
PHYSICAL REVIEW RESEARCH 3, 023255 (2021)

SINDy-BVP: Sparse identification of nonlinear dynamics for boundary value problems
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We develop a data-driven model discovery and system identification technique for spatially-dependent bound-
ary value problems (BVPs). Specifically, we leverage the sparse identification of nonlinear dynamics (SINDy)
algorithm and group sparse regression techniques with a set of forcing functions and corresponding state variable
measurements to yield a parsimonious model of heterogeneous material systems. The technique models forced
systems governed by linear or nonlinear operators of the form L[u(x)] = f (x) on a prescribed domain x ∈ [a, b].
We demonstrate the approach on a range of example systems, including Sturm-Liouville operators, beam theory
(elasticity), and a class of nonlinear BVPs. The generated data-driven model is used to infer the governing
operator and spatially-dependent parameters that describe the heterogenous, physical quantities of the system.
Our SINDy-BVP framework enables the characterization of a broad range of systems, including for instance, the
discovery of anisotropic materials with heterogeneous variability.
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I. INTRODUCTION

Boundary value problems (BVPs) are ubiquitous in the
engineering and physical sciences [1,2]. From heat transfer
to elasticity, many fundamental technologies developed in the
20th century are formulated as linear BVPs whose solutions
are used in engineering design. For example, the semicon-
ductor industry developed many critical technologies and chip
architectures by solving BVPs that characterize the underly-
ing quantum, thermal, and electromagnetic physics. Modern
BVPs of interest often arise in complex systems character-
ized by nonlinearity and spatial heterogeneity, thus rendering
standard analytic and computational techniques intractable
since the governing equations and spatial variability are often
unknown. Indeed, the governing BVPs for many emerging
applications are often unknown and/or their spatial depen-
dencies undetermined. Modern anisotropic material system
design provides a canonical example of the ability to leverage
nonlinearity and heterogeneity in order to produce remark-
able new materials. Data-driven methods provide a potential
theoretical framework for characterizing such materials by
discovering both the governing BVPs (linear and nonlinear)
and their spatial dependencies through measurements alone.
Toward this goal, we develop a sparse regression framework,
previously used for the discovery of dynamical systems, in
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order to discover interpretable and parsimonious BVPs and
their spatial dependencies.

The formulation of many canonical problems in physics
resulted in the first BVPs. From as early as 1822, when Fourier
formulated and solved the heat equation [3], BVPs played a
central role in electromagnetism, wave propagation, quantum
mechanics, and elasticity. Many of these BVPs resulted from
applying a space-time separation of variables decomposition
to a governing partial differential equation (PDE). In different
geometries and dimensions, the solutions to many canonical
BVPs became known as special functions: Bessel, Laguerre,
Hermite, Legendre, Chebyshev, spherical harmonics, radial
basis, etc. More broadly, these canonical linear equations of
mathematical physics were unified under the aegis of Sturm-
Liouville theory. The impact of Sturm-Liouville theory in the
20th century is difficult to overestimate given its enormous
breadth of applications ranging from the underlying theory
of quantum mechanics to the propagation of electromagnetic
energy in waveguides. The BVP theory for these two appli-
cations arise from a separation of variables solution of the
Schrödinger equation and Maxwell’s equations, respectively.

Linear BVPs are amenable to a number of solution strate-
gies, foremost among these being eigenfunction expansions
[1]. Such a solution technique is highly advantageous given
the interpretability of the eigenfunctions (e.g., quantum me-
chanical states or propagating waveguide modes) and the
many guaranteed mathematical properties of Sturm-Liouville
operators, including an orthonormal and complete basis of real
eigenfunctions with real eigenvalues for representing solu-
tions. In addition to eigenfunction expansions, there are other
methods for generating solutions to BVPs. Most notably is
the Green’s function [2], which provides an inverse to the
Sturm-Liouville operator that can be used to evaluate any
forcing of the governing BVP through integration over the
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so-called fundamental (Green’s function) solution. These two
traditional and ubiquitous mathematical methods rely on a
critical property: linear superposition. Thus any solution can
be constructed as a sum of the eigenfunctions appropriately
weighted, or the integral (sum) over the fundamental solution.
Nonlinear BVPs cannot be handled with such mathemati-
cal techniques. Moreover, the spatially varying coefficients
of either a linear or nonlinear operator typically requires
computational methods to produce solutions. Thus, in many
emerging BVPs in the physical and engineering sciences, clas-
sical methods, which rely on linearity to produce interpretable
eigenfunctions or fundamental solutions are ineffective for
characterizing the system.

Modern BVPs in science and engineering, which generi-
cally take the form L[u(x)] = f (x) with the state variable u(x)
and forcing f (x), are typically characterized by the operator
L, which is nonlinear and highly heterogenous in nature,
rendering many of our traditional linear solution strategies
ineffectual. This dilemma prohibits development of inter-
pretable solutions, such as Green’s functions, which describe
the impulse response of the system or eigenfunctions, which
may describe eigenfrequencies in vibration analysis. Histor-
ically, many approaches to this problem have focused on
modifying linear models to approximate the nonlinear ef-
fects of nonlinear systems. For example, perturbation theory
has been used to effectively model weakly nonlinear sys-
tems. Perturbation theory has been applied to a wide variety
of nonlinear problems including, among others, nonlinear
anisotropic material modeling. These models generally focus
on the observed macroscopic system response to applied ex-
ternal stimuli and the agreement between derived theoretical
models and experimental data [4–8]. Entire texts have been
written on the subject of anisotropic heterogeneous materials
modeling [9], and research in the area remains active.

In this paper, we propose a mathematical framework for
identifying the governing operator L, including its spatially-
varying coefficients, to provide an interpretable understanding
of nonlinear and heterogeneous steady-state BVP systems by
discovering the spatially-varying coefficients and the operator
structure. The ability to recover the governing operator not
only provides insight into the physics, it also enables modern
computational tools for generating numerical solutions of the
problem since they require governing equations (i.e., shooting
methods or relaxation methods). In many materials systems,
spatially-varying parametric coefficients in the operator L are
directly tied to the properties of materials in the system, which
can provide scientists and engineers with physical intuition
about their systems. In anisotropic and heterogeneous media,
the materials’ properties vary with composition and structure,
and the mapping between spatial position and local material
properties (e.g., heat transfer coefficients, conductivity, diffu-
sivity, or porosity) are often not known. Spatially-localized
changes in composition and structure can yield significantly
different response to external stimuli. Although this paper
focuses on material science applications, which provide great
canonical examples of heterogeneous systems, this math-
ematical architecture for BVP discovery is fundamentally
domain-agnostic and highly flexible.

We propose the SINDy-BVP framework, which utilizes
data-driven modeling to learn BVP operators directly from

data. Our sparse regression framework, which is based upon
the sparse identification of nonlinear dynamics (SINDy) [10]
algorithm, gives rise to parsimonious models characterizing
the BVP. Our SINDy-BVP framework can identify linear or
nonlinear governing equations and/or spatially-varying para-
metric coefficients of the system from measurement data
alone, providing a robust model discovery framework for
BVPs. Examples are provided for the Sturm-Liouville opera-
tor, a nonlinear modification of the Sturm-Liouville operator,
and two illustrative anisotropic, heterogeneous material sys-
tems.

In the case of the materials systems, it is important to
note that data-driven modeling represents a paradigm shift
in materials modeling. The current standard approach is to
model heterogeneous material by their effective macroscopic
properties. In contrast, data-driven modeling aims to map the
spatially-local material properties.

To our knowledge, there are no other algorithms that focus
on identifying the governing operator of a boundary value
problem and its spatially-varying coefficients simultaneously
from data. In [11,12], a known conservation law or operator
is applied to a boundary value problem and a data-driven
approach is employed to develop a model where spatially-
varying parameters match experimental data set. A recent
approach developed a novel neural network architecture to
approximate the operator governing a system and compute
new solutions to a given system, but it fails to identify the
specific parametric coefficients in the operator, nor the form of
the operator in an interpretable form [13]. One approach seeks
to find a constitutive relationship between measured variables
and applied external forces, but does not identify differential
operators thus preventing future numerical solutions from be-
ing generated [14]. Other approaches utilize a combination
of two separate modules where one module solves the BVP
and the other parameterizes the spatially-varying properties
of the system [15–20]. However, one of the two modules
is a neural network in all of these two-module approaches,
thus preventing discovery of a fully interpretable model. The
application of different data-driven modeling approaches for
materials modeling has been studied in [21], thus underscor-
ing the importance of this subject.

The paper is outlined as follows: Section II gives a short
background of the SINDy algorithm used extensively in this
work. Section III then formulates the SINDy architecture with
boundary value problems for discovery of governing equa-
tions and/or their spatially dependent variations. The method
developed is applied to a broad range of problems in Sec. IV,
including nonlinear boundary value problems. The paper is
concluded in Sec. V with an overview of the method and a
discussion of its outlook on modern nonlinear and heteroge-
nous BVPs.

II. BACKGROUND

This work extends the SINDy family [10,22,23] of al-
gorithms to learn the differential operator L in BVPs of
the form L[u(x)] = f (x), along with parametric and spatial
heterogeneous dependencies. SINDy is a model discovery
algorithm originally designed to discover governing equations
for nonlinear dynamical systems. This method uses a sparse
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regression framework with a large library of candidate physics
models to determine governing equations for physical systems
that are often characterized with relatively few terms. This
makes the governing equation sparse in the space of possible
candidate functions included in the library. SINDy considers
dynamical systems of the form

u̇ = d

dt
u(t ) = N(u,u2, ..., sin(u), cos(u), ...), (1)

where u(t ) ∈ Rn represents the measured variables of the sys-
tem at time t . The regression is formulated in a discrete matrix
formulation where u is measured at discrete snapshots in time
t . The snapshots are used to form the matricesU and U̇, where
U̇ is either directly measured or numerically computed from
the snapshots u(t ). If the interval [0,T ] is discretized into m
points, the two data matrices are the snapshot data matrix U:

U =

⎡
⎢⎢⎢⎢⎣

u1(t1) u2(t1) . . . un(t1)

u1(t2) u2(t2) . . . un(t2)
...

...
...

u1(tm) u2(tm) . . . un(tm)

⎤
⎥⎥⎥⎥⎦,

and the matrix of corresponding time derivatives, U̇:

U̇ =

⎡
⎢⎢⎢⎣

u̇1(t1) u̇2(t1) . . . u̇n(t1)

u̇1(t2) u̇2(t2) . . . u̇n(t2)
...

...
...

u̇1(tm) u̇2(tm) . . . u̇n(tm)

⎤
⎥⎥⎥⎦.

Since u(t ) is an n-dimensional vector, then the matrices U and
U̇ ∈ Rm×n. The system identification problem is formulated in
matrix form as an overdetermined linear regression problem
(Ax = b) for learning the governing equations

U̇ = �(U)�, (2)

where the matrix �(U) ∈ Rm×p contains p column vectors,
each representing a possible candidate term in the govern-
ing equation to be learned. These columns contain candidate
symbolic functions for characterizing the governing equa-
tions N in (1) by numerically evaluating the state-space at
m discrete time points. The unknown coefficient matrix of
loadings � ∈ Rp×n is learned via sparse regression. Candi-
date model terms in � can be excluded from the learned
governing equation by setting the corresponding coefficient
in � to 0, which is naturally implemented by a sparse regres-
sion. The sparse regression minimizes the �2 reconstruction
error (i.e., ‖U̇ − ��‖2) while enforcing sparsity. Traditional
sparse regression uses �1 (i.e., the absolute value ‖U̇ − ��‖)
regularization terms, which approximate the computationally
challenging nonconvex idealized �0 (i.e., number of nonzero
entries in �) regularization. In the SINDy algorithm, sparsity
is achieved through an iterative thresholding procedure [10]
whose convergence properties have been studied under vari-
ous assumptions [24,25]. However, this problem can be solved
using any sparse regression algorithm, such as lasso [26],
sparse relaxed regularized regression (SR3) [24,27], stepwise
sparse regression (SSR) [28], or Bayesian methods [29–31].
The iterative thresholding algorithm for SINDy is outlined in
Algorithm 1.

Algorithm 1. SINDy.

Input: Candidate functions �; time derivatives Ut ; regularizer λ;
threshold ε; score function r(x) = ‖x‖2; iters
Output: Candidate function loadings �

1: procedure
2: � ← argmin�′ ‖Ut − ��′‖2 � Initial � guess
3: for i = 1, ..., iters do
4: terms ← {i : r(�(i)) > ε} � Threshold terms
5: � ← �[terms]
6: � ← argmin�′ ‖Ut − ��′‖2 + λ‖�‖2 � Repeat fit
7: end for
8: return �

9: end procedure

Classical SINDy works well for model discovery and
system identification on problems where the terms in the
governing equation can be well-represented in the candidate
library (�) and where the learned terms have constant co-
efficients with respect to the independent variable(s) of the
system (i.e., time-invariant constant coefficients). Parametric
PDE-FIND was developed as an extension of the SINDy algo-
rithm to accommodate dynamical systems governed by partial
differential equations with time-variant or space-variant co-
efficients [23]. The PDE-FIND algorithm is modified for
the data-driven modeling of BVPs with SINDy-BVP, with
a special emphasis on operator identification and parametric
coefficient estimation.

III. METHODS

Our proposed method makes two specific innovations.
First, the method learns the differential operator L for BVPs,
including spatially varying coefficients. Second, the method
is the first application of SINDy to time-invariant systems; all
prior works focused on dynamical systems.

These innovations require the method to be adapted for use
on BVPs. Previous SINDy methods, including PDE-FIND,
were designed for dynamical systems. In dynamical systems,
a system can be sampled indefinitely into the future from its
initial state. This enables the creation of arbitrarily large data
sets, sometimes consisting of thousands or tens of thousands
of points. Furthermore, data sets can be easily enriched by
sampling systems with different initial states. Neither of these
approaches apply for BVP systems.

BVP systems are a more constrained environment for
deploying the SINDy algorithm compared to dynamical sys-
tems. In BVPs, samples are constrained between spatial
boundaries that specify the domain of the problem, therefore
eliminating the possibility of sampling a system’s dynamics
indefinitely into the future. As previously studied, evaluating
a system under a variety of different conditions helps identify
the governing model in SINDy and similar algorithms for
dynamical systems and is generally superior to increasing the
number of samples on a single trajectory generated from one
initial condition [32]. This motivates the need to study BVP
systems in SINDy-BVP under a variety of different condi-
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tions; SINDy-BVP achieves this by applying different forcing
functions to the system.

In dynamical systems SINDy, the variable u = u(t ) rep-
resents the dynamical state variable. In this paper, the
variable u = u(x) is the state variable for steady-state BVP
systems. SINDy-BVP learns the differential operator of a
time-invariant system by subjecting the system to a collection
of known spatially-varying forcing functions and measuring
the system’s response. Each response uj (x) to a forcing func-
tion f j (x) is recorded as a trial and each trial is governed by
the relationship

L[u j] = f j

j = 1, 2, · · · ,m

x ∈ [a, b],

(3)

where L is the linear or nonlinear differential operator to be
discovered, x is the independent spatial variable, uj (x) is the
measured system state variable quantifying the system’s re-
sponse when subjected to the force f j (x), and there arem total
trials. The f j (x) are known applied forcing functions, which
can be considered as probes for the system. The variable x
is used to denote a single spatial scalar variable rather than
a position vector. The interval x ∈ [a, b] defines the spatial
region of interest, where x = a and x = b are the boundaries
of the BVP. Although a variety of boundary conditions can be
realized in physical systems, this work uses Dirichlet bound-
ary conditions, which specify u(x = a) and u(x = b). The
general principle of SINDy-BVP is presented in Fig. 1 for an
operator with two spatially-varying parameters, p(x) and q(x).

A. Problem statement

To begin, we assume L is a second-order differential oper-
ator. This operator order assumption will be relaxed in later
sections (Sec. IVD). If L is second order, it is known that
L[u] contains the term uxx. If uxx is in the governing equation
L[u(x)] = f (x), we assume it can be represented as some
generalized function N , which contains f (x) and other terms
in L:

uxx = N (u, u2, u3, ..., ux, ..., f (x)). (4)

This is the BVP equivalent to (1). The BVP problem (4),
which is formulated as a continuous variable over the domain
x ∈ [a, b], is discretized into n spatial locations. We assume
these to be equally spaced measurements or discretization lo-
cations. The discretized function u(x) is mapped to the vector
u = [u(x1) u(x2) u(x3) · · · u(xn)]T where x1 = a and xn = b.
With the vectorization of the data, we can adopt the SINDy
nomenclature and restate the sparse regression for BVPs as

Uxx = �(U,F)�, (5)

where Uxx is the second spatial derivative of the discretized
vector of the state space u(x), � is a library of candidate
basis functions believed to comprise N (·), and � is a vector
of coefficients, which prescribe the loadings of the columns
of �. The coefficient vector can vary spatially with x, or more
precisely, the discretization of x.

This regression uses input data consisting of matrices U ∈
Rm×n and F ∈ Rm×n with n discrete sampled spatial positions

FIG. 1. SINDy-BVP studies steady-state systems subjected to a
forcing function. One simple example system is a beam clamped at
both ends subjected to a static load (a). The beam deflects (b) in
response to the load, and the forcing function and deflection are
used for data-driven modeling via SINDy-BVP to learn the paramet-
ric coefficients (c) in the governing operator. The coefficients p(x)
and q(x) vary spatially. The coefficients are directly related to the
beam’s spatially-varying mechanical properties. The grey boxes in
(d) indicate that error can occur in the learned coefficients near the
boundaries.

andm unique trials or forcings. Each trial is a system response
u j to a corresponding forcing function f j governed by the
same operator L. The input data set U and F have the structure

U =

⎡
⎢⎢⎢⎣

u1(x1) u1(x2) . . . u1(xn)

u2(x1) u2(x2) . . . u2(xn)
...

...
...

um(x1) um(x2) . . . um(xn)

⎤
⎥⎥⎥⎦, (6)

F =

⎡
⎢⎢⎢⎣

f1(x1) f1(x2) . . . f1(xn)

f2(x1) f2(x2) . . . f2(xn)
...

...
...

fm(x1) fm(x2) . . . fm(xn)

⎤
⎥⎥⎥⎦. (7)

Note this is different from dynamical systems SINDy, where
m temporal snapshots of a dynamical system are sampled and
the state vector u(t ) has n components. In SINDy-BVP, the
U samples the spatial positions x1, x2, · · · , xn for m different
trials, where each trial is forced by a different forcing function.
Additionally, the outcome variable (or left-hand side) in this
formulation is a spatial derivative of U, not the typical Ut
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seen in dynamical systems SINDy formulations. The spatial
derivatives of U are generated by numerical differentiation
to produce Ux, Uxx, and higher-order derivatives as needed.
The numerically differentiated data is stacked as a vector and
used as the outcome variable for the SINDy regression (5).
The stacked vector Uxx has the structure

Uxx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1xx(x1)

u2xx(x1)
...

umxx(x1)

u1xx(x2)

u2xx(x2)
...

umxx(x2)

u1xx(xn)

u2xx(xn)
...

umxx(xn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

The candidate function matrix �(U,F) ∈ R(m×n)×(p×n) is
constructed as a sparse block matrix to enable discovery of
spatially-varying parametric coefficients. The library is con-
structed to allow a separate coefficient to be discovered for
each spatial position, xk . �(U,F) contains columns for each
of the p symbolic candidate basis functions, each evaluated at
the n spatial coordinates for all of the m trials. The candidate
model functions included in the library �(U,F) are further
described in Sec. III E. The matrix �(U,F) is a diagonal
sparse matrix with the structure

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�(1)

. . .

�(k)

. . .

�(n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where �(k) ∈ Rm×p is a symbolic function library with p
candidate function columns evaluated for each of the m trials
at spatial coordinates, xk:

�(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

u1,k . . . (u1,k )x . . . (u1,k )2 . . . f1,k
...

uj,k . . . (u j,k )x . . . (u j,k )2 . . . f j,k
...

um,k . . . (um,k )x . . . (um,k )2 . . . fm,k

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the subscripts j and k refer to the trial number and spa-
tial coordinate, respectively. The library�(k) allows discovery
of the parametric coefficients at spatial position xk . This con-
struction requires different forcings for each �(k) so that the
regression (5) is not underdetermined and lacking insufficient
constraints. The forcing functions f j (x) are included in the
library because they are known to influence the observed

behavior of the system. Further, as described in Sec. III D,
they must be in the learned function N (·), and therefore must
be included in the candidate term library �(U,F) to learn an
accurate operator.

The problem is formulated as a group regression problem.
Candidate model functions are tied together with a set of
group indices G. G is a set of tuples of indices, where there
are p tuples in the set G and each tuple contains n indices.
Each tuple identifies related rows in � and columns in �

that correspond to the same candidate function. For example,
consider the candidate function u1,k in the library �(k). It
is the candidate function in the first of p columns in �(k).
There is a tuple of indices that can be constructed, which
refers to the first column of every matrix in equation (9)
(i.e., �(1),�(k), ...,�(n)). This example tuple would contain
values (1, (p+ 1), (2p+ 1), ..., (n − 1)p+ 1). The tuples in
set G can be generated by the relationship G = {gl = l +
(p× k) : k = 1, . . . , n; l = 1, . . . , p} where l counts through
the p candidate functions and k counts through the n discrete
spatial positions. Each tuple gl ∈ G contains column indices
of �(U,F) and row indices of � corresponding to a single
candidate function at all of the n discrete spatial positions.

Group sparsity is imposed to produce a solution, which
is sparse in the space of possible candidate functions and
where the coefficient can vary with spatial position x. Group
sparse regression is performed using the Sequential Grouped
Threshold Ridge Regression (SGTR) algorithm developed by
Rudy [23]. An intuitive way of thinking about this approach is
presented in Fig. 2. In the figure, a separate sparse regression
is constructed for each of the n spatial coordinates. The regres-
sion aggregates data from m trials and enforces the solution’s
sparsity pattern across all of the spatial positions. As implied
by the figure, this allows for inference of the operator L and
its parametric coefficients.

B. Sequential grouped threshold ridge regression

SGTR [23] is a group regression technique, which accom-
plishes group-level sparsity through an iterative thresholding
process. This example assumes SINDy-BVP will be per-
formed with the outcome variable Uxx. Using the construction
provided above, each group in G contains a set of in-
dices, which represent columns of a single candidate term
in �(U,F) at all spatial positions and its corresponding co-
efficient in � at all spatial positions. The algorithm, shown
in Algorithm 2, achieves sparsity at the group level through
a combination of ridge regression and iterative thresholding
across all groups.

The iterative thresholding loop in the SGTR algorithm
progressively eliminates groups from � and � by setting the
columns in � to zero. This thresholding imposes sparsity on
the candidate functions in �(U,F) based on the candidate
function’s coefficient vector �. The evaluation function r in
this paper is the �2 norm, which means SGTR performs ridge
regression and thresholds out candidate functions based on the
�2 norm of the coefficient vector (i.e., r(�(g) ) = ‖�(gl )‖2).
The result is a parsimonious function for Uxx where the
nonzero coefficients are allowed to vary at each spatial po-
sition xk .
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FIG. 2. Overview of constructing the data sets and regression for each discrete spatial point in the data set. Part (a) shows a collection of
trials, where different forcings ( f j (x)) are applied to a system yielding different responses (uj (x)). A matrix containing a library of candidate
terms �(U,F) is produced for each trial, where the rows are each a spatial point xk and each column contains a candidate function, as seen
in part (b). A sliding procedure is used to select rows of a single xk from the libraries in part (b) to produce an aggregated library �(k) for
each xk in the data set. In (c), the regression is performed for each xk to produce a vector of the parametric coefficients p(x) and q(x) at each
xk . The regression in (c) is a Ridge regression algorithm. However, a sparsity constraint is applied by an iterative thresholding and grouping
mechanism of the algorithm.

C. Model selection

The optimal model is selected from a set of candidate
models generated by varying the thresholding value ε in the
SGTR algorithm. A range of tolerance values ε are computed
by

εmax = max
g∈G

‖�(g)
ridge‖2

εmin = min
g∈G

‖�(g)
ridge‖2

�ridge = (�(U,F)T�(U,F) + λI )−1�(U,F)TUxx,

where εmax and εmin are the highest and lowest tolerances that
affect the sparsity of the predicted model, and λ is a regular-
ization constant. The ridge regression regularization constant
is held constant at λ = 10−5 for all problems in this paper.

Algorithm 2. Sequential grouped threshold ridge regression.

Input: Candidate functions; derivatives Uxx; groups G;
regularizer λ; threshold ε; score function r(x) = ‖x‖2; iters
Output: Candidate function coefficients �

1: procedure
2: � ← argmin�′ ‖Uxx − ��′‖2 � Initial � guess
3: for i = 1, ..., iters do
4: P ← {gl ∈ G : r(�(gl ) ) < ε} � Select groups
5: �(P) ← 0 � Set to zero
6: � ← argmin�′ ‖Uxx − ��′‖2 + λ‖�‖2 � Repeat regression
7: end for
8: �(G) ← argmin�′ ‖Uxx − �(G)�′(G)‖2 � Final fit
9: return �

10: end procedure

At a thresholding value of εmax, all coefficients are set to 0
after the first thresholding step with SGTR. Conversely, using
εmin as the thresholding tolerance would not eliminate any
candidate functions with SGTR. A number of values, typically
50, spaced logarithmically between εmax and εmax are used to
compute the candidate models.

The optimal model is then selected from the candidate
models by choosing the model which minimizes the PDE-
FIND loss function [23]:

L = N ln

(‖�(U,F)� − Uxx‖22
Nrows

+ β

)
+ 2k, (10)

where k is the number of nonzero coefficients in the identified
model (k := ‖�‖0/m), β is a small constant, and Nrows :=
m × n is the number of rows in �(U,F). The loss function
used to select the model assumes there is error in numerical
differentiation used to compute Uxx, and thus a model that
minimizes only mean squared error (‖�(U,F)� − Uxx‖22) is
likely overfit. Overfit models are balanced by the parameter
β, which allows for some misfit and simultaneously prevents
the occurrence of ln(0) in the loss function. The constant β is
fixed in this work as β = 10−6.

Similar to previous SINDy works, the algorithm exhibits
improved performance when each candidate function is nor-
malized to unit length [10]. When constructing the block
diagonal matrix �(U,F), the entries �(k) are stacked and
each column is normalized to unit length. More precisely,

the matrix �̂ ∈ R(m×n)×p, which is assembled as �̂
T =

[�(1), ...,�(k), ...,�(n)]. �̂ is normalized column-wise over
each of the p columns, each containing a candidate function.
Similarly, the outcome variable vector (e.g., Uxx) is normal-
ized such that ‖Uxx‖ = 1.
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D. Learning the operator L

In the previous sections, a method was described for learn-
ing a function that describes uxx(x), but without connecting
that function to the operator. In this section, we will show how
the operator L can be inferred from the learned function for
uxx(x). Using a simple ansatz that the differential operator is
at least second order, it is presumed the operator contains a
uxx(x) term. For this example, SINDy-BVP learns a function
N (·), which approximates uxx(x):

uxx(x) = N ( f , u, u2, u3, ux, ...).

If uxx(x) is in the operator L and the learned model satisfies
the relationship Lu = f , then the model learned for N (·) must
contain f . Specifically, the model may take the form

uxx(x) = N ( f , u, u2, u3, ux, ...) =
∑
g∈G

ξ (g)�(g), (11)

where the symbolic candidate functions with nonzero coef-
ficient vectors in G must include F . The learned model can
then be rearranged to satisfy the relationship L[u] = f , where
the left-hand side of the equation contains the terms in L and
the right-hand side is described by the forcing functions. An
example demonstrating discovery of the operator is provided
within the Supplemental Material [33].

There is a simpler formulation with f (x) as the outcome
variable (or left-hand side term) in the regression, which theo-
retically provides the opportunity to directly learn the operator
L through a regression of the form F = �(U,F)�. However,
including a numerically accurate F in the library � improves
the ability of SINDy-BVP to handle noise while identifying
the operator and its parameters. If F also contained significant
noise, there may not be an advantage to this construction.

E. Candidate function library

The candidate function library, �(U,F), contains columns
for derivatives of u(x), nonlinearities of u(x), and forcing
functions f (x). In all cases, � contains u(x), and polynomials
of u(x) up to fifth order.

The derivatives in the library depend on the outcome vari-
able. Assume the outcome variable for SINDy-BVP is Uxxxx,
the discrete form of dAu(x)/dxA j. In this case, �(U,F) con-
tains derivatives dau(x)/dxa of order a, for integers 0 < a <

A. For example, if Uxxxx is the outcome variable, the library
contains columns for the derivatives ux(x), uxx(x), and uxxx(x).
Furthermore, the products of u(x) and nonlinearities in u(x)
with the spatial derivatives of u(x) are included in � (e.g.,
uux and u2uxx). Finally, a column for the forcing functions is
included in � containing all data in F.

In general, the constructed candidate basis function library
must include the basis functions in the governing model. If
the terms contained in the operator are not present in the
library, the learned governing operator will be inaccurate
and/or incomplete. These failure modes have been previously
discussed in [10].

IV. COMPUTATIONAL RESULTS

A. Boundary value problem models

The models used in this work are solved on the interval x ∈
[0, 10] using the shooting method [34] with 1000 grid points.
A tolerance of 0.001 is used for the right-side boundary condi-
tion, such that solutions, which aim to achieve u(x = 10) = 0
can have an actual value u(x = 10) ∈ [−0.001, 0.001]. The
following subsections describe the models used for this work.

1. Linear Sturm-Liouville

Sturm-Liouville form operators are an extremely common
class of linear, self-adjoint, Hermitian operators. Sturm-
Liouville theory is especially important in engineering
applications, and its study focuses on operators of the form
in Eq. (12):

L[u] = [−pux]x + qu x ∈ [0, 10], (12)

where the state variable u(x) is a function of the spatial vari-
able x, and p(x) and q(x) are in general functions of the spatial
variable. In our example model, the parametric coefficients are
described by the functions

p(x) = 0.5 sin(x) + 0.1 sin(12x) + 0.25 cos(4x) + 2,

q(x) = 0.4 sin(3x) + 0.15 cos(8x) + 1.

The boundary conditions u(0) = 0 and u(10) = 0 are en-
forced for solutions of this model. The parametric coefficients
in this model, p(x) and q(x), were selected to provide an
example to demonstrate SINDy-BVP on a linear model with
rapidly-changing spatially-varying coefficients.

2. Nonlinear Sturm-Liouville

A quadratic nonlinearity can be introduced to the Sturm-
Liouville model in the following form

L[u] = [−pux]x + qu + αqu2 x ∈ [0, 10], (13)

where α controls the extent of nonlinearity in the term αqu2.
The value α = 0.4 is used. The parametric coefficients p(x)
and q(x) are described by

p(x) = 0.5 sin(x) + 0.1 sin(11x) + 0.25 cos(4x) + 3,

q(x) = 0.6 sin(x + 1) + 0.3 sin(2.5x) + 0.2 cos(5x) + 1.5.

Boundary conditions u(0) = 0 and u(10) = 0 are used for
this model. Again, the parametric coefficients in this model,
p(x) and q(x), were selected to demonstrate SINDy-BVP on
a nonlinear model with rapidly changing spatially-varying
coefficients.

3. Linear second-order Poisson

Many simple physical systems are described by Poisson’s
equation. These elliptic differential equations are described
by a Laplacian operator subjected to a force: 	u = f . In our
system, a parametric coefficient describing a material property
p(x) is introduced to the model.

L[u] = [−pux]x x ∈ [0, 10]. (14)

Steady-state heat conduction is one example of a system that
follows from this model. The coefficient p(x) could thus be
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considered as thermal diffusivity (often κ) of the material
and is allowed to vary spatially. The material in this exam-
ple system is a two-component composite that is anisotropic
along the x coordinate and contains an exponentially-varying
quantity of the two materials along the x direction. The model
for p(x) in this problem is the simple arithmetic average:

p(x) = va(x)pa + vb(x)pb,

where va(x) and vb(x) are the volume fractions of component
a and b, respectively, and vary spatially. The values pa and pb
are the material properties for pure a and b. The components’
material properties hold the value pa = 12 and pb = 3, which
do not change.

Although this model is simple and the arithmetic average
often overestimates the true observed material properties of
composites [9], it is instructive to consider the ability of
SINDy-BVP to learn an operator for a system with a spatially
varying anisotropic material property. The volume fraction of
component b is described by an exponential decay function
while component a makes up the remainder of the volume:

va(x) = 1 − vb(x),

vb(x) = 0.1 − 0.7 exp(0.4x).

A steady-state heat conduction problem, where one end has a
higher temperature than the other, is modeled in this problem.
Boundary conditions of u(0) = 0.8 and u(10) = 0 are applied.

4. Euler-bernoulli beam theory

The Euler-Bernoulli beam theory uses the biharmonic
fourth-order linear operator from elasticity theory to describe
beam deflections given mechanical properties of the beam.
The operator takes the form

L[u] = [−EIuxx]xx x ∈ [0, 10], (15)

where EI is the flexural rigidity of the material. In our
model, the flexural rigidity varies spatially following a
stepwise function as expected for a lamellar, laminate com-
posite with the lamella oriented perpendicular to the x
coordinate:

EI (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

10 0 � x < 2,

2.5 2 � x < 4,

10 4 � x < 6,

5 6 � x < 8,

2.5 8 � x � 10

.

The stepwise function EI (x) is a challenge for SINDy-BVP
because of the discontinuities at the jumps in flexural rigidity,
which occur at x = 2, x = 4, x = 6, and x = 8. The beam in
this problem is considered clamped at both ends such that
u(0) = 0 and u(10) = 0.

5. Forcing functions

The forcing functions for all examples are sinusoidal func-
tions of the form a sin(bx) + c. The amplitude a, frequency
b, and positive offset c are selected from a set of values,
which varies for each model. This family of functions was
selected to enable rapid generation of a large data set with
solutions of similar order of magnitude. The parameters a,

b, and c are selected for each system to produce solutions
u(x) where ‖u‖∞ ≈ 1. Tables and examples describing the
range of parameters a, b, and c are presented within the
Supplemental Material [33] along with figures showing the
solutions generated by the forcings and the spatially-varying
parameters.

The approach for this work is to generate a large library of
solutions to the problem L[uj (x)] = f j (x), and then randomly
subsample the library of solutions to test the SINDy-BVP
algorithm. Prior works suggest that a variety of different sys-
tem conditions must be tested to optimize discovery of the
underlying governing equations of a system [32]. A weak
formulation of SINDy also suggests that the optimal test func-
tions to use for a system would have high values of their
derivatives at points where the highest error in the model
exists [35]. However, knowledge of the region with the highest
model error would not be known prior to collecting data for
a physical test system, as it would require fitting and testing
a model. For this reason, we choose to randomly sample a
database of randomly generated functions producing solutions
of similar magnitude.

This approach is physically and experimentally relevant. In
real systems, a number of different conditions could be tested
and compiled into a database of forcings F and corresponding
responses U on the discretized spatial vector x.

B. Operator identification and parametric coefficient estimation

SINDy-BVP aims to achieve two primary goals: identifica-
tion of the structure of a differential operator L and discovery
of the parametric coefficients present in L for a forced sys-
tem governed by the model L[u(x)] = f (x). The method is
applied to the four models described in Sec. IVA. Operator
identification is only required in cases where the governing
operator is unknown, and so two cases can be considered:
known operator and unknown operator. The data used in this
section is noise-free (up to numerical precision). Derivatives
are computed using the finite differences method. Although
this is physically unrealistic since measurements would intro-
duce noise or rounding errors, this exercise provides insight
into the capability of the method.

Figure 3 shows the four models used in this paper, three
example trials used for training the SINDy-BVP models,
and a plot of the parametric coefficients learned by SINDy-
BVP compared to the true parameters in the operator L over
the interval x ∈ [0, 10]. The parametric coefficient plots are
taken from the case of an “unknown operator”, where both
the operator and the parametric coefficients are learned by
SINDy-BVP.

SINDy-BVP is effective at learning the coefficients p(x)
and (if applicable) q(x) with relatively few trials for numerical
precision data. Table I shows the number of trials required for
SINDy-BVP to estimate the parametric coefficients to within
1% error for the middle 98% of the interval (i.e., [0.1, 9.9]).
This metric is used to quantify the accuracy of learned coef-
ficients because the error in the learned coefficients happens
almost exclusively at the boundaries (inspect Fig. 3).

C. Effects of noise

The effect of noise is studied separately for the problems
of operator identification and parameter estimation. Noise is
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FIG. 3. Summary of the models and operators studied with SINDy-BVP. The center column shows three example trials from the training
data set (u1(x), u2(x), and u3(x)). The solutions are all of O(1). The final column shows the parametric coefficients in the operator, as well as
the inferred parameters for clean data. Coefficients p(x) and q(x) are plotted with an offset, with markers every 30 points.

introduced to each system by applying Gaussian white noise
to the measurement data in U over each row, U j . The noise is
defined by a signal-to-noise ratio (SNR) using the relationship
SNR = 10 log10(‖u(t )‖22/‖(ũ(t ) − u(t )‖22). In order to enable
differentiation of noisy input data, numerical differentiation
is performed using a windowed Chebychev polynomial in-
terpolation method. In the windowed interpolation method,
a subset of 20 continuous data points is selected are fit to a
fifth-order Chebychev polynomial. In the last example with a

TABLE I. Trials required for estimating spatial parametric co-
efficients within 1% error. Error is evaluated in the middle 98% of
the problem domain (the interval x ∈ [0.1, 9.9]) with the expression
‖plearned − ptrue‖2/‖ptrue‖2.

Trials required Known L Unknown L

Linear Sturm-Liouville 6 25
Nonlinear Sturm-Liouville 6 10
Linear second-order Poisson 2 8
Euler-Bernoulli beam theorya 4 4

aParameter error in the Euler-Bernoulli beam model never decreases
below 5% error due to numerical differentiation.

fourth-order derivative, 30 points are used in the window with
a sixth-order polynomial. Derivatives of the fit polynomial
function are used as derivative data for the regression.

1. Noisy operator identification

Operator identification is a challenging task for SINDy-
BVP with noise. Prior works with SINDy have also described
challenges in dealing with noise, so this is not a surprising
finding. Figure 4(a) shows the effect of varying the SNR
ratio, and Fig. 4(b) shows the effect of increasing the number
of trials used in regression at a constant SNR of 100. The
phrase “spurious terms” in Fig. 4 refers to the number of
incorrectly identified monomial basis functions in the operator
L, including both erroneous terms (terms that do not exist in
the operator) and missing terms (terms that should be in the
operator, but are not identified by the algorithm). The “erro-
neous terms” category is the most common error, where the
SGTR algorithm fails to find a parsimonious model describing
the system and includes additional terms to approximate the
noisy training data accurately.

The Sturm-Liouville model shown in the top row of Fig. 4
show that the operator identification task succeeds with an
SNR = 100, but begins to fail at lower SNR. Furthermore, the
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FIG. 4. SINDy-BVP succeeds at operator identification in signals with high SNR. A collection of trials with varying SNR is used for
data-driven operator identification. The plots in (a) and (b), from top to bottom, are the linear Sturm-Liouville, nonlinear Sturm-Liouville,
Poisson, and Euler-Bernoulli beam models. Relative loss [Eq. (10)] and a count of spurious terms in the identified model are quantified. In (a),
200 trials are used for regression and the SNR is varied. In (b), the number of trials is varied while holding a constant SNR of 100.

operator identification task succeeds with as little as 10 trials
at SNR = 100, showing that SINDy-BVP is robust at high
SNR. In the case of the nonlinear Sturm-Liouville model, over
180 trials are required to routinely identify the correct model
at SNR = 100. With a constant 200 trials used, spurious terms
show up in the learned function starting below the threshold
of SNR = 100. Operator identification results are shown for
the Poisson model in the third row. Similar to the linear and
nonlinear Sturm-Liouville models, the Poisson model requires
at minimum a SNR of 100. With an SNR of 100, the operator
identification task succeeds for nearly any number of trials.
However, a curious peak happens at 80 and 90 trials where
an extra term is identified in the operator (specifically, “u”
is added to the model). Despite the added term, the change
in the loss value is relatively low, indicating that the added
term makes a small difference in the accuracy of the model.
Although SINDy-BVP identifies the extra term, the identified
model is still relatively sparse and would provide an excellent
starting point for parameter estimation. The Euler-Bernoulli
beam, shown in the last row, is prohibitively challenging to
identify with noise in the signal. Although signals with SNR
over 200 can successfully identify the beam model, operator
identification fails with any number of trials at SNR of 100.

One common error in model convergence is the inclusion
of candidate model terms with a few “large” values in its
coefficient vector �(g). The large values pass the thresholding
step, which is based on the �2 norm of the entire coefficient
vector. This error effectively includes candidate terms in the
final model that have relatively small influence on the model
predictions, but that satisfy errors from noise in the training
data. This error could potentially be mitigated by enforcing
�∞ constraints on the coefficient vectors, or by enforcing local
smoothness of the learned coefficient.

In contrast, a term is occasionally excluded from a learned
model. For example, let the differential operator be the linear

Sturm-Liouville form L[u] = −p(x)uxx − px(x)ux + q(x)u =
f . If the training data exhibits relatively little contribution
from the term −px(x)ux, SINDy-BVP may exclude the ux
candidate term from the learned model. This results in an
inaccurate model of L[u] = −p(x)uxx + q(x)u. Although this
model is missing the ux term, it has relatively low loss function
values and may be selected as the correct model.

These two errors account for the most common forms of
error at low noise levels. At higher noise levels (>5% noise, or
SNR = 20) the regression begins to add terms to the learned
model to accommodate noise in the measurements, which is
a common form of error in SINDy and other regression algo-
rithms. The added terms tend to get added in groups, where
the improved accuracy of the model from adding multiple
additional terms outweighs the penalty for additional terms
in the loss function [Eq. (10)]. This causes sharp changes in
the plotted lines when different model types are identified.

2. Noisy parameter estimation

If the operator is known, the focus shifts towards estimat-
ing the spatially-dependent parametric coefficients. Figure 5
shows the effect of noise on parameter estimation by com-
puting a “Coefficient Error”. The coefficient error is defined
as Ep = ‖p̂ − p‖2/‖p‖2, where p̂ is the predicted coefficient
vector and p is the true coefficient vector. The task is quanti-
fied in a similar way to the operator identification task, where
the SNR of input data and number of trials used for regression
are varied. In Fig. 5(a), 200 trials are used as input data and
the SNR is modulated between 10 and 1000. In Fig. 5(b), the
SNR is fixed to 100 and the number of trials is varied between
10 and 200. For visual clarity in the plots, the coefficient
error is capped at 1, so that min(1,Ep) is plotted. Like the
operator identification task, added terms tend to get added
in groups, where the improved accuracy of the model from
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FIG. 5. Parametric coefficient estimation in noisy data. With a known operator L, SINDy-BVP can estimate the parametric coefficients.
Coefficient error is used to compare the effect of varying SNR (a) and the number of trials used as input data (b). In (a), the number of trials
used as input data are held constant at 200 and in (b) the SNR is fixed at 100. The plots in (a) and (b), from top to bottom, are the linear
Sturm-Liouville, nonlinear Sturm-Liouville, Poisson, and Euler-Bernoulli beam models.

adding multiple additional terms outweighs the penalty for
additional terms in the loss function [Eq. (10)].

The parameter estimation task is successful for all four
models at SNR greater than 200. Parameters for the lin-
ear Sturm-Liouville, nonlinear Sturm-Liouville, and Poisson
models can also be estimated at SNR of 100, and the Sturm-
Liouville models are somewhat successful at SNR = 50. With
a fixed SNR = 100, the parameters for the linear Sturm-
Liouville, nonlinear Sturm-Liouville, and Poisson models can
be accurately identified within about 5% for any number of
trials over 10 trials. However, the parameters for the Euler-
Bernoulli Beam equation cannot be accurately identified with
even 200 trials at SNR of 100. Similar to the operator iden-
tification task, SINDy-BVP appears to succeed in most cases
with SNR greater than 100. These results indicate that col-
lection of clean data is the most important aspect of using
SINDy-BVP for operator identification in experimental sys-
tems. Hyperparameter tuning and data filtering may improve
these results, but aiming for an SNR over 100 is a critical step
for practical use of SINDy-BVP.

D. Model differential order selection

This section addresses the need to identify the derivative
order of the model’s left-hand side. In the Euler-Bernoulli
beam theory example, for instance, the outcome variable
should be Uxxxx. This example will be used to show that a
set of test trials can be used to determine the best model for a
collection of different outcome variables.

Using the methods described in Sec. III D, the operator
L can be identified from a generalized equation N , which
describes a given left-hand side term. A series of SINDy-
BVP regressions is used to identify a model operator L for
each outcome variable in a set with increasing differential
order (Ux, Uxx, Uxxx, Uxxxx, etc.). Each of these operators

is then evaluated with the test trials for the error Ltest =
1/T

∑
j=1,...,T ‖L[U j] − F j‖ for the T -test trials.

Figure 6 shows how Ltest compares between data-driven
models generated with different outcome variables. The
model that minimizes the test error is the model for Uxxxx,
indicating this is the correct model to use. This approach em-
phasizes the governing relationship, Lu = f . In this example,
the test data set contains 45 trials.

V. DISCUSSION

SINDy-BVP successfully extends the data-driven model-
ing approach of SINDy from dynamical systems to time-

FIG. 6. Determination of correct order equation to use for build-
ing the data-driven model. This example is the Euler-Bernoulli beam
theory, which should use the left hand side term d4u(x)/dx4 to build
the correct model. The model that best captures the relationship
Lu(x) = f (x) is determined from the validation error ‖L[U j] − F j‖2
from a test data set. The fourth-order model (d4u(x)/dx4) exhibits
the lowest error.
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invariant, steady-state, spatially-varying BVP systems. The
method is used to identify a differential operator, L, governing
forced systems of the form L[u j (x)] = f j (x), where f j (x) is a
known forcing function and u j (x) is the measured variable,
which quantifies the system’s response to the forcing. The
operator L can be nonlinear or linear.

Operator identification and parametric coefficient esti-
mation are the two most important tasks. With numerical
precision data, SINDy-BVP is effective at identifying the
operator and the parametric coefficients within 1% error with
relatively little data (see Table I). However, noisy data makes
both tasks more difficult. Figure 4 indicates operator identifi-
cation is challenging with as little as 1% noise (SNR = 100).
Parameter estimation can succeed within 15% error with as
little as 10–15 trials ( f j (x)-uj (x) pairs) in 1% noise [Fig. 5(b)].
However, parameter estimation error does not improve signifi-
cantly unless much larger sets of training data (over 100 trials)
are used. With and without noise in the data, SINDy-BVP
often incurs error in both operator identification and parameter
estimation near the boundaries of the system. The boundary
error is likely a result of the ill-conditioned inverse problem
near the boundaries. The problem is ill-conditioned because
the boundary conditions are identical in all trials. Specifically,
the Dirichlet boundary conditions used in this work stipu-
late the boundary values uj (a) and uj (b) are the same in all
trials.

There are three primary challenges facing SINDy-BVP.
First, model identification relies on having the correct terms
in the regression basis function library. If the library is miss-
ing one of the basis functions in the operator, the regression
will attempt to approximate the missing term using remaining
basis functions in the library [10]. The difference between an
incomplete learned operator and true operator is beyond the
scope of the present work. The second challenge for SINDy-
BVP is its susceptibility to noise. Noise can result in both
extra added terms and missing excluded terms, both contribut-
ing error to the learned model. Noise is often amplified by
numerical differentiation methods, so one promising approach
to reducing noise is integral-based formulations of SINDy,
which were shown to improve noise-handling [36]. Alterna-
tively, improved differentiation methods could be developed
or black-box interpolation methods (e.g., neural networks)
could be used to build “clean” signals U j from noisy data.
Finally, judicious selection of training data is critically impor-
tant. This is true for any data-driven modeling approach. In
the case of SINDy-BVP, the data must exhibit relatively equal
contribution to the system behavior from each of the terms in
the governing operator for the algorithm to learn the complete
and correct operator.

The block matrix regression in Eq. (9) empowers SINDy-
BVP to learn parametric coefficients described by nontrivial
functions including multimodal sinusoidal and piecewise
functions. However, it also imparts minor drawbacks. The
discovered parametric coefficients are learned as a vector
�(g) ∈ Rn, where each value of the coefficient is mapped to
a measured spatial position xk . This explicitly ties the res-
olution of the learned parameters to the measurement grid.
If it is reasonable to expect the parametric coefficients to be
described by a set of basis functions, it is plausible to use

the learned coefficient vectors as part of a sparse symbolic
regression problem akin to SINDy where the coefficients
are described by a sparse combination of basis functions.
Although this approach could reduce the number of measure-
ment points required to learn the parametric coefficients, it
implicitly depends on projecting the functions describing the
coefficients into a (known) sparse function basis. If SINDy-
BVP was applied to higher-dimensional systems (2D or 3D),
the regression (5) grows exponentially with each dimension.
For example, a 2D model on a grid with n samples in each
dimension requires a regression (9) with n2 matrices �(k)

comprising the block diagonal matrix �. However, a recent
work shows promising results on handling higher-dimensional
systems with tensor-based SINDy methods [37]. Applying
SINDy-BVP to higher-dimensional systems is a subject for
future work.

A variety of other adaptations to the SINDy-BVP architec-
ture could also be made that may improve model convergence
for operator identification and the accuracy of parametric
coefficient estimation. Noise handling may be improved by
implementing �∞ norm constraints on the coefficient vectors
�(g). Additionally, physics-informed constraints could be im-
posed on the optimization. For example, in the case of known
Sturm-Liouville form operators, constraints could be added to
the optimization that directly relate p(x) to its derivative px(x).
Conservation laws can also be included in the optimization
to provide additional constraints, for example, on the energy
within the system.

One important consideration is the practical applications of
SINDy-BVP to real physical systems. Logistically, SINDy-
BVP requires input data {U,F}, which are paired matrices
of measurements of the system (U) and different forcing
functions applied to the system (F). The matrix U can be
constructed using a grid of sensors measuring the desired
state variable (u(x)). In order to apply a variety of forcings, a
system-specific testing jig would likely need to be constructed
in which a forcing could be applied and measured simultane-
ously. For example, suppose the goal is to measure the thermal
properties of a composite bar. A measurement jig could be
constructed using an array of evenly spaced thermocouples
along the bar, while the forcings could be applied to the bar
using thermoelectric heaters.

The SINDy-BVP method proposed in this work success-
fully enables simultaneous discovery of the governing linear
or nonlinear operator L of a BVP and the parametric coeffi-
cients in the operator. It extends the SINDymethodology from
dynamical systems to time-invariant BVPs, and is demon-
strated to work on systems with piecewise and multimodal
sinusoidal parametric coefficients commonly found in hetero-
geneous materials systems.

The code for this project is available on GitHub at [38].
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