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Microscopic model for the stacking-fault potential and the exciton wave function in GaAs
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Two-dimensional stacking fault defects embedded in a bulk crystal can provide a homogeneous trapping
potential for carriers and excitons. Here we utilize state-of-the-art structural imaging coupled with density-
functional and effective-mass theory to build a microscopic model of the stacking-fault exciton. The diamagnetic
shift and exciton dipole moment at different magnetic fields are calculated and compared with the experimental
photoluminescence of excitons bound to a single stacking fault in GaAs. The model is used to further provide
insight into the properties of excitons bound to the double-well potential formed by stacking fault pairs. This
microscopic exciton model can be used as an input into models which include exciton-exciton interactions to

determine the excitonic phases accessible in this system.
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I. INTRODUCTION

The stacking fault (SF), a misordering of lattice planes in
a crystal lattice, is a prevalent two-dimensional (2D) crystal
defect which can affect the mechanical, optical, and electrical
properties of a material [1-4]. While typically the macro-
scopic properties of a material are studied as a function of de-
fect density [5], the recent isolation of large-scale (~10 pm)
SFs in GaAs enabled the study of excitons bound to a single
SF [6]. The high homogeneity of the excitonic emission,
combined with the measured giant static dipole moment,
indicate the atomically thin SF potential may be a promising
platform for the realization of novel excitonic phases [7,8].
Due to the built-in static dipole moment, the excitons bound
to the SFs in GaAs demonstrate the magneto-Stark effect: In
the reference frame of an exciton moving across the magnetic
field, an effective electric field appears which results in the
Stark shift of the exciton energy. The magneto-Stark effect
results in a nonreciprocal variation of the exciton energy in
a magnetic field: For positive and negative directions of the
magnetic field and fixed direction of exciton propagation, the
energy shift has opposite signs [6]. As shown in earlier studies
of excitons in bulk materials, this effect provides direct proof
of exciton motion in the crystal [9,10]. It is also of importance
in nonlinear optics in semiconductors, providing a mechanism
of, e.g., second-harmonic generation on otherwise forbidden
excitonic states [11].

To gain further insight into the magneto-optics of exci-
tons, their lifetime and exciton-exciton interactions, knowl-
edge of the confinement potential and wave function of the
SF exciton is required. Advancements in structural imaging
and density-functional theory (DFT) calculations, combined
with our ability to optically isolate and characterize excitons
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on a single fault, provide an unprecedented opportunity to
quantitiatively understand the SF exciton. As a result, in this
paper we develop a microscopic model of the SF potential
and SF exciton wave function in GaAs. Within this model,
the exciton hole is localized at the SF plane and the electron
is bound via Coulombic attraction to the hole. An electric
field due to the spontaneous polarization across a single SF
plane is modeled by a step function which results in the large
electron-hole separation of about 10 nm. Variational method
calculations based on this potential are found to be in reason-
able agreement with experiment with respect to the observed
diamagnetic shift and static dipole moment in single SFs. The
model further provides an explanation for the twofold larger
dipole moment observed in double-well potentials formed by
SF pairs, suggesting that these double-well structures could
provide further tunability in the excitonic properties.

The paper is organized as follows. In Sec. II, we present
the structural images of the SFs via electron microscopy.
Further, we present the microscopic model of the SF potential
in Sec. III. Section IV provides a detailed comparison between
the calculated excitonic properties of SFs with the experiment
in terms of key parameters such as diamagnetic shifts and
magneto-Stark effect, demonstrating the validity of the model.
The paper is summarized with a brief conclusion in Sec. V.

II. STRUCTURAL IMAGING OF SINGLE AND DOUBLE
STACKING FAULTS

Cross-sectional scanning transmission electron
microscopy (STEM) analysis of two different SF defects,
the pyramid and trapezoid, was performed to determine the
structure of the defects. The experimental image is compared
to the result of multislice image simulations based on ab initio

©2020 American Physical Society
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FIG. 1. (a) The geometry of the cross section of the STEM images. The black rectangles show the cross section plane and the dashed
lines show where the stacking faults are. (b), (c) Cross-sectional STEM images of stacking faults in the pyramid and trapezoid samples. (b) is
overlaid with multislice image simulations based on ab initio models, showing an excellent match between experiment and theory. These
images are the result of nonrigid alignment and template matching, as described in Appendix A.

calculations (Appendix A); these results show an excellent
agreement. The SFs are embedded in the GaAs epitaxial layer
which is grown on a (100)-terminated GaAs substrate. The
location of the faults are identified by oval defects at the
surface [12]. The geometry of the cross-section with respect
to the structure is shown in the insets of Fig. 1(a). As shown in
Fig. 1(b), in the pyramid structure we observe an isolated SF
plane parallel to the (111) plane. Based on these observations,
it is confirmed that excitons are bound to a single, highly
homogeneous SF in the pyramid structure. In contrast, the
trapezoid structure shown in Fig. 1(c) exhibits closely spaced
intrinsic-extrinsic SF pairs. In this particular trapezoid, the
planes are separated by ~5.5nm in the [111]-type direction,
but this distance can vary from one structure to another.
Thus, for trapezoid structures, excitons are bound to a pair
potential in which the SF separation is expected to impact the
bound-exciton properties.

III. MICROSCOPIC MODEL

A. Single stacking fault at zero magnetic field

We first consider excitons bound to a single SF at zero
magnetic field. The SF is positioned at z =0, with z ||
[111], and occupies the xy plane with x || [112], y || [110].
We consider excitons described by the wave function Wy =
Y (re, rpuc(r.)u,(ry), where u. and u, are the Bloch functions
of the conduction band (I'¢ representation of the 7; point
group) and the heavy-hole valence subband (I'g, £3/2 rep-
resentation of the 7; point group), respectively, and ¥ (r., r;)
is the two-particle envelope function. Note, that the admixture
of the light-hole component to the hole state in the exciton is
negligible [6].

To obtain the exciton spectrum in the absence of a magnetic
field, we solve the Schrédinger equation,

Hy = ey, ()
for the exciton envelope function i (r,, r;) and energy ¢ with
the following Hamiltonian:

2 2
pf P + Py p%zz
=+ +
2me 2mh,||

H =
2mh,l

62
+ Eg + VSF(Zea Zh) - (2)

J’f|re_rh|.

Here p,, = —ihiV, are the electron and hole momentum
operators; me, my, and my | are the components of the
electron and hole effective-mass tensors; E, is the energy
gap of the bulk material; Vsr is the SF potential experienced
by the electron and hole; e is the electron charge; and s is
the static dielectric constant of the background medium. The
electron effective mass is isotropic, whereas the heavy-hole
effective-mass tensor has different components for the motion
in the SF plane (m, ) and in the z direction (m, ) [13-15].

We suggest that the presence of a single SF modifies the
electron and hole bands, yielding a potential in the following
form:

VsE(Zes 21) = VoO(—=2.) — VoO(—2z;,) — upd(z),  (3)

where ©(z) and §(z) are the Heaviside and Dirac delta func-
tions, respectively. Vy and u( are positive parameters. This
potential is sketched in Fig. 2(a). The model potential binds
the hole in the z direction due to the §-function term, but

(a) single SF (b) double SF
[001] [001]
- U -, v
/ \\ [100] ****l // \\\ [100] \'A
\\ I’ \\
______ ’I_\?__l. _______:--_______\_\________.
! g
B i h(.UQ
h(}.}l T T R A
H
i _____ '_:_'j \f_'_'_ ___________
€h
z z

FIG. 2. Sketch of the conduction and valence band potentials for
single (a) and double (b) stacking-fault structures (in the electron rep-
resentation). The blue and red dashed lines schematically depict the
z-distribution of electron and hole density in the exciton, respectively.
¢y, denotes the hole binding energy and e denotes the exciton binding
energy. The insets illustrate the pyramid and trapezoid structures
embedded in the crystal, z is in the direction perpendicular to the
stacking fault plane.
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does not bind the electron. The electron in the exciton is
then attracted to the hole due to the Coulomb interaction.
The parameter V; describes the band offset related to the
presence of the built-in spontaneous electric polarization, and
consequently the electric field, in the SF layer [16—18]. Thus,
W is equal to the electrostatic potential change across the
SF. The delta-function term that confines the hole models the
type-II band alignment, which is believed to appear between
the GaAs zinc-blende and wurtzite phases [19-21]. The value
of uy can be estimated as a product of the valence band offset
between the zinc-blende and wurtzite phases of GaAs AE,
and the effective SF width dgsp. Using AE, = 117 meV [20]
and dsg ~ 10 A, we obtain uy ~ AE,dsg ~ 1 eVA. The same
delta-function term for the conduction band is neglected since
it does not bind an electron and, hence, only slightly modifies
electron wave function. We also note that there is an energet-
ically close, second conduction band in the wurtzite phase of
GaAs [20], however, this band is far in energy in a structure
with a thin wurtzite layer surrounded by the zinc-blende
crystal [22], and therefore is neglected in the following. The
suggested potential agrees well with DFT calculations of the
SF electrostatic potential and single-particle wave functions
which predicts Vy & 10 meV and a hole confinement length
of ~4 nm (see Appendix B for details).

The confinement energy of a hole bound to potential

Eq. (3) is
Vo \2
&y = €0<1 - —0) , “4)
480

where &y = my, | u3/(2h*). The potential binds the hole if
Vo < 4¢p, which is true for our system, where V) ~ 10 meV
and &, &~ 10 meV (corresponding to gy ~ 15 meV), as will
be shown below. The localization length of the heavy hole
in the z direction is a; ~ [27%2 /(my, Len)]V?. To simplify the
calculation, in the following we assume that a, = 0, so the
hole is tightly bound to the SF and z, = 0. The validity of
this assumption is supported by the ~4nm DFT hole con-
finement length, which is much less than the ~20 nm exciton
diameter. By contrast, the electron remains bound only due to
the Coulomb interaction with the hole. Note that the model
potential of ZnSe SFs suggested recently in Ref. [23] does
not bind a hole. It may be related to large electric field inside
the ZnSe SFs as compared to GaAs SFs (~5 times larger),
which prevents the binding of a hole [as described by Eq. (4)
at Vy > 4ep].

In the absence of an external magnetic field, the exciton
envelope can be written as ¥ (r,, r,) = ¢(r)exp (iKR), where
r=r,—ry is the coordinate of relative motion (note that
z =12z.), and R and K are the coordinate and the wave vector
of the exciton center of mass in the SF plane. The effec-
tive Hamiltonian that acts on the exciton envelope function

@(r)is

2 2 2 2
Pytp e
=2 P veo- 2 6

H
0 21 2m, s|r|

with =t =m ! + mh"l. The exciton center of mass disper-

sion is discussed further in Sec. III B.
To solve the Schrodinger equation with the Hamiltonian
Eq. (5), we use the variational approach. We choose ¢(r) in
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FIG. 3. Exciton binding energy (a) and electron-hole separation
(b) as functions of the stacking fault band offset. Solid and dashed
lines depict the results for the hydrogenlike and Gaussian trial
exciton wave functions.

the form

2 2
o(r) = N exp <— L+ Z—)f(f), ©)

c? c
where p = (x, y), N is the normalization constant,

&) = +a§)OE) + e 0(=§), )

and a, ¢, and o are variational parameters. The parameters
a and c are the effective in-plane and z sizes of the exciton,
the function f(§) describes the asymmetric confinement of
the electron. Correspondingly, the dimensionless parameter
a > 0 determines the asymmetry of the exciton wave function
in the z direction, which is caused by the asymmetry of the
electron distribution. The wave function Eq. (7) well describes
the behavior of the electron z distribution with the change
of Vo in Eq. (3): At @ =0, which corresponds to V, =0,
we have a symmetric distribution, f(§) =1, and at o > 1,
which corresponds to large values of V), the wave function
f(&) vanishes at £ < 0, and the electron does not penetrate
the barrier.

Figure 3 shows the results of our variational calculations
for the Hamiltonian Eq. (5) and the trial function Eq. (6).
We plot the exciton binding energy ez = —(@|Holp) and
the average distance between the electron and hole in the z
direction d,;, = (¢|z|p), as functions of the band offset V;.
In the calculations we use m, = 0.07 mg, >« = 12, and three
different values for my, : 0.1 my, 0.2 mp and +o0. The infinite
case corresponds to an electron bound on a donor that is
located at the SF plane.

Additionally, the dashed lines in Fig. 3(a) present the
results using a simplified Gaussian-like trial wave function,

i R WYE:

o) —Nexp( - 2Cz)f(c), ®)
with f given by Eq. (7). The binding energy of the Coulomb
potential calculated using the Gaussian-like function is Ep =
(8/3m)Ry, where Ry = m,e* /25>, which is ~15% smaller
than the exact value. These two values are positioned on the
red lines in Fig. 3(a) at V) = 0. By comparing solid and dashed
lines in Fig. 3(a), we conclude that the trial wave function
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Eq. (8) results in a 15-20% smaller exciton binding energy
than the more accurate hydrogenlike wave function Eq. (6)
also for Vj # 0. However, the results for the electron-hole
separation using the Gaussian-like trial function agree well
with the ones obtained for the hydrogenlike trial function.
This agreement motivates using a Gaussian-like trial wave
function to calculate the electron-hole separation in the more
complicated case where the magnetic field B # 0.

B. Single stacking fault at nonzero magnetic field

An external magnetic field B applied in the SF plane
brings the electron and hole closer and shrinks the exciton
wave function. This results in the diamagnetic shift, which
is quadratic in B, and also in the decrease of d,;, yielding
the suppression of the magneto-Stark effect. In a wide range
of magnetic fields applied in the experiment, these effects
cannot be treated perturbatively. Thus, we now consider an
exciton bound at the single SF in the presence of an external
magnetic field B || y. The exciton Hamiltonian is obtained
from Eq. (2) using the substitution p, — p, — (e/c)A(r,) and
p, — P, + (e/c)A(ry), where A is the vector potential chosen
to be the symmetric form A(r) = B(z/2, 0, —x/2).

Since we assume the strong hole confinement in the z di-
rection, we can neglect the influence of the in-plane magnetic
field on the heavy-hole motion along the SF normal. Hence,
the exciton diamagnetic shift including the field-induced vari-
ation of the average electron-hole separation is determined by
the electron component. In the presence of a magnetic field
B || y, the momentum of the exciton center of mass should be
written as

a
P = —ih— —ih— — 5Me®eZ,

P, = p., , 9
X 9%, Y = Pey + Py ®

where w, = |e|B/(m,c) [24]; see also Refs. [25-27] in which
quasi-2D excitons in an in-plane magnetic field were studied.
The exciton envelope wave function then reads
. 1 X .Y

Y(r,R) = exp [1<P,C + zmew6z> 7 + leﬁ}p(r). (10)
Here P; and P, are the eigenvalues of the center of mass
momentum operator in Eqgs. (9).

Using the wave function Eq. (10) and the general Hamil-
tonian Eq. (2), we obtain the effective Hamiltonian that de-
scribes the internal motion of the exciton (at P, = P, = 0):

_ Lo+ (me — /20 4 (P = nox/ 2)?

Tts 2m, 2m,
— nwez/2)? o &2
T e B N OY S S AN TY
th,H 2/,L %|I‘|

To obtain the ground state of the exciton in a magnetic field,
we use the following trial wave function:

2 2 2
o5(r) = N exp (—x— — s - Z—)f(f), (12)
a c
with four variational parameters a, b, ¢, and «, and f given
by Eq. (7). At B =0, we have a = b and this wave function
coincides with Eq. (8). Although this wave function does not
allow one to evaluate accurately the exciton binding energy at
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FIG. 4. Calculated exciton diamagnetic shift (a) and magneto-

Stark shift (b) for different values of the hole in-plane mass my, .

The dotted line in panel (a) is the diamagnetic shift of a free electron
(hw./2). Here, Vo = 10 meV.

B =0, it provides reasonable accuracy for the electron-hole
separation and allows us to substantially simplify numerical
calculations as discussed above. The diamagnetic shift of the
exciton energy is then determined by

Ep = (ps|Hsles) — Eo, (13)

where Ey = (@p|Hples) at B = 0.

To evaluate the magneto-Stark effect, we calculate the
center of mass dispersion of the exciton making use
of the following relations for the exciton velocity v(P) and
the exciton kinetic energy E (P) [24]:

dE(P) e
v=——, P=Mv(P)—-[Bxr], (14)
dP c
where M = m, + my, ) is the mass for exciton translational
motion in the SF plane. Solving Eq. (14), we obtain

(P, = eBdu/0)* P;
2M 2M°

Here the electron-hole separation d,; generally depends on
the magnetic field. Equation (15) allows us to evaluate the
magneto-Stark shift of the exciton energy as

ePXBdgh
Mc

where the parameter 8 = —efid,;/(Mc) describes the slope
of the magneto-Stark shift and K, = P,/ is the x component
of the exciton wave vector that is defined by the experiment
geometry; see Eq. (19) in Sec. IV. At low magnetic fields, 8’
does not depend on the magnetic field and is determined by
the electron-hole separation d,;, at B = 0, which is calculated
in Sec. IIT A and shown in Fig. 3(b).

Figure 4 illustrates the dependence of the diamagnetic shift
Eq. (13) and magneto-Stark shift Eq. (16) on the magnetic
field. The magnetic field lying at the SF plane shrinks the
exciton wave function in the xz plane and thus reduces the
electron-hole separation d,;. Therefore, the magneto-Stark
shift grows sublinearly with increasing B, tends to saturation
at large fields, and then decreases at even larger fields, when
the reduction of d,, is faster than o1/B. The diamagnetic

E(P) = 15)

Eg = = B'K.B, (16)
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shift dependence changes from quadratic to linear in B with
increasing magnetic field. At large B, the exciton diamagnetic
shift is equal to the one of a free electron modified by loga-
rithmic corrections due to effective 1D Coulomb attraction to
the hole [28].

Here we provide a brief comparison of the theoretical and
experimental magneto-Stark slope 8'K, at low magnetic fields
to illustrate that the model is reasonable. A comparison to
the full experimental field dependence of the diamagnetic
and magneto-Stark shifts will be given in Sec. IV. The
experimental value of the parameter i, K ~ 350 neV/T
measured in the pyramid SF [6] corresponds to B/, K, for
a reasonable set of values, i.e., my | = 0.1mgy, Vo =7 meV
using the experimental value of |K,| &~ 1.6 x 10° cm™'. The
choice of parameters is not unique. For example, the same
value of the magneto-Stark slope can be achieved at m;, | =
0.14mp and Vp = 10 meV. This ambiguity is related to the
fact that the exciton mass and the electron-hole distance enter
only as a combination d,,/M, thus, simultaneous increase of
the exciton mass and electron-hole separation (by increasing
the band offset Vj, [see Fig. 3(b)] results in the same value of
B’ in Eq. (16). We leave my, | as a free parameter of our model,
since the calculation of m;, | requires the knowledge of the full
valence band spectrum for z-motion, and is out of scope of
the present paper (see Supplementary Material of Ref. [6] for
details).

The value of the electric field inside the SF that cor-
responds to Vo = 10 meV and the width of SF 10 A (see
Appendix B for details) is F =~ 0.1 MV /cm, which is in line
with the experiments on polytypic GaAs nanowires, where F'
lies in the range of 0.18 to 0.27 MV /cm [18]. On the other
hand, this electric field is about five times smaller than in ZnSe
SFs [23] and about 25 times smaller than in GaN SFs [16].

C. Double stacking fault

Besides the pyramid configuration, when SF planes are
isolated, SFs can appear in a form of closely lying parallel
planes, Fig. 1(b). In this trapezoid configuration, an exciton
is bound to a double SF potential sketched in Fig. 2(b). We
model this potential as a sum of two single SF potentials with
the same band offset:

Vasr(Zes 2n) = Vsr(Ze, 2n) + Vsp(ze — L, zp — L), 17)

where L is a separation between SF planes, and Vsp is a
single SF potential given by Eq. (3). The assumption that both
SFs in a pair have the same direction of the built-in electric
field follows from the experimentally observed approximately
double increase of the exciton electric dipole moment as
compared to the single SF case (see Sec. IV B for details) and
the DFT calculations (see Appendix B).

We assume that the separation between the SFs is of the
order of the hole confinement length in the z-direction ay,
which is around a few nanometers, but is much smaller than
the electron-hole separation d,;, which is of the order of tens
of nanometers. In that case, an electron “sees” the double SF
structure as a single SF with a twice-increased built-in electric
field (band offset equal to 2Vj), and hence, as it follows
from Fig. 3, the d,, parameter for a double SF also increases
approximately twofold. On the other hand, the hole energy

50
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Hole confinement energy (meV)

0O 2 4 6 8 10
SF separation L (nm)

FIG. 5. Hole confinement energy as a function of SF separation.
Vo =10 meV, gy = 15 meV.

depends significantly on the SF separation. If L > a;, the hole
resides at the SF at z;, = 0 and does not “feel” another SF.
With the decrease of L, when L ~ qy, the hole confinement
energy increases and its wave function is distributed over both
SFs. In the limit L = 0, the hole energy is found from Eq. (4)
with uy — 2uy and Vy — 2V}, respectively. The dependence
of hole confinement energy ¢, on L is shown in Fig. 5.

The scheme of exciton optical recombination is sketched
in Fig. 2. The transition energies of an exciton bound to single
and double SFs are

howy = E; — Vo — &p1 — €1,
(18)

ﬁa)z = Eg - 2V0 — &2 — €2,

where €12y is the confinement energy of a hole bound to a
single (double) SF potential, and €5;(2) is the corresponding
exciton binding energy. Neglecting the difference between
SF and bulk exciton binding energies, the shifts of SF-
bound exciton photoluminescence (PL) lines with respect to
the bulk one are fiwy? — fiwy ~ Vo + ey and fiws? — fiwy ~
2Vo + €na-

IV. COMPARISON TO EXPERIMENT

A. Magnetophotoluminescence

PL spectra taken at different magnetic fields are studied to
verify the microscopic model. The molecular-beam-epitaxy
(MBE)-grown GaAs sample [6] is mounted in a continuous
helium flow cryostat at 1.5 K with a variable magnetic field
from 0 to 7 T. PL from both pyramid and trapezoid 10-
pm-scale SF structures is clearly resolved using an optical
confocal setup with a resolution of ~1 um. The experimental
geometry and typical PL spectraat B=0and B = £7 T are
shown in Fig. 6. The crystal [001] direction is perpendicular
to the magnetic field B || [110] and parallel to the optical axis.
The collected SF PL corresponds to excitons with in-plane
momentum

on .
K, = — sin bsg, 19)
¢
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FIG. 6. Experimental geometry and PL spectrum of the (a) pyra-
mid and (b) trapezoid structure. PL collected from —K, exciton is
much weaker than PL from +K, exciton. The temperature is 1.5 K.
The excitation laser is at 810 nm (1.53 eV).

where 6sp = 54.7° is the angle between the SF normal and the
emitted photon momentum, o is the photon frequency, n is the
refractive index, and c is the speed of light. The collected PL
from excitons with a wave vector —K, is much weaker than
the PL from +K, excitons, because —K, excitons emit pho-
tons propagating toward the substrate and only backscattered
light can be collected.

The magneto-PL spectra have similar properties for both
the pyramid and trapezoid structures. At B =0T, a single
PL peak is observed due to the recombination of excitons
bound to the SF plane. At B = +7 T, the main peak is split
into a doublet due to the electron Zeeman splitting. At B =
—7 T, in addition to the main doublet, a weaker doublet is
observed at lower energy. This doublet has the same energy
as the peak at B =7 T, and thus, is attributed to excitons
with —K, momentum. The origin of the peaks near hw =
1.4925 eV observed in the trapezoid structure at B=+7 T
is unknown. The diamagnetic and magneto-Stark shifts are
clearly observed in the magneto-PL spectra, as illustrated in
Fig. 6. Figure 7 shows these experimental shifts as a function
of magnetic field. The B-field dependence of diamagnetic and
magneto-Stark shifts is in agreement with the microscopic
model presented in Sec. III B, i.e., at low field the diamagnetic
shift is o« B2 and the magneto-Stark shift is o< B, whereas at
high field diamagnetic shift tends to a linear B-dependence
and the magneto-Stark shift exhibits a sublinear B depen-
dence. The origin of the change at high field is the decrease of
the electron-hole separation d,;, induced by the magnetic field.

By fixing my,; = 0.14my and using Vo = 10 meV to fit
the slope of the magneto-Stark shift at low magnetic fields,
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FIG. 7. Comparison of experiment (points) and theory (dashed
lines) for pyramid and trapezoid SFs. The parameters used in cal-
culations are my,; = 0.14mg, Vp = 10 meV for pyramid SF, and
my, = 0.14my, Vo = 20 meV for trapezoid SF, respectively.

we obtain a qualitative agreement between the experimental
and theoretical data for the pyramid structure at both low and
high B-fields, as shown by the dashed lines in Fig. 7. As
suggested by the double SF model presented in Sec. III C, an
electron in the trapezoid SF experiences the twofold increase
of the electric field as compared to the pyramid SF. By taking
my, = 0.14my and Vp = 20 meV, we obtain a reasonable
agreement between the experimental and theoretical data for
the trapezoid structure, see Fig. 7. The larger value of the
magneto-Stark shift in the experiment as compared to the
theory might be caused by several reasons. One of the reasons
is that the trapezoid structure consists of extrinsic and intrinsic
SFs, see Fig. 1(c), which may have different values of Vj.
Thus, the actual increase of effective electric field in the
double SF as compared to the single one might be larger than
two. Another reason might be a slight increase of d,; with
increased SF separation, which is not taken into account in
the theory.

B. Variance of PL in trapezoid structures

The PL properties from different trapezoid structures ex-
hibit a large variance relative to the pyramid structures. This is
attributed to the variable separation between the two parallel
SF planes. Figure 8(a) shows the distribution of O T PL en-
ergies for 133 different trapezoid structures and five different
pyramid structures (corresponding to 20 single SF planes). For
the pyramid structures, the SF excitons only emit at PL energy
Esr = 1.4928 and 1.4959 eV. For the trapezoid structures, Egp
varies from 1.487 to 1.491 eV. Between 1.4875 and 1.4891 eV,
four discrete energies are observed: 1.4875, 1.4882, 1.4887,
and 1.4891 eV. At higher energies, the distribution is
continuous.

To further understand this effect, the trapezoid PL intensity
and electron-hole separation are investigated, as shown in
Figs. 8(b) and 8(c). The electron-hole separation is derived
from the magneto-Stark shift, see Eq. (16). Throughout this
discussion, we assume M = 0.17mg, which corresponds to
my, = 0.1 mg and the electron effective mass m, = 0.07 my.
The electron-hole separation for the trapezoid is approxi-
mately double that of the pyramid and it slightly increases
with Esg. The PL intensity for trapezoids emitting at one
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FIG. 8. (a) Distribution of the PL energy for excitons bound to the trapezoid and pyramid structures. 1.5 K. 810 nm excitation. (b) PL
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of the four discrete energies does not change with Egg. In
contrast, for trapezoids with Esg > 1.4891 eV, the intensity
increases with increasing Esp. We further note that for these
high-energy trapezoids, the PL spectra contain two distinct
SF exciton peaks, as shown in Fig. 8(d). The main peak
corresponds to an exciton with electron-hole separation of
22.5 nm and the weak peak corresponds to an electron-hole
separation of 12.4 nm. Possibly, this can be attributed to
two different electron locations, as shown in Fig. 8(f). The
quantitative analysis of the interplay between the main and the
weak peaks is beyond the scope of this work. For trapezoids
with PL energy at one of the four discrete values between
1.4875 to 1.4891 eV, the second peak is not observed. We
attribute this to a higher tunneling rate from the metastable
(weak peak) configuration to the stable configuration (main
peak) or a delocalization of the hole wave function over both
faults (Sec. III C when the two SFs are close.)

It follows from the microscopic model shown in Sec. III C
that the doubling of d,, of the double SF compared to the
single SF is due to the existence of the double step potentials
and the small separation between two SFs. Such a shape
of potential leads to approximately twofold increase of the
electric field experienced by an electron. On the other hand,
the experimentally observed spread of emission energy is
mainly caused by the variation of the hole confinement energy
with the distance between two SFs. Comparison between the
theoretical dependence, shown in Fig. 5, and the experimental
distribution of the exciton emission energy suggests that the
SF separation is around 4 — 6 nanometers. This conclusion is

also confirmed by the STEM data on trapezoid SFs shown in
Fig. 1(c), where the distance of ~5.5 nm between the SFs is
measured.

As shown in Fig. 5, with the increase of the SF separation,
the hole confinement energy decreases and, thus, the exciton
emission energy, see Eqgs. (18), increases. The spread of the
hole wave function also increases with larger SF separation,
leading to larger electron-hole wave function overlap, and
thus, the increase of the PL intensity. These conclusions
qualitatively agree with the continuously distributed data
(Esr > 1.4891 nm) shown in Figs. 8(a)-8(c). A slight increase
of d,, with the PL energy, observed in Fig. 8(c), may be
attributed to increased SF separation. The origin is still not
clear for the four discretely distributed PL energies, i.e., Esp =
1.4875, 1.4882, 1.4887, and 1.4891 eV. A plausible theory
is that only certain SF separations are energetically allowed
for forming stable double SF structures if the SF separation
is small. This theory could be further confirmed by a cor-
related optical-structural imaging study of several trapezoid
structures.

V. CONCLUSION

In conclusion, we have developed a microscopic model
of the SF potential and exciton wave function in GaAs.
Specifically, the SF potential provides a delta-function-like
confinement for the hole and a steplike potential for the
electron. Variational method calculations for the exciton dia-
magnetic and magneto-Stark shifts show good agreement
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panels.

between theory and experiment for the single SF potential.
This comparison together with DFT calculations of electronic
spectrum allowed us to estimate the band offset at the SF
plane as ~10 meV, which corresponds to the built-in electric
field F ~ 0.1 MV /cm. The model also qualitatively describes
the twofold increase in the exciton dipole moment observed
in the double SF structure, suggesting an average inter-fault
distance of 4 — 6nm. This value is also confirmed by the
STEM measurements of the trapezoid SFs. The properties of
SF excitons not only have implications for improving GaAs
technologies such as solar cells and LEDs [3-5,29], but also
provide insight into understanding potential exciton-exciton
interactions and whether new excitonic phases are accessible
in this system or similar systems [30,31].
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APPENDIX A: STRUCTURAL IMAGING

Cross-sectional STEM samples were prepared using a FEI
Helios NanoLab DualBeam Focused Ion Beam microscope
and a standard lift-out procedure along the GaAs [110] zone
axis, with initial cuts made at 30 kV and final polishing at
2 kV. High-angle annular dark field images were collected on
a probe-corrected JEOL Grand ARM-300F microscope oper-
ating at 300 kV, with a convergence semiangle of 29.7 mrad,
and a collection angle of 72—495 mrad. To minimize scan
artifacts and improve signal to noise, drift-corrected images
were prepared using the SmartAlign plugin [32] for this, a
series of ten frames at 1024 x 1024 pixels with a 2 us px~!
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FIG. 10. Series of multislice image simulations performed for
the extrinsic (top) and intrinsic (bottom) stacking fault structures for
50-, 100-, and 150-u.c.-thick crystals using the PRISM code.

dwell time and 90° rotation between frames was used. The
frames were upsampled two times prior to nonrigid align-
ment, followed by template matching parallel to the fault
direction. Full multislice image simulations were conducted
with the PRISM code [33] for several candidate structures
from ab initio calculations. Simulations were performed
using a 1 x 4 tiling for crystal thicknesses of 50, 100, and
150 u.c., corresponding to 20, 40, and 60 nm, respectively.
Imaging parameters were matched to the experiment and a
0.05 A px~!' sampling, 2 A slice thickness, and ten frozen
phonon passes were used for the final simulations. From
these simulations, the 60-nm simulation was compared to the
experiment.

We have performed a series of multislice image simu-
lations based upon our ab initio calculations for both the
extrinsic and intrinsic SF structures. Simulations were con-
ducted across a range of reasonable sample thicknesses, us-
ing the same experimental imaging conditions, as shown in
Fig. 10. We find a good agreement between the real and
simulated structures, supporting the validity of our calcula-
tions. We observe only subtle changes in image contrast with
increasing thickness and find that the 150-u.c. model is most
consistent with our prior knowledge of the sample and the
measured data.

APPENDIX B: DFT CALCULATIONS OF THE STACKING
FAULT ELECTRONIC STRUCTURE

To estimate the value of the band offset V and analyze
single-electron states in the presence of the SF, we performed
the DFT calculations using the WIEN2K package with mBJ
exchange-correlation potential [34,35]. We performed calcu-
lations for two types of stacking faults, an intrinsic and an ex-
trinsic one, that have a different order of layers in the vicinity
of the stacking fault; see the insets of Figs. 9(a) and 9(b). To
estimate the electrostatic potential in the stacking fault struc-
ture, we applied the procedure described in Refs. [23,36,37],
which involves tracking the position of the core 1s level at Ga
and As atoms in the structure. The presented calculations were
performed for relaxed structures, however, we found that the
value of V} is only slightly different in relaxed and nonrelaxed
structures. The calculations predict that the energy gap of the
bulk zinc-blende phase is about 200 meV larger than that of
the bulk wurtzite phase. This result differs from the results of
most DFT calculations known from literature, which predict a
larger energy gap of the bulk wurtzite phase, e.g., 32 meV
difference obtained in Ref. [20]. This discrepancy is probably
due to the simplified version of the DFT procedure we use. To
obtain more accurate values of fundamental gaps, one should
use more sophisticated methods (such as GW corrections or
LDA-1/2). However, for the ground-state calculations which
we perform here, our simplified approach seems to be reason-
able.

The extracted electrostatic potential is shown in Figs. 9(a)
and 9(b). In agreement with previous results on the ZnSe
stacking faults [23], we observe an overall jump of electro-
static potential when crossing the stacking fault region. The
linear behavior of the potential, i.e., nonzero electric field, out-
side the stacking fault region is an artifact of periodic bound-
ary conditions used in numeric calculations. We checked that
this field decreases with an increase of the elementary cell
length. The oscillations of the potential and, correspondingly,
of the electric field in the vicinity of the stacking fault, are
not eliminated by the increase of the calculation accuracy
and the cell length. These oscillations reflect the atomic-
scale oscillations of the charge density in the stacking fault
region. The electrostatic potential change across the SF, which
corresponds to the Vj parameter in Eq. (3), is Vy & 10 meV
and has the same sign for both intrinsic and extrinsic stacking
faults. The corresponding electric field inside the SFs is
~0.1 MV /cm, which is about five times smaller than in ZnSe
SFs [23] and about 25 times smaller than in GaN SFs [16].

Figures 9(c)-9(e) show the behavior of the electron density
across the stacking fault. It is seen that the lowest state in
the conduction band is delocalized, whereas the highest state
in the valence band is localized with the localization length
an ~ 40 A (full width of density at 1/e?). We checked that
aj, does not depend on the supercell size, see Figs. 9(d) and
9(e). Hence, the stacking fault tightly binds a heavy hole
and does not localize an electron, in agreement with the
suggested model potential Eq. (3). Using my, | ~ 0.95my [15],
the hole confinement energy ¢, = 257 /(my, laﬁ) ~ 10 meV.
The energy shift between the bulk exciton and SF exciton is
en + Vo &~ 20 meV, which agrees well with the experimental
value 219 to 22 meV.
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