constrained and regular richness maps.
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If the user wishes to use the package to download species 
occurrence data, they must provide a list of species and the 
geographic extent from which the occurrence points will be 
downloaded. The function will then download occurrence 
points of each species to be analysed from GBIF, the world’s 
largest digital repository of biodiversity information (Telenius 
2011). However, GBIF often contains incomplete or inaccu-
rate results for some species (Beck et al. 2013), which may 
lead to inaccurate distribution models in those regions (Ferro 
and Flick 2015). This package increases the overall quality 
of the downloaded occurrence data by filtering out lower-
quality data (e.g. duplicate observations, occurrence points 
with an improper datum conversion, rounded latitude/lon-
gitude coordinates). This is an additional improvement over 
simply using the rgbif::occ_search() function, providing 
a more rigorous assessment of where each species has been 
observed. For a complete list of GBIF error codes filtered 
out by this package, see Supporting information. If users 
provide their own occurrence dataset, they can bypass the 
OccurrenceCollection() function.

Data preparation

Environmental subsampling OccurrenceManagement()
Study design, sampling constraints and observer errors invari-
ably lead to biases in occurrence data (Boakes et al. 2010). 
Biased input data decrease the overall accuracy of SDMs 
(Phillips  et  al. 2009, Beck  et  al. 2013, Varela  et  al. 2014). 
Therefore, the biases implicit in the collected or downloaded 
occurrence data must be accounted for (Phillips et al. 2009). 
The OccurrenceManagement() function in megaSDM, 
employs a method developed by Varela et al. (2014) and mod-
ified by Castellanos et al. (2019) to mitigate environmental 
and spatial biases within the occurrences by environmentally 
filtering the occurrence data. First, the environmental values 

for each occurrence point are divided into a desired number 
of bins such that the total number of bins possible is (nbins) 
^ (number of environmental variables), although in practice 
many of these bins will be empty (Castellanos et al. 2019). 
This method can either be implemented on the raw data 
or conducted using a scaled principal component analysis 
(PCA) on the climatic values from each occurrence point, 
which has been demonstrated to perform better than envi-
ronmentally filtering with unscaled data (Castellanos  et  al. 
2019). A desired number of the PC axes are then designated 
as a parameter in the function or, if not given, the package 
will include PC axes until more than 95% of the climatic 
variance is explained. If categorical environmental variables 
are supplied, the PCA is not conducted and the data are sub-
sampled using their original values.

Next, a single occurrence point from each n-dimensional 
bin is extracted for use in subsequent steps, resulting in a sub-
set of occurrence points filtered by environment. This method 
of filtering allows for the removal of environmentally/climati-
cally clustered or oversampled records while maintaining the 
total range of environments a species was found in Varela et al. 
(2014). Furthermore, this method does not require a priori 
knowledge of sampling effort. Models applying this method 
significantly outperform those using both random subsam-
pling and geographic/spatial filtering (Fourcade et  al. 2014, 
Varela et al. 2014, Castellanos et al. 2019).

Background sampling BackgroundBuffers(), 
BackgroundPoints()
There are two well-established strategies for selecting back-
ground points for SDMs (Barbet-Massin  et  al. 2012). The 
first method (hereafter called the ‘random’ method) involves 
randomly selecting background points throughout the entire 
area of interest (Fig. 4a). Although this method is simple and 
easy to implement, if the occurrence data are spatially biased 

Figure 5. Species richness maps generated from SDMs of 165 North American mammal species for 2010 (a) and the RCP 8.5 climate 
scenario for 2070 (b–c; Riahi et al. 2011). For (b), dispersal ability is not considered. For (c), range expansions are constrained by average 
dispersal rates (km year−1), calculated by Schloss et al. (2012), and distance from the species distribution in 2010. Map (d) shows the dif-
ference between the dispersal-applied richness map (b) and the map for which dispersal rate is not applied (c). The list of species modelled 
may be found in the Supporting information.
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(e.g. greater densities of occurrence points in more easily 
accessed areas), the model may overestimate the environmen-
tal suitability of those regions (Lobo  et  al. 2010, Kramer-
Schadt et al. 2013). To counteract this spatial bias, a second 
method (hereafter, ‘spatially-constrained’) only generates 
background points that are located within a certain buffer 
distance around the occurrence points (Fig. 4b), allowing the 
spatial bias of the set of background points to mirror that of 
the occurrence points themselves. The ‘spatially-constrained’ 
method decreases the effects of spatial bias in occurrence sam-
pling and can increase model accuracy over the first method 
(Barve  et  al. 2011, Fourcade  et  al. 2014). However, when 
modelling multiple species, distributed across a large study 
area, this method is susceptible to extreme extrapolation 
errors and overfitting (Radosavljevic and Anderson 2014).

The BackgroundPoints() function in megaSDM allows 
users to apply either strategy for selecting background points, 
in addition to a new, ‘combined’ method that attempts to 
minimize the error in both methods. The ‘combined’ method 
samples a desired (user-defined) proportion of the back-
ground points from within a buffer around the occurrences 
and the rest of the background points from the entire study 
area (including the buffered area; Fig. 4c). This provides a 
de facto spatial weighting scheme, operating similarly to 
more widespread methods of mitigating spatial sampling bias 
through background point generation (Kramer-Schadt et al. 
2013, Senay  et  al. 2013, Fourcade  et  al. 2014). Although 
anecdotal evidence suggests that it may decrease extrapola-
tion errors in models of small species ranges in a large study 
area, this particular spatial weighting scheme is still experi-
mental, and no rigorous tests have yet been conducted.

For the creation of ‘spatially-constrained’ or ‘combined’ 
background sampling schemes, megaSDM can either 
use buffers input by the users or it can create buffers. The 
BackgroundBuffers() function generates a buffer around each 
occurrence point. The radius of these buffers can be manually 
defined or be proportional to the 95% quantile of the dis-
tance to nearest neighbour for each point, therefore exclud-
ing outlier points (Fig. 4b–c).

Although the most appropriate method for generating 
background points is still a matter of discussion (Barbet-
Massin  et  al. 2012, Senay  et  al. 2013, Liu  et  al. 2019), 
background points should be generated with similar biases 
(or lack thereof ) as the occurrence points used in the model 
(Phillips  et  al. 2009). Therefore, if environmental filtering 
was conducted on the occurrence points (removing environ-
mental biases), the background points within and outside 
the buffers should also be environmentally filtered, creating 
an even spread across available environmental space while 
retaining the spatial weighting.

Because each species is likely to have different environ-
mental requirements, using a species-specific subset of envi-
ronmental layers can additionally increase SDM accuracy and 
predictive ability (Elith et al. 2006, Austin and Niel 2011). 
This is often time-consuming to do manually (particularly 
when modelling many species at once), so the [VariableEnv] 
function provides a way to automate such a process. In this 

function, the user designates which environmental variables 
should be used for each species as an argument.

Modelling

MaxEnt modelling, subsampling and replication 
MaxEntModel()
After generating environmentally filtered and subsampled 
occurrence and background points for each species, the 
MaxEntModel() function in megaSDM estimates habitat 
suitability using the MaxEnt modelling technique, which 
applies maximum entropy methods and machine learning 
to produce estimates of habitat suitability and distribution 
(Phillips et al. 2006). MaxEnt has consistently exhibited high 
accuracy in a variety of species distribution modelling tasks, 
regularly outperforming other SDM techniques (Elith et al. 
2006, Phillips and Dudík 2008, Feng  et  al. 2019). Many 
researchers ensemble the results of several different modelling 
methods (e.g. generalized linear models, random forests), cre-
ating a consensus model. However, each additional method 
used introduces different types of error and uncertainty into 
the consensus model (Elith  et  al. 2010). Therefore, rather 
than aggregating multiple methods, this package relies solely 
on MaxEnt. However, the package is able to conduct all rel-
evant analyses with habitat suitability models that were not 
derived from MaxEnt specifically (e.g. the consensus model 
outputs from the ‘ecospat’ (Di Cola et al. 2017) or ‘biomod2’ 
(Thuiller et al. 2019) R packages).

Because parameter tuning is essential for accurate spe-
cies distribution modelling in MaxEnt (Radosavljevic and 
Anderson 2014), this function allows for the manipulation of 
several MaxEnt parameters including regularization (penal-
izing complex models) and which features should be used 
to construct the models. To generate SDMs that are statisti-
cally rigorous, megaSDM allows replication with subsequent 
ensembling. During the modelling, the MaxEnt program can 
hold back a random subset of the occurrence data to be used 
for model evaluation and validation. This replication can be 
conducted multiple times for each set of validation occur-
rence data. Alternatively, spatial cross-validation can be con-
ducted by a priori defining a set of validation points as an 
argument to the MaxEntModel() function.

Outputs

Continuous and binary distribution mapping nullAUC(), 
MaxEntProj()
After all replicates of the species have been modelled, mega-
SDM allows for a few strategies for evaluating each model 
replicate. The validation AUC values for each replicate are 
calculated in MaxEntModel(). A high validation AUC value 
generally indicates that the model is able to discern back-
ground records from true occurrences, and AUC values are 
commonly used in validating SDMs (Marmion et al. 2009). 
However, absolute comparisons between the AUC values of 
presence-background models such as MaxEnt may be unten-
able, because AUC values are highly influenced by factors 
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such as the geographical extent of the model and the propor-
tion of presences to background points (Lobo  et  al. 2008, 
Jiménez-Valverde 2012). They instead must be compared to 
null models, where multiple replicates of occurrence points 
are randomly placed throughout the training area and eval-
uated on either the same set of cross-validation folds used 
for the MaxEntModel() function (Bohl  et  al. 2019) or, if 
‘testsamples’ is not given as an argument, to a random sub-
set of the null data (Raes and ter Steege 2007). It can then 
be determined whether a given model has a higher valida-
tion AUC than some percentage (i.e. 95%) of the validation 
AUCs calculated for the null models. This method can be 
conducted easily in megaSDM, using the nullAUC() func-
tion. Once these species-specific thresholds are defined (if 
requested), the MaxEntProj() function removes model rep-
licates that contain a validation AUC value lower than a 
desired threshold.

After model evaluation, MaxEntProj() projects all models 
onto environmental rasters of all time periods and climate 
scenarios, and ensembles all replicate maps by taking the 
median value of each pixel. A median consensus model is 
always more accurate than at least 50% of the replicates, and 
median ensembling reduces the effect of outliers (Araújo and 
New 2007).
megaSDM’s MaxEntProj() function can create individual 

species maps comprised of continuous habitat suitability val-
ues or of binary habitat suitability maps, indicating that the 
species is predicted to be present or absent from each raster 
pixel for each provided time period and climate scenario. To 
create the binary maps, megaSDM applies a threshold to the 
continuous habitat suitability data given, creating a binary 
distribution map of locations where a species is anticipated to 
be either present (suitability ≥ threshold) or absent (suitability 
< threshold). Although the choice of threshold can dramati-
cally affect the accuracy of the model (Norris 2014), binary 
distribution models are often necessary for examining disper-
sal rate and conducting areal statistics. megaSDM can imple-
ment several commonly used threshold values. However, the 
default threshold is the ‘maximum test sensitivity and specific-
ity’ logistic threshold, which attempts to maximize both speci-
ficity and sensitivity of the receiver operating curve generated 
by MaxEnt. This threshold is particularly effective at generat-
ing binary maps for presence-only data, and models applying 
this technique consistently outperformed models using other 
provided thresholds (Liu et al. 2015).

Time maps createTimeMaps()
If the user includes data for multiple time steps, mega-
SDM can generate maps for each species and climate sce-
nario, detailing the step-wise expansions and contractions 
of the species distribution through those time-steps (Fig. 2). 
Studies using SDMs to predict future species ranges pre-
dominantly assume that the range shifts associated with 
future climate dynamics will be unidirectional (Bennett et al. 
2019, He et al. 2019). However, unidirectional range shifts 
are not always observed because of non-uniform changes in 
atmospheric and ocean circulation, oscillations in radiative 

forcing (MacMartin  et  al. 2013) and spatial heterogeneity 
(Walther 2010, Terray 2012). These non-linear changes in 
climate result in transitory fluctuations in species ranges (e.g. 
intermittent expansions during a steady period of contrac-
tion) (Early and Sax 2011). Secondary range dynamics like 
this influence the habitat area that is functionally accessible 
to a species, as opposed to areas that have suitable habitat but 
are not accessible (i.e. regions that are not contiguous with 
the current species range) (Early and Sax 2011). Therefore, 
any examination of the actual ability of species to respond to 
long-term climatic changes must include these range shifts 
(Brown and Yoder 2015). The createTimeMaps() function 
combines the set of binary distribution maps generated across 
all time steps into a single raster file displaying the regions 
vacated and migrated to during each time period (Fig. 2). The 
value of each raster pixel is given as code describing presence 
(1) and absence (0) for each time step. For example, a code of 
‘101’ would suggest that a species vacated and then returned 
to that location (called ‘wane-wax’ in the PDF map files gen-
erated by this function). Individual raster maps for each time 
period are provided for the user to conduct additional analy-
ses and desired (for example, generating more detailed spatial 
statistics on changes in range size or range centroid, or evalu-
ating the coincidence and range overlaps of multiple species 
through time).

Dispersal rate dispersalRate()
If dispersal rate data are provided and added as a param-
eter in the additionalStats() and createTimeMaps() func-
tions, those functions will repeat their analyses, applying a 
dispersal constraint on the projected range expansions from 
the binary presence–absence model generated for the first 
time-step. Many recent studies using SDMs to predict range 
shifts assume that species can colonize any suitable habitat, 
regardless of distance from the original range (Ureta  et  al. 
2018). However, this assumption does not reflect how species 
ranges actually track climatic changes along the landscape 
(Schloss  et  al. 2012, Holloway  et  al. 2016). Incorporating 
species-specific dispersal rates into SDMs can provide a more 
accurate estimate of the habitats available for a species in the 
context of dynamic climates and habitat change (Barve et al. 
2011, Uribe-Rivera et al. 2017).

The dispersalRate() function uses dispersal rate data pro-
vided by the user and applies exponential distributions to 
model the probability of dispersal as a function of distance 
per unit time. Although each species is likely to have a unique 
probability distribution, exponential distributions are com-
monly used to model dispersal across taxa, including the pos-
sibility of rare, distant dispersal events (Sutherland et al. 2000, 
Truvé and Lemel 2003, Nathan  et  al. 2012, Aparicio  et  al. 
2018). This dispersal probability is then applied to the contin-
uous habitat suitability maps, based on the distance away from 
the modelled binary species distribution at the first time-step. 
Suitable areas are therefore constrained by the ability of the 
species to expand its range, and creating an estimate of ‘invad-
able suitability’, incorporating both habitat suitability and 
the constraints of dispersal (Fig. 3). This new metric provides 
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information on the areas of suitable habitat that would be 
attainable by a range-shifting species without assisted migra-
tion. In addition, the dispersalRate() function multiplies the 
dispersal probability by the binary distribution maps, creating 
dispersal-constrained presence/absence distributions.

Additional statistics additionalStats()
When the binary distribution maps for each time period, cli-
mate scenario and species have been created (with dispersal 
constraints applied, if necessary), the additionalStats() func-
tion calculates summary statistics. First, the overall area of the 
binary distribution (in units of raster pixels) is calculated, and 
the function creates bar graphs of the binary range area across 
each provided time period and climate scenario. The percent 
change in range area is also calculated and displayed in a bar 
graph. Finally, additionalStats() calculates the centroid of the 
species range (the mean latitude and longitude of the occu-
pied pixels) for each time and scenario. If dispersal rate has 
been applied, the additionalStats() function also compares 
the range sizes with and without dispersal constraints.

Species richness createRichnessMaps()
The final step of the workflow shown in the vignette is the 
createRichnessMaps() function, which uses generated (or 
user-provided) binary distribution maps to analyse changes 
in species richness through time. Understanding the spatial 
and temporal patterns and trends of species richness is a fun-
damental question in a wide range of scientific and public 
policy disciplines (Blackburn and Gaston 1996, Murphy 
and Romanuk 2014). Recently, researchers in these fields 
have begun to apply species distribution modelling to exam-
ine spatial trends in alpha (local) species richness (e.g. the 
R package SSDM, Schmitt  et  al. 2017). Species richness 
estimates are generated by stacking and summing the thres-
holded binary distribution models from many individual 
species (Ferrier and Guisan 2006, but see Calabrese  et  al. 
2014, Scherrer et al. 2018, Del Toro et al. 2019). However, 
the effect of dispersal constraints on the temporal dynamics 
of species richness is still under-studied (Schloss et al. 2012). 
createRichnessMaps() sums the generated binary distribu-
tion models of all species for each time period and climate 
scenario, creating richness maps showing the responses of 
species richness to temporal climate changes (Fig. 5a–b). In 
addition, if the dispersal rate has been analysed for each spe-
cies, this function generates dispersal-constrained richness 
maps (Fig. 5c) and calculates the differences between total 
dispersal and dispersal-constrained scenarios across all times 
and climate scenarios (Fig. 5d).

Example results

In our example, using 165 North American mammals, we 
ran through this entire workflow using the extent of North 
America as the training and the study areas. We environ-
mentally filtered the occurrence and background points, 
generating 5000 background points using the ‘combined’ 

spatial weighting scheme. All other settings were set to the 
provided defaults (see the documentation of each function). 
Dispersal rate data were gathered from Schloss et al. (2012). 
Supporting our expectations and the results of Schloss et al. 
(2012), we found a predicted decline in overall species rich-
ness from 2010 to 2070 across North America, and a small 
but visible shift northward (Fig. 5a–b). Many species were 
unable to colonize all of the available suitable habitat in 
2070, leading to marked discrepancies between the disper-
sal-constrained and the regular richness map (Fig. 5b–c). 
Dispersal limitations had the largest effect on richness in the 
north-western Great Plains and the lower Canadian Shield, 
concordant with the results of Schloss et al. (2012) (Fig. 5d).

Package installation and availability

This package, vignette and all related information are free 
and open-source under the MIT License and are available 
for download on GitHub (<https://github.com/brshipley/
megaSDM/>). Further instructions on how to use megaS-
DM’s functions can be found by working through the vignette 
provided with the function (megaSDM_vignette, also found 
as an html file on GitHub). For details about the package 
dependencies of megaSDM and the citations of the package 
versions applied, see Supporting information and the descrip-
tion page for the package.

To cite megaSDM or acknowledge its use, cite this 
Software note as follows, substituting the version of the appli-
cation that you used for ‘version 1.0’:
Shipley, B. R.  et  al. 2022. megaSDM: integrating dispersal and 

time-step analyses into species distribution models. – Ecography 
2022: e05450 (ver. 1.0).
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