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CONDENSED MATTER PHYSICS

Evidence for a strain-tuned topological phase

transition in ZrTes

Joshua Mutch', Wei-Chih Chen?, Preston Went', Tiema Qian’, Ilham Zaky Wilson’,

Anton Andreev', Cheng-Chien Chen?*, Jiun-Haw Chu'*

A phase transition between topologically distinct insulating phases involves closing and reopening the bandgap.
Near the topological phase transition, the bulk energy spectrum is characterized by a massive Dirac dispersion,
where the bandgap plays the role of mass. We report measurements of strain dependence of electrical transport
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properties of ZrTes, which is known to host massive Dirac fermions in the bulk due to its proximity to a topological
phase transition. We observe that the resistivity exhibits a pronounced minimum at a critical strain. We further find
that the positive longitudinal magnetoconductance becomes maximal at the critical strain. This nonmonotonic strain
dependence is consistent with the switching of sign of the Dirac mass and, hence, a strain-tuned topological phase

transition in ZrTes.

INTRODUCTION

Appreciation of the topological aspects of band structure has funda-
mentally changed the way we understand the electronic properties of
solids. Band insulators with time reversal symmetry can be classified
into normal insulators (NIs), weak topological insulators (WTTs), and
strong topological insulators (STTs) based on their Z, topological indices
(1-3). Changing Z, indices requires closing and reopening the bandgap,
and topologically distinct insulating phases are separated by a gapless
Dirac or Weyl semimetal phase. The relationship between these phases
is summarized in the general phase diagram proposed by Murakami and
Kuga (2, 3), as shown in Fig. 1A. These topological phases have been
intensively studied in the past decade (4-10). In contrast, the transition
between these phases is less explored because it requires changing the
band parameters of the solid. It has been demonstrated that topological
phase transitions can be induced either by chemical doping or by
thermal lattice expansion (11-14). Nevertheless, the precise in situ con-
trol of topological phase transition in a three-dimensional (3D) system is
still an outstanding challenge.

The transition-metal pentatellurides ZrTes is an ideal material to
realize in situ control of topological phase transitions. ZrTes is a van
der Waals (vdW) layered material crystallized in the Cmcm ortho-
rhombic space group. Each layer consists of ZrTe; chains extending
along the a lattice direction, and the layers are stacked along the b lattice
direction (Fig. 1B). The material has received substantial interest because
its monolayer form is predicted to be a large bandgap quantum spin
Hall insulator (15). It was also suggested that the 3D bulk band structure
is very close to the phase boundary between WTI and STT (15-17), in-
dicated by the red line in the universal phase diagram shown in Fig. 1A
(2, 10). Early studies of optical conductivity (18), quantum oscillations
(19, 20), photoemission, and negative longitudinal magnetoresistance
(NLMR) (21) have supported the predicted Dirac semimetal-like band
structure in the bulk, with a single Dirac point at the center of the
Brillouin zone, I'". Unlike topological Dirac semimetals such as Na;Bi
or Cd;As,, there is no additional crystalline symmetry to protect the
Dirac point in ZrTes, and more recent spectroscopy measurements
revealed that its band structure is better described by a massive Dirac
dispersion, where mass plays the role of bandgap. The bandgap size
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measured by different experiments varies, ranging from 10 to 80 meV,
and there are conflicting reports on whether the material is a WTT or
STI (22-25), or changes with temperature (26). These experimental
findings suggest that the electronic structure of ZrTes may be very sen-
sitive to external perturbation, such as lattice distortion.

In this work, we present evidence for a strain-tuned topological
phase transition corresponding to a sign change of the Dirac bandgap
in ZrTes. This conclusion is a result of extensive measurements of bulk
electrical transport of ZrTes as a function of in situ tunable anisotropic
strain. Although the measurement of surface states is often regarded as
the smoking gun evidence of topological insulators, close to a
topological phase transition the small bandgap and the Dirac-like dis-
persion in the bulk impose severe challenges for identifying surface
states (25). Here, we focus on the bulk transport properties, which are
highly sensitive to the mass of bulk Dirac fermions near a topological
phase transition. We observe that the resistivity exhibits a nonmono-
tonic strain dependence and reaches a minimum at a critical strain.
The nonmonotonic strain dependence is distinct from the expected be-
havior of a conventional semiconductor, yet it is consistent with the sign
switching of the Dirac mass of a gapped Dirac semimetal. We further
found that the NLMR also shows a nonmonotonic strain dependence
and becomes maximal at the critical strain. The extracted helicity relaxa-
tion time increases by 10-fold as the strain approaches the critical value.
Our study presents ZrTes as a promising platform for on-demand con-
trol of nontrivial topological properties of materials.

RESULTS

Figure 1C shows a contour map of the size of the bandgap Egat " asa
function of €,, and €, i.e., strain (%) along the a and c lattice
directions, calculated by density functional theory (DFT). It shows a
V-shaped valley, with the minimum of the valley (corresponding to E, =
0) extending along the diagonal direction. Z, topological indices were
also computed, and the E; = 0 line is the phase boundary between STI
and WTI (see fig. S7). Figure 1C reveals a highly anisotropic strain
dependence of E,: The steepest gradient of E, is along the direction in
which €, and € have opposite signs, as the case when a uniaxial stress
is applied along the a lattice direction. In contrast, the strain induced by
applying hydrostatic pressure corresponds to a trajectory that is almost
parallel to the contour lines. The Poisson’s ratio of the anisotropic strain,
€./€,, = —0.25, induced by a-axis uniaxial stress, was obtained using a
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Fig. 1. Topological phase diagram and band structures of ZrTes. (A) Universal phase diagram of topological insulators proposed by Murakami for a 3D system (2, 3, 10). The
control parameter § describes the breaking of inversion symmetry. The control parameter e does not break inversion symmetry. (B) Crystal structure of ZrTes. Chains of ZrTez
prisms (consisting of Te, and Tegq atoms) extend along the a axis. These chains are connected by Te, atoms along the c axis to form layers. These layers are vdW bonded in the b axis
direction. (C) Size of bandgap E, at the I' point as functions of strains in the a and c lattice directions. The dashed gray arrow indicates the anisotropic strain induced by a uniaxial
stress along the a axis direction, as governed by the calculated Poisson’s ratio €,, = —4.0€... (D) Band structures for different strain states taken at points along the Poisson’s ratio
path. These points (from left to right) correspond to STI, Dirac semimetal, and WTI, respectively. Fermi level is defined as the zero energy, and the k-point labeling is based on the

primitive unit cell. A band inversion involving Te4 and Te, p orbitals (shown as red and green colors, respectively) is seen in the STI phase.

fully relaxed vdW-DFT calculation, and it is indicated as the gray arrow in
Fig. 1C. It requires less than a percent of €,,, to reach the WTI-STI phase
boundary. We note that there is uncertainty in the DFT bandgap size for a
given set of lattice constants. For example, several spectroscopy measure-
ments reported E, as low as 10 meV, which is significantly lower than the
calculated 60-meV bandgap at zero strain (23, 24). Hence, the actual
strain required to pass through E, = 0 could be smaller (see Fig. 1D).
We use the bulk electrical transport to study the putative strain-
tuned topological phase transition in ZrTes. As the bulk energy bandgap
closes and reopens, the electrical transport properties, such as resistivity,
will fall and rise again. The resistivity is determined by the properties of
quasiparticles near the chemical potential; hence, the strain effect on re-
sistivity will be larger if the doping is lower so that the chemical potential
is closer to the band edge. Therefore, we used the flux method to grow
single crystals of ZrTes, which is known to yield crystals closer to perfect
chemical stoichiometry with ultralow carrier density (p-type, 10'* cm ™)
(27). The resistivity of ZrTes depends on both strain and temperature
(see Figure 2). Figure 2C shows the resistivity as a function of tempera-
ture for several freestanding ZrTes single crystals before they were
mounted on the strain apparatus. The insulating temperature
dependence is consistent with other flux-grown crystals in the literature,
indicating that, at base temperature, the chemical potential of our
samples lies just slightly below the valence band maximum (25, 28).
Uniaxial stress was applied along the g axis of the ZrTes crystals
using a piezoelectric apparatus introduced by Hicks et al. (29, 30), as
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shown in Fig. 2D. Resistivity (p,,) and strain (€,,) were measured along
the a axis (Materials and Methods). The strain dependence of the re-
sistivity, i.e., the elastoresistivity, is nonmonotonic at T =2 K, as shown
in Fig. 2A. For all samples measured, the resistivity shows a minimum
at a critical strain €,,;, and increases as the sample is strained away
from €;,,. There is an uncertainty in determining the zero-strain state,
i.e., the absolute value of €,,;,, due to the mismatch of thermal contrac-
tion between the sample and apparatus. Nevertheless, on the basis of a
detailed analysis, we estimated that €, < 0.12% (Materials and
Methods). For all the data shown here, €,, is measured from €,,,;,. We
note that, although the size of the strain response varies from sample
to sample, the appearance of a resistivity minimum is a robust phenom-
enon seen in every case. It is well known that the resistivity of semicon-
ductors can have a large linear response to strain due to its sensitivity to
the position of band edges as a function of strain. Such a nonmonotonic
strain dependence is very unusual but is precisely what is expected for the
STI-WTI topological phase transition as described above.

The nonmonotonic elastoresistivity is quadratic in the vicinity of
€min- This is consistent with expectations based on the massive Dirac
Hamiltonian, which has been shown to successfully describe the
magneto-optical spectrum of ZrTes (23, 24, 31). In general, the k - p
Hamiltonian of a small bandgap semiconductor gives a dispersion

E(k) = +y/m? + h*v2kZ, where m, which is half of the bandgap E, =
2|m|, is analogous to the rest mass of a relativistic free particle, and v,

and k, are the Fermi velocities and crystal momentum. Because the
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Fig. 2. Temperature and strain dependence of resistivity of ZrTes. (A) Strain dependence of resistivity of ZrTes at T = 2 K for five samples S1 to S5. A clear minimum in
resistivity can be seen for each sample. The resistivity is normalized by its minimum value pp,;, , which varies between 1 and 16 milli-Ohm-cm. The x axis is the strain along the
a lattice direction, which is estimated on the basis of the method described in Materials and Methods. (B) Resistivity versus strain for temperatures between 2 and 100 K. A
clear minimum can be seen for the entire temperature range. (C) Resistivity versus temperature for three ZrTes crystals S1 to S3, as measured before gluing onto the three-
piezo strain apparatus. (D) Three-piezostack apparatus used to deliver strain. (E) Quadratic coefficient Q obtained from fitting ﬁ 1+ Q (€ — emin>2. The sensitivity of the
response to strain shows a nonmonotonic temperature dependence, as discussed in the main text. Inset: Coefficient Q computed using Boltzmann transport equations
(Materials and Methods). The main calculated features agree with the experimental data: A local minimum then maximum is seen with increasing temperature. The relative

strength and temperature of these features depend on the carrier density input into the model (see Materials and Methods for more information).

strain (€,,, €4, and €,.) induced by the uniaxial stress does not break
the Dy}, point group symmetry of ZrTes, the parameters of the
Hamiltonian, including m, should vary linearly with strain. The band
inversion process corresponds to the change in the sign of m as it is tuned
through zero by strain. However, the physical observables that determine
the resistivity, including bandgap, density of states (DOS), and veloc-
ity, do not depend on the sign of m and thus must vary as m? to
lowest order. As a result, the resistivity will also be parabolic in strain.
The linear elastoresistivity coefficient in nondegenerate semiconduc-
tors is proportional to the ratio of deformation potential (3E4/de) to
temperature (kgT) (32). We derive a similar relation for the quadratic
elastoresistivity coefficient measured in ZrTes. At low temperature in
the quantum degenerate regime when kgT << E, the Fermi energy
Er plays the same role as kgT. On the basis of dimensional analysis,
the quadratic coefficient Ap/p is determined by m normalized by Ep

Ap(e)

2 om\ 2
~ ﬂ — E €2
p Er Er

We also performed a Boltzmann transport calculation and obtain the
same expression. The calculation assumes the simplest situation where a
fixed number of relativistic electrons are scattered from charged im-
purities (Materials and Methods). This expression agrees with the
expectation that the sensitivity of resistivity to strain decreases as the
chemical potential moves away from the band edge. Using the deforma-
tion potential, d/0e, calculated by DFT in the above formula, a fit of
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the quadratic coefficient yields a Fermi energy of 4 to 8 meV and a
carrier density of 0.3 x 10"° to 2.4 x 10"°cm ™. These values are com-
parable with angle-resolved photoemission spectroscopy and transport
measurements of similar samples (23, 33).

We note that, in Fig. 24, a slight deviation from perfectly quadratic
behavior can be seen. Away from the critical strain, we do expect this
deviation from quadratic (symmetric) behavior due to the higher-order
strain dependence or the strain dependence of other band parameters
such as v,, which we assumed to be a constant in the Boltzmann
transport model. In addition, the Poisson ratio may also be different
for large compressive and tensile strain states.

We also measured the elastoresistivity at higher temperatures, which
shows quadratic behavior up to 100 K. The quadratic coefficient exhibits
a nonmonotonic temperature dependence, as shown in Fig. 2E. This is a
consequence of a crossover from the quantum degenerate to nonde-
generate regime as temperature increases. By including the Fermi-Dirac
distribution in the Boltzmann transport calculation, we are able to re-
produce the nonmonotonic temperature dependence of the quadratic
coefficient, as shown in the inset of Fig. 2E. The overall qualitative agree-
ment suggests that the transport properties of ZrTes are well captured
by the dynamics of massive Dirac fermions with a strain tunable mass
across a wide temperature range.

If the bandgap is truly zero at €,,, then the band structure at that
point is equivalent to a massless Dirac semimetal, which is known to
host the chiral anomaly when electric and magnetic fields are parallel.
A manifestation of the chiral anomaly is NLMR, which has been ob-
served in ZrTes previously (21). This effect was initially considered
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Fig. 3. Strain dependence of longitudinal magnetoresistance and magnetoconductance of ZrTes at T= 2 K. NLMR for negative strains (A) and positive strains (B) measured
relative to €, corresponding to the STI and WTI phases, respectively. The negative magnetoresistance is strongest at €,,i,, at which ZrTes is a gapless Dirac semimetal. Straining
the crystal away from e, suppresses the negative magnetoresistance. (C) Weak field positive magnetoconductance for several strain set points close to €. The conductance is
fitted to the equation o(B) = 6o + aB? (black solid curves), where o is a positive coefficient proportional to the helicity relaxation time. (D) Quadratic coefficient a as a function of

strain measured relative to €.

in gapless Weyl or Dirac semimetals (34, 35), yet for a gapped Dirac
semimetal, essentially the same mechanism could still apply in the semi-
classical regime provided that Eg/Ey << 1 (36). In a gapped Dirac semi-
metal, electron helicity plays the same role as chirality in gapless
semimetals. The helicity relaxation rate is proportional to (Eg/EF)Z. As
a result, we expect a suppression of NLMR (i.e., positive longitudinal
magnetoconductivity) when the bandgap opens.

To investigate this, we measured the strain dependence of lon-
gitudinal magneto-transport (I || B || a; see Materials and Methods
for field alignment). Figure 3 (A and B) shows the resistivity versus
field for different strain states. An NLMR is clearly observable, and
it disappears if the field is misaligned by more than 1° (fig. S6),
consistent with the literature (21, 28). At €,, = €,,;, (gray curves),
the NLMR reaches its maximum, and it is progressively suppressed
when the sample is strained away from this point. Two other sam-
ples were measured and show the same strain dependence (fig. S5).
The magnetoresistance shows an upturn once the field surpasses
the quantum limit (estimated to be 2 T for 10'> cm™ carrier den-
sity) (19, 27). We notice that the upturn is shifted to higher fields on
the STI side, which may be related to the unusual behavior of lowest
Landau levels of topological insulators (37). Nevertheless, we leave
the study of high-field magnetoresistance for future works and focus
on the weak field semiclassical regime (B < 0.5 T), in which the mag-
netoconductance Ac = 6(B) — oy is positive except showing a small
dip near zero field (Fig. 3C). The magnetoconductance was fitted with
a quadratic field dependence, 6 = 6, + B> (see Materials and Methods
for details of fitting). The quadratic coefficient a is proportional to the
helicity relaxation time (36), and it shows a 10-fold increase as €,,
approaches €, (Fig. 3D). This diverging behavior is consistent with
the suppression of helicity relaxation due to the vanishing of the band-
gap at €,, = €.
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DISCUSSION

Our extensive transport measurements and detailed data analysis have
revealed an exceptionally delicate topological ground state of ZrTes. The
highly nonlinear elastoresistivity from a nonsymmetry breaking strain
is consistent with the sign switching of the Dirac mass. This is further
corroborated by the diverging strain dependence of positive longitu-
dinal magnetoconductance near the transition point, which is a more
profound consequence of the vanishing of the Dirac mass. In this
sense, our study not only represents a new approach to characterize
topological phase transitions but also demonstrates a method to pre-
cisely control phenomena associated with the chiral anomaly. We note
that the applied strain does not break inversion symmetry. It is possi-
ble to apply an external electric field to exfoliated thin flakes to break
inversion symmetry and induce the Weyl semimetal phase shown in
Fig. 1A.

One defining signature that distinguishes STT from WTT is the exis-
tence of surface states on all crystal facets, which is not addressed in the
current study. On the other hand, all of our transport data on ZrTes
present strong evidence of an in situ strain-tuned topological phase
transition in this material. We note that our experimental setup for ap-
plying strain is compatible with photoemission and scanning tunneling
spectroscopy measurements. Future studies incorporating spectroscop-
ic techniques capable of measuring surface states and band topology
should be able to provide a comprehensive understanding of topological
phase transitions.

MATERIALS AND METHODS

Material growth and sample preparation

Single-crystal ZrTes was grown with the flux method (21). Zr slugs
(99.9% pure, Alfa Aesar) and Te shot (99.9999% pure, Alfa Aesar) were
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loaded into a quartz ampule in a Zr:Te ratio of 1:100. The ampule
was warmed to 900°C in 9 hours, kept at 900°C for 72 hours, and
then cooled to 505°C in 48 hours. To promote large crystal growth,
the ampule was repetitively cooled to 440°C and warmed to 505°C.
Last, the ampule was cooled to 460°C and decanted in a centrifuge at
this temperature.

For electrical transport measurements, single crystals of typical
dimensions 1.5 mm x 0.1 mm x 0.02 mm were sputtered with gold,
and then 25-um-diameter gold wires were placed on the crystals and
adhered with silver paint. The resistance was measured with an
SRS830 lock-in amplifier and an SRS CS580 current source. Given
the needle-like nature of the single crystals, the resistance was measured
along the a axis of the crystal.

Strain apparatus

Uniaxial stress was applied to single crystals using a homebuilt three-
piezostack device (shown in fig. S1). Three piezoelectric actuators are
aligned in parallel with each other. A U-shaped titanium block was
glued to the outer two piezoelectric actuators, and a small titanium
block was glued to the middle actuator, forming a small gap between
these blocks. Applying a voltage to the outer piezostacks while applying
an equal and opposite voltage to the middle piezostack will strain the
piezostacks and change the gap size.

A crystal is glued across this apparatus gap. Tuning this gap with the
piezostack voltage will apply uniaxial stress to the crystal. For a similar
apparatus, Hicks et al. (29) showed that gluing only the bottom surface
of the crystal to these plates can lead to strain gradients between the top
and bottom surfaces of the crystal. These gradients can be suppressed by
submerging the crystal in glue, as we did. Hicks et al. showed that the
strain gradients are small when the ratio of #/Lg (sample thickness to
gap size) is small. For our measurements, this ratio is small, ranging
from 0.02 to 0.08. We simulated the strain distribution with finite ele-
ment analysis. Our finite element analysis does show that there are still
some small strain gradients along the vertical axis of the crystal, mostly
confined to the bottom quarter of the crystal. The strain along the a axis
€4, 15 equal to 0AL/L, where the change of the gap size AL/L is estimated
by a strain gauge glued on the piezostacks. The constant o takes into
account a strain relaxation effect, which is estimated by finite element
analysis and is typically about 0.8. The strain along the b axis and c axis
are determined by the Poisson’s ratio. The resistance-strain dependence
identified in this work is a smoothly varying function. Because of this,
these small strain gradients have minimal impact on our interpretation
of the spatially average resistance.

Care was taken during the construction of the three-piezo apparatus
to ensure fine alignment of the piezostacks, minimizing any stress in the
secondary axes. First, a “scaffolding” piece was machined with indents
the exact dimensions of the piezoelectric actuators and the titanium
blocks. The actuators and blocks were placed in these indents and then
glued together while secured in precise alignment. The scaffolding block
was then removed after the glue dried. Second, the middle titanium
block and the outer titanium block were machined with a thin flexor
plate connecting them. This flexor plate restricts motion between the
blocks in any axis except the primary strain axis.

Strain was measured by a foil strain gauge glued to one of the piezo-
stacks, measuring €P° The displacement strain of the device was es-
timated as this strain multiplied by the mechanical advantage of the
apparatus, e 2L, /LgeP®, where L, is the length of the plezostack
Lg is the length of the gap the sample is glued across, and €nP s the
displacement of the apparatus. Because of a low signal-to-noise ratio
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associated with the strain gauge measurement, we presented data
plotted against piezostack voltage rather than plotted directly against
the measured strain. We then calibrated this with a strain per volt
calibration fitted from the strain measurement. We carefully mini-
mized the amplitude of the voltage sweeps applied to the piezostacks,
staying centered around €,;, to minimize any hysteresis effect in the
piezostacks.

Finite element analysis

We used the ANSYS Academic Research Mechanical 19.1 finite element
analysis software to calculate the strain transmission in the primary axis
and deformation in the secondary axis for all of our ZrTes samples. The
model is shown in fig. S2. The stiffness tensor for ZrTes; was taken from
a previously calculated value by the Materials Project (38). The sample is
modeled as mounted to the strain apparatus in a puddle of epoxy. The
Young’s modulus and Poisson’s ratio of the epoxy were given the same
values as the work done by Hicks et al. (29). For each crystal measured,
the model took the exact crystal dimensions and gap size of the appa-
ratus as inputs and computed an average relaxation constant o, defined
as €,5 = O€xye? for efﬁfp = +0.1%, where €,, is the strain delivered to
the crystal. Our results are shown in table S1.

Experimental procedure

After cooling to 2 K, the sample was warmed by incremental tempera-
ture set points. In situ stress was applied to the crystal at each tempera-
ture set point by applying a triangle voltage waveform across the outer
two piezo actuators and an equal and opposite sign waveform across the
middle actuator. For each temperature set point, the voltage waveform
was allowed to loop several times to inspect any hysteresis effects. The
magnitude and offset of this waveform were adjusted during warming
to stay centered around the resistance minimum. At temperatures 80 K
and higher, it took an increasing amount of compressive strain to stay
centered on the resistance minimum. At these temperatures, the
samples often buckled as negative strain was applied. This buckling
led to a large hysteresis developing in the resistance-strain relation,
and the experiment was terminated.

Calibration to zero-strain state

One of the advantages of the three-piezo apparatus compared to direct
gluing to a single piezostack is that the thermal strain is minimized. This
is because the large thermal expansion of the outer two piezostacks was
compensated by the expansion of the middle piezostack. However, there
was still a non-negligible thermal strain resulting from the mismatch of
thermal expansions between the crystal and the titanium pieces of the
apparatus. Because titanium is known to have a smaller thermal expan-
sion compared to most materials, it is expected that cooling the appa-
ratus will impart a tensile strain to a mounted crystal. By tuning the
controllable strain of the apparatus, this thermal strain can be
compensated if a reference calibration is available.

A zero-strain calibration was constructed by measuring the resist-
ance of crystals before gluing to the strain apparatus. After measuring
the zero-strain resistance, crystals were glued to the apparatus and the
resistance was measured while cooling from 300 to 2 K. The apparatus
strain could then be adjusted to tune the strained resistance to the cal-
ibration resistance, keeping the crystal in the zero-strain state. For most
crystals, we were able to track the zero-strain state of the crystal down to
about 60 K. Between 60 and 300 K, crystals always had a positive gauge
factor (GF) (tensile strain increased resistance). This indicates that, in
this temperature range, the zero-strain state resides at higher strains
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compared to €. Below 60 K, two things occurred that made track-
ing zero-strain state difficult. The first was that the resistance sensitiv-
ity to strain became weak—the GF approached zero. This indicates that
the crystal either approaches or passes through €,;, below 60 K.
The second difficulty is that the resistance of the mounted crystal mea-
sured a slightly higher value than the calibration resistance for tem-
peratures below 60 K. This occurred even when the strained crystal
was tuned to €.

The higher resistance measured on the strain apparatus compared to
the unstrained crystal can be attributed to a slight aging effect in the
crystals. Figure S3 (A and B) shows two ZrTe5 crystals, with the
resistance versus temperature measured twice. The second measure-
ment was performed after the crystals were left sitting in atmosphere
for 18 days. Between measurements, the 2 K resistance increased
2.4 and 3.4% for each crystal. The difference in resistance between
crystals is negligible above 60 K, the same approximate temperature
below which we are unable to tune the strained resistance to the
unstrained resistance. Because of this slight aging effect, we were unable
to locate the zero-strain state of crystals glued to the apparatus at low
temperatures. Figure S3C shows the resistance of a strained crystal to its
unstrained resistance, measured 1 day apart. Even with only 1 day be-
tween measuring the unstrained crystal and the strained crystal, there is
still a slight aging effect that prohibits tracking the zero-strain state.

To estimate the location of the zero-strain state, i.e., the absolute val-
ue of €, we performed the following experiment. Crystals were glued
directly on the side wall of a single piezostack, as shown in fig. S4 (B and
C). The piezostack has unusual highly anisotropic thermal expansion
properties; it expands by about 0.1% along the polling direction and
contracts along the transverse direction as it is cooled to liquid helium
temperatures. Gluing crystals oriented parallel and perpendicular to the
piezostack polling axis imparts a very different strain during cooling,
mimicking scenarios where samples were glued on substrates with dif-
ferent thermal expansion coefficients. Tuning the piezostack voltage at
2 K adds a much smaller tunable strain (~ 0.01 to 0.02%) on top of this
thermal strain. Using this tunable strain, we were able to measure a
linear elastoresistance. The slope of this linear response, defined as
GF = (%) / (&L), measures the local derivative of the nonlinear resistiv-
ity versus strain curves. A positive or negative GF indicates which side of
€min the thermally strained crystal resides on. As seen in fig. S4, the
parallel (perpendicular) orientations measure a positive (negative) GF
at 2 K. This indicates the sensitivity of the thermal strain to sample prep-
aration and allows us to make an estimate of €,,;,. On the basis of pub-
lished data for the thermal expansion of similar piezostacks and ZrTes,
cooling to 2 K strains the perpendicular glued sample by about +0.08%
(39, 40). The parallel glued sample is strained even more than this. We
measured GF (2 K) = —73 for the perpendicular glued sample. This in-
dicates that the parallel glued thermal strain is between —0.04 and
—0.01% with respect to €, as calibrated by the quadratic response
we measured for samples in this work. Combining this with our
estimate for the thermal strain, we estimated that €., is at most
+0.12% at 2 K. With the DFT estimate of dE;/de~6000 meV, this es-
timates an upper bound of the Eg in the zero-strain state of 72 meV,
which is consistent with most reported values of the Eg.

Measurement of the longitudinal magnetoresistance

Longitudinal magnetoresistance was measured at strain set points for
field parallel the current along the a axis. In addition to the results re-
ported in Fig. 3 (A and B), two other crystals were measured (shown in
fig. S5). For all crystals, we measured a positive magnetoconductance
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after a small dip in the magnetoconductance for very low fields. The
small dip in longitudinal magnetoconductance near zero field is
commonly observed in other materials that exhibit chiral anomaly.
Its origin is not completely understood. Two possibilities are weak an-
tilocalization effect and the classical Lorentz longitudinal magneto-
resistance in anisotropic metals that saturates when ®.t ~ 1. The
positive magnetoconductance was suppressed for strains as low as
0.02% away from €y, for both compressive and tensile strains.

NLMR is only observed for magnetic fields finely aligned to the cur-
rent, I || B || a. We aligned our apparatus such that the magnetic field is
parallel to the a axis of the sample. The apparatus itself was machined to
within 20-pm precision so that the plane of the edge of apparatus can be
very precisely aligned to the magnetic field (<1°). The primary oppor-
tunity for misalignment is the crystal being misaligned within the plane
of the apparatus. To minimize misalignment along this axis, we used an
optical microscope to inspect and adjust the alignment of the crystal
after it was placed in glue on the apparatus. The glue adhering the crystal
dried slowly enough to allow time for alignment adjustment under the
optical microscope. We found that we can frequently align crystals
within 1° of alignment using this simple technique.

To verify that the crystal and apparatus were fully aligned with
magnetic fields, we constructed a strain apparatus on a Quantum De-
sign DynaCool single-axis rotation puck (as shown in fig. S6A). We
tuned €,, to €, which we know from Fig. 3 will have the strongest
NLMR response. We then measured longitudinal magnetoresistance
for several angles between field and a axis, from —1.0° to +0.5° in incre-
ments of 0.25° (shown in fig. S6B). We found that the NLMR was only
observed for alignments better than 1.0°, which is consistent with other
results (28). Because NLMR is not observed for misalignments 1° or
greater even for €,, = €, the observation of NLMR is evidence that
our crystals are aligned to within 1° of accuracy or less.

Further details about the fitting of

longitudinal magnetoconductance

Positive magnetoconductance was fitted to the equation o(B) = o, +
aB?, where o is a positive coefficient that is proportional to helicity re-
laxation time. To eliminate errors to the fit associated with the dip of
magnetoconductance near zero field, the data were fitted only for the
magnetic field bounded between a lower bound and 0.5T, B <| B|
< 0.5T. Figure S7A shows representative data and fitted curves for
Big = 0.2T. The coefficient o as a function of strain is plotted in fig.
S7B. The coefficient o peaks at €, as discussed in the main text. o
is plotted for several choices of Byg, and the choice of By is found to
not significantly influence the strain dependence of a. For the data
shown in Fig. 3C, B = 0.27, and the error bars are determined by vary-
ing the fitting range.

Boltzmann transport theory of massive Dirac semimetal
In the quantum degenerate regime, the conductivity of a 3D electron gas
can be expressed as

2
_ ¢
_3n2hkFl

c
where kg is the Fermi wave vector determined by the carrier density and
lis the mean free path. In ZrTes, the carriers are most likely originated
from the ionization of impurities, and the carrier density is determined
by the number of impurities ;. Close to zero gap, the ionization is
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practically insensitive to the modulation of bandgap due to strain.
Therefore, we assumed that carrier density and kg are independent
of the strain, and the strain dependence of conductivity is dominated
by the change of mean free path. At low temperature, the mean free
path is limited by scattering from the ionized impurity centers and can
be expressed in terms of the impurity concentration n; and the i
transport cross-section G,

1
7 = NiGtran

I

Near the I' point, the band structure of ZrTes obeys a relativistic
Dirac dispersion E* = m” + h”k*v>. The scattering cross-section for this
relativistic dispersion by a Coulomb potential obeys the relativistic
Mott formula

d
Gtran = fdod—j [1 — cos6]

no? (1 B~% —sin?0/2
Otran — ?f_ldCOSGW
Sna l
Otran™ kZBZ 60

where 8 is the small angle cutoff due to the screening of the Coulomb
interaction, and o, = ;>—is the dimensionless couphng constant, where
e is the static dielectric constant. p = v*A%k?/ (m + V1K) follows from
p=L% apphed to the dispersion E* = m* + A°k*%.

Because poc = 7;Gyan (m), it follows that

p(m) —p(m=0) Bm=0)—B(m) _ (m)?
pm=0) ~ Bm " (E)

which is the result in the main text. The carrier density for each sample
measured based on this computation is estimated in table S1.

Temperature dependence of resistivity/gap relation

A semiclassical Boltzmann transport model was used to compute the
temperature dependence of the resistivity sensitivity to strain. The
Dirac band at the I point is assumed to dominate conduction, and
the conductivity can be expressed as

28

Ope = —€° _[g(E)T(E)vx(E) S_EdE

wherev, = ak L The scattering time T can be expressed as'E. where
I(E) is the energy-dependent scattering length mentioned above,
inversely proportional to Gi,,,,. We assume that scattering off of charged
impurities is the dominant scattering mechanism in this simplistic
model. Given the Dirac dispersion of E* = m* + h*k*/?, the DOS can
be written as

EVE? — m?
w2 hy3

g(E) =
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Combining these, the conductivity may be written as

oulm) _((E-my N
Cxx(m = 0) E? 2 cosh(i }1) +2
E4
dE

2 cosh (%) +2

Given the chemical potential pu as a function of temperature,
% can be computed for a range of temperatures, and a quadratic

relation between 1/6,, and m can be fitted.

All that is left in the model is to compute p(T). This can easily be
done by charge conservation. The impurity doping #; is defined
as n — p, where n and p are the electron and hole densities. n(T)
and p(T) can be computed as

oo 1
n Z.[og(E)m

p=La®) (1 )t

Given n; as the input parameter, L(T) can be solved numerically by
enforcing n; = n(T) — p(T) for electron doping or n; = p(T) — n(T) for
hole doping. The only other input parameter for our computational
model is the velocity v that appears in the Dirac dispersion. We used
Vo Vi Ve = 1.7,5.2,2.2 x 10°m/s, as measured by SdH oscillations (19).

dE

DFT calculations

The electronic structure and energy gap of ZrTes under strain were
calculated by the Quantum Espresso package (41) based on DFT.
The Perdew-Burke-Ernzerhof exchange-correlation functional (PBE-
GGA) (42) with spin-orbit coupling and projector augmented wave
(43) method were used. The unstrained lattice parameters
(a =3.97976 A, ¢ = 13.6762 A) were determined by experimental data
at 10 K (40),and an 11 x 11 grid in the parameter ranges of 1.0a to 1.02a
and 0.99¢ to 1.01c was considered for studying the gap behavior with
lattice variation. The raw data of the zone-center gap are shown in
fig. S8A, and the interpolated data with 2D cubic splines are shown
in Fig. 1C. An 8 X 8 x 4 momentum grid was used in the self-consistent
calculation, and the kinetic energy cutoff and convergence criterion
were set to 30 and 107 rydberg, respectively. The DFT band structures
for ZrTes in different strained states are shown in fig. S9. The labeling of
the high-symmetry k-points was based on the Brillouin zone of the
primitive unit cell.

The topological Z, indices of different strained structures were also
computed to identify their topological nature. With input from the
electronic structure calculations of Quantum Espresso, the maximally
localized Wannier functions were first computed using the Wannier90
package (44), which, in turn, allowed the determination of Z, indices
by tracking hybrid Wannier charge centers using the WannierTools
package (45). As shown in fig. S8B, the bottom right of the phase di-
agram is an STI with Z, indices (1;110), and the upper left is a WTI
[with Z, indices (0;110)]. Phase transition between the STI and WTI
states was directly controlled by closing the energy gap at the Brillouin
zone center.
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Additional structure relaxation calculations were performed
with the vdW-DFT (46, 47), corrected using the exchange-hole di-
pole moment model (48). The vdW-DFT fully relaxed lattice param-
eters of layer-structured ZrTes are within 1% error compared to the
unstrained experimental data. To determine the Poisson ratio,
conventional cells of different fixed lattice parameters along the a axis
were considered, while the b and c lattice parameters were allowed to
evolve freely in the structure relaxation calculations. The results are
shown in fig. S8C.

We have computed the DOS around the I" point for different
strained structures shown in Fig. 1D. Specifically, we made a k-grid of
21 x 21 x 11 points around the I point (+0.01 by, +0.01 by, £0.01 bs)
and counted the states within Eg.,,; £ A, where A ranges from 6 to
10 meV (corresponding to 70 to 120 K) to plot the DOS for differ-
ent strained states. As shown in fig. S8D, the resulting DOS around
the I' point has a fairly parabolic strain dependence. We also per-
formed a third-order polynomial fit y(x) = asx’ + a,x* + a,x + a for
the curves [where y stands for the DOS and x stands for Ag] and
found that, within the range of interests, the anharmonic term
asx” is roughly 1000 times smaller than a,x*. Therefore, to leading
order, a parabolic strain dependence of DOS near the I" point re-
mains a valid assumption.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/8/eaav9771/DC1

Fig. S1. Schematic and picture of piezo device.

Fig. S2. Finite element analysis of strain transmission.

Fig. S3. Sample aging and zero-strain tuning.

Fig. S4. Comparison between three-piezo and single-piezo elastoresistivity measurement.
Fig. S5. Additional longitudinal magneto-transport measurement as a function of strain.
Fig. S6. Angle dependence of longitudinal magnetoresistance.

Fig. S7. Fitting of positive longitudinal magnetoconductance.

Fig. S8. DFT calculations of Z, topological indices, Poisson ratio, and DOS.

Fig. S9. DFT band structures for ZrTes in different strained states.

Table S1. Dimensions, 2 K resistivity, and QC of each sample crystal.
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