Rationales for Sequential Predictions

Keyon Vafa
Columbia University
keyon.vafalcolumbia.edu

David M. Blei
Columbia University
david.blei@columbia.edu

Abstract

Sequence models are a critical component of
modern NLP systems, but their predictions are
difficult to explain. We consider model ex-
planations though rationales, subsets of con-
text that can explain individual model predic-
tions. We find sequential rationales by solving
a combinatorial optimization: the best ratio-
nale is the smallest subset of input tokens that
would predict the same output as the full se-
quence. Enumerating all subsets is intractable,
so we propose an efficient greedy algorithm
to approximate this objective. The algorithm,
which is called greedy rationalization, applies
to any model. For this approach to be effec-
tive, the model should form compatible condi-
tional distributions when making predictions
on incomplete subsets of the context. This
condition can be enforced with a short fine-
tuning step. We study greedy rationalization
on language modeling and machine translation.
Compared to existing baselines, greedy ratio-
nalization is best at optimizing the sequential
objective and provides the most faithful ratio-
nales. On a new dataset of annotated sequen-
tial rationales, greedy rationales are most simi-
lar to human rationales.

1 Introduction

Sequence models are a critical component of gen-
eration tasks ranging from language modeling to
machine translation to summarization. These tasks
are dominated by complex neural networks. While
these models produce accurate predictions, their
decision making processes are hard to explain. In-
terpreting a model’s prediction is important in a va-
riety of settings: a researcher needs to understand
a model to debug it; a doctor using a diagnostic
model requires justifications to validate a decision;
a company deploying a language model relies on
model explanations to detect biases appropriated
from training data.

Interpretation takes many flavors (Lipton, 2018).
We focus on rationales, i.e. identifying the most

Yuntian Deng
Harvard University

dengyuntian@seas.harvard.edu

Alexander M. Rush
Cornell Tech
arush@cornell.edu

The
Supreme [l
court [
on HEAN
Tuesday IHHIHHEE
rejected IIIHIHE
a N [| |
challenge IHIIHHA [| |
to
the
constitutionality
of
the
death I [|

penalty

The
Supreme i
Court

on
Tuesday
rejected
a
challenge
to
the
constitutionality
of
the

death i
penalty

Figure 1. Rationales for sequential prediction on GPT-
2. Each row is a predicted word. The dark cells cor-
respond to the context words found by greedy rational-
ization. To predict “constitutionality”, the model only
needs “Supreme”, “Court”, “challenge”, and “the”.

important subset of input tokens that leads to the
model’s prediction. For example, consider the sen-
tence: “The Supreme Court on Tuesday rejected
a challenge to the constitutionality of the death
penalty.” Suppose we would like to explain the de-
cision of the model to generate “constitutionality”.
While the model mathematically conditions on all
the previous words, only some are necessary for
its predictions. In this case, the rationale produced
by our algorithm includes “the”, “challenge”, and
notably “Supreme Court”, but not phrases that add
no information like “on Tuesday” (Figure 1).

Various rationale methods have been proposed
for sequence classification, where each sequence
has a single rationale (Lei et al., 2016; Chen et al.,
2018; Jain et al., 2020). However, these methods
cannot scale to sequence models, where each token
in a sequence requires a different rationale.

This work frames the problem of finding se-

10314

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 10314-10332
November 7-11, 2021. (©2021 Association for Computational Linguistics

quence rationales as a combinatorial optimization:
given a model, the best rationale is the smallest
subset of input tokens that would predict the same
token as the full sequence. Finding the global op-
timum in this setting is intractable, so we propose
greedy rationalization, a greedy algorithm that it-
eratively builds longer rationales. This approach is
efficient for many NLP models such as transform-
ers (Vaswani et al., 2017). Moreover, it does not
require access to the inner workings of a model,
such as gradients.

Underlying this approach is an assumption that
the model forms sensible predictions for incom-
plete subsets of the input. Although we can pass
in incomplete subsets to neural models, there is no
guarantee that their predictions on these subsets
will be compatible with their predictions on full
contexts (Arnold and Press, 1989). We show that
compatibility can be learned by conditioning on
randomly sampled context subsets while training
a model. For large pretrained models like GPT-2
(Radford et al., 2019), fine-tuning is sufficient.

In an empirical study, we compare greedy ratio-
nalization to various gradient- and attention-based
explanation methods on language modeling and
machine translation. Greedy rationalization best
optimizes the objective, and its rationales are most
faithful to the inner workings of the model. We
additionally create a new dataset of annotated ratio-
nales based on the Lambada corpus (Paperno et al.,
2016). We find that greedy rationales are most sim-
ilar to human annotations, both on our dataset and
on a labeled dataset of translation alignments.

Our code and annotated dataset are available.

2 Sequential Rationales

Consider a sequence of tokens, y;.7, generated by
some unknown process y1.; ~ F'. The goal of
sequence modeling is to learn a probabilistic model
pg that approximates F' from samples. Maximum-
likelihood estimation is an effective way to train
these models, where 6 is fit according to

argénaxEyltTNF[logpa(ylzT)]- (D

Sequence models are typically factored into condi-
tional distributions:

T

poyrr) = foly) [[folwely<). @

t=2

"https://github.com/keyonvafa/
sequential-rationales

Here, fy is the specific model parameterizing py,
such as a transformer (Vaswani et al., 2017), and is
trained to take inputs y;. Going forward, we drop
the dependence on 6 in the notation.

Word-level explanations are a natural way to
interpret a sequence model: which words were in-
strumental for predicting a particular word? Would
the same word have been predicted if some of the
words had been missing?

Explanations may be straightforward for simpler
models; for example, a bigram Markov model uses
only the previously generated word to form predic-
tions. However, the most effective sequence mod-
els have been based on neural networks, whose pre-
dictions are challenging to interpret (Lipton, 2018).

Motivated by this goal, we consider a sequence
y1.7 generated by a sequence model p. At each
position ¢, the model takes the inputs in the context
1<¢ and uses them to predict y;. We are interested
in forming rationales: subsets of the contexts that
can explain the model’s prediction of yt.z

What are the properties of a good rationale? Any
of the contextual words y.; can contribute to ;.
However, if a model makes the same prediction
with only a subset of the context, that subset con-
tains explanatory power on its own. A rationale
is sufficient if the model would produce the same
y¢ having seen only the rationale (DeYoung et al.,
2020). While rationales consisting of the full con-
text would always be sufficient, they would be inef-
fective for explaining longer sequences. Intuitively,
the smaller the rationale, the easier it is to interpret,
so we also prioritize brevity.

We combine these desiderata and frame finding
rationales as a combinatorial optimization: the best
rationale of a word 9 is the smallest subset of in-
puts that would lead to the same prediction. Each
candidate rationale .S is an index set, and yg de-
notes the subset of tokens indexed by .S. Denote by
S = 201 the set of all possible context subsets.
An optimal rationale is given by

argmin |S| s.t. argmaxp(yilys) = . (3)
SeS A
The constraint guarantees sufficiency, and the ob-
jective targets brevity. Although the objective may
have multiple solutions, we only require one.
Optimizing Equation 3 is hindered by a pair
of computational challenges. The first challenge
2Qur paradigm and method extend easily to conditional

sequence models, such as those used for machine translation.
For full details, refer to Appendix A.

10315

https://github.com/keyonvafa/sequential-rationales
https://github.com/keyonvafa/sequential-rationales

is that solving this combinatorial objective is in-
tractable; framed as a decision problem, it is NP-
hard. We discuss this challenge in Section 3.
The second challenge is that evaluating distribu-
tions conditioned on incomplete context subsets
p(y;lys) involves an intractable marginalization
over missing tokens. For now we assume that
f(yilys) = p(yilys); we discuss how to enforce
this condition in Section 4.

3 Greedy Rationalization

We propose a simple greedy algorithm, greedy ra-
tionalization, to approximate the solution to Equa-
tion 3. The algorithm starts with an empty rationale.
At each step, it considers adding each possible to-
ken, and it selects the one that most increases the
probability of ;. This process is repeated until the
rationale is sufficient for predicting y;. Figure 2
provides an overview.

Here is the algorithm. Begin with a rationale
SO = (). Denoting by [t — 1] = {1,...,t — 1},
the first rationale set is

SM = arg max p(y¢|yk)-)
kelt—1]
At each step, we iteratively add a single word to
the rationale, choosing the one that maximizes the
probability of the word y;:

gntl) — g(n) argmax p(yi|ysmyg). (S)
ke[t—1]\S(™)

We continue iterating Equation 5 until
arg max, p(Yilysey) = wyi. The procedure
will always converge, since in the worst case,
S(=1) contains the full context.

The greedy approach is motivated by approxi-
mations to the set cover problem (Chvatal, 1979).
In our setting, each set is a single context token,
and a rationale “covers” a sequence if it results in
predicting the same token.

This procedure is simple to implement, and it is
black-box: it does not require access to the inner
workings of a model, like gradients or attention.

While greedy rationalization can be applied to
any model, greedy rationalization is particularly
effective for set-based models such as transform-
ers. If we assume the rationale size m = |S] is
significantly shorter than the size of the context ¢,
greedy rationalization requires no extra asymptotic
complexity beyond the cost of a single evaluation.

For transformers, the complexity of each evalu-
ation f(y¢|y<¢) is quadratic in the input set O(¢?).

Each step of greedy rationalization requires evalu-
ating f(y:|ys), but ys can be significantly smaller
than y;. A rationale of size m will require m steps
of O(t) evaluations to terminate, resulting in a total
complexity of O(m3t). As long as m = O(t'/3),
greedy rationalization can be performed with the
same asymptotic complexity as evaluating a trans-
former on the full input, O(#?). In Appendix C, we
verify the efficiency of greedy rationalization.

4 Model Compatibility

Greedy rationalization requires computing condi-
tional distributions p(y;|ys) for arbitrary subsets
S. Using an autoregressive model, this calcula-
tion requires marginalizing over unseen positions.
For example, rationalizing a sequence y;.3 requires
evaluating the candidate rationale p(ys|y;), which
marginalizes over the model’s predictions:

plyslyr) =Y Flyslyr, vz = k) f (g2 = Ely).
k

Given the capacity of modern neural networks,
it is tempting to pass in incomplete subsets yg to
f and evaluate this instead as f(y:|ys) ~ p(ye|ys).
However, since f is trained only on complete fea-
ture subsets y¢, incomplete feature subsets yg are
out-of-distribution (Hooker et al., 2019). Evaluat-
ing f(y3|y1) may be far from the true conditional
p(ys|y1). In Figure 4, we show that indeed lan-
guage models like GPT-2 produce poor predictions
on incomplete subsets.

4.1 Fine-tuning for Compatibility

Ideally f(y]ys) approximates p(y|ys), a property
known as compatibility (Arnold and Press, 1989).

Since training with Equation 1 only evaluates f on
complete contexts y., its behavior on incomplete
contexts yg is unspecified. Instead, compatibility
can be obtained by training to maximize

Ey, . r~FESUnif(s) [Zle log f (yt!ys<t)] , (6)

where S ~ Unif(S) indicates sampling word sub-
sets uniformly at random from the power set of all
possible word subsets, and S.; denotes the indices
in S that are less than ¢. Jethani et al. (2021) show
that the optimum of Equation 6 is the distribution
whose conditional distributions are all equal to the
ground-truth conditionals.

We approximate Equation 6 with word dropout.
In practice, we combine this objective with stan-
dard MLE training to learn compatible distributions

10316

bark context

“The”, “dogs”
“loud”, “dogs”
“and”, “dogs”

“hungry”, “dogs”
dogs

(a) (b)

| p (last word is “bark”) bark
0.04
0.41
0.03
0.13
loud dogs

(©

Figure 2. One step of greedy rationalization. In (a), the rationale so far is a single word, “dogs”. In (b), each
candidate token is considered and “loud” results in the best probability for “bark”. In (c), the token “loud” is added
to the rationale. This process repeats until the most likely word is the model prediction.

Standard training Compatible training

o P
[ee] o
\
\
\
\
\
\
\
\

f(next word is also 'the')

o
o

-
® s

[]
-
’
’
s
’
-’
-’
’
s

.0 0.5 1.0 0.0 0.5 1.0
Model probability Model probability

True probability
o o
N wu
]

o
o
=]

Figure 3. Training with word dropout (right) results in
compatible predictions for the majority-class synthetic
language. The optimal compatibility is the dashed line.

while maintaining the performance of the original
model. The word dropout distribution in Equation 6
is heavily skewed towards contexts containing half
the words in the sequence. To alleviate this prob-
lem, we modify the word dropout distribution to
sample subsets of varying lengths; see Appendix D.

The intuition for Equation 6 is straightforward: if
the model sees incomplete contexts while training,
it can approximate arbitrary incomplete distribu-
tions. Since f(y:|ys) approximates F'(y;|ys) and
f(ytly<¢) approximates F'(y;|y<¢), all the condi-
tional distributions are compatible.

4.2 Compatibility Experiments

To demonstrate the impact of training with the
compatibility objective in Equation 6, we consider
a synthetic majority-class language over binary
strings of 19 tokens. The first 17 are sampled uni-
formly from {0, 1}, and the 18th token is always
‘=". The 19th token is 0 if there are more 0’s than
1’s in the first 17 tokens, and 1 otherwise.

We train two models: one using the standard ob-
jective in Equation 1, the other using word dropout
to optimize Equation 6. Although both models
have the same heldout perplexity on the full con-
text, training with Equation 6 is required to form
compatible predictions on incomplete subsets. In
Figure 3, we provide both models with random sub-

Sentence so far: 'the'

o
o

N
~

Pretrained
® Fine-tuned for compatibility

o
N

0 20 40 60 80 100
Position ID of 'the'

Figure 4. Fine-tuning GPT-2 for compatibility re-
moves pathological repeating on incomplete contexts.
For a position ¢, the vertical axis gives f(yi+1 =
“the”|y; = “the”).

sets .S and calculate each model’s probability that
the last token is 1. A model that has only seen a few
tokens should be less confident about the predic-
tion of the final majority class, yet models trained
without word dropout ignore this uncertainty.
Models do not need to be trained from scratch
with Equation 6. A model can be pre-trained with
Equation 1, after which it can be fine-tuned for
compatibility. As an example, when GPT-2 is
not trained with word dropout, it makes insensi-
ble predictions for out-of-distribution sequences.
For a sequence that contains only the token “the”,
GPT-2 is trained to give reasonable predictions for
p(y2|y1 = “the”). But when it has only seen the
token “the” somewhere besides the first position
of the sequence, the top prediction for the word
after “the” is also “the”.> Of course, following
“the” with “the” is not grammatical. Fine-tuning for
compatibility alleviates this problem (Figure 4).
Finally, we find that that fine-tuning for com-
patibility does not hurt the heldout performance
of the complete conditional distribution of each

3We represent “the” at various positions by changing the
positional encoding passed into the transformer.

10317

fine-tuned model (see Appendix D).

5 Connection to Classification Rationales

In this section, we go over related rationalization
approaches developed for classification and discuss
why they cannot scale to sequence models. We also
show that the combinatorial rationale objective in
Equation 3 is a global solution to a classification
rationale-style objective.

In classification problems, a sequence 1.7 is
associated with a label y. Rationale methods are
commonly used in this setting (Lei et al., 2016;
Chen et al., 2018; Yoon et al., 2018; Bastings et al.,
2019; Jain et al., 2020; Jethani et al., 2021). The
most common approach uses two models: one, a
selection model ¢(S|x1.7), provides a distribution
over possible rationales; the other, the predictive
model p(y|zs), makes predictions using only sam-
ples from the former model. Typically, p and ¢ are
both optimized to maximize

Ex,yNFESNq(S\x,y) [logp(y‘xs) - A|SH (7N

Here, F' is the ground truth, unknown data distribu-
tion, and) is a regularizing penalty that encourages
smaller rationales.

In practice, it is infeasible to adopt this objective
for sequence models. Equation 7 is centered on pro-
viding classification models with only the words
in a sequence’s rationale. In sequential settings,
each word has a different rationale. Since sequence
models make 7" predictions per sequence and are
trained by sharing all 7" word representations, each
token would be indirectly exposed to words in the
rationales of the words it is allowed to use. A rem-
edy would be to train sequence models without
sharing representations, but this is computation-
ally infeasible; it requires O(7T'®) computations per
sequence for transformer architectures.

Most classification rationale methods treat
q(S|z1.7) as a probability distribution over all pos-
sible rationales. However, the ¢ that maximizes
Equation 7 is deterministic for any p. To see this,
note that ¢ does not appear inside the expectation
in Equation 7, so it can place all its mass on a
single mode. We provide a formal justification in
Appendix B.

Since the optimal selection model ¢ is a point-
mass, the optimal rationale can be written as

argmin S| —logp(y|zs). (8)
Ses

This optimization is identical to the combinatorial
optimization in Equation 3, albeit with a soft con-
straint on the rationale’s prediction: the true label
y is not required to be the maximum of p(y/|zg).
In practice, this soft constraint sometimes results
in empty rationales (Jain et al., 2020). Since we
view sufficiency as a key component of a good ra-
tionale, Equation 3 imposes a hard constraint on
the rationale’s prediction.

6 Related Work

Finding rationales is similar to feature selection.
While global feature selection has been a well-
studied problem in statistics (Guyon and Elisseeff,
2003; Hastie et al., 2009), instance-wise feature
selection — where the goal is selecting features
per-example — is a newer research area (Chen
et al., 2018). We review local explanation methods
used for NLP.

Gradient saliency. Gradient-based saliency
methods have long been used as a measure of
feature importance in machine learning (Baehrens
et al.,, 2010; Simonyan et al., 2013; Li et al.,
2016a). Some variations involve word embeddings
(Denil et al.,, 2014); integrated gradients, to
improve sensitivity (Sundararajan et al., 2017);
and relevance-propagation to track each input’s
contribution through the network (Bach et al.,
2015; Voita et al., 2021).

But there are drawbacks to using gradient-based
methods as explanatory tools. Sundararajan et al.
(2017) show that in practice, gradients are satu-
rated: they may all be close to zero for a well-
fitted function, and thus not reflect importance. Ad-
versarial methods can also distort gradient-based
saliences while keeping a model’s prediction the
same (Ghorbani et al., 2019; Wang et al., 2020). We
compare greedy rationalization to gradient saliency
methods in Section 8.

Attention. Recently, NLP practitioners have fo-
cused on using attention weights as explanatory
tools. The literature has made a distinction be-
tween faithfulness and plausibility. An explana-
tion is faithful if it accurately depicts how a model
makes a decision (Jacovi and Goldberg, 2020); an
explanation is plausible if it can be understood and
interpreted by humans (Wiegreffe and Pinter, 2019).
Practitioners have shown that attention-based expla-
nations are generally not faithful (Jain and Wallace,
2019; Serrano and Smith, 2019), but that they may

10318

be plausible (Wiegreffe and Pinter, 2019; Mohanku-
mar et al., 2020; Vashishth et al., 2019). Others
show that attention weights should not be inter-
preted as belonging to single tokens since they mix
information across tokens (Brunner et al., 2019;
Kobayashi et al., 2020). Bastings and Filippova
(2020) argue that general input saliency measures,
such as gradients, are better suited for explainabil-
ity than attention. We compare greedy rationaliza-
tion to attention-based methods in Section 8.

Local post-hoc interpretability. Another class
of methods provides local interpretability for pre-
trained models. These approaches aim to explain
a model’s behavior for a single example or for a
small subset of inputs. LIME (Ribeiro et al., 2016)
trains an interpretable model that locally approx-
imates the pretrained model. Alvarez-Melis and
Jaakkola (2017) learn a causal relationship between
perturbed inputs and their model outputs. These
methods impose no constraints on the pretrained
model. However, they are expensive — they require
training separate models for each input region. In
contrast, the method proposed here, greedy rational-
ization, can efficiently explain many predictions.

Input perturbation. Practitioners have also
measured the importance of inputs by perturbing
them (Zeiler and Fergus, 2014; K4dar et al., 2017).
Occlusion methods (Li et al., 2016b) replace an
input with a baseline (e.g. zeros), while omission
methods (Kadér et al., 2017) remove words entirely.
Li et al. (2016b) propose a reinforcement learning
method that aims to find the minimum number of
occluded words that would change a model’s pre-
diction. Feng et al. (2018) use gradients to remove
unimportant words to see how long it takes for the
model’s prediction to change. They find that the re-
maining words are nonsensical and do not comport
with other saliency methods. Others have shown
that input perturbation performs worse than other
saliency methods in practice (Poerner et al., 2018).
These methods have mostly focused on subtractive
techniques. For this reason, they are inefficient
and do not aim to form sufficient explanations. In
contrast, greedy rationalization efficiently builds
up sufficient explanations.

7 Experimental Setup

There are two goals in our empirical studies. The
first is to compare the ability of greedy rationaliza-
tion to other approaches for optimizing the combi-

natorial objective in Equation 3. The second is to
assess the quality of produced rationales.

We measure the quality of rationales using two
criteria: faithfulness and plausibility. An explana-
tion is faithful if it accurately depicts how a model
makes a decision (Jacovi and Goldberg, 2020); an
explanation is plausible if it can be understood and
interpreted by humans (Wiegreffe and Pinter, 2019).
Although sufficiency is a standard way to measure
faithfulness (DeYoung et al., 2020), all the ratio-
nales that satisfy the constraint of Equation 3 are
sufficient by definition. To measure plausibility, we
compare rationales to human annotations. Since
there do not exist language modeling datasets with
human rationales, we collected annotations based
on Lambada (Paperno et al., 2016). The annotated
dataset is available online, along with the code used
for all experiments.*

We compare greedy rationalization to a variety
of gradient- and attention-based baselines (see Sec-
tion 6). To form baseline sequential rationales,
we add words by the order prescribed by each ap-
proach, stopping when the model prediction is suf-
ficient. The baselines are: [gradient norms of em-
beddings (Li et al., 2016a), embedding gradients
multiplied by the embeddings (Denil et al., 2014),
integrated gradients (Sundararajan et al., 2017), at-
tention rollout (Abnar and Zuidema, 2020), the
last-layer transformer attention weights averaged-
across heads, and all transformer attentions aver-
aged across all layers and heads (Jain et al., 2020).

To compare rationale sets produced by each
method to those annotated by humans, we use the
set-similarity metrics described in DeYoung et al.
(2020): the intersection-over-union (IOU) of each
rationale and the human rationale, along with the
token-level F1, treating tokens as binary predic-
tions (either in the human rationale or out of it).

We use transformer-based models for all of the
experiments. We fine-tune each model for compat-
ibility using a single GPU. That we can fine-tune
GPT-2 Large (Radford et al., 2019) to learn com-
patible conditional distributions on a single GPU
suggests that most practitioners will be able to train
compatible models using a reasonable amount of
computation. For model and fine-tuning details,
refer to Appendix D.

*https://github.com/keyonvafa/
sequential-rationales

10319

https://github.com/keyonvafa/sequential-rationales
https://github.com/keyonvafa/sequential-rationales

8 Results and Discussion

The experiments test sequential rationales for lan-
guage modeling and machine translation. Ap-
pendix E contains full details for each experiment.

8.1 Language Modeling

Long-Range Agreement. The first study tests
whether rationales for language models can capture
long-range agreement. We create a template dataset
using the analogies from Mikolov et al. (2013).
This dataset includes word pairs that contain either
a semantic or syntactic relationship. For each type
of relationship, we use a predefined template. It
prompts a language model to complete the word
pair after it has seen the first word.

For example, one of the fifteen categories is
countries and their capitals. We can prompt a lan-
guage model to generate the capital by first men-
tioning a country and then alluding to its capital.
To test long-range agreement, we also include a
distractor sentence that contains no pertinent in-
formation about the word pair. For example, our
template for this category is,

When my flight landed in Japan, I converted my
currency and slowly fell asleep. (I had a terrifying
dream about my grandmother, but that’s a story
for another time). I was staying in the capital,

Here, the parenthetical clause is a distractor sen-
tence, since it contains no relevant information
about predicting the capital of Japan. The correct
capital, “Tokyo”, is predicted by GPT-2 both with
and without the distractor. We use this template for
all of the examples in the country capital category,
swapping the antecedent “Japan” for each country
provided in Mikolov et al. (2013).

We feed the prompts to GPT-2, which completes
each analogy. To measure faithfulness, we calcu-
late the percent of rationales that contain the true
antecedent, and the percent of rationales that do not
contain any words in the distractor. We only use ex-
amples where the prediction is the same both with
and without the distractor. We also perform exhaus-
tive rationale search on the objective in Equation 3.
This search is highly inefficient, so we only com-
plete it for 40 examples. To measure the approx-
imation ratio, we divide the size of the rationale
found by each method by the exhaustive rationale
size.

Table 1 contains the results on the compatible
model. Although all methods contain the true an-
tecedents in their rationales, greedy rationalization

Length Ratio Ante NoD
Grad norms 22.5 4.1 1.0 0.06
Grad x emb 38.0 7.4 099 0.01
Integrated grads 28.1 5.2 0.99 0.00
Attention rollout 36.9 7.1 1.0 0.12
Last attention 16.7 29 099 0.13
All attentions 14.5 2.6 1.0 0.02
Greedy 7.1 1.2 1.0 0.43

Table 1. Language modeling faithfulness on long-

range agreement with templated analogies. “Ratio”
refers to the approximation ratio of each method’s ratio-
nale length to the exhaustive search minimum. “Ante”
refers to the percent of rationales that contain the true
antecedent. “No D” refers to the percent of rationales
that do not contain any tokens from the distractor.

has by far the least distractors in its rationales. The
rationales are also universally shorter for greedy
rationalization and closer to the optimal rationales,
justifying our greedy assumption. To show that
fine-tuning GPT-2 for compatibility is not hurting
the baselines, we also perform the baseline meth-
ods on a pretrained GPT-2 without fine-tuning; see
Appendix E.

Annotated Rationales. To test the plausibility of
rationales for language models, we collect a dataset
of human annotations. We base the collection on
Lambada (Paperno et al., 2016), a corpus of narra-
tive passages. Each passage included in Lambada
is chosen so that humans need to use both local and
global context to reliably predict the final word. By
its construction it is guaranteed to have non-trivial
rationales.

Our goal is to collect rationales that are both
minimal and sufficient for humans. We run an an-
notation procedure with two roles: a selector and a
predictor. First, the selector sees the full passage
and ranks the words in order of how informative
they are for predicting the final word. Next, the
predictor sees one word at a time chosen by the
selector, and is asked to predict the final word of
the passage. The words the predictor saw before
guessing the correct word form a human rationale.
This rationale selection method is inspired by Ris-
sanen Data Analysis (Rissanen, 1978; Perez et al.,
2021), which uses a minimum description length
metric to estimate feature importances. We rely on
human annotators to estimate information gains.

Since it could be trivial for humans to predict
the final word if it also appears in the context, we
only include examples that do not repeat a word.
We collect annotations for 107 examples, which we

10320

Length IOU F1
Gradient norms 60.2 0.14 0.22
Gradient x embedding 68.3 0.12 0.21
Integrated gradients 62.8 0.12 0.21
Attention rollout 73.9 0.11 0.19
Last attention layer 54.6 0.15 0.25
All attention layers 48.7 0.20 0.28
Greedy 17.9 0.25 035

Table 2. Language modeling plausibility on rationale-
annotated Lambada.

Target word: grow

"Just who is going to pay for this special feed grain
anyway? It must cost a bit if it's that special.”

"You're going to pay, obviously," replied Mitch, "since
your cows will be eating it. On the other hand, Joe will be
planting and irrigating the grain. He'll do all the work to
make it

Target word: refuse

It was the kind of smile that I'd seen before. The kind the
boxer gave me right before he killed me in that dirty fight.

“I have a proposition for you" he began, pulling his
hands down from under his chin and pushing out of the
chair. “One that you won’t be able to

Figure 5. Examples from our annotated Lambada
dataset. Highlighted text denotes greedy rationales, and
bolded text denotes human-annotated rationales.

also release publicly. We use two sets of annota-
tors for 15% of the examples in order to compute
inter-annotator agreement. On this subset, the aver-
age token-level Cohen’s x is 0.63 (Cohen, 1960),
indicating substantial agreement.

We compare the rationales produced by each
method to the annotated rationales. Table 2 shows
that the greedy rationales are most similar to the
human-annotated rationales. Greedy rationaliza-
tion is also the most effective at minimizing the
combinatorial objective in Equation 3, as its ra-
tionales are by far the shortest. Figure 5 contains
examples of rationales for this dataset.

It is worth noting that the top few words added
by the baselines are quite relevant; after 5 tokens,
the all-attention baseline has a better F1 and IOU
than greedy rationalization. However, the baselines
struggle to form sufficient rationales, which hurts
their overall performance.

8.2 Machine Translation

Distractors. To measure faithfulness, we take a
transformer trained on IWSLT14 De-En (and fine-

Mean Crossovers Crossover Rate

Source Target Source Target
Grad norms 0.40 0.44 0.06 0.06
Grad x emb 6.25 5.57 0.42 0.41
Integrated grads 2.08 1.68 0.23 0.14
Last attention 0.63 2.41 0.09 0.24
All attentions 0.58 0.80 0.08 0.12
Greedy 0.12 0.12 0.09 0.02
Table 3. Translation faithfulness with distractors.

“Mean crossovers” refers to the average number of
crossovers per rationale, and “Crossover rate” refers
to the fraction of rationales that contain at least one
Crossover.

tuned for compatibility), and generate translations
for 1000 source sequences from the test set. We
then create a corpus by concatenating random ex-
ample pairs; for two sampled pairs of source and
target sequences, (S1,71) and (S2,T5), we create
a new example (5152, T1T»). Each token in 77 is
generated from S alone, so its rationales shouldn’t
contain any tokens from S5. Similarly, 75 is gen-
erated from S alone, so its rationales shouldn’t
contain any tokens from S or 77.

We evaluate each rationale by counting how
many times it has crossed over: a rationale for
T1 crosses over every time it contains a token in
S9, and a rationale for T crosses over every time
it contains a token in S; or T} (since the model is
autoregressive, 711’s rationales can never contain
tokens from 75).

Table 3 contains the results. Greedy rational-
ization has by far the fewest average number of
crossovers per rationale. Although the percent of
source rationales that cross over is slightly higher
than the percent using gradient norms, the percent-
age on the target side is superior.

Annotated Alignments. To test plausibility, we
compare the rationales to word alignments (Brown
etal., 1993). Using a dataset containing 500 human-
labeled alignments for German-English transla-
tion,> we compute rationales for each method using
the ground truth targets. We measure similarity to
the labeled rationales by computing alignment error
rate (AER) (Och and Ney, 2000), along with com-
puting the IOU and F1 between sets. To separate
the requirement that the rationale be sufficient from
each method’s global ordering of tokens, we also
compare top-1 accuracies, which measure whether

5https ://www—16.informatik.rwth—aachen.
de/goldAlignment/

10321

https://www-i6.informatik.rwth-aachen.de/goldAlignment/
https://www-i6.informatik.rwth-aachen.de/goldAlignment/

Length AER IOU F1 Topl
Grad norms 10.2 082 030 0.16 0.63
Grad x emb 13.2 090 0.16 0.12 040
Integrated grads 11.3 085 024 014 042
Last attention 10.8 084 027 0.15 0.59
All attentions 10.7 082 032 0.15 0.66
Greedy 4.9 078 040 024 0.64

Table 4. Translation plausibility with annotated align-
ments. The first four columns correspond to using the
full source rationale found by each method; the last col-
umn “Topl” refers to the accuracy of the first source
token added by each method. AER refers to alignment
error rate.

O Human labeled alignment

. Greedy rationale

def [[T T T T T]

e [ef [[][]] f]

g [[[[[[fef |]|

g | || [[[] el]|

ol [| | || [ef []]

g | || Jel [][]
||

= e)
E £ N
_fg o

2

c

©

[}

Qo

the

auestions ..
<
o

hoffe .

+ G
oo I
e [
= |

Figure 6. Greedy rationalization for machine transla-
tion. Each row depicts the source words contained in a
rationale. Although each rationale includes both source
and target words, here we only show source-side ratio-
nales so they can be compared to annotated alignments.

the top token identified by each baseline is present
in the labeled alignment set.

Table 4 contains the results. The rationales
learned by greedy rationalization are more similar
to human-labeled alignments than those provided
by gradient and attention methods. Many methods
have similar top-1 accuracies — indeed, the best
top-1 accuracy comes from averaging all attention
layers. This reinforces the notion that although the
baselines may be able to capture first-order infor-
mation, they struggle to form sufficient rationales.
Figure 6 contains an example of greedy rationaliza-
tion applied to machine translation, along with the
human-labeled alignments.

9 Conclusion

We proposed an optimization-based algorithm for
rationalizing sequence predictions. Although ex-
act optimization is intractable, we developed a
greedy approach that efficiently finds good ratio-
nales. Moreover, we showed that models can be
fine-tuned to form compatible distributions, thereby
circumventing an intractable marginalization step.
In experiments, we showed that the greedy algo-
rithm is effective at optimization, and that its ratio-
nales are more faithful and plausible than those of
gradient- and attention-based methods. We hope
that our research, along with the release of an an-
notated dataset of sequence rationales, catalyzes
further research into this area.

Acknowledgments This work is funded by
ONR NO00014-17-1-2131, ONR NO00014-15-1-
2209, NSF CCF-1740833, DARPA SD2 FA8750-
18-C-0130, Two Sigma, Amazon, and NVIDIA.
Keyon Vafa is supported by the Cheung-Kong In-
novation Doctoral Fellowship. Alexander Rush
and Yuntian Deng are sponsored by NSF 1901030
and NSF CAREER 2037519. We also thank Mark
Arildsen, Elizabeth Chen, Justin Chen, Katherine
Chen, Nathan Daniel, Alexander Hem, Farzan Vafa,
Neekon Vafa, Willy Xiao, and Carolina Zheng.

References

Samira Abnar and Willem Zuidema. 2020. Quantify-
ing attention flow in transformers. In Association
for Computational Linguistics.

David Alvarez-Melis and Tommi S Jaakkola. 2017. A
causal framework for explaining the predictions of
black-box sequence-to-sequence models. In Associ-
ation for Computational Linguistics.

Barry C Arnold and S James Press. 1989. Compatible
conditional distributions. Journal of the American
Statistical Association, 84(405):152—156.

Sebastian Bach, Alexander Binder, Grégoire Mon-
tavon, Frederick Klauschen, Klaus-Robert Miiller,
and Wojciech Samek. 2015. On pixel-wise explana-
tions for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7):e0130140.

David Baehrens, Timon Schroeter, Stefan Harmel-
ing, Motoaki Kawanabe, Katja Hansen, and Klaus-
Robert Miiller. 2010. How to explain individual clas-
sification decisions. The Journal of Machine Learn-
ing Research, 11:1803-1831.

10322

Jasmijn Bastings, Wilker Aziz, and Ivan Titov. 2019.
Interpretable neural predictions with differentiable
binary variables. In Association for Computational
Linguistics.

Jasmijn Bastings and Katja Filippova. 2020. The ele-
phant in the interpretability room: Why use attention
as explanation when we have saliency methods? In
ACL Workshop on BlackboxNLP.

Peter F Brown, Stephen A Della Pietra, Vincent J
Della Pietra, and Robert L Mercer. 1993. The math-
ematics of statistical machine translation: Parameter
estimation. In Association for Computational Lin-
guistics.

Gino Brunner, Yang Liu, Damian Pascual, Oliver
Richter, Massimiliano Ciaramita, and Roger Watten-
hofer. 2019. On identifiability in transformers. In
International Conference on Learning Representa-
tions.

Mauro Cettolo, Jan Niehues, Sebastian Stiiker, Luisa
Bentivogli, and Marcello Federico. 2014. Report on
the 11th IWSLT evaluation campaign. In Interna-
tional Workshop on Spoken Language Translation.

Jianbo Chen, Le Song, Martin Wainwright, and
Michael Jordan. 2018. Learning to explain: An
information-theoretic perspective on model interpre-
tation. In International Conference on Machine
Learning.

Vasek Chvatal. 1979. A greedy heuristic for the set-
covering problem. Mathematics of Operations Re-
search, 4(3):233-235.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and Psychological
Measurement, 20(1):37-46.

Misha Denil, Alban Demiraj, and Nando De Freitas.
2014. Extraction of salient sentences from labelled
documents. In International Conference on Learn-
ing Representations.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C Wallace. 2020. ERASER: A benchmark to
evaluate rationalized NLP models. In Association
for Computational Linguistics.

Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer,
Pedro Rodriguez, and Jordan Boyd-Graber. 2018.
Pathologies of neural models make interpretations
difficult. In Association for Computational Linguis-
tics.

Amirata Ghorbani, Abubakar Abid, and James Zou.
2019. Interpretation of neural networks is fragile.
In Association for the Advancement of Artificial In-
telligences.

Aaron Gokaslan and Vanya Cohen. 2019. Openweb-
text corpus. http://Skylion007.github.
io/OpenWebTextCorpus.

Isabelle Guyon and André Elisseeff. 2003. An intro-
duction to variable and feature selection. Journal of
Machine Learning Research, 3(Mar):1157—-1182.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman.
2009. The elements of statistical learning: Data
mining, inference, and prediction. Springer Science
& Business Media.

Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans,
and Been Kim. 2019. A benchmark for interpretabil-
ity methods in deep neural networks. Neural Infor-
mation Processing Systems.

Alon Jacovi and Yoav Goldberg. 2020. Towards faith-
fully interpretable NLP systems: How should we de-
fine and evaluate faithfulness? In Association for
Computational Linguistics.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not explanation. In North American Chapter of the
Association for Computational Linguistics.

Sarthak Jain, Sarah Wiegreffe, Yuval Pinter, and By-
ron C Wallace. 2020. Learning to faithfully ratio-
nalize by construction. In Association for Computa-
tional Linguistics.

Neil Jethani, Mukund Sudarshan, Yindalon
Aphinyanaphongs, and Rajesh Ranganath. 2021.
Have we learned to explain?: How interpretability
methods can learn to encode predictions in their
interpretations. In Artificial Intelligence and
Statistics.

Akos Kadar, Grzegorz Chrupata, and Afra Alishahi.
2017. Representation of linguistic form and func-
tion in recurrent neural networks. In Association for
Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and
Kentaro Inui. 2020. Attention is not only a weight:
Analyzing transformers with vector norms. In Asso-
ciation for Computational Linguistics.

T. Lei, R. Barzilay, and T. Jaakkola. 2016. Rationaliz-
ing neural predictions. In Association for Computa-
tional Linguistics.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016a. Visualizing and understanding neural mod-
els in NLP. In Association for Computational Lin-
guistics.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016b. Un-
derstanding neural networks through representation
erasure. arXiv preprint arXiv:1612.08220.

Zachary C Lipton. 2018. The mythos of model in-
terpretability: In machine learning, the concept of
interpretability is both important and slippery. In
Queue, volume 16, pages 31-57. ACM New York,
NY, USA.

10323

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. In Workshop Track at
ICLR.

Akash Kumar Mohankumar, Preksha Nema, Sharan
Narasimhan, Mitesh M Khapra, Balaji Vasan Srini-
vasan, and Balaraman Ravindran. 2020. Towards
transparent and explainable attention models. In As-
sociation for Computational Linguistics.

Franz Josef Och and Hermann Ney. 2000. Improved
statistical alignment models. In Association for com-
putational linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. Fairseq: A fast, extensible
toolkit for sequence modeling. In Association for
Computational Linguistics.

Denis Paperno, German Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, San-
dro Pezzelle, Marco Baroni, Gemma Boleda, and
Raquel Ferndndez. 2016. The LAMBADA dataset:
Word prediction requiring a broad discourse context.
In Association for Computational Linguistics.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
Rissanen data analysis: Examining dataset char-
acteristics via description length. arXiv preprint
arXiv:2103.03872.

Nina Poerner, Benjamin Roth, and Hinrich Schiitze.
2018. Evaluating neural network explanation meth-
ods using hybrid documents and morphological
agreement. In Association for Computational Lin-
guistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "Why should I trust you?" Explain-
ing the predictions of any classifier. In Special Inter-
est Group on Knowledge Discovery and Data.

Jorma Rissanen. 1978. Modeling by shortest data de-
scription. Automatica, 14(5):465—471.

Sofia Serrano and Noah A Smith. 2019. Is attention in-
terpretable? In Association for Computational Lin-
guistics.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2013. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-
tional Conference on Machine Learning.

Shikhar Vashishth, Shyam Upadhyay, Gaurav Singh
Tomar, and Manaal Faruqui. 2019. Attention in-
terpretability across NLP tasks. arXiv preprint
arXiv:1909.11218.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Neural Information Processing Sys-
tems.

Elena Voita, Rico Sennrich, and Ivan Titov. 2021. An-
alyzing the source and target contributions to predic-
tions in neural machine translation. In Association
for Computational Linguistics.

Junlin Wang, Jens Tuyls, Eric Wallace, and Sameer
Singh. 2020. Gradient-based analysis of NLP mod-
els is manipulable. In Empirical Methods in Natural
Language Processing.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is
not not explanation. In Empirical Methods in Natu-
ral Language Processing.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, et al. 2019. Transformers: State-of-the-art nat-
ural language processing. In Empirical Methods in
Natural Language Processing.

Jinsung Yoon, James Jordon, and Mihaela van der
Schaar. 2018. INVASE: Instance-wise variable se-
lection using neural networks. In International Con-
ference on Learning Representations.

Matthew D Zeiler and Rob Fergus. 2014. Visualizing
and understanding convolutional networks. In Euro-
pean Conference on Computer Vision.

10324

A Algorithm Details

We present greedy rationalization in Algorithm 1.

Algorithm 1: Greedy rationalization

Input: Sequence y;.; generated from p.
QOutput: Rationale .S for y;.
Initialize: S = ()
while arg max,, p(y;|ys) # y: do
k* = argmaxpep 1)\ s P(Ye|ysuk)

S=SuUk*
return S

Mose sequence models, including transformers,
use the representation of a token 1;_; to predict
the next token, 7;. As such, a rationale S always
needs to contain y;_;. In practice, we initialize
S ={yt1}.

This method and paradigm extend easily to con-
ditional sequence models, such as those used in
machine translation. In this setting, a model uses a
source sequence x1. to generate a target sequence
y1.7. Thus, a context for a prediction y,; contains
both y+ and x1. 7. The set of all possible rationales
is the cross product of power sets S = 2V x 2t=1],
and the combinatorial objective is

S(xl:valzt) = arg min |Sx‘ + ’Sy|

T ye

st. argmax p(ylzs, vs,) = ¥
i

To perform greedy rationalization in this setting,
we consider adding either a source token or a target
token at each step, choosing the one that results in
the largest increase in the full model’s prediction.

B Optimality of Deterministic Rationales

Here, we show that the selection distribution
q(S|z,y) that maximizes the classification ratio-
nale objective in Equation 7 is deterministic. We
re-write the objective below:

Ex,yNFESNq(S\x,y) [logp(y\xs) - >‘|S|])

Theorem 1. For any p(y|xs), the ¢(S|x,y) that
maximizes Equation 9 is a point-mass.

Proof. Denote by g(z,y,S) = logp(y|lxs)—A|S|:
m;mx By yFEsq(S|ey)[9(7, Y, 5)]
<maxE; - r mgx[g(a?, y,S)]
q

- Ex,yNF mgx[g(a; Y, S)}

Step Complexity Evaluations Total

1 1? t 1%t

2 22 t—1 22(t — 1)
o) o) o) ot°?)
Total o)

Table 5. For transformers, the asymptotic complexity
of greedy rationalization matches the asymptotic com-
plexity of forming a single prediction on the full se-
quence, as long as the rationale size is O(t'/?) for a
sequence of length ¢.

The inequality uses the fact that the expectation
of a random variable is bounded by its maxi-
mum value. When ¢(S|z,y) is a point-mass
at arg maxg[g(z,y,S)], the inequality becomes
tight. O

The fact that the optimal rationale is determinis-
tic for each example justifies using combinatorial
strategies such as our objective in Equation 3.

C Efficiency

In Table 5, we provide a detailed version of our
complexity analysis from Section 3: For transform-
ers, greedy rationalization can be performed at no
extra asymptotic complexity if the rationale length
is O(t'/3) for a sequence length t.

We evaluate the computational efficiency of
greedy rationalization in Table 6. We compare
greedy rationalization to an exhaustive search,
which enumerates all possible context context sub-
sets from shortest to longest to optimize Equation 3.
To show the efficiency of evaluating transformers
on arbitrarily sized inputs, we also compare to a
version of greedy rationalization that evaluates a
transformer on the full input. To make predictions
on sparse subsets, this approach masks tokens that
aren’t in a candidate rationale during each attention
step. In contrast, the efficient version of greedy
rationalization only takes as input the tokens in the
candidate rationale, so there is no need for mask-
ing.

10325

Method Time (s)
Exhaustive search >60
Greedy rationalization with full inputs 1.22
Greedy rationalization with sparse inputs 0.30

Table 6. Greedy rationalization is efficient, especially
when evaluating transformers on sparse inputs. We re-
port the average wall clock time in seconds for find-
ing rationales on the templated analogies dataset of
Mikolov et al. (2013). We cannot complete exhaustive
search for the longer examples, so in reality the average
runtime is larger than the listed one.

We perform these comparisons on the templated
analogies dataset of Mikolov et al. (2013). We
use GPT-2 Large as our sequence model (Radford
et al., 2019) and perform each method on a single
GPU. We compare the two greedy rationalization
approaches for all of the examples for which the
full model predicts the templated output. Since ex-
haustive search is intractable, we cannot perform it
on every example due to computational constraints.
Thus, we only run exhaustive search on examples
where the optimal rationale has 6 or less tokens. In
reality, the average runtime for exhaustive search
is larger than the listed one.

D Training and Fine-Tuning Details

Our experiments consist of three models and
datasets: a transformer decoder (Vaswani et al.,
2017) trained on a majority-class language, GPT-2
(Radford et al., 2019) fine-tuned on Open WebText
(Gokaslan and Cohen, 2019), and a transformer
machine translation model trained and fine-tuned
with word dropout on IWSLT14 De-En (Cettolo
etal., 2014).

For the majority-class language, we generate
the dataset as described in Section 4. We include
50,000 examples in the training set, 5,000 in the
validation set, and 5,000 in the test set.

We use a 4-layer transformer decoder with 2
attention heads per layer. We use an embedding
dimension of 64, and a hidden dimension of 256
for the feedforward layers. This corresponds to
200,000 parameters. We train with 0.1 weight
dropout, and optimize using Adam (Kingma and
Ba, 2015) with a learning rate of 0.005 and an in-
verse square root learning rate scheduler. We use a
warmup period of 4000 steps and an initial warmup
learning rate of 10~7. We include a maximum of
64,000 tokens in each batch. We implement this
model in Fairseq (Ott et al., 2019).

To approximate the compatibility objective in
Equation 6, we train with varying amounts of word
dropout. In practice, this amounts to masking out
each token we drop out at each attention layer. We
use two levels of word dropout in Figure 3; none
(which corresponds to training with the standard
maximum likelihood objective in Equation 1) and
0.5. We train each model on a single GPU. Each
model takes less than 20,000 steps to converge,
less than 90 minutes. Table 7 verifies that fine-
tuning with word dropout does not hurt the heldout

perplexity.

To fine-tune GPT-2, we use the pretrained GPT-
2 Large model available on Hugging Face (Wolf
et al., 2019). This model has 774M parameters.
We don’t change any of the model settings when
we fine-tune. Sampling context subsets uniformly
at random as stated in the objective in Equation 6
results in a distribution of subsets heavily skewed
towards those containing half the words in the se-
quence. This is fine for the majority-class language,
since each sequence contains less than 20 tokens
and thus all possible context sizes will be seen dur-
ing training. However, GPT-2’s sequence length
is 1,024. 99% of the time, sampling from the ob-
jective as stated would result in contexts with size
464-560. Notably, the probability of a context with
less than 10 tokens is less than 107284,

We make two adjustments to make sure the
model is trained on both small and large subsets.
With probability 0.5, we condition on the full con-
text. With the remaining 0.5, we first randomly
sample context sizes uniformly at random from 1
to the sequence length. We then sample a random
context subset of this size. This guarantees that
all possible sequence lengths will be seen during
training.

Since the WebText dataset used to train GPT-2
is not publicly available, we use Open WebText
(Gokaslan and Cohen, 2019), an open source re-
production effort. The corpus is in English. Rather
than using the entire dataset, we take “Subset 9”
and use the first 163M words. Our validation set is
also from this subset and contains 160,000 words.
We use a test set of 300,000 words from a different
subset.

10326

We fine-tune GPT-2 Large using Adam. We
use a constant learning rate of 0.0001, using a sin-
gle batch per training step. We stop training after
62,500 steps. This takes 15 hours on a single GPU.
Table 7 shows that fine-tuning with word dropout
actually improves the heldout perplexity, although
we believe that the improvement is due to our test
set bearing more resemblance to the fine-tuning set
than to the pretraining set.

We use a standard transformer encoder/decoder
to train a machine translation model on IWSLT14
De-En (Cettolo et al., 2014). We follow the prepro-
cessing and model architecture recommended by
Fairseq.® The training set has 160,239 translation
pairs, the validation set has 7,283, and the test set
has 6,750.

As for the model, both the encoder and decoder
are transformers with 6 layers, 4 attention heads
per layer, 512 embedding dimensions, and 1024
feedforward dimensions. This corresponds to 40M
parameters. We train with 0.3 weight dropout and
0.1 label smoothing, using 4,096 tokens for each
train step. We train with Adam with a learning rate
of 5 x 10~* and use an inverse square root learning
rate scheduler with 4,000 warmup steps.

When we fine-tune for compatibility, we again
condition on the full context with probability 0.5.
With the remaining probability, we drop out each
source and target token independently at each atten-
tion head with probability 1 — 1/7", where T is the
sequence length (so the dropout probability varies
for the source and target sequence). Although we
drop out different tokens at each attention head
of a layer, we make sure that the same tokens are
dropped out at each layer. Our word dropout pro-
cedure ensures that our objective will be trained on
small contexts since rationales for machine transla-
tion are typically very sparse. We fine-tune using
Adam with a constant learning rate of 10~° for
410,000 steps. The heldout BLEU scores of both
models are equal; see Table 7.

®https://github.com/pytorch/fairseq/
tree/master/examples/translation

E Experimental Details

E.1 Long-Range Agreement

Table 8 contains the template we used for the set of
experiments containing the analogies from Mikolov
et al. (2013). To avoid rationales containing par-
tial antecedents, we only include examples where
both words in the analogy correspond to single
word-pieces using GPT-2’s tokenizer. Since it only
makes sense to rationalize correct predictions, we
also only include the examples where GPT-2 cor-
rectly completes the analogy. In total, this results
in 175 examples. Of these, we randomly sample
50 to perform exhaustive search, which we use to
compute the approximation ratio of each method.
Since we cannot run exhaustive search when the
minimal sufficient rationale is too large, we use the
40 that converge with rationales of length 6 or less.
We use 100 steps to approximate the path integral
for the integrated gradients baseline (Sundararajan
et al., 2017).

To confirm that the baseline performances are
not being hindered by fine-tuning for compatibility,
we re-run the experiment for each rationalization
method on the pretrained GPT-2 Large, without any
fine-tuning. The results are depicted in Table 9. As
expected, the baselines perform even worse when
GPT-2 is not fine-tuned to form compatible distribu-
tions. We do not include comparisons to exhaustive
rationales because it is computationally infeasible
to run exhaustive search on incompatible models,
since optimization takes much longer to converge.

E.2 Machine Translation

For the distractor experiment, we randomly con-
catenate 500 pairs of source and target sequences
generated by our fine-tuned model on the test set.
We evaluate rationales by counting how many times
they “cross over” and contain words from the dis-
tractor sequence. We do not penalize rationales
that include special tokens like the beginning of
sentence or end of sentence tokens.

10327

https://github.com/pytorch/fairseq/tree/master/examples/translation
https://github.com/pytorch/fairseq/tree/master/examples/translation

Model

Transformer decoder

GPT-2

Transformer encoder/decoder

Dataset Evaluation Metric ~ Standard Training Compatible Training
Majority-Class Perplexity 1.8 1.8
Open WebText Perplexity 18.3 17.1
IWSLT14 EnDe BLEU 34.8 34.8

Table 7. Fine-tuning for compatibility does not hurt heldout performance. The first two rows are language models
and the evaluation metric is heldout perplexity; the last row is machine translation, for which the evaluation metric

is BLEU.

Relationship

Example

Capital countries

Currency

City in state

Family

Opposite

Comparative

Superlative

Present participle

Nationality adjective

Past tense

Plural

Plural verbs

When my flight landed in Greece, I converted my currency and slowly fell
asleep. (I had a terrifying dream about my grandmother, but that’s a story for
another time). [was staying in the capital, Athens

As soon as [arrived in Japan, I checked into my hotel and took a long nap. (I
had finally finished the book I was reading and it was amazing). I had to figure
out the exchange rate to the local currency, which is apparently called the yen
As soon as I arrived in Florida, I checked into my hotel and watched a movie
before falling asleep. (I had a great call with my husband, although I wish it
were longer). I was staying in my favorite city, Miami

I'initially invited my uncles, who gladly accepted my invitation. (My favorite
song just came on, so I was able to relax). When I learned that women were
allowed, I went ahead and also invited my aunts

I thought it was pleasant. (Just then an ad came on the TV, but that’s irrelevant).
It was the opposite of that: it was unpleasant

I knew it was tall, but that’s before I saw it in person. (Just then I thought about
my ex-wife, but I had to stop thinking about her). When I did end up seeing it
in person, it was even taller

I thought it would be the smallest thing I’d ever encounter. (I tried to ignore
my phone vibrating in my pocket). But when I did end up encountering it, it
turned out it wasn’t so small

Every other day, it started working in the morning. (I tried to remember the
name of the woman at the bar). But today, it did not work

I had never been friends with any French people before. (The funniest thing
happened to me the other day, but that’s a story for another time). In fact, I had
never even been to France

Although I listened yesterday, I had a million things to do today. (I suddenly
felt a pinched nerve, so I made a mental note to get that checked out). So today
I wouldn’t have time to do any more listen

I really wanted to buy the computer, more than I ever wanted to buy anything
before. (I was also behind on my homework, but that’s another story). So I
went to the store and asked if they had any computers

I can usually sing by myself. (I was so behind on work but I tried to distract
myself). Although it’s so much better when someone else also sings

Table 8. Template using analogies from Mikolov et al. (2013).

10328

Length Ante NoD
Gradient norms 24.8 1.0 0.08
Gradient x embedding 41.1 0.99 0.00
Integrated gradients 34.9 1.0 0.00
Attention rollout 384 1.0 0.05
Last attention layer 20.1 0.99 0.03
All attention layers 19.5 1.0 0.02
Greedy 13.1 1.0 0.30

Table 9. The performance of each rationalization
method on the templated version of the analogies
dataset (Mikolov et al., 2013) when we don’t fine-tune
for compatibility. As expected, fine-tuning for compati-
bility (Table 1) improves performance across the board.

For the alignment experiment, we use a public
corpus of annotated rationales.” Not every word
in the dataset has an alignment, and some words
have multiple alignments. Although the human
annotations are on word-level alignments, our ma-
chine translation models are trained on subwords,
so the rationales contain subwords in addition to
full words. To make these comparable to the hu-
man annotations, we define the rationale of a full
target word to contain the union of the subword
rationales. Since each source word may also be a
subword, we also take the union of source words
in a rationale. To calculate top-1 accuracy, we de-
fine the rationale for a full word to be accurate if
the rationales for any of the subwords in the ratio-
nale contain any source subwords that are in the
annotated alignment.

The alignment dataset contains both "sure" and
"possible" alignments. These are used to differenti-
ate between different errors when calculating the
alignment error rate (Och and Ney, 2000). For the
other metrics, we include both kinds of alignments
as part of the annotated alignments.

For both machine translation experiments, we
use 50 steps to approximate the path integral for the
integrated gradients baseline (Sundararajan et al.,
2017).

7https ://www—-16.informatik.rwth—aachen.
de/goldAlignment/

E.3 Annotated Lambada

We work with volunteers to annotate Lambada (Pa-
perno et al., 2016). Each example requires two
annotators: a selector, and a predictor. A selec-
tor’s goal is to choose the most important words
for predicting the final word of a passage, known
as the target word. Predictors will only be seeing
the words chosen by a selector, and their goal is to
predict the final word of the passage.

The selector first takes a passage and ranks 15
words. The top-ranked word always needs to be
the word before the final word of the passage. They
cannot select the final word of the passage. Each of
their selections needs to be a complete word. They
cannot select the same word twice, and they need
to use all 15 spots. They know that a predictor will
be predicting words, one-at-a-time, using the order
they create.

When a selector is finished ranking the top 15
words, a predictor begins by seeing the top ranked
word. They use this to predict the last word. Words
are revealed one-at-a-time in the order chosen by
the selector. Selectors can see how much space is
between the words that have been revealed. Selec-
tors are not told if they predicted a word correctly;
the goal of the exercise is to capture the predic-
tor’s true predictions, so if they knew that previous
guesses were incorrect, they may use this infor-
mation to guess a new word at every step. If a
predictor is not able to guess the target word at the
end of the exercise, we re-assign the example to
another predictor.

Figure 7 contains an example given to selectors.
Figure 8 contains an example given to predictors.

In total, we annotate 107 examples, and use all of
them for the rationalization experiment. For each
example, we define a human’s rationale to be all
the words that were revealed by the selector before
the predictor first predicted the true target word or
a synonym of it. The average rationale length is
6.0.

To compare human rationales to those found by
various methods, we first tokenize the text with
GPT-2’s tokenizer, and convert an annotated ratio-
nale to its set of corresponding subwords. Each
method’s rationale is also a set of subwords. We
use set-comparison metrics like intersection over
union (IOU) and F1 to compare the similarity of
rationales. We use 100 steps to approximate the
path integral for the integrated gradients baseline
(Sundararajan et al., 2017).

10329

https://www-i6.informatik.rwth-aachen.de/goldAlignment/
https://www-i6.informatik.rwth-aachen.de/goldAlignment/

Instructions and examples

Instructions: Given a paragraph of text, select the words in the order that's most important for predicting the final
word of the passage.

Later on, someone will see only the words you select and will try to guess the last word from them. You will receive
extra compensation depending on how early they predict the last word. This means you should order the words by
how important they are for predicting the last word, which will not necessarily be in chronological order. Guessers
will always be able to see the word directly before the word they are trying to predict, so this word is the
default first selection (you shouldn't change this label). Guessers will also be able to see how far apart the words are.

For this task, you will be selecting words for the following passage:
"He has my heart," she stated simply, closing the door of her apartment with a small smile. Glancing at
the clock on the wall of her apartment, Asha knew she'd have to hurry to get ready for her dinner date

with Kade. A rush of adrenaline and excitement flooded her body as she moved quickly to the bathroom
to shower. Not that Kade would mind if she was late

So you should select words that will clue the word late. The guesser will begin by seeing the word with the "1" label,
which will always be the word before the one they are trying to predict (do not change this first label):

... Was

To choose your ordering, imagine what the person guessing the final word will be seeing. The most telling words will
probably be a combination of words that are close to the final word of the paragraph, and some keywords that are
further away. Think about what inferences they can make about not only the word they are trying to predict, but
about all the words in the passage you do not reveal.

¢ We have labelled the first word for you. Please do not modify label 1. Start adding words with the label 2.
« Each selection must contain only a single word.

« Each selection must contain full words (for example, you cannot select only the first letter of a word).

¢ The selections cannot overlap.

¢ You must use all 15 labels, but you cannot use the same label for more than one word.

Highlight parts of the text below

"He has my heart," she stated simply, closing the door of her apartment with a small smile.
2% 6% 88X 11°3 %
Glancing at the clock on the wall of her apartment, Asha knew she'd have to hurry to get ready

for her dinner date with Kade. A rush of adrenaline and excitement flooded her body as she
5X 4xX 91X
moved quickly to the bathroom to shower. Not that Kade would mind if she was

Labels

Labels

| B
| H
W
|
Ws
M
w7
M

oo

O No entities to label m

X

No entities to label m

Figure 7. Sample instructions given to selectors to annotate Lambada.

10330

Guess the missing word.

Your job is to guess the last word of the paragraph. You will begin by seeing only the word directly
before the last word. At each step, we will reveal a new word to you. You must predict a word at
every step. Although you will see new words at each step, you will always be predicting the final
word of the paragraph (denoted by " ").

Tips

« The word you are guessing is the last word of the sentence, so make sure your predictions
make sense as sentence endings.

» We will never tell you if your prediction is right or wrong. So if you think your prediction is correct
as more words are revealed, you should not change it.

¢ You are predicting one missing word, so make sure your predictions are all single words.

e The spaces between words will give you a sense of how many words are missing between
words.

« This may be hard at first, so just use your best judgment. It will get easier as words are revealed,
especially because the words will appear in the most helpful order.

Fill in the blank with your best prediction of the final word of the last sentence (denoted by
" "). The word before the final word is already filled out.

phone reception
able get a

Figure 8. Sample instructions given to predictors to annotate Lambada.

10331

Target word: again

| wanted to make sure you were still comfortable with the
arrangements. | can always do something different."

You're too good to me, Max. But I'm fine. | promise. I'm going
to be okay this time. I've learned from my past mistakes. |
don’t want to make them

Target word: fire

"We aren't out of danger yet,” Horatius said. He headed
northwest without thinking about it. It just seemed the right
way to go.

Chloe squirmed as she became more alert. "We have to go
back. Now. We can't leave my house burning with my family
in there."

Horatius didn't know what to do about the

Target word: ring

I joined Mark, Tony, and his son back in the crowd as the
event started. | wanted to catch Yegor's match before | got
ready for my debut. He was wrestling first; there were only
four matches on the card.

Minutes after | got seated the lights dimmed. That cold
music filled with horns played. It was Yegor's time to come
to the

Target word: contract

‘Your services will be required for the period of three
months.'

| press my lips together. | was very drunk last night, but |
am sure he said one month. 'Can | speak to him?'

'Of course.' He picks up the phone and speed dials his
client's number. 'Mr. Barrington, Miss Bloom would like
to have a word about the length of the

Figure 9. Sample rationales from our annotated Lam-
bada dataset. Highlighted text corresponds to greedy
rationales, and bolded text corresponds to human an-

notated rationales.

F Qualitative Examples

Figure 9 contains examples of rationales on our

annotated Lambada dataset.

10332

