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ABSTRACT Time-series analysis is critical for a diversity of applications in science and engineering.
By leveraging the strengths of modern gradient descent algorithms, the Fourier transform, multi-resolution
analysis, and Bayesian spectral analysis, we propose a data-driven approach to time-frequency analysis
that circumvents many of the shortcomings of classic approaches, including the extraction of nonstationary
signals with discontinuities in their behavior. The method introduced is equivalent to a nonstationary Fourier
mode decomposition (NFMD) for nonstationary and nonlinear temporal signals, allowing for the accurate
identification of instantaneous frequencies and their amplitudes. The method is demonstrated on a diversity
of time-series data, including on data from cantilever-based electrostatic force microscopy to quantify the
time-dependent evolution of charging dynamics at the nanoscale.

INDEX TERMS Signal analysis, parameter estimation, frequency estimation, amplitude estimation, spectral
analysis, signal processing algorithms, machine learning.

I. INTRODUCTION
Time series data analysis is ubiquitous and foundational in
scientific analysis and engineering model design [1]. Indeed,
it has revolutionized nearly every scientific discipline by
enabling the development of test models for observed nat-
ural phenomena in diverse applications that include plan-
etary motion, chemical reactions, meteorological patterns,
and transport phenomena. In a typical scientific workflow,
observations are made on a system and fit to a time series
model, which can include classical methods from statistics,
such as ARIMA (autoregressive integrated moving average)
and its variants [1], or more recent neural network based
approaches [2], [3], such as LSTM [4] (long-term, short-term
memory), GRU (gated recurrent units) [5], and echo-state
networks [6]. These diverse mathematical strategies regress
to models fit to historical training data, often making assump-
tions that the data is generated from a stationary process
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with Gaussian distributed statistics. However, this work-
flow is often complicated by observations with non-Gaussian
noise, the existence of nonstationary processes, and/or non-
linear system dynamics. These challenges make forecasting
exceptionally difficult, requiring the re-training of models
as new data becomes available. By integrating elements of
modern gradient descent algorithms, the Fourier transform,
multi-resolution analysis, and Bayesian spectral analysis [7],
we can train an interpretable Fourier mode-based model for
analyzing nonstationary signals with periodic components,
thus circumventing the challenges normally associated with
nonstationary processes and allowing for accurate identifica-
tion of instantaneous frequencies and their amplitudes.

Joseph Fourier revolutionized time series analysis with the
introduction of his eponymous transform in 1822, which he
developed while studying heat conduction [8]. The trans-
form empowered an understanding of the frequency-energy
spectrum of time-series signals and spurred the development
of Fourier transform-powered time-frequency analyses [9].
These spectrum-based analysis tools have been extensively
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applied in systems exhibiting periodic and quasi-periodic
behaviors, including oscillators and waves. So extensive
are the applications that the field of harmonic analysis
has emerged as a consequence. Harmonic analysis has
been applied to a diverse range of problems spanning
many size and time scales, including mechanical vibra-
tions and machine health monitoring [10], speech and music
recognition [11], [12], oceanographic tide modeling [13],
telecommunications and power systems [14], and quantum
mechanics [15].

Despite its widespread use and generality, the Fourier
transform has a number of restrictions that limit its util-
ity in analyzing nonlinear and nonstationary processes [16].
This was recognized by Denis Gabor in considering radar
technologies of the mid-20th century [17]. Indeed, Gabor
suggested circumventing these issues in part by using short-
time, or windowed, Fourier transforms. This led to improve-
ments in time-frequency analysis and eventually to the
development of wavelet theory [18]. Gabor and wavelet
transforms provide rich visualizations of time-frequency
representations with spectrograms and scalograms respec-
tively [19]. More recently, the Fourier transform has inspired
a new class of time-frequency methods, detailed below, that
complement traditional Fourier transform-based approaches
[20]–[25]. Among them, the Hilbert-Huang transform
(HHT) [16] has become a common tool for understand-
ing nonstationary processes [26]–[28]. The HHT combines
empirical mode decomposition (EMD), which separates a
multi-component signal into simpler periodic modes called
intrinsic mode functions (IMFs), with Hilbert spectral analy-
sis. Hilbert spectral analysis leverages the Hilbert transform
to compute the analytic signal of each periodic mode iden-
tified by EMD. In turn, the analytic signal can be leveraged
to compute the instantaneous phase, instantaneous frequency,
and instantaneous amplitude of the input signal. A signifi-
cant theoretical framework has been developed around apply-
ing the Hilbert transform to vibrational problems [29]–[31].
However, the algorithm behind the EMD is empirical, thus
lacking a broader theoretical underpinning.

Our method is complementary with a newer genera-
tion of time-frequency analysis algorithms that address
specific shortcomings of classic approaches. The Tycoon
method was introduced to handle signals with extremely
fast changing frequencies [23], but focuses on signals that
are (relatively) stationary. The variational mode decom-
position (VMD) aims to simultaneously identify periodic
modes with time-dependent non-linear phase functions by
maximizing the smoothness of the amplitude of the peri-
odic modes [20]. VMD has been successfully applied to a
broad array of problems, though the importance placed on
smooth amplitude functions limits its applications for sit-
uations with discontinuities in modes’ phase or amplitude
functions. A wide array of approaches have been built on the
VMD and extend it to different types of signals and multi-
channel measurements [10], [21], [32]. A different Fourier
mode-based algorithm has also been developed which uses

an approach similar to basis pursuit [22]. Other approaches
focus on decomposition of specific models, such as har-
monic oscillators, and the parameters that describe them.
These approaches include both Hilbert vibrational decom-
position and Kalman filter-based approaches [27], [33]–[35]
along with sparsity-promoting decompositions [24], [25].
Wigner distribution-based approaches show great promise for
decomposing multicomponent signals with modes that have
crossover between frequencies [36].

In this work, we develop a method for extracting the
instantaneous frequencies and amplitudes from time-series
data. The methods is equivalent to a nonstationary Fourier
mode decomposition (NFMD) for nonstationary and nonlin-
ear temporal signals. Importantly, it produces interpretable
signal decompositions that can handle signals with multi-
ple periodic components, non-linear phase functions, and
sharp discontinuities in the phase function or periodic
mode amplitudes. Adopting the work of Lange et al. [37],
which employed a similar architecture for future state pre-
diction rather than interpretable time-frequency analysis,
the proposed method leverages modern gradient descent opti-
mization to fit temporally-local linear Fourier modes. The
approach resembles the short time Fourier transform (STFT)
wherein smaller temporal segments of the signal are analyzed
independently, and the resulting analyses are combined to
provide a full time-frequency representation of the signal.
The NFMD fits Fourier modes to each signal segment, and
computes the mode frequency and amplitude for each sig-
nal segment through a gradient descent optimization with
a nonlinear Fourier basis objective function. The method
results in a superior time-frequency analysis to the HHT for
nonstationary signals, and improves both temporal and spatial
resolutions compared to the STFT. The NFMD can be applied
to systemswith fast-changing frequencies and abrupt changes
in the signal mean, such as machine health monitoring [38],
seismology [39], vibration-based imaging modalities [26],
[40], neurochemical and biochemical signals [41], and pho-
tonic sensing [42], [43].

II. METHODS
The proposed NFMD analysis combines elements of modern
gradient descent algorithms, the Fourier transform, Bayesian
spectral analysis, and an algorithm similar to STFT to learn
an interpretable Fourier mode-based model for analyzing
nonstationary signals with periodic components. In gen-
eral, we aim to fit a model yt (t) to a measured signal
zt . We begin by framing the Fourier mode decomposition
approach for an entire time series signal. The subsequent
section shows how the method is combined with a segment-
by-segment analysis, reminiscent of STFT, to propose a full
time-frequency analysis. Finally, the instantaneous signal
parameters and nonstationary part of the signal are addressed.
We present a simple algorithm for computing the nonsta-
tionary signal component from the learned Fourier mode
representations.
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A. FOURIER MODE DECOMPOSITION
Consider the time series data

zt = {z(t1), z(t2), · · · , z(tn)}, (1)

sampled at n discrete evenly-spaced times in t ∈ R+. The
signal is assumed to be periodic or quasi-periodic. The most
common frequency-domain signal analysis method is the
Fourier transform, which allows the input signal zt to be
represented as a Fourier series. The series representation is
a sum of sines and cosines that provides insight into the
frequency-energy spectrum of the signal.

The Fourier transform, typically implemented as the Fast
Fourier Transform (FFT), assumes a periodic input signal
that satisfies the relationship z(ti) = z(ti + P), where P is
the period of the periodic data. This periodicity assumption
imparts a limiting frequency resolution, Fs/P, that scales
linearly with the sampling frequency of the signal, Fs and the
period P. Note the period P is typically set to the total time
(tn − t1) of the discrete input signal.

To overcome these limitations of the FFT, we adapt the
Fourier series representation and exploit some of its math-
ematical properties to enable the NFMD time series analysis.
First, the Fourier series model is framed in a more general
context which uses a finite number of modes and flexible
mode frequencies which need to be determined. The model

yt (t) =
K∑
k=1

Fk (t) =
K∑
k=1

ak cos(ωk t)+ bk sin(ωk t)

is used, where Fk (t) is the general Fourier mode function,
the coefficients ak and bk are the weights for the cosine
and sine components of each mode, respectively, ωk is the
frequency of mode k , and K modes are considered. In matrix
form, the model is

yt (t) = A�(ωt)

=
[
a1 . . . aK b1 . . . bK

]


cos(ω1 t)
...

cos(ωK t)
sin(ω1 t)

...

sin(ωK t)


,

where A ∈ R2×K is a vector of the coefficients, and �(ωt) ∈
R2×K is a vector of cosines and sines with frequencyω ∈ RK .
The vector A is determined as the optimal coefficient vector
given a frequency vector ω∗, by fitting to the time-series data
zt , using the computation

A = zt (�(ω∗t))−1.

This is a common approach for discovering component
amplitudes in Bayesian spectral analysis [7]. The vector ω =
[ω1, . . . , ωK ] is determined by the optimization

minimize E(A,ω) =
∑

t∈[t1,tn]

(zt − A�(ωt))2. (2)

This method has been previously demonstrated, including
the theory behind the optimization [37]. This approach does
not appear to be a convex optimization objective, given the
nonlinear objective with cosine and sine functions in �(·),
and therefore should not yield globally optimal solutions.
Although this objective does lack global convexity, this pitfall
is avoided by using initial guesses near the optimal solutions
by leveraging the FFT for an initial guess. The initial guess
frames this problem on an error surface that is locally convex,
and therefore allows for highly accurate frequency estimation
by gradient descent. Ultimately, this allows our input signal to
be fit to a model that is a superposition of Fourier modes with
superior frequency resolution to traditional Fourier trans-
forms. The Fourier mode decomposition (FMD) algorithm
for decomposing a full time series signal zt is presented
in Algorithm 1. This algorithm enables the time-frequency
analysis framework described in the next section.

B. NONSTATIONARY FOURIER MODE DECOMPOSITION
The NFMD algorithm builds upon the Fourier mode decom-
positions to create a descriptive time-frequency analy-
sis (TFA) framework that exhibits improved frequency reso-
lution compared to traditional TFA techniques. The NFMD
is similar in principle to one of the most common tradi-
tional techniques for TFA, the STFT. The STFT determines
the frequency-domain energy spectrum of temporally local
intervals of a signal. Although effective, the reliance on the
traditional Fourier transform technique limits the frequency
resolution of the STFT and has limited interpretability for
understanding the signal components. Figure 1 presents a
graphical comparison between the time-frequency analysis
approach of the STFT and the NFMD algorithm. In the
STFT, the original signal is multiplied by a set of windowing
functions, such as a Gaussian, that is progressively applied to
subsets of the signal. The signal subsets are then analyzed
by the FFT. In the NFMD, signal segments are sliced and
analyzed individually; the resultant Fourier modes are then
fit by the FMD algorithm described in Section II-A, thereby
enabling a time-frequency analysis.

Specifically, NFMD subsamples segments of the time
series of length ξ . These segments take the form χ i =

{z(ti), z(ti+1) . . . , z(ti+ξ )}. There are n − ξ segments consid-
ered for an input signal of length n. The set of all segments
in the signal is the set X = {χ1,χ2, . . . ,χ i, . . . ,χn−ξ }. The
NFMD algorithm then applies the Fourier mode decompo-
sition to each segment χ i ∈ X. The NFMD algorithm is
presented in Algorithm 2.

The NFMD algorithm takes in a set, X, of window seg-
ments, χ i, and for each χ i ∈ X learns a coefficient vector Ai
and frequency vector ωi using FMD (Algorithm 1). Impor-
tantly, the learned frequency vector from each segment is used
as the initial guess to the subsequent segment. This signifi-
cantly increased the speed of the algorithm, by allowing each
segment to start with a good initial guess for the frequency
vector ωi. The learned vectors from all of the segments are
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Algorithm 1 Fourier Mode Signal Decomposition (FMD)
Input: Signal zt , Initial frequency guess ω, Error tolerance tol
Output: Learned frequency ω, Learned amplitude A, Residual error E(A,ω)

1: procedure
2: A← zt (�(ωt))−1 F Amplitude from initial frequency guess
3: while E(A,ω) > tol do F Use gradient descent to optimize frequency vector ω
4: ω← argminω∗ E(A,ω

∗)
5: A← zt (�(ωt))−1

6: Update E(A,ω)
7: end while
8: return ω, A, E(A,ω)
9: end procedure

Algorithm 2 Nonstationary Fourier Mode Decomposition
Input: Signal segments X , Window size ξ , tolerance tol
Output: Frequency matrix, ω̂, Coefficients matrix Â, residual error vector Ê

1: procedure
2: ω−1← maxima(FFT(χ1)) F Initial guess for frequencies using the FFT
3: for χ i ∈ X do
4: Ai, ωi, Ei = FMD(χ i, ω−1, tol) F Learn Fourier modes for segment χ i
5: ω−1← ωi
6: end for
7: Â = [AT

1 , · · · ,A
T
i , · · · ,A

T
n−ξ ]

T
F Coefficients matrix

8: ω̂ = [ωT1 , · · · ,ω
T
i , · · · ,ω

T
n−ξ ]

T
F Frequencies matrix

9: Ê = [E1, · · · ,Ei, · · · ,En−ξ ] F Residual errors vector
10: return Â, ω̂, Ê
11: end procedure

stored in matrices

Â =



− A1 −
...

− Ai −
...

− An−ξ −

 , (3)

and

ω̂ =



− ω1 −
...

− ωi −
...

− ωn−ξ −

 . (4)

The learned frequency vectors,ωi=[ω1,i,. . . ,ωk,i,. . .ωK ,i],
and coefficient vectors, Ai = [A1,i, . . . ,Ak,i, . . . ,AK ,i], con-
tain the frequencies and coefficients for each of the k ∈ [1,K ]
Fourier modes of the signal segment χ i ∈ X.

C. INSTANTANEOUS FREQUENCY AND AMPLITUDE
The NFMD decomposes nonstationary, nonlinear signals by
fitting a set of Fourier modes to a set X of signal segments,
as previously described. Importantly, for each signal segment

χ i the algorithm yields a frequencies vector ωi and coeffi-
cients vector Ai. For each of the k ∈ [1,K ] Fourier modes,
a vector of instantaneous frequencies can be constructed by
collecting the learned Fourier mode frequencyωk,i for each of
the signal segments χ i for a given mode k . The instantaneous
frequency vector takes the form

ωk = [ωk,1, . . . , ωk,i, . . . , ωk,n−ξ ].

The instantaneous amplitude of a Fourier mode can be
computed from its coefficients ak,i and bk,i with the relation-
ship

φk,i =

√
(ak,i)2 + (bk,i)2.

Similar to the instantaneous frequency vector, an instanta-
neous amplitude vector can be constructed for each mode k
with one element corresponding to each segment χ ,

φk = [φk,1, . . . , φk,i, . . . , φk,n−ξ ].

These metrics are useful for comparing the time-frequency
analysis from NFMD to other existing time-frequency anal-
ysis methods that report instantaneous amplitude and instan-
taneous frequency of an input time series signal.

83456 VOLUME 9, 2021



D. E. Shea et al.: Extraction of Instantaneous Frequencies and Amplitudes in Nonstationary Time-Series Data

FIGURE 1. Comparison between STFT and NFMD methods. The top row shows an input signal, the second row shows a windowing
function, and the third row shows the windowed signal. The fourth row provides the output of the decomposition. STFT computes
the Fourier transform of a convolution of the windowed function, 9(t). The example shown uses a Gaussian windowing function,
which is commonly referred to as the Gabor transform. The bottom panel for STFT shows the FFT of the signal with real and
imaginary components of the Fourier transform. The NFMD analyzes a segment of the signal, and fits a finite number of Fourier
modes to the signal segment. The bottom panel for NFMD shows the two modes fit to the signal segment.

D. NONSTATIONARY SIGNALS
NFMD can provide insight into nonstationary signals of the
form

z(t) = µ(t)+
L∑
l=1

Al(t) exp(iφl(t)), (5)

where µ(t) is an unknown, non-periodic function describing
the nonstationary part of the signal and there are L periodic
modes with the amplitude function Al(t) and instantaneous
phase function φl(t). The term µ(t) is only assumed to be
continuous. We will call the function µ(t) the signal’s instan-
taneous mean. The concept of an instantaneous mean will
prove useful in the analysis of nonstationary signals where
the signal mean drifts or trends away from zero.

The frequency and coefficient vectors allow computa-
tion of individual Fourier modes Fk,i = ak,i cos(ωk,it) +
bk,i cos(ωk,it) for each of the modes k ∈ [1,K ] and signal
segments χ i ∈ X. In signals that exhibit a moving mean,
there is a mode that will account for the nonstationary part of
the signal. The instantaneous mean of the signal, µ(t), can be
estimated from the Fourier modes Fk,i corresponding to the
mode that accounts for the nonstationary part of the signal.
Many interpolation strategies can be implemented to compute
the instantaneous mean. We implement a simple strategy of
concatenating the value of the Fourier mode Fk at the median
time from each time segment χ i. This mean is defined as

µ = [Fk,1(t1+ξ/2), . . . ,Fk,i(ti+ξ/2), . . . ,Fk,n−ξ (tn−ξ/2)].

The mode representing the mean can be challenging to
identify, and generally requires inspection of each of the

modes identified by NFMD. In this work, the instantaneous
mean is always the lowest-frequency mode.

III. RESULTS
We benchmark the NFMD against the Hilbert-Huang Trans-
form for time-frequency analysis of a series of nonstation-
ary multi-component signals. The two methods are com-
pared with and without noise, and on signals with abrupt
changes in instantaneous frequency and instantaneous ampli-
tude. After comparing NFMD with the HHT, a pair of oscil-
lator examples are provided to demonstrate how the NFMD
and the discovered instantaneous mean can provide insight
into the forcing function applied to the oscillator. Finally,
the method is applied to simulated and experimental data for
a real-world oscillator-based microscopymethod. The instan-
taneous mean is proven to be effective in an experimental data
set by validating the form of the discovered instantaneous
mean against experimental control data with known forcing
functions.

A. SYNTHETIC TEST SIGNALS
Consider a basic multi-component signal with a non-periodic
mean:

z(t) = z1(t)+ z2(t)+ µ(t)

z1(t) = A1(t) cos(2πω1(t)t)

z2(t) = A2(t) cos(2πω2(t)t),

with amplitude, phase, and instantaneous mean functions

A1(t) = 1+ 0.5 exp(−t/3)

VOLUME 9, 2021 83457
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FIGURE 2. Example signal for demonstrating NFMD. The signal is presented with a spectrogram generated by the short time
Fourier transform and the power spectral density (PSD). The signal has three maxima that appear in the PSD and STFT, indicating
that there are likely three modes to be considered.

FIGURE 3. Instantaneous mean, amplitude, and frequency of the example signal. Only part of the signal, from t = 0 to t = 0.1 is
shown. The instantaneous frequency, ω(t), and amplitude, A(t), are presented for the two periodic modes. The mean, µ(t) of the
signal is denoted on the signal itself.

ω1(t) = 360− 10 exp(−t/0.5)

A2(t) = 8− 0.5 exp(−t)

ω2(t) = 80− 2t

µ(t) = 1.5+ 2.5 exp(−x/1.5),

where z(t) is the signal, z1(t) and z2(t) are the periodic com-
ponents in z(t), and µ(t) is the slow-moving non-periodic
mean. Figure 2 shows a traditional STFT spectrogram and
PSD analysis of the signal, and Figure 3 shows the true
periodic modes, with instantaneous parameters, and the mean
µ(t). The signal is generated over one second with sampling
interval 1t = 2× 10−4 s.

Signal decomposition is performed with both the NFMD
and HHT. The HHT employs the EMD to identify a set
of empirical modes. The EMD takes a number of hyperpa-
rameters which adjust the outputs, including the number of
identified modes. The HHT used in this work used θ1 = 0.05,
θ2 = 0.5, α = 0.05, and identified four modes in the signal.
The two most important hyperparameters for the NFMD are
the window size (similar to STFT) and the number of modes
to fit to the data. For this data, three modes are fit to a
window size of 250 points (or 1t = 0.05s). Figure 4 shows
the decomposed signal for both HHT and NFMD, where
NFMD does a significantly better job of identifying both
the instantaneous frequency and instantaneous amplitude of
the signal. Adding noise to the signal significantly affects
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FIGURE 4. Decomposition of example signal by NFMD and HHT without noise. The estimated instantaneous mean mode is shown
for both the HHT and NFMD decomposition methods. The instantaneous frequency and amplitude of the two periodic components
is also shown for both decomposition approaches.

FIGURE 5. Decomposition of example signal with added noise (SNR = 35). The NFMD correctly identifies the instantaneous
frequency, amplitude, and mean of the signal, although it does propagate noise in the system. The HHT shows erratic behavior in
its estimates of all instantaneous parameters.

the HHT’s decomposition when compared to the NFMD,
as demonstrated in Figure 5. Noise in the signal is added at
a signal-to-noise ratio (SNR) of 35. The SNR in this work is
defined as SNR = 10 log10(‖u(t)‖

2
2/‖ũ(t)− u(t)‖

2
2).

NFMD enables signal decomposition even for noisy sig-
nals where the HHT begins to have difficulty identifying
intrinsic mode functions. The NFMD propagates the noise
from the signal through the decomposition process, show-
ing some noise-like error in the estimated instantaneous
frequency vectors, amplitude vectors, and mean. However,

the NFMD provides clearly superior decomposition of the
signal. It is worth noting the NFMD makes an error early in
its estimation of the first periodic mode in Figures 4 and 5.
The error simultaneously underestimates the amplitude and
overestimates the frequency of the first mode. We attribute
this edge effect to applying the algorithm to an incomplete
period in the initial time step which is corrected in subsequent
time steps.

One particular advantage of NFMD is the ability to cor-
rectly identify sharply-changing instantaneous frequency in
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FIGURE 6. Decomposition of signal with discontinuity in instantaneous frequency of a periodic mode. Data contains additive
white noise with SNR = 25. The NFMD correctly identifies the three modes, including the instantaneous mean and the frequencies
and amplitudes of the periodic modes. The HHT fails to identify the correct number of modes and assigns extra modes to the data.
The periodic modes uncovered by HHT do not qualitatively match any of the correct signal modes.

periodic modes or abrupt changes in the instantaneous mean
of an input signal. This is an advantage against other modern
optimization-based methods built on VMD, because VMD
prioritizes finding solutions with smooth amplitude func-
tions [10], [20]. However, the NFMD has no preference for
smooth amplitudes and can accurately decompose these types
of signals with abrupt changes in the instantaneous frequency,
instantaneous amplitude, or mean. For example, consider a
signal with an abrupt change in the instantaneous frequency
of one of its modes at t = 0.5. The model for this example is

z(t) = z1(t)+ z2(t)+ µ(t)

z1(t) = A1(t) cos(2πω1(t)t)

z2(t) = A2(t) cos(2πω2(t)t),

with amplitude, phase, and instantaneous mean functions

A1(t) = 2+ exp(−t/4)

ω1(t) = 400+ 10 H (0.5)(1− exp((t − 0.5)/0.1)

A2(t) = 2t + 2

ω2(t) = 60−t

µ(t) = 1.5+ 2.5 exp(−x/1.5),

where H (0.5) is the Heaviside function centered at t = 0.5s.
Noise is added to the signal at an SNR ratio of 25 and
decomposed by both HHT and NFMD. The decomposed
signal is shown in Figure 6. The NFMD correctly identifies
the sharp transition in frequency, and consequently obtains
qualitatively good estimates on the amplitude of both peri-
odic modes. Results from the HHT are presented, but it is
important to note that in cases like this example, the HHT
often yields extra intrinsic mode functions. It is challenging
to assign which of the HHT modes are intended to represent

which periodic mode, so the presented results were quantita-
tively closest to the ‘true’ mode by comparing both instanta-
neous frequency and instantaneous amplitude vectors. Addi-
tionally, all of the remaining modes from HHT are summed
together to estimate the instantaneous mean. Although the
HHT yields a reasonable looking instantaneous mean, nei-
ther of the periodic modes are correctly decomposed in this
example.

As another example, we consider a situation where the
instantaneous mean of the signal changes abruptly in the
middle of the signal (t = 0.5 seconds). The input signal uses
the model

z(t) = z1(t)+ µ(t)

z1(t) = A1(t) cos(2πω1(t)t)

with amplitude, phase, and instantaneous mean functions

A1(t) = 5− 0.5 exp(−t/3)

ω1(t) = 245+ 10t2

µ(t) =

{
sin (2t) t ≤ 0.25
−2.5 cos (t) t > 0.25.

The signal has added Gaussian noise with SNR = 20.
As shown in Figure 7, the NFMD accurately estimates instan-
taneous signal mean and identifies the correct periodic mode.
The HHT fails to find the instantaneous frequency of the
periodic mode, and errantly suggests a low-frequency wave
as the instantaneous mean.

Having demonstrated that NFMD offers material advan-
tages over HHT methods for TFA, both in terms of mode
extraction in noisy signals and for reacting to sharp changes
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FIGURE 7. Decomposition of signal with discontinuity in instantaneous mean. Data contains additive white noise with SNR = 20.
The NFMD correctly identifies the periodic mode instantaneous frequency and amplitude, and the instantaneous mean of the
signal. The HHT fails to identify either the mean or the periodic component.

in instantaneous parameters, we next discuss applications to
realistic systems.

B. APPLICATIONS
The example synthetic test signals above illustrate the power
of NFMD to decompose signals with abruptly changing
instantaneous parameters and accurately estimate the instan-
taneous mean of noisy signals. One application of the instan-
taneous mean is estimating the non-periodic forces applied
to an oscillatory system. Consider the ubiquitous harmonic
oscillator

ẍ + 2βω0ẋ + ω2
0 = F(t)/m,

where x is the position of the oscillator, β is a damping
factor, ω0 is the resonant frequency of the oscillator, F(t)
is an applied forcing, and m is the mass of the oscillator.
We consider the solution to this oscillator for three types of
applied forcing functions: a periodic driving force, Fd (t), and
a non-periodic perturbation forcing, Fp(t), and a combination
of periodic and perturbation forcing functions, Fd (t)+Fp(t).

The driving force Fd (t) is of the form α exp(iωt), where ω
is the frequency and α is the amplitude of the driving force.
The perturbation forcing function has the general form

Fp(t) = H (t − t ′)γ (1− exp(−(t − t ′)/τ )), (6)

where H is the Heaviside function, t ′ is a perturbation
onset time, and τ is a characteristic relaxation time constant.
An oscillator with this forcing function will have a solution
of the form

xp(t) ∝ φeiωt + ψ exp(−(t − t ′)/τ ), (7)

where φ is a prefactor determined by the parameters in the
governing equation. Forcing functions and solutions for an

oscillator forced by Fd (t), Fp(t), and Fp(t) + Fd (t) are pre-
sented in Figure 8.

The solution to the combined case (F(t) = Fd (t) +
Fp(t)) has an instantaneous mean that is nearly identical to
the solution for the perturbation-only (F(t) = Fp(t)) case.
This enables the NFMD signal decomposition to provide
insight into the form of the non-periodic forcing applied to
an oscillator by estimating the instantaneous mean of the
signal. The instantaneous mean and the perturbed solution are
plotted on top of the solution to the driven, perturbed solution
in Figure 9.
We confirm this approach works by using a series of

numerical simulations. The same periodic driving force,
Fd (t), is used for all simulations while a set of different
perturbation forces, Fp(t), is applied to each oscillator. The
perturbation forces have different relaxation times, τ in equa-
tion 6. The relaxation times vary from 10−7 to 10−3 s. The
simulated oscillators are all subjected to the combined driving
force and perturbation force. The signals have added white
noise with SNR = 100.
Figure 10 shows the decomposition of a single simulated

oscillator. Note the time-varyingmean of the signal correlates
directly to the non-periodic forcing function. Figure 11 shows
the signal means discovered with the NFMD andmodels fit to
the instantaneous means. The model H (t − t ′)α(1− exp((t −
t ′)/τ ) is fit to each of the instantaneous means. This model
makes it possible to identify the relaxation time τ in the per-
turbation function. Below approximately 1µs, the estimated
τ begins to flatten out. This is a result of the window size (ξ )
used for model fitting, which is approximately a 1µswindow
width.

In this proposed harmonic oscillator application, the
NFMD can identify the instantaneous mean of a signal. The
instantaneous mean of the signal is then fit to a model,
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FIGURE 8. Harmonic oscillator solutions with various forcings. The left column shows the applied forcing, and the right column
shows the solution to the harmonic oscillator assuming it starts from rest. The top row shows a periodic driving force, the middle
row shows a non-periodic perturbation, and the bottom row shows a superposition of the two forcings.

FIGURE 9. The signal mean (dashed) of the perturbed, periodically driven oscillator matches the solution of the perturbation-only
oscillator (orange). This enables NFMD to directly probe non-oscillatory driving forces applied to oscillators by accurately
recovering the signal mean of a nonstationary signal.

which can provide insight to the form of the non-periodic
perturbation applied to the system.

C. EXPERIMENTAL APPLICATION
We test this application on a real-world cantilever based
imaging modality termed time-resolved electrostatic force
microscopy (trEFM), which is an electrical modification
applied to the nanoscale imaging technique of atomic force
microscopy [26], [28], [44]–[46]. In trEFM, a periodically
driven metallic cantilever is brought into close proximity to
a surface. An electric field generated by an accumulation of
electrical charge on the surface imparts a force on the metallic
cantilever, as well as an electrostatic force gradient [47].
The electrostatic force is typically triggered by an external
stimulus, such as a voltage signal or photogenerated charge
via an optical excitation source. Such methods are useful for

extracting dynamic information in nanoscale measurements
of photovoltaic or ionic conducting systems via the effect
of the force on the cantilever’s resonance frequency. In a
typical trEFM experiment, the desired outcome is extracting
an unknown characteristic time constant τ , usually describing
the time-dependent change in the electrostatic force gradi-
ent [40], [44], [48], [49]. As a test case for NFMD, we apply a
series of perturbation forces to the cantilever of the form (6).
In this experiment, the relaxation time τ is controlled in the
applied forcing, providing a set of experimental data with
different, known relaxation times.

The NFMD is used to decompose the experimentally-
measured cantilever signal into a single periodic mode (with
instantaneous frequency near the frequency of the periodic
driving force) and an instantaneous mean. The instantaneous
mean can then be fit to a model for the forcing term. The
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FIGURE 10. Decomposition of forced oscillator signal by NFMD. The NFMD decomposes a harmonic oscillator forced with a
periodic forcing function and non-periodic perturbation. The instantaneous mean of the signal, µ(t), is directly correlated to the
non-periodic forcing.

FIGURE 11. Model fit comparison between instantaneous mean from NFMD and true parameters from non-periodic forcing. The
simulated oscillator is subjected to a perturbation at t = 0.001 seconds (left panel). A model is fit to the discovered instantaneous
mean mode µ(t). The time constant τ in the fit model is compared to the time constant of the true perturbation force Fp(t) (right
panel).

model we used is

µ(t) = H (t − t ′)αe−λ(t−t
′)(1− exp(−(t − t ′)/τ )),

where H (t − t ′) is the Heaviside function centered at t − t ′, t
is the time, t ′ is the perturbation onset time, α is an amplitude
constant, λ is a decay constant, and τ is the relaxation time.
The term with the decay constant λ was included in this
model to fit a recurring pattern in the data that is likely a
constant related to the cantilever. Five different versions of
this model were fit to the data: one with a fixed perturbation

time t ′ = 0.168µs, onewith a fixed decay constant λ = 1080,
one with both parameters fixed, one with λ set to zero, and
one with all parameters fit by the model. Figure 12 shows the
result of fitting these models to the instantaneous means of
the experimental data.

Most of the models perform similarly, though the model
with the decay constant λ set to zero tends to underestimate
the correct relaxation time. Similar to the simulation results,
the same trend occurs around τ = 1µs, where the model
no longer fits the truth line and the predicted τ flattens
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FIGURE 12. NFMD decomposition of experimental trEFM control data with controlled perturbation time constants. A model is fit
which contains the time constant τ and compared with truth values.

out. Unfortunately, the size of the window is limited by the
frequency of the periodic components of the input signal.
In both cases, the 1µs windowwas the minimumwindow size
where the NFMD decomposition successfully decomposes
the signal.

It is important to compare this approach with the exist-
ing methods for trEFM time constant estimation [46]. One
current method is using the instantaneous frequency vec-
tor [50], ωk (t), of the periodic mode and estimating the time
between the perturbation onset and the next local minima
in the instantaneous frequency curve. Prior research showed
an empirical correlation between this time interval and the
relaxation time of the perturbation [26], [50]. To define the
particular experiment, a calibration curve is used to esti-
mate a relaxation time given the instantaneous frequency
vector. This approach is effective, and enables identification
of sub-microsecond relaxation time constant [26]. However,
themain drawback of themethod in [50] is that the correlation
is indirect. Therefore, the external perturbation (namely, τ )
is not directly learned, and the calibration curve will change
based on experimental variables such as the cantilever being
used with a different set of physical parameters like quality
factor and spring constant. For more complicated systems
where the relevant timescales are more than single exponen-
tial (modern photovoltaic systems with ionic transport and
dielectric relaxation in batterymaterials), the lack of a defined
model in this calibration curve can prove limiting [40], [51].
A chief advantage of the proposed NFMD approach is that the
forcing function can be detected directly from experimental
data via the instantaneous mean.

IV. CONCLUSION
Time-frequency analysis methods are critically important
in science and engineering. In this work, we develop a

data-driven approach to time-frequency analysis that helps
address shortcomings of classic approaches, including the
extraction of nonstationary signals with discontinuities in
their behavior. By integrating elements of modern gradient
descent algorithms, the Fourier transform, multi-resolution
analysis, and Bayesian spectral analysis, we can learn an
interpretable Fourier mode-based model for analyzing non-
stationary signals with periodic components, thus circum-
venting the deleterious effects normally associated with non-
stationary processes and allowing for accurate identification
of instantaneous frequencies and their amplitudes. Indeed,
our method is equivalent to a nonstationary Fourier mode
decomposition (NFMD) for nonstationary and nonlinear tem-
poral signals. Importantly, it produces interpretable signal
decompositions that can handle signals withmultiple periodic
components, nonlinear phase functions, and sharp disconti-
nuities in the phase function or periodic mode amplitudes.
The method results in a superior time-frequency analysis
to the HHT for nonstationary signals, and improves both
temporal and spatial resolutions compared to the STFT, thus
providing a viable and broadly applicable architecture for
integration into a diverse number of scientific processes.
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