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Abstract

Anomalously large, transient fluctuations of acoustical noise intensity, up to four-five orders of
magnitude above the background, were observed with single hydrophone receiver units (SHRUSs)
and on the L-shaped horizontal and vertical line array of hydrophones (HVLA) in the Shallow
Water 2006 experiment on the continental shelf off New Jersey. Here, temporal and spatial
properties of these noise bursts are investigated. As tidally generated nonlinear internal waves
(NIWs) move across the site of the experiment from the shelf break towards the coast, they form
trains of localized, soliton-like waves with up to 25-35 m displacement of isopycnal surfaces.
The NIW trains consecutively cross the positions of five SHRUs and HVLA that are located
about 5-8 km from each other along a line perpendicular to the coast. The noise bursts were
observed when an NIW train passed through locations of the corresponding acoustic receivers.
Turbulence of the water flow, saltation and bedload of marine sediments were the dominant
causes of the acoustic noise bursts caused by NIWs at different frequency bands. On near-bottom
hydrophones, the most energetic part of the observed noise bursts is attributed to collisions of

suspended sediment particles with each other, the sensor, and the seafloor.
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I. INTRODUCTION

Internal gravity waves in the ocean create time-dependent and spatially inhomogeneous
variations in temperature and sound speed profiles and are known to have a significant effect on
underwater sound propagation (Simmen et al., 1997; Colosi et al., 1999; Tang et al., 2007).
Especially strong variations in the sound propagation conditions and attendant fluctuations of the
acoustic fields occur due to nonlinear internal waves (NIW) on continental shelves (Zhou et al.,
1991; Godin et al., 2006; Apel et al., 2007). The magnitude of the acoustic effects depends on the
NIW amplitude and spatial structure as well as on the azimuthal direction of the acoustical track
relative to the direction of NIW propagation, which determines the dominant physical
mechanism of the NIW-sound interaction. For example, on a 14 km propagation track largely
along NIW wavefronts in the SWARM9S5 experiment in the Mid-Atlantic Bight, NIW-induced
focusing and defocusing of acoustic normal modes in the horizontal plane was found to result in
sound intensity fluctuations of low-frequency (20-300 Hz), with magnitudes of 7-8 dB and
periods of about 10 minutes (Badiey et al., 2002, 2007). In the same experiment, for mid-
frequency signals (a few kHz) on a different sound propagation track crossing the NIW
wavefronts, sound intensity fluctuations of a few dB took place due to NIW-induced coupling of
the acoustic normal modes (Badiey et al., 2002; Katsnelson et al., 2009). Perhaps the strongest
reported NIW-induced fluctuations of the transmission loss, or frequency-dependent sound
intensity, of 20-25 dB were observed in the Yellow Sea off China; these were explained in terms
of the resonant Bragg scattering of sound by an NIW wave train (Zhou et al., 1991; Apel et al.,

2007).
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In addition to the propagation effects, NIWs were observed to change sound intensity by
generating underwater acoustic noise. Currents of various nature, including NIW-induced
currents, shed vortices and generate turbulent pressure fluctuations when flowing past acoustic
sensors and elements of their moorings. These pressure fluctuations are observed as very low-
frequency noise (typically, below a few tens of Hertz) and are known as flow noise (Strasberg,
1979; Webb, 1988). Measurements of NIW-induced flow noise have been described in the
literature (Serebryany et al., 2008b; Yang et al., 2013). At higher frequencies, Serebryany et al.
(2005, 2008a, 2008b) observed strong fluctuations of the ocean surface-generated broadband
acoustic noise that accompanied passage of a strong NIW. These fluctuations were attributed to
the modulation of the surface gravity and capillary-gravity wave activity on the ocean surface by
NIW-induced currents. NIW-induced fluctuations of the intensity of the surface-generated noise
reached 10—15 dB in deep water in the Indian ocean (Serebryany et al., 2005) and up to about 6
dB on the continental shelf in the in the Mid-Atlantic Bight (Serebryany et al., 2008b). Similar
observations were made by Yang et al. in the Pacific northeast of Taiwan (Yang et al., 2013) and
in the South China Sea (Yang et al., 2015), with about 10 dB variations of the acoustic noise

intensity due to NIW-induced changes in the surface wave activity.

In the present paper, we describe our analysis of observations of very large (up to 50 dB)
broadband, transient increases in the noise intensity, to be referred to as noise bursts, on the
continental shelf off New Jersey. By combining acoustic observations on various hydrophones
with measurements of the water temperature and current velocity, we established a relationship
between individual noise bursts and tidally generated, localized, soliton-like NIWs, and
identified the physical mechanisms likely responsible for the observed acoustic manifestations of

the NIWs.
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The paper is organized as follows: Section 2 outlines acquisition of the data used in this
study. Properties of the noise bursts are discussed in Section 3. In Section 4 we show that the
observed temporal and spectral characteristics of the noise bursts can be explained in terms of
three physical mechanisms of noise generation, which include turbulence of the water flow and
NIW-induced sediment saltation. Section 5 puts our findings into the broader context of previous
research on sediment-generated underwater noise and sediment resuspension by NIWs. The
results of the work are summarized in Section 6 along with their possible application to
investigation of soliton-like NIWs on the continental shelf and of contributions of the NIWs to

study of sediment transport and of soliton-like NIWs on the continental shelf.

II. EXPERIMENT AND DATA

The data used in this study were obtained in the multi-disciplinary, multi-institutional
Shallow Water 2006 experiment (SW’06). The experiment was carried out in July—September,
2006, in the Mid-Atlantic Bight on the continental shelf off New Jersey (Newhall et al., 2007;
Tang et al., 2007; Lynch and Tang, 2008; Xue et al., 2014). A bathymetric map of the
experiment site is shown in the lower left corner of Fig. 1. Water depth in this area decreases
gradually from about 120 m near the shelf break to 55-60 m 40 km from the shelf break. The
typical summer water temperature profile was characterized by a monotonic temperature
decrease from the surface to the seafloor and a rather strong thermocline with about 12°C
temperature drop between 10 and 25 m depths. The corresponding sound speed profile was at its
minimum on the seafloor and provided for a bottom-interacting guided sound propagation.
However, occasional near-bottom intrusions of warm, salty water, sometimes referred to as “the

foot of the shelfbreak front” (Linder and Gawarkiewicz, 1998), raised the sound speed minimum
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to as high as the middle of the water column on some days during the observation period

(Newhall et al., 2012).

The site of the experiment is characterized by a strong internal gravity wave activity,
which is well documented (Tang et al., 2007; Shroyer et al., 2011; Xue et al., 2014).
Approximately twice a day, a strong NIW is generated around the shelf break as a result of
interaction of barotropic tides with the bathymetry. NIWs move from the shelf break shoreward
in the northwest direction, largely along the bathymetry gradient. Over the two-month duration
of the experiment, tens of events were registered of NIW train passages through the instrumented
site. Direction of propagation and surface structure (shape of wavefronts, the number of waves in
the train, and distance between them) were obtained using shipboard observations (Shroyer et al.,
2011) and satellite images (Xue et al., 2014), which show a rather narrow spread of NIW
propagation directions in the horizontal plane. NIW propagation directions were nearly parallel
to the across-shelf line, along which a suite of acoustic sensors, thermistor chains, and acoustic

Doppler current profilers (ADCPs) was deployed (Fig. 1).

Detailed information about the three-dimensional structure and temporal evolution of the
NIW trains was obtained using a few tens of thermistor chains (Newhall et al., 2007; Tang et al.,
2007; Lynch and Tang, 2008; Shroyer et al., 2011). These data show that the NIWs were
predominantly depression waves except for possible reversal of polarity at shoaling that was
observed (Shroyer et al., 2009) on several occasions. As semidiurnal internal tide moved from
the shelf break towards the shore, each tidal internal wave evolved into a wave train consisting of
up to 1012 localized, soliton-like waves (Fig. 1). The isopycnal depression amplitude of the

individual localized waves was largest near the leading front of the train and gradually decreased
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toward its back end. The observed wave trains were qualitatively similar to the D-noidal model

of NIWs (Apel, 2003).

Observations of strong NIW events on the 17, 18, 19 and 22 of August, 2006, have been
selected for the present study. These events had quite similar patterns of NIW movement and, in
turn, similar features of acoustic intensity fluctuations. Consider a 12-hour time period from
08:00-20:00 GMT on August 19, 2006. The period started with the appearance of an NIW in the
shelf-break area. NIW evolution process can be analyzed using temperature records from a
cluster of 16 thermistor chains in a 2x2 km square-shaped area (Newhall et al., 2007).
Temperature was sampled at 30 s intervals. Positions of selected thermistor chains, denoted by
letters SW, and of the acoustic receiving systems, single-hydrophone receiving units (SHRUSs)
and the L-shaped horizontal and vertical line hydrophone array (HVLA) Shark, are shown on the
bathymetric map in Fig. 1. SHRUs were moored with heavy anchors, with the hydrophone
located about 7 m above the seafloor. HVLA Shark consisted of a 16-hydrophone vertical linear
array (VLA), which extended through most of the water column, and a 450m-long, 32-

hydrophone, near-bottom horizontal linear array (HLA).

Five panels at the top of Fig. 1 show the temperature records obtained by five thermistor
chains located at various distances from the shelf break. Each temperature record was 90 minutes
long, corresponding to the time it took an NIW train to pass each thermistor chain. It can be seen
that the NIW train was generated in the area between SW23 (where we can see the forward front
of an unstructured NIW) and SW54, where NIW had developed a well-defined across-the-front
structure. The distance between SW23 and SW24 was about 14 km. At SW54, the NIW
contained 12 distinct, soliton-like waves (peaks of the depression of the isothermal surfaces) with

amplitudes of the thermocline’s displacement from equilibrium position of up to 25-30 m (Fig.
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1). As the NIW train moved shoreward, it passed consecutively a set of acoustic receivers,
including the HVLA Shark and five SHRUs, which were located a distance of 5-8 km from one
other along a straight line. The NIW train evolved as it propagated; the amplitudes and the
number of the localized waves in the train changed (Fig. 1). One can estimate the speed v of the
NIW train using distance between thermistor chains and the temporal interval between arrivals of
the NIW leading front. From such an estimate we obtained v ~ 0.9 m/s, length of the NIW trains
L ~ 5 km, quasi-period of the spatial structure inside the NIW train / ~ 250-300 m. The

corresponding scale of temporal variability was 5—7 minutes.

For the entire duration of the SW’06 experiment, acoustic pressure was continuously
measured by the SHRU and HVLA Shark hydrophones. The acoustic data was recorded with the
common sampling rate of 9765.625 Hz for all hydrophones. Measured time series p(¢) of
acoustic pressure p are used below for calculation of various characteristics of the acoustic field,
including its intensity, frequency spectrum, and spectrograms. In addition, current velocity was
measured using acoustic Doppler current profilers (ADCPs). The data obtained with a moored

300 kHz ADCP (Fig. 1) that was used in this study is described in Section 3.

ITII. OBSERVATIONS OF NOISE BURSTS

The vertical line array of HVLA Shark was collocated with thermistor chain SW54 (Fig.
1) but other acoustic receivers, including SHRU1, SHRU4, and SHRUS, had no collocated
temperature sensors. Figure 2 presents a diagram demonstrating the connection between NIW
passage and observations of elevated noise intensity at different points across the shelf. In the top
panel, the vertical axis denotes distance along the straight line through locations of the
hydrophones and thermistor chains, with 0 of this axis corresponding to the position of the
thermistor chain SWO01. The horizontal axis represents time and covers 15 hours of observations.

9
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Temporal variation of temperature at different locations is illustrated by temperature
measurements (denoted by the letter #), by one thermistor at 40 m depth of each of 5 thermistor
chains. Note that all positions of the forward front of NIW train in the range-time plane were
located approximately along a straight line, which indicates a nearly constant speed of the NIW
train of 0.9 m/s. Time series of measured sound intensity are shown for four SHRUs and one of
the hydrophones (channel 40) of HVLA Shark. The parts of these records that show large, rapid
increases (bursts) of the noise intensity are indicated by boxes a-e. Figure 2 shows that the noise

bursts were observed when the NIW train traveled past the acoustic sensor.

More detailed information about the frequency content of acoustic signals and its time
dependence can be obtained using spectrograms. Spectrograms S(f, #) have been calculated in the

frequency range 10-4000 Hz as follows:

S(f,t1) = W (t — t)p(t)e 2" dt (1)

Here p(¢) is a measured time series of acoustic pressure, f'is sound frequency, and W(¢—t1)
is the time window. A Kaiser window (Kaiser and Schafer, 1980) incorporating 1024 pressure
samples was used. Figure 2 shows spectrograms of noise recorded when a NIW train was
moving consecutively through positions of SHRU1 (panel a), HVLA Shark (channel 40,
hydrophone in the center of HLA, panel b), and SHRUs 3, 4, 5 (panels ¢, d, e, respectively).
HVLA Shark is represented in Fig. 2 by measurements on channel 40, which was a hydrophone

at the center of the horizontal line array.

10
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In the area of NIW generation, where water depth was about 100 m, fluctuations of
acoustic intensity were relatively weak, especially at frequencies above 1 kHz (see panel a in
Fig. 2), although there was some correlation of the intensity fluctuations with NIWs. In
particular, the temporal scale of the sound variability of about 7 minutes corresponded to the
time interval between separate localized waves with the NIW train. A similar situation took place
on the HVLA Shark hydrophones (panel b). Noise intensity was significantly weaker on the
vertical part of the L-shaped array than on its horizontal part as was previously reported by

Serebryany et al. (2008b).

Acoustic intensity fluctuations increased as the NIW train moved to shallower water.
Panel d in Fig. 2 depicts the spectrogram of noise recorded by SHRU4, which was located
between thermistor chains SW03 and SW04. Comparison of the shapes of the NIW train
recorded by these thermistor chains (panels b and ¢ in Fig. 1) shows that the main parameters of
the NIW train — the number of individual localized waves, their amplitudes (~ 30—40 m), and the
time interval between the waves (~ 7 min) — did not change significantly between SW03 and
SWO04. Hence, SW03 and SW04 measurements should provide a suitable representation of the
NIW train at SHRU4. Comparison of the temperature record ¢ in Fig. 1 and spectrogram d in
Fig. 2 demonstrated a good agreement between the temporal scales (total duration of about 1
hour, the interval between peaks ~ 7 min) in the temperature and intensity measurements. The
agreement between time dependencies of the temperature variations and acoustic spectra
indicated a causal relation between NIWs and noise intensity fluctuations at SHRU4 and, by

extension, at other locations on the continental shelf.

The SW3 and SW4 temperature records (panels b and ¢ in Fig. 1) have 12 large peaks,

which corresponded to individual localized internal waves. Amplitude of the waves tended to

12
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decrease toward the tail of the NIW train. The data from acoustic sensors SHRU 3 and SHRU4,
which were located between the thermistor chains SW3 and SW4 (Fig. 1), showed fewer peaks
in the spectrograms. There are six strong, broadband noise bursts in SHRU3 data in panel ¢ in
Fig. 2. Water depth was about 68 m and 82 m at SHRU4 and SHRU3 locations respectively. For
SHRU4, which was located in shallower water of 68 m depth, panel d in Fig. 2 shows 10 strong,
broadband noise bursts. We relate the observed difference in the number of noise bursts to the
difference in the speed of the near-bottom currents induced by NIWs at the two sites. As
discussed in Section 4, speed of the near-bottom currents increased with increasing wave
amplitude and decreasing water depth (see Eq. (4)). The change in the number of noise bursts at
frequencies above a few hundred Hertz suggests that acoustic noise generation has a threshold
character. Number of noise bursts is equal to number of the individual localized peaks in the

NIW train with the speed of near-bottom current larger than threshold value.

The value of the threshold can be estimated by combining the noise intensity and water
temperature measurements with current velocity data. Current velocity was not measured at
acoustic sensor locations. We used the velocity data obtained with an acoustic Doppler current
profiler, which was collocated with the thermistor chain SW30. Figure 3 compares the ADCP
measurements with simultaneous measurements of the water temperature profile by thermistor
chains SWO07 and SW30 and acoustic observations at SHRU3. In the direction across the NIW
wavefront, SW30 and ADCP preceded SHRU3 by about 700 m, and SW07 was behind SHRU3
by about 500 m (Fig. 1). This geometry was responsible for the 10—15 minutes shifts of the
respective temperature and current velocity manifestations of an NIW wave train (Fig. 3b—d)
from its acoustic manifestations (Fig. 3a). The wave train evolved as it propagated. Isothermal

depressions had five and seven strong peaks following the leading front of the NIW train at

13
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SWO07 and at SW30, respectively (Fig. 3b, c). It is reasonable to assume that there were six
strong peaks at SHRU3, which is located between SW07 and at SW30. Figure 3a shows six

strong, broadband noise bursts following the leading front of the NIW train.

- SHRU3 Aug 19,11:29:59 N
: o
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Figure 3. (Color online) Temperature, current velocity, and acoustic manifestations of an NIW
train in the vicinity of the acoustic receiver SHRU3. (a) Spectrogram of acoustic noise recorded
by SHRU3. (b) Time history of the water temperature on the thermistor chain SW07. (¢) Time
history of the water temperature on the thermistor chain SW30. (d) Time-dependence of the
horizontal current velocity at three depths: 20.2 m (1), 44.2 m (2), and 68.2 m (3). Time (GMT)

on 19 August 2006 is shown in hours and minutes.
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Horizontal velocity of the water flow caused by the NIW train reached its maximum
when the isothermal depression was at maximum (Fig. 3c, d). Observed velocities reached — and
for the strongest peaks exceeded — 60 cm/s below the thermocline. Velocity magnitude gradually
declined with depth below the thermocline and decreased by a factor of about 1.5 near the
bottom (Fig. 3d). Comparison of the spectrogram of acoustic noise with the ADCP
measurements indicated that strong, broadband noise bursts occurred when the NIW-induced

near-bottom current exceeded a threshold value of about 40 cm/s.

These results suggest that the noise bursts occurred around the time when a peak of
isothermal depression passed the observation point. A more precise relation between the phase of
the isothermal displacement and acoustic noise can be obtained using the HVLA Shark data,
since SW54 thermistors were attached to the vertical part of the hydrophone array. Figure 4
compares simultaneous, collocated measurements of the water temperature profile and sound
intensity on the lowest hydrophone on the vertical part of the array. The figure demonstrates that
maximum noise intensity was observed when the NIW-induced displacement of isothermal
surface was at maximum. The time-dependent acoustic intensity / and intensity level /L were

calculated as follows:

1 t1+At
I(t,) = mftf lp(®)I*dt, (2)

NIL(t,) = 10l0g;o[<] 3)

15
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Here At =1 s is the average time, p and ¢ are the density and sound speed in water, and /o

is the reference intensity, corresponding to the root mean square acoustic pressure of 1 pPa.
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Figure 4. (Color online) Temporal variations of the temperature depth dependence measured by
thermistor chain SW54 (upper panel) and noise intensity on a collocated hydrophone (lower

panel). Time (GMT) on 19 August 2006 is shown in hours and minutes.

The noise generated by NIWs on near-bottom hydrophones was as strong as, if not
stronger, than any signal received or noise of a different origin. This is illustrated in Fig. 5,
which shows the time dependence of acoustic intensity recorded by SHRUS during a full day. A
number of sound generation mechanisms contributed to the observed acoustic field. For instance,
from 04:00 to 17:00 there were prominent signals from the research sources (Newhall et al.,
2007; Lynch and Tang, 2008), which were towed through the experiment site. Strong low-
frequency noise, presumably due to shipping and/or a storm, was present from about 10:00-
14:00. This noise was superimposed on and overshadows signals from the research sources.

NIW-induced noise intensity bursts appeared as a sequence of high and narrow, quasi-periodic
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intensity peaks in the 16:30-17:30 time interval. Intensity of the noise bursts reached 150-155 dB
re 1 pPa. It exceeded the background noise intensity of 110-115 dB re 1 uPa by 40 dB, or four

orders of magnitude.

160 ¥ . . . |
- E 100 i
E s 0 2 IWs HW]\ | H
L g 0 e il TR
1—3"140 = 07:05 _|l| M
© i )
A -
%120’ | |IH,““ ,H. ’
= " i Wi
= Signals— WHWWw
100 ' : ! |
04:00 08:00 12:00 16:00 20:00 00:00

Time

Figure 5. (Color online) Temporal variation of the acoustic intensity measured by SHRUS.
Time (GMT) on 19 August 2006 is shown in hours and minutes. The insert shows the
spectrogram of a nine-minute section of the pressure record and illustrates contributions of
research sound sources. Color shows power spectral density of total acoustic field in dB re 1

uPa?/Hz.

IV. MECHANISMS OF NOISE GENERATION

Noise intensity, its time dependence, and the spectral content of the noise showed
significant variability depending on hydrophone position and position of NIW train. Three
distinct types of acoustic noise that accompanied the passage of NIWs can be identified, which
combined to explain the bulk of observations (see Fig. 6). These types are (i) low-frequency

noise, which is illustrated in Figs. 6a and 6b, (ii) noise spikes of ~1 s duration with spectral peaks
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located below approximately 1 kHz (Fig. 5¢), and (ii1) more frequent, shorter-duration spikes
with prominent high-frequency content above 3 kHz, which subsequently merged to become a

continuous signal of a few minutes in duration (Fig. 6d).

The low-frequency noise was most pronounced at infrasonic frequencies below 10 Hz
(Fig. 6b). It was observed almost continuously as each soliton-like wave in the NIW train passed
the acoustic receiver. Acoustic intensity increased rapidly with the magnitude of pycnocline
depression (see the time dependence of noise spectral density at frequencies below 10 Hz in Fig.
6b). The low-frequency noise was clearly observed on all SHRUs and on VLA hydrophones,

where noise intensity was only weakly dependent on the hydrophone depth.

We interpret the low-frequency noise that was observed as flow noise (Strasberg, 1979;
Webb, 1988; Bassett et al., 2014). Flow noise, also known as pseudosound, results from
advection of pressure fluctuations in a turbulent flow past the sensor. Pressure fluctuations
include ambient fluctuations in a turbulent flow as well as pressure pulsations due to eddy
shedding when the flow interacts with the sensor and the entire mooring. Intensity of flow noise
is known to increase with decreasing frequency (Strasberg, 1979; Webb, 1988; Bassett et al.,
2014). Interpretation of the low-frequency noise as flow noise is supported by the apparent
absence of such noise in signals on HLA hydrophones, which lie on the seafloor. For the
pseudosound due to eddy shedding, by the flow past a cylinder of diameter d, the representative
frequency is f. = St u/d, where St ~ 0.2 is the Strouhal number and u is flow velocity (Strasberg,
1979; Webb, 1988). With NIW-induced currents of ~0.5 m/s (Serebryany et al., 2008b; see also
Fig. 3d), the observed upper frequency of 10 Hz is consistent with the eddy shedding by a
mooring wire with d ~ 1 cm. The hydrophone and pressure housing have larger dimensions and

contribute to lower-frequency pseudosound.
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The observed strong correlation between intensity of low-frequency noise and pycnocline
depression in NIWs (Fig. 4) can be understood within the following simple model of NIW
currents. Consider a progressive NIW with a linear wavefront, which moves with speed ¢ along
horizontal coordinate x in an ocean, where potential density jumps across a narrow pycnocline
and remains constant below it. Let the water depth, unperturbed pycnocline depth, and
pycnocline depression due to NIW be H(x), A(x), and n(x — ct). The flow is stationary in the
reference frame moving with NIW. In the long-wave approximation (Apel et al., 2007), it

follows then from the continuity equation that flow velocity u(x, ¢) below the pycnocline is

—cn(x—ct)

u= (4)

~ H(x)—h(x)-n(x—ct)

The minus sign in the numerator in Eq. (4) indicates that near the seafloor, water flows in
the direction opposite to the direction of NIW propagation. Note that magnitude |u| of the flow
velocity rapidly increases with increasing pycnocline depression and, for fixed #, is inversely
proportional to the distance from the perturbed pycnocline to the seafloor. For example, in the
vicinity of SHRU3 the water depth was H =~ 80 m, thickness of thermocline 2 ~20 m and the
pycnocline depression 77 = 20 m, and Eq. (4) gives |u| = ¢/2 ~ 0.5 m/s. This estimate agrees well

with the ADCP measurements shown in Fig. 3d.

The key to understanding the origin of the second noise type, illustrated in Fig. 6c¢, is the
fact that it was observed only on HLA hydrophones and was not present on either VLA
hydrophones or SHRUs. HLA hydrophones lay on the seafloor, while the VLA and SHRU
hydrophones were located at least 6 m above it. Moreover, the type-two noise was at maximum
on hydrophones in the middle of the HLA, and no noise of this type was observed on the

hydrophones at both ends of the array, which were fixed by heavy anchors (Newhall et al.,
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2007). All the observed features of type-two noise are consistent with hydrophones being
dragged along the seafloor by NIW-induced near-bottom currents, with the stronger noise caused
by the bigger displacements that occurred away from the anchors. This interpretation was
proposed by Serebryany et al. (2008a, 2008b), who were the first to report observations of NIW-

associated noise on several HLA hydrophones in the middle of the array.

The third and most intense type of observed noise is illustrated in Fig. 6d, which uses the
SHRUS data. We interpret this noise type as the noise generated by moving sediments that had
been mobilized by the NIW-induced near-bottom currents. After sediment particles leave the
seafloor, they generate acoustic waves (noise) by colliding with each other and with the
stationary seabed as well as with near-bottom acoustic sensors and/or their housing. Mobilization
of sediments and dynamics of the suspended sediment particles are controlled by the

composition of surficial sediments and the near-bottom current velocity.
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Figure 6. (Color online) Spectrograms of acoustic field recorded by hydrophones on vertical

(VLA) and horizontal (HLA) arrays during passage of a train of nonlinear internal waves.

Spectrograms are shown of acoustic pressure on a VLA hydrophone at depth of 62 m (a); low-

frequency part of the acoustic pressure on the same hydrophone (b); on a hydrophone in the

middle of HLA (¢); and on single-hydrophone receiver SHRUS (d). Time (GMT) on 19 August

2006 is shown in hours minutes, and seconds.

To our knowledge, NIW-induced sediment generated noise (SGN) has not been

previously described. [The possibility of occurrence of such noise was hypothesized by

Serebryany et al. (2008b) and Yang et al. (2015).] However, there is extensive literature on SGN
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produced by other kinds of currents such as river flow, orbital velocities in surface gravity
waves, and tidal currents (Bassett, 2013; Thorne, 2014; Rickenmann, 2017). SGN has been
measured using underwater sensors and seismometers on dry land (Roth et al., 2016). SGN
properties have been studied in laboratory experiments (Thorne, 1985, 1986), in rivers (Roth et
al., 2016; Geay et al., 2017; Petrut et al., 2018) as well as in straits (Thorne, 1986; Bassett, 2013)
and the surf zone at sea (Voulgarist et al., 1999). Bassett et al. (2013) investigated SGN caused
by currents in a tidal channel in Puget Sound. They found that a near-bottom current velocity
above a critical value of 50-60 cm/s was necessary to produce SGN and that the shape of the
SGN spectrum depended on sediment grain size. SGN was typically most pronounced above 2

kHz with a maximum spectral density at frequencies of 10—15 kHz.

The threshold character, frequency content, and the value of the current velocity
threshold (Section 3) of the type-three NIW-induced noise are consistent with the previously
observed SGN due to tidal currents in the ocean, which supports our interpretation of the
mechanisms of the type-three noise. The difference in the current velocity thresholds (~40 cm/s
vs. 50—60 cm/s) can be attributed to a difference in the sediment grain sizes at the experiment

sites on the New Jersey shelf and in Puget Sound.

Let us compare quantitatively the conditions, under which the third noise type was
observed, with the conditions (e.g., Miller et al., 1977; Wiberg and Smith, 1987) needed for
sediment mobilization to occur at the SW’06 experiment site. Sediment grains begin to move and
SGN arises when the shear stress due to near-bottom current exceeds a certain threshold. The

shear stress and the threshold (critical) shear stress are usually characterized in terms of the

shear, or friction, velocity u. and its critical value u.” . Experimentally determined dependence
of u.” on the grain size D of well-sorted, siliciclastic sediments (the Inman curve) can be found in
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(Miller et al., 1977) and, with additional experimental results, in (Wiberg and Smith, 1987). It is
reproduced in Fig. 7a (curve 5). A semi-empirical theory of the critical shear stress is presented
by Wiberg and Smith (1987) for sediments consisting of either grains of the same size or a
mixture of grains of different sizes. The seabed roughness, which affects the turbulent flow in the
near-bottom boundary layer, is characterized in this theory by the roughness scale length ;. For
well sorted (uniform) sediments, ks = D; for poorly sorted sediments, which contain a range of
grain sizes, ks can be evaluated as the 65 percentile, Dss, of the grain size distribution (Wiberg

and Smith, 1987). In poorly sorted sediments, mobilization conditions are different for grains of
different size. Lines 1—4 in Fig. 7a show the threshold shear velocities u.” vs. the grain size D for
several values of the seabed roughness scale ks. These curves are calculated as a product of the
u," value at D = k;, which is given by the Inman curve, and the square root of the theoretically

predicted ratio of the critical shear stresses at a given value of the ratio D/k and at D/ks = 1. The

shear stress ratio had been calculated by Wiberg and Smith (1987) as a function of the critical

roughness Reynolds number u."k, / v, where v is the kinematic viscosity of water, for a discrete

set of D/ks values and was taken from Fig. 7 in (Wiberg and Smith, 1987). Note that u.” increases

monotonically with increasing D, when D = k;, see the Inman curve (curve 5) in Fig. 7a, and
decreases when the ratio D/k; increases (Wiberg and Smith, 1987). For each fixed roughness

scale, in the range of ks values represented in Fig. 7a the product of the steadily increasing and
the steadily decreasing function of grain size D results in the dependence of " on D, to be

referred to as a modified Inman curve, which has a minimum at a certain grain size, see curves

1-4 in Fig. 7a. The minimum value is less than the value at the point D = ks, where the modified

23



416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

Katsnelson, JASA

Inman curve and the Inman curve intersect. Hence, mobilization of the poorly sorted seabed

starts at a smaller current velocity than of a well sorted seabed with the same roughness scale.

Assuming that the theory of Wiberg and Smith (1987) applies to a mixture of grains with
a wide range of sizes, the modified Inman curves in Fig. 7a indicate that poorly sorted sediments
become mobilized when the shear velocity of the near-bottom current exceeds the minimum of
the modified Inman curve calculated for the roughness scale k; of that particular seabed. Only

grains with the size that minimizes the respective modified Inman curve are mobilized at first;

mobilization of grains in an increasingly wider range of D values occurs when u, rises further

above its minimum on the modified Inman curve.
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Figure 7. (Color online) Theoretical estimates of the threshold of sediment mobilization by
near-bottom currents. (a) The minimum value u,” of the shear velocity u. that leads to

mobilization of sediment grains of size D is depicted under the conditions of the SW’06

experiment, where ks = 0.035 cm (1), and for seabeds with three other roughness scales: ks = 0.02

cm (2), 0.07 cm (3), and 0.10 cm (4). The threshold u.” values are calculated following Wiberg
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and Smith (1987). Also shown is the Inman curve (5), which gives an experimentally determined
u,” for well-sorted seabeds with ks = D. The Inman curve is adapted from (Miller et al., 1977)

and (Wiberg and Smith, 1987). (b) ADCP-measured time-dependence of the horizontal current
velocity at depth of 68.3 m. Thin horizontal lines show theoretical values of the minimum
current velocity required for mobilization of the poorly sorted sediments of the four different
sediment types considered in (a). Time (GMT) on 19 August 2006 is shown in hours and

minutes.

Sediment material properties on the New Jersey shelf, including the SW’06 site, have
been investigated by Goff et al. (2004). With respect to locations of our acoustic and current
velocity measurements, the two closest points, where grab samples were taken by Goff et al.
(2004), are at 73.07922 °N, 39.04995 °W and 73.05421 °N, 39.03689 °W. These points are
within 2 km from where the acoustic and current velocity data illustrated in Figs. 3a and 3d were
obtained. The seafloor sediments are siliciclastic, and their size distribution was classified by
Goff et al. (2004) as “high fine/low coarse.” A representative histogram of the size distribution
for this sediment type is given in Fig. 3 in (Goff et al., 2004). The size distribution is rather
broad. The histogram peaks between 250 pm and 375 um, with the average grain size of 293 pm
and 20.1% and 1.1% by weight, respectively, of the fine (D < 63 um) and coarse (D > 4000 pum)

grains. We used the histogram to find Dgs = 350 pm.

To relate the theoretical conditions of the onset of sediment motion to observed NIWs,
we utilize the ADCP current measurements (Fig. 3d) at the largest available depth of 68.3 m, or
17.7 m above the seabed. Line 1 in Fig. 7b depicts the modified Inman curve for the seabed
roughness scale ks = Dss = 0.035 cm expected at the sites of the SHRU3 and ADCP
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measurements that are shown in Figs. 3a and 3d. At elevations z above the seabed, which are

much larger than £, the flow velocity profile in the boundary layer is logarithmic:
u(z) = k™ u,In (z/zp) (%)
where von Karman's constant is x = 0.407, and zo = k/30 (Wiberg and Smith, 1987).

To verify that the logarithmic velocity profile model is appropriate at the depths, where
the ADCP data is available, we followed Lueck and Lu (1997) and Bassett et al. (2013) and
characterized the accuracy of the logarithmic regression of the measurements up to different
elevations above the seabed in terms of the coefficient of determination R>. Measured horizontal
current velocity profiles during the NIW passage on 19 August 2006 (Fig. 3) were retrieved with
30 s intervals. The ADCP measurements with horizontal current velocity of at least 35 cm/s at
the deepest point were selected for analysis. These measurements correspond to time intervals
around the time of passage of peaks of soliton-like waves and include all the times, when
sediment mobilization by NIWs was expected to occur. The logarithmic approximation was
found to be applicable up to 30-35 m above the seabed, with R? > 0.8 for all current velocity
profiles and R? > 0.9 for 88% of the measurements. Larger R typically corresponded to stronger

currents.

Equation (5) was used to relate the minima of the threshold values u.” in Fig. 7a, which

are equal to 1.2, 1.1, 1.6, and 2.0 cm/s on lines 1-4, respectively, to corresponding current
velocities of 40 cm/s, 38 cm/s, 52 cm/s, and 63 cm/s at depth of 68.3 m in Fig. 7b. The sediment
at SHRUS3 site is expected to become mobilized when the measured current velocity reaches 40
cm/s. This condition is met for the first seven soliton-like waves in the NIW in Fig. 7b. Grains

with sizes between 700 and 800 um will be mobilized first, see Line 1 in Fig. 7a. Such grains are
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present at a considerable level in the measured size distribution in (Goff et al., 2004). As the
current velocity increases to 50 cm/s in the first soliton-like wave, the mobilization threshold u."

is exceeded in a wider range of the grain sizes (Fig. 7a), which includes a part of the maximum

of the size distribution at D >350 um.

Figure 3a shows six periods of the type-three noise occurrence at SHRU3 rather than the
seven peaks predicted based on the ADCP measurements. As has been discussed in Section 3,
the difference between the number of the strong peaks in the current velocity (Fig. 3d) and
acoustic (Fig. 3a) measurements can be attributed to the NIW train evolution on its path from the

ADCP to SHRU3.

The predictions of sediment mobilization by the NIW are rather sensitive to the grain size
distribution. For coarser sediments with the seabed roughness length of 0.070 cm or 0.100 cm
instead of ks = 0.035 cm derived from the Goff et al. (2004) measurements, the observed NIW-
induced currents are not strong enough to mobilize the sediments (Fig. 7b). In contrast, if
sediments were finer and had 4, = 0.020 cm, it would increase the number of soliton-like waves
in the observed NIW train that mobilize that sediments, see Line 1 in Fig. 7b. If the sediments

had the same mean grain size of 293 um as at the SW’06 site but were well sorted, estimate of
u,” from the Inman curve gives the critical current velocity of 55 cm/s at depth of 68.3 m, which
exceeds the NIW-induced currents in Fig. 7b. Hence, no sediment mobilization would occur in

that case.

Because of the uncertainties in the knowledge of the sediment properties at the exact site
of acoustic observations and current measurements; due to SHRU 3 and the ADCP not being co-

located; as well as because of the assumptions and approximations inherent to the Wiberg and
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Smith theory, the derived value of 40 cm/s for the threshold current velocity should be viewed as

an estimate rather than an accurate prediction. Nevertheless, the close agreement between the

model of the onset of sediment mobilization and acoustic observations of the emergence and

disappearance of the type-three noise is remarkable. The quantitative agreement between the

conditions of the occurrence of the type-three acoustic noise and the sediment entrainment

strongly supports our interpretation of this noise type as SGN.

Figure 8 compares power spectra and intensity of the NIW-induced noise on three

hydrophones, where one of the three noise types dominates. We used the data obtained with

SHRUS, one VLA hydrophone, and one HLA hydrophone. These are the same sensors that were

used in Fig. 6 to illustrate the differences between the three noise types. Power spectra of the

background ambient noise are usually modeled using the well-known Wenz curves (Wenz,

1962). When there were no NIWs in the vicinity of the sensors, all three hydrophones recorded

signals with rather similar spectra at all frequencies above 10 Hz (Fig. 8a). The measured spectra

were close to the Wenz curve if contributions of the spectral peaks due to linear frequency

modulated signals around 300 Hz and 500 Hz and other signals emitted by known research

sound sources are excluded (Newhall et al., 2007; Lynch and Tang, 2008).
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Figure 8. (Color online) Power spectra of acoustic pressure recorded by SHRUS and
hydrophones on vertical and horizontal arrays when nonlinear internal waves are absent (a) or

present (b). The power spectra are calculated for the same hydrophones as in Fig. 6.

In the presence of an NIW train (Fig. 8b), the spectrum of the acoustic pressure on the
VLA hydrophone did not change appreciably, except at frequencies below 10 Hz. This is
consistent with the flow noise properties. Signals from the research sources could still be clearly
seen above the noise background. In contrast, very strong, broadband increase of noise level
(Fig. 8b) occurred on HLA, which was dragged along the seafloor by the NIW-induced current.
The spectrum retained manifestations of the research sources in the 300-1000 Hz frequency
band. At SHRUS, where the velocity of the NIW-induced near-bottom current exceeded the
threshold for type-three noise generation, there was a broadband increase of the spectral level of
about 30 dB between 10 Hz and 2 kHz and a rather sharp increase of the spectral level (up to ~
40-50 dB relative to the background noise level) at frequencies above 2 kHz (Fig. 8b). The
spectral maximum occurred at frequencies above the highest frequency that can be resolved with
the 9765.625 Hz sampling rate of the SHRUS measurements, as expected for sediment generated
noise (Thorne, 1986; Bassett et al., 2013; Petrut et al., 2018). At SHRUS, NIW-induced SGN

surpassed contributions of all other sources of sound at every frequency.

The increase due to type-three noise in the spectral level of the sound observed at SHRUS
(Fig. 8) is larger and extends to lower frequencies than in other oceanic observations reported by
Thorne (1986) and Bassett et al. (2013) for comparable and even stronger near-bottom currents.
SGN intensity is often considered to be a measure of sediment transport rates (Thorne, 1986,

2014; Voulgarist et al., 1999) for a given sediment and instrument type. However, it is harder to
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compare SGN levels created by different sediments and measured by dissimilar instruments.
Noise at SHRUS may have been enhanced by the vertical advection of entrained sediment
particles by NIW currents or by direct impacts of these particles on the hydrophone or elements
of the mooring. Furthermore, the sharp increase in the noise spectral level at the highest resolved
frequencies and extension of the type-three noise well below 1 kHz (Fig. 8b) suggest the
possibility of aliasing of higher-frequency SGN energy into the observation band. These possible
contributions to the observed noise spectrum can be neither excluded nor quantified with the
available SW’06 data. In view of these uncertainties as well as significant differences in the
sediment composition between different sites, the larger effect of sediment mobilization on noise
spectral levels at SHRUS than in the previous observations (Thorne, 1986; Bassett et al., 2013)
should not be interpreted to mean that the NIW-induced sediment transport on continental shelf

is stronger than the sediment transport in tidal channels.

V. DISCUSSION

As mentioned in Section 2, in the six weeks of SW’06 acoustic measurements, a few tens
of strong NIW trains were detected. During the six-day period from 17 — 22 August 2006 chosen
for this study, strong NIW trains and attendant noise bursts were observed three more times in
addition to the 19 August 2006 event analyzed above. A particularly large NIW train, which
contained 11 soliton-like waves with large amplitudes, occurred at nighttime on 17-18 August
2006. The noise bursts generated by this wave train were registered on SHRU3, SHRU4, and
SHRUS with the acoustic intensity and spectrograms rather similar to those measured on August
19. Weaker NIW trains, with only three prominent soliton-like waves and of smaller amplitude,
were observed on August 18 and 22. The noise bursts accompanying these NIW trains were

detected on SHRU4 and SHRUS but not SHRU3 and had lower acoustic intensity than on
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August 19. The spectrograms of the noise bursts observed by the SHRUs during the three NIW
events revealed contributions of the low-frequency type-one, or flow, noise and the high-

frequency type-three noise, which we interpret as SGN.

SGN is an acoustic manifestation of sediment mobilization by water flow. While NIW-
induced SGN apparently has not been studied previously, there exists a large body of work on
the effects that NIWs have on marine sediments on the continental shelf, and there is no doubt
that sediment mobilization by NIWs does occur. It is known that the boundary layer at the
footprint of NIW can became hydrodynamically unstable, and this instability results in an
increase of the sediment resuspension rate (Carr and Davies, 2006). Moreover, any increase in
the turbulent energy due to the hydrodynamic instability can maintain a higher sediment
concentration in the water column. Bogucki et al. (1997) reported observations and analysis of
the sediment resuspension/saltation produced by NIWs on the Californian continental shelf.
Quaresma et al. (2007) studied sediment resuspension by NIWs using data obtained on the
Portuguese continental shelf, where the bathymetry and sound speed profile are similar to those
at the SW’06 site. It was shown that water turbidity and the concentration of entrained sediment
particles in the water changed synchronously with the thermocline displacement. During the
maximum thermocline displacement near the leading front of an NIW train, sediment grains
were found at far as 35 m from the seafloor. Another example of strong variations in water
turbidity due to sediment resuspension by NIWs and formation of an intermediate nepheloid
layer were reported by Masunaga et al. (2015). Observations of NIW-induced sediment
resuspension are supported by theory and by the results of numerical simulations (Cacchione and
Southard, 1974; Bogucki and Redekopp, 1999; Stastna and Lamb, 2008; Olsthoorn and Stastna,

2014; Bourgault et al., 2014).

31



584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

Katsnelson, JASA

SGN theory, modeling, and experimental data are reviewed by Bassett et al. (2013) and
Thorne (2014). SGN theory is based on a model of collisions between two sediment particles or
between a particle with a slab (obstacle) (Thorne and Foden, 1988; Bassett et al., 2013; Thorne,

2014). The spectrum of the radiated sound has a maximum, and the centroid frequency of SGN
f.=C / D", where D is an effective diameter of sediment particles and C is a function of their

material properties (Thorne, 1986; Bassett et al., 2013). For instance, f- > 45 kHz for siliciclastic
particles with diameters in the 350—1750 um range, which are expected to be mobilized at the
SHRUS site. This should not be interpreted to mean, however, that SGN spectrum is
concentrated around the centroid frequency or vanishes in the frequency band of our
observations. SGN is very broadband and extends to frequencies orders of magnitude below the
centroid frequency f-. An example of existence of significant low-frequency components of SGN
is provided by seismic measurements of sediment transport in rivers. Roth et al. (2016) infer
sediment transport from seismic SGN in the 5-100 Hz frequency band for sediments with Dso =
8 cm. The centroid frequency estimates (Thorne, 2014; Bassett et al., 2013) would require 25-30

meter “particles” to explain 10 Hz noise.

Collisions of two suspended sediment particles are the best studied one (Thorne and
Foden, 1988; Thorne, 2014) but not the only source of SGN. Cascades of momentum transfer
between several sediment particles, which were documented by Bassett et al. (2013), occur on
longer time scales than a collision of two particles and, therefore, generate lower-frequency
sound (Thorne and Foden, 1988). Impact of a particle on seabed creates the force chains, which
extend in unconsolidated sediments to a depth of many particle radii. Such an impact takes a
much longer time than a two-particle collision (Krizou and Clark, 2020) and creates a longer-

living acoustic source, thus generating lower-frequency components of SGN.
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Laboratory measurements of SGN spectrum support the field observations of SGN at
frequencies much lower than its centroid frequency, see (Thorne, 1985, 1986) and (Thorne and
Foden, 1988). For instance, Fig. 6b in the review paper (Thorne, 2014) shows a long low-
frequency tail of the measured SGN spectrum for 750- and 1500-pum particles. The tail is much
heavier than predicted by the Thorne and Foden (1988) theory. For 1500-um particles, PSD at 10
kHz decreases by only 4.8 dB from the PSD peak value at about 50 kHz. The low-frequency
noise is even more pronounced for the smaller, 750-um particles, with the PSD decreasing by
only 3.7 dB between the peak at 100 kHz and 10 kHz. Thus, results of laboratory measurements
indicate that strong SGN is expected to be generated at SHRU3 and SHRUS locations in the

frequency band of our field measurements.

Acoustic intensity of SGN increases with current velocity and was found to be an
acceptable proxy for bedload transport (Thorne, 2014). Recording and analyzing SGN can serve
as minimally invasive, continuous means of measurement for sediment transport and for
estimating dimensions of mobile particles (Thorne, 2014). This approach was applied to study
sediment transport by various types of water flow, including rivers, tidal currents in straits, and
surface gravity wave-induced flows in the surf zone (Thorne, 1986; Mason et al., 2007; Thorne,
2014; Geay et al., 2017; Rickenmann, 2017; Petrut et al., 2018). Results of SGN analysis,
including estimates of grain size distribution, agree well with the direct sampling methods (Petrut
et al., 2018). Observations of NIW-induced noise bursts and identification of SGN as a dominant
contribution to their intensity on near-bottom sensors, raise the possibility of extending the
passive acoustic measurements of sediment transport to the sediment mobilization by strong
NIWs on continental shelves. The inherent ability of the technique to provide long term series of

autonomous observations is even more important on continental shelves than for measurements
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in rivers or in the surf zone. Moreover, measurements of the noise bursts with autonomous,
moored, single-hydrophone receivers can potentially contribute to improved quantitative
understanding of NIW-induced near-bottom currents as well as NIW amplitudes and their

temporal and spatial variability on the continental shelf.

Sediment-generated noise has an ambient component, which results from sediment
particles’ collisions with each other and the seabed, as well as a sensor-related component due to
particle impacts on the acoustic sensor or its housing. Observations of sediment transport in
rivers with sensors on dry land (Roth et al., 2016) offer clear evidence of the ambient component
of SGN. On the other hand, sensors are routinely augmented by pipes and plates to increase
particle impacts for the purposes of measuring coarse gravel transport (Thorne, 2014;
Rickenmann, 2017). Further research is needed to quantify the relative weight of the ambient and
sensor-related components of SGN in the NIW-generated noise bursts and the variation of the

weight with distance to the seafloor.

Given its high intensity, NIW-induced SGN may present significant challenges for the
continuous operation of near-bottom acoustic sensors deployed for underwater communication,
detection and tracking of biological or man-made sound sources, or remote sensing of the water
column and seabed properties. SGN would be equally detrimental whether ambient or sensor-
related. Spectral and spatial characteristics of the NIW-induced noise need to be understood and

considered during design and deployment of acoustic systems on continental shelves.

In the context of acoustic phenomena associated with the sediment mobilization by
NIWs, SW’06 observations have a number of limitations, which make an unambiguous
identification of noise generation mechanisms challenging, lessen somewhat the confidence in

our interpretation of the type-three noise as SGN, and call for a dedicated field experiment. The
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key limitations of the dataset underlying our analysis are the lack of independent measurements
of sediment transport or water turbidity to verify sediment mobilization; unavailability of current
velocity measurements near the seabed at the exact locations of SHRUs; and absence of high-
frequency acoustic measurements encompassing the peak of the SGN spectrum. These
limitations emerged, in part, because neither occurrence of NIW-induced noise bursts nor SGN

generation by NIWs were anticipated at the time of the SW’06 experiment.

Our results and the above discussion suggest that a dedicated experiment to
unambiguously and more fully characterize the NIW-induced SGN on the continental shelf
should include contact measurements of sediment properties and sediment transport, a high-
frequency ADCP for high-resolution measurements of the current velocity profile as close as a
meter or a few meters from the seabed, and acoustic measurements in an extremely broad
frequency band from about 1 Hz to above 100 kHz. The sediment, flow velocity, and acoustic
measurements should be collocated and conducted at a site, where sediment mobilization by
NIWs is expected to occur according to the Wiberg and Smith (1987) or similar model. To
distinguish between and separately characterize the ambient and instrument-related components
of SGN, one can either simultaneously deploy hydrophones with and without a soft cover, which
prevents impacts of sediment particles on the sensor and the mooring, or measure the noise
spectrum on a vertical hydrophone array extending from the seabed to beyond the layer with

suspended sediment particles.

VI. CONCLUSIONS

In this study, we used a network of temperature, current velocity, and acoustic sensors
deployed on the continental shelf off of New Jersey to relate the occurrence of large, transient
increases in acoustic noise intensity (noise bursts) to trains of strongly nonlinear internal waves

35



676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

Katsnelson, JASA

and, more specifically, to individual localized, soliton-like waves that form the trains. The noise
bursts occurred in sequences of 60—80 minutes, the duration of which equals the time it took an
NIW train to travel past an observation point on the New Jersey shelf. Individual noise bursts
lasted for 5—7 minutes and coincided in time with passage of a single soliton-like internal wave
past the hydrophone. Very large increases in the spectral density and broadband intensity of
noise, of up to 50 dB relative to background, were observed on hydrophones located 6—7 m
above the seafloor. The peak acoustic intensity and the spectral content of the noise bursts were
controlled by the amplitude of individual soliton-like internal waves and were most directly

related to the velocity of the NIW-induced near-bottom currents.

The noise burst emergence and observed variations in their intensity and spectral content
with water depth, hydrophone elevation above the seafloor, and NIW amplitude have been
tentatively explained in terms of three noise generation mechanisms. The low-frequency (below
a few tens of Hertz) component of the noise bursts represents the flow noise that occurs due to
advection of turbulent pressure pulsations past an acoustic sensor. Hydrophones lying on the
seafloor recorded broadband noise, which resulted from the hydrophones being dragged along
the seafloor by NIW-induced currents. The strongest noise bursts were associated with sediment-
generated noise (SGN). Acoustic waves are generated when sediment is mobilized by NIW
currents, and sediment particles collide with each other, with the stationary seabed, and with
acoustic sensors. SGN was most pronounced at frequencies above 2 kHz. A distinctive feature of
SGN is its threshold character. NIW-induced near-bottom currents stronger than about 40 cm/s
were found to be necessary to initiate SGN. Compared to previously described oceanic

observations of SGN in tidal channels and the near-shore surf zone, NIW-induced SGN occurs
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on the continental shelf at significantly larger water depths than most previous observations and

drastically increases the extent of the seafloor area, where SGN occurrence should be expected.

NIW-generated noise bursts are one of the strongest reported acoustic effects of internal
waves in the ocean. The noise bursts may present challenges to continuous acoustic
communication and acoustic monitoring of the ocean using near-bottom sensors. On the other
hand, measurements of the noise bursts with autonomous, single-hydrophone receivers can
potentially contribute to improved quantitative understanding of NIW-induced near-bottom
currents and sediment transport by internal waves on the continental shelf. Further research,
including dedicated field experiments, is needed to fully characterize the spectrum of NIW-
induced acoustic noise, its depth-dependence, relative contributions of the ambient and sensor-
related components of sediment generated noise as well as the directivity and correlation

properties of the ambient component of the NIW-generated acoustic noise.
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Figure 1. Evolution of a train of nonlinear internal waves over the site of the Shallow Water
2006 (SW’06) experiment. Positions of thermistor chains SWO01, SW03, SW04, SW07, SW23,
SW 24, SW30, SW54, single-hydrophone acoustic receivers SHRU1, SHRU 2, SHRU3,
SHRU4, SHRUS and hydrophone array HVLA Shark as well as wave fronts (dashed lines) and
the direction of propagation (arrow) of an internal wave train are indicated in the map in the
lower left corner. Bathymetry is shown along the straight line through SW01 and SW24. ADCP
is located at the SW30. Depth dependence of water temperature as measured by SWO01 (a),
SWO03 (b), SW04 (¢), SW54 (d), and SW23 (e) is shown from 07:00 to 21:00 GMT on 19
August 2006 when a train of nonlinear internal waves propagated shoreward from SW23 past

SWO1. Time (GMT) on 19 August 2006 is shown in hours and minutes.

Figure 2. Time histories of water temperature and acoustic intensity at various points along the
path of propagating internal wave train. Temperature records of thermistors at the depth of 40 m
are denoted by letter T and depicted in red for thermistor chains SW23, SW54, SW04, SW03,
and SWO01. Time intervals of appearance of the NIW train are denoted t1, t2, t3, t4 for the last
four chains (SW23 does not show NIWs) and boxed. Sound intensity records by SHRUs 1, 3, 4,
and 5 and hydrophone 40 of HVLA Shark are depicted in blue. For visibility, the time
dependencies recorded by individual sensors are shifted vertically in proportion to the distance
from the sensor to SWO1. Time intervals with strong fluctuations of acoustic pressure are boxed
and marked a for SHRU1, b for HVLA Shark, ¢ for SHRU3, d SHRU4, and e SHRUS. Time
(GMT) on 19 August 2006 is shown in hours and minutes. Five color panels in the lower part of

the figure show the spectrograms corresponding to the sound intensity records in boxes a—e.

Figure 3. Temperature, current velocity, and acoustic manifestations of an NIW train in the
vicinity of the acoustic receiver SHRU3. (a) Spectrogram of acoustic noise recorded by SHRUS3.
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(b) Time history of the water temperature on the thermistor chain SWO07. (¢) Time history of the
water temperature on the thermistor chain SW30. (d) Time-dependence of the horizontal current

velocity at three depths. Time (GMT) on 19 August 2006 is shown in hours and minutes.

Figure 4. Temporal variations of the temperature depth dependence measured by thermistor
chain SW54 (upper panel) and noise intensity on a collocated hydrophone (lower panel). Time

(GMT) on 19 August 2006 is shown in hours and minutes.

Figure 5. Temporal variation of the acoustic intensity measured by SHRUS. Time (GMT) on 19
August 2006 is shown in hours and minutes. The insert shows the spectrogram of a nine-minute
section of the pressure record and illustrates contributions of research sound sources. Color

shows power spectral density of total acoustic field in dB re 1 pPa*/Hz.

Figure 6. Spectrograms of acoustic field recorded by hydrophones on vertical (VLA) and
horizontal (HLA) arrays during passage of a train of nonlinear internal waves. Spectrograms are
shown of acoustic pressure on a VLA hydrophone at depth of 62 m (a); low-frequency part of
the acoustic pressure on the same hydrophone (b); on a hydrophone in the middle of HLA (c);
and on single-hydrophone receiver SHRUS (d). Time (GMT) on 19 August 2006 is shown in

hours minutes, and seconds.

Figure 7. Theoretical estimates of the threshold of sediment mobilization by near-bottom
currents. (a) The minimum value u,” of the shear velocity u, that leads to mobilization of

sediment grains of size D is depicted under the conditions of the SW’06 experiment, where ks =

0.035 cm (1), and for seabeds with three other roughness scales: ks = 0.02 cm (2), 0.07 cm (3),

and 0.10 cm (4). The threshold u.” values are calculated following Wiberg and Smith (1987).
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Also shown is the Inman curve (5), which gives an experimentally determined w.” for well-sorted

seabeds with k; = D. The Inman curve is adapted from (Miller et al., 1977) and (Wiberg and
Smith, 1987). (b) ADCP-measured time-dependence of the horizontal current velocity at depth
of 68.3 m. Thin horizontal lines show theoretical values of the minimum current velocity
required for mobilization of the poorly sorted sediments of the four different sediment types

considered in (a). Time (GMT) on 19 August 2006 is shown in hours and minutes.

Figure 8. Power spectra of acoustic pressure recorded by SHRUS and hydrophones on vertical
and horizontal arrays when nonlinear internal waves are absent (a) or present (b). The power

spectra are calculated for the same hydrophones as in Fig. 6.
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