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Abstract

Background: Wnt genes code for ligands that activate signaling pathways during development in Metazoa. Through
the canonical Wnt (cWnt) signaling pathway, these genes regulate important processes in bilaterian development,
such as establishing the anteroposterior axis and posterior growth. In Arthropoda, Wnt ligands also regulate seg-
ment polarity, and outgrowth and patterning of developing appendages. Arthropods are part of a lineage called
Panarthropoda that includes Onychophora and Tardigrada. Previous studies revealed potential roles of Wnt genes in
regulating posterior growth, segment polarity, and growth and patterning of legs in Onychophora. Unlike most other
panarthropods, tardigrades lack posterior growth, but retain segmentation and appendages. Here, we investigated
Wnt genes in tardigrades to gain insight into potential roles that these genes play during development of the highly
compact and miniaturized tardigrade body plan.

Results: We analyzed published genomes for two representatives of Tardigrada, Hypsibius exemplaris and Ramazzot-
tius varieornatus. We identified single orthologs of Wnt4, Wnt5, Wnt9, Wnt11, and WntA, as well as two Wnt16 paralogs
in both tardigrade genomes. We only found a Wnt2 ortholog in H. exemplaris. We could not identify orthologs of Wnt1,
Wnt6, Wnt7, Wnt8, or Wnt10. We identified most other components of cWnt signaling in both tardigrade genomes.
However, we were unable to identify an ortholog of arrow/Lrp5/6, a gene that codes for a Frizzled co-receptor of Wnt
ligands. Additionally, we found that some other animals that have lost several Wnt genes and are secondarily minia-
turized, like tardigrades, are also missing an ortholog of arrow/Lrp5/6. We analyzed the embryonic expression patterns
of Wnt genes in H. exemplaris during developmental stages that span the establishment of the AP axis through seg-
mentation and leg development. We detected expression of all Wnt genes in H. exemplaris besides one of the Wnt16
paralogs. During embryo elongation, expression of several Wnt genes was restricted to the posterior pole or a region
between the anterior and posterior poles. Wnt genes were expressed in distinct patterns during segmentation and
development of legs in H. exemplaris, rather than in broadly overlapping patterns.

Conclusions: Our results indicate that Wnt signaling has been highly modified in Tardigrada. While most compo-
nents of cWnt signaling are conserved in tardigrades, we conclude that tardigrades have lost Wnt1, Wnt6, Wnt7, Wnt8,
and Wnt10, along with arrow/Lrp5/6. Our expression data may indicate a conserved role of Wnt genes in specify-

ing posterior identities during establishment of the AP axis. However, the loss of several Wnt genes and the distinct
expression patterns of Wnt genes during segmentation and leg development may indicate that combinatorial inter-
actions among Wnt genes are less important during tardigrade development compared to many other animals. Based
on our results, and comparisons to previous studies, we speculate that the loss of several Wnt genes in Tardigrada may
be related to a reduced number of cells and simplified development that accompanied miniaturization and anatomi-
cal simplification in this lineage.
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Background

Wnt genes are a group of paralogous ligand-coding genes
that play instrumental roles in regulating animal devel-
opment through both canonical and non-canonical Wnt
signaling pathways [1-6]. One important role of Wnt
genes is regulating the development of primary body axes
[7-14]. In Bilateria, the anteroposterior (AP) body axis
is the primary body axis. In many bilaterians, polarized
expression of Wnt genes establishes the AP axis by pro-
moting posterior identity and suppressing anterior iden-
tity [9, 15-19]. After establishing the AP axis in many
bilaterians, canonical Wnt (cWnt) signaling then regu-
lates posterior growth [20-29]. Establishing the AP axis
and regulating posterior growth are most likely ancestral
functions of Wnt genes in Bilateria [9, 20]. Therefore,
Wnt genes may have played a key role in the origin of the
AP axis of bilaterians [30].

Wnt genes also regulate development of body plan
characteristics at more narrow taxonomic scales within
Bilateria. For example, studies of the WntI ortholog wing-
less (wg) have played a key part in deciphering the devel-
opment of the segmented body plans of the hyperdiverse
Arthropoda. In Drosophila melanogaster, wg partici-
pates in the segment polarity network with engrailed (en)
hedgehog (hh), and other genes [31-34]. This network is
required for segment formation and intrasegmental pat-
terning in arthropods. Later, wg initiates growth of the
proximodistal (PD) axis in legs and other appendage
types and then specifies ventral fate in these append-
ages [35—42]. These functions of wg are highly conserved
across Arthropoda, although wg most likely does not
function as a segment polarity gene in spiders [35, 43—
58]. In arthropods, other Wnt genes are expressed in pat-
terns that resemble wg expression, indicating that several
Wnt genes may be acting redundantly or combinatorially
to regulate development in this lineage [3, 58—63]. Wnt
genes have also been studied in two species of Onych-
ophora [28, 64—66], the likely sister group of Arthropoda
[67-69]. The segment polarity network is most likely
conserved in onychophorans, in which it may regulate
intrasegmental patterning, but is unlikely to play a role in
segment formation [64—66, 70]. Additionally, Wnt genes
appear to play roles in the segmentation process and dur-
ing appendage development in onychophorans that are
not characteristic of arthropods [28].

Several lines of evidence suggest that Tardigrada rep-
resents the outgroup of an arthropod+ onychophoran
lineage in a monophyletic Panarthropoda [67, 68, 71],
although other relationships have been recovered in
some analyses [69, 72], making studies of tardigrades
critical for resolving where in panarthropod phylogeny
important roles of Wnt genes evolved. Additionally, the
unique body plan and developmental mode of Tardigrada
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raises intriguing questions about the roles of Wnt genes
in this lineage. Tardigrades have a highly compact body
plan composed of a single-segment head and four leg
bearing trunk segments. This compact body plan evolved
in conjunction with miniaturization [73, 74]. Embryonic
expression analyses of Hox genes and other AP axis pat-
terning genes in the tardigrade Hypsibius exemplaris
revealed that tardigrades have lost a mid-trunk region
[75, 76]. The mid-trunk region that is missing in tardi-
grades develops by posterior growth in other panarthro-
pods [75, 77]. Tardigrades have lost posterior growth;
all segments develop nearly simultaneously in these ani-
mals [78-81]. Additionally, the proximodistal (PD) axis
of H. exemplaris legs is missing an intermediate domain
defined by dachshund expression that is found in onych-
ophorans, arthropods, and other animals [82]. The fact
that Wnt genes regulate the development of both the AP
axis and PD axis in other animals suggests that the evolu-
tion of the compact tardigrade body plan may be associ-
ated with modifications to the functions of Wnt genes in
Tardigrada.

Here, we present the first study of Wnt genes in Tar-
digrada. We discovered that several Wnt genes and
arrow, an ortholog of Lrp5 and Lrp6 in vertebrates, which
codes for a co-receptor of Wnt ligands, have been lost in
the tardigrade lineage. Based on comparisons to other
metazoan genomes, it appears that the loss of several
Wnt genes and arrow/Lrp5/6 are common features of
genome evolution in secondarily miniaturized animals,
like tardigrades. Expression patterns of Wnt genes in H.
exemplaris embryos suggest that these genes play roles
during establishment of the AP axis, segmentation, endo-
mesodermal development, foregut development, and leg
development. Interestingly, Wnt genes exhibit distinct
expression patterns during segmentation and leg devel-
opment, rather than similar expression patterns like in
many other animals. This fact, along with the extensive
loss of Wnt genes in Tardigrada, may indicate that tardi-
grade Wnt genes exhibit reduced combinatorial interac-
tions compared to some other animals. We suggest that
the extensive loss of Wnt genes in Tardigrada is associ-
ated with miniaturization and the associated reduction of
cell number and simplified developmental mechanisms
that accompany this process.

Results

Phylogenetic and genomic analyses of tardigrade Wnt
genes

We identified eight candidate Wnt genes in the H. exem-
plaris genome and seven Wnt genes in the genome of R.
varieornatus by BLAST search. We confirmed that all
candidate Wnt genes encode a Wnt superfamily domain
by CD-search analysis [83]. Our phylogenetic analyses
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revealed that both H. exemplaris and R. varieornatus
possess orthologs of Wnt4, Wnt5, Wnt9, Wntll, Wntl6,
and WntA (Fig. 1; Table 1; Additional file 1: Fig. S1).
These species each had two paralogs of Wnt16, which we
refer to as Wnt16A and Wntl16B. Additionally, H. exem-
plaris possesses an ortholog of Wnt2. We did not detect
orthologs of Wntl, Wnt6, Wnt7, Wnt8, and Wnt10—Wnt
genes that would be predicted to be present in tardigrade
genomes [2, 3, 5, 6, 84]. Next, we investigated the arrange-
ment of Wnt genes in the genomes of H. exemplaris and
R. varieornatus [71, 85]. In H. exemplaris, all Wnt genes
were found on unique scaffolds (Table 1). Scaffolds with
Wnt genes ranged in length from 95,696 to 1,074,739 nt
in this species. In R. varieornatus, scaffolds with Wnt
genes ranged in length from 1,744,794-9,333,084 nt.
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Only Wnt9 and WntA were found on the same scaffold,
but these genes were 829,930 nt apart on this scaffold.

Identification of conserved components of canonical Wnt
signaling in Tardigrada

We were surprised that tardigrades were missing so
many Wnt orthologs. This led us to wonder whether
these losses were associated with modifications to the
cWnt signaling pathway, a highly conserved pathway
that utilizes Wnt ligands [1, 4, 11, 16]. First, we identi-
fied orthologs of wntless, which codes for a transmem-
brane transport protein that is necessary for secretion
of Wnt ligands, in both species of tardigrades (Table 1).
Next, we investigated the complement of Frizzled (Fz)
genes, which code for receptors of Wnt ligands [86, 87].
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Fig. 1 Majority rule consensus tree of Wnt ligands. For the sake of space, taxon abbreviations are used, and branch lengths are not diagrammed.
See Additional file 1: Fig. S1 for a version of this tree that includes branch length information. For simplicity, only branch support values relevant to
determining the identity of the candidate tardigrade Wnt ligands are shown. Tardigrade sequences are in colored boxes. Bootstrap supports are
shown as percentages out of 500 replicates. Species abbreviations: Ap, Acyrthosiphon pisum; Cs, Cupiennius salei; Dp, Daphnia pulex; Dm, Drosophila
melanogaster; Ek, Euperipatoides kanangrensis; Gm, Glomeris marginata; He, Hypsibius exemplaris; Hs, Homo sapiens; Is, Ixodes scapularis; Pd, Platynereis
dumerilii; Pt, Parasteatoda tepidariorum; Rv, Ramazzottius varieornatus; Tc, Tribolium castaneum




Chavarria et al. BMC Ecology and Evolution (2021) 21:223

Page 4 of 21

Table 1 Canonical Wnt signaling components in tardigrades. GenBank accession numbers and scaffold numbers are from previously
published genome studies [71, 85]. An ortholog of Arrow was not found

Function Ortholog Protein accession numbers Scaffold numbers
H. exemplaris R. varieornatus H. exemplaris R. varieornatus
Ligand Wnt2 OWA52741.1 - scaffold0284 -
Wnt4 0QV20568.1 GAV00263.1 scaffold0029 BDGG0O1000006
Wnt5 0QV25062.1 GAU92975.1 scaffold0004 BDGG01000002
Wnt9 OQV11710.1 GAU97803.1 scaffold0163 BDGGO1000004
Wnt11 0QV21261.1 GAU87525.1 scaffold0024 BDGGO1000001
Wnt16A 0OQV19782.1 GAU94914.1 scaffold0035 BDGG01000003
Wnt16B 0QV22138.1 GAV05665.1 scaffold0019 BDGG01000012
WntA 0OQV17790.1 GAU98124.1 scaffold0056 BDGG01000004
Transmembrane transport Whntless 0QV19301.1 GAV08953.1 scaffold0041 BDGG01000019
Receptor Fz1 0QV23182.1 GAU93634.1 scaffold0013 BDGG01000002
Fz2 0QV23168.1 GAU93659.1 scaffold0013 BDGG01000002
Fz3 0QV21307.1 GAU87444.1 scaffold0024 BDGG0O1000001
Fz4 0OQV18791.1 GAV00601.1 scaffold0046 BDGG01000006
Arrow - - - -
Signal transduction Dishevelled 0QV23134.1 GAV07421.1 scaffold0013 BDGG01000015
Armadillo OWA50075.1 GAV07811.1 scaffold0181 BDGG0O1000016
Transcription factor Pangolin 0OQV17172.1 GAV07782.1 scaffold0065 BDGG01000016
cWntinhibition Shaggy 0QV18828.1 GAU89015.1 scaffold0045 BDGG01000001
APC 0QV22882.1 GAV03262.1 scaffold0015 BDGG01000009
Axin 0QV22259.1 GAV03998.1 scaffold0018 BDGG01000010

We identified four candidate Fz genes in the genomes of
both H. exemplaris and R. varieornatus. By CD-search
[83], we confirmed that all candidate Fz genes encoded
both a cysteine rich domain and a seven-transmem-
brane G protein-coupled receptor domain, domains
that are indicative of Fz proteins. A phylogenetic anal-
ysis revealed that these candidates are orthologous to
the four Fz genes that are found in other panarthro-
pods (Fig. 2; Table 1). We also identified orthologs of
genes that encode all major internal components of
the cWnt signaling pathway [11], including disheveled,
the B-catenin gene armadillo (arm), three B-catenin
destruction complex genes—axin, shaggy, and Adeno-
matous polyposis coli tumor suppressor—and pangolin,
which codes for a transcription factor that regulates the
expression of targets of cWnt signaling (Table 1). How-
ever, we were unable to identify an ortholog of arrow,
called Lrp5/6 in many animals (Additional file 2: S1).
This gene encodes a co-receptor of Wnt ligands, which
forms a receptor complex with Fz receptors [88-90].
From N-terminus to C-terminus, arrow orthologs typi-
cally encode three clusters of low-density lipoprotein
receptor repeat class B domains separated by calcium-
binding EGF-like domains, followed by three low-den-
sity lipoprotein receptor class A domains (Fig. 3a, b).

This structure was not encoded by the best tardigrade
arrow hits (Fig. 3c).

Analysis of Lrp sequences in other bilaterians that exhibit
extensive loss of Wnt orthologs

To better understand the relationship between miss-
ing Wnt ligand coding genes and the absence of a clear
arrow ortholog in tardigrades, we searched for arrow in
the genomes of five additional non-parasitic bilaterian
animals that, like tardigrades, are highly miniaturized
or evolved from miniaturized ancestors [73, 74, 91, 92],
and are missing several Wnt ligand-coding genes [5, 93].
We focused on free-living miniaturized animals because
they may have evolved under similar selective regimes
and evolutionary constraints as tardigrades. These ani-
mals included the roundworm Caenorhabditis elegans,
the rotifer Adineta vaga [94], the flatworm Schmidtea
mediterranea [95], the acoel Hofstenia miamia [96], and
the meiobenthic annelid Dimorphilus gyrociliatus [97].
D. gyrociliatus possessed a clear ortholog of D. mela-
nogaster arrow (Fig. 3c; Additional file 2: S1). S. mediter-
ranea encoded a gene that was a reciprocal best BLAST
hit to D. melanogaster Arrow (Additional file 2: S1). This
gene had been identified as an ortholog of arrow/Lrp5/6
in a previous study [98]. The best BLAST hits from the
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castaneum; X|, Xenopus laevis; Zn, Zootermopsis nevadensis

Fig. 2 Majority rule consensus tree of Frizzled receptors. Tardigrade sequences are in colored boxes. Bootstrap supports are shown as percentages
out of 500 replicates. For simplicity, only branch support values relevant to determining the identity of the candidate tardigrade Frizzled receptors
are shown. Species abbreviations: Ct, Capitella teleta; Cg, Crassostrea gigas; Dp, Daphnia pulex; Ek, Euperipatoides kanangrensis; Gm, Glomeris
marginata; He, Hypsibius exemplaris; Is, Ixodes scapularis; Mm, Mus musculus; Pt, Parasteatoda tepidariorum; Rv, Ramazzottius varieornatus; Tc, Tribolium

remaining species did not encode the pattern of pro-
tein domains that is typical of Arrow (Fig. 3c). A previ-
ous study indicated that C. elegans has lost an ortholog
of arrow/Lrp5/6, in agreement with our results [99].
Next we performed a phylogenetic analysis of Arrow and
related sequences. The D. gyrociliatus candidate Arrow/
LRP5/6 ortholog was nested within the clade of Arrow/
LRP5/6 sequences. Of the remaining miniaturized ani-
mals that we investigated, only H. miamia encoded a
sequence that was nested within the clade of Arrow
sequences, although this sequence was on a long branch
(Fig. 4). Bootstrap support and posterior probability

support was low for the Arrow/LRP5/6 clade, likely due
to the inclusion of sequences from miniaturized animals,
which were generally recovered on long branches. The
best matches to D. melanogaster Arrow in tardigrade
genomes, as determined by BLAST search (Additional
file 2: S1), were recovered in a well-supported clade of
LRP1 sequences (Fig. 4).

Expression patterns of Wnt genes during tardigrade
development

We analyzed expression of Wnt genes at four differ-
ent developmental stages in H. exemplaris—stage 11,
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the elongation stage (Fig. 5a, b), stage 12 and 13, when
segmental features first appear (Fig. 5¢c—f), and stage 14,
the leg bud stage (Fig. 5g, h) [100]. He-Wnt9 was broadly
expressed across embryos at all embryonic stages that
we investigated, but may exhibit strongest expression
in the endomesodermal layer (Additional file 3: Fig.
S2e-h). We did not detect clear He-WntI6A expression
at any stage that we investigated (Additional file 3: Fig.
S2m-p). The AP axis forms by a process referred to as
elongation during stage 11 in H. exemplaris—a process
during which the entire AP axis forms simultaneously,
rather than forming in anteroposterior order as would
be indicative of posterior growth (Fig. 5a, b) [100]. We
analyzed He-six3 expression, a marker of anterior iden-
tity [76, 101], with in situ hybridization at stage 11 to dis-
tinguish between the anterior and posterior embryonic
poles (Fig. 6a, b). In stage 11 embryos, an internalized
cell layer extended to the external ectodermal cell layer
at one embryonic pole (Fig. 5a, b). Six3 was expressed at
the opposite pole (Fig. 6a, b’), indicating that the internal-
ized cells connect to the ectoderm at the posterior side
of stage 11 embryos. At stage 11, He-Wnt2, He-Wnt4,
and He-Wnt16B were expressed in the ectodermal layer
near the posterior embryonic pole (Fig. 6¢, ¢, d, d; i, i’).
He-Wntl1 appeared broadly expressed at this stage, but

the strongest signal was located near the presumptive
posterior end of the embryo (Fig. 6h—h”; Additional
file 3: Fig. S2i). The expression domains of He-Wnt5 and
He-WntA were localized to the ectodermal layer, between
the anterior and posterior poles of embryos (Fig. 6e-g,
j» j’). He-Wnt5 expression extended across the presump-
tive dorsoventral axis, whereas He-WntA expression
was restricted to the presumptive ventrolateral region of
embryos. The He-Wnt5 expression domain shifted to a
slightly more anterior location in late stage 11 embryos
(Fig. 6g, g’), which may be associated with movement of
cells during the elongation process.

After elongation, the AP axis is curved in a character-
istic “C” shape. At stage 12, the developing foregut in
the head and trunk endomesoderm is visible (Fig. 5c, d)
[100]. We did not detect strong signal for He-Wnt2 at this
stage or later stages (Additional file 3: Fig. S2a—c). He-
Wht4 was expressed in the endomesodermal layer of the
developing trunk (Fig. 7b, b’). He-Wnt5 was expressed in
the ventrolateral ectoderm of the posterior head (Fig. 7c,
d). He-Wntl11 signal was detected broadly across embryos
at stage 12, but the strongest expression was localized to
the posteriormost region of developing embryos (Fig. 7e,
¢’; Additional file 3: Fig. S2j). He-Wnt16B was expressed
broadly across the posterior half of the developing trunk,
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(See figure on next page.)

Fig.5 Elongation, segmentation, and leg development stages in H. exemplaris. Panels to the left show DAPI stained embryos. Models are provided
to the right of each data panel. The key for the color-coding in models is provided at the bottom of the figure. a Early elongation (stage 11). b Late
elongation (stage 11). a, b Arrowhead points to internalized cells that connect to the external ectoderm. ¢, d Stage 12. e, f Stage 13. e—e” Views
from more lateral to more medial. e, f Dashed lines in the model denote the position of ectodermal furrows. g, h Stage 14. Anterior is towards the
top in all panels. All panels show a lateral view of embryos facing right except for d, f, and h, which show bilateral views. All panels show internal
anatomy, except for e and g, which show external features. ant anterior; ep1-ep4 endomesodermal pouch T-endomesodermal pouch 4; fg foregut;
I1-141eg 1-leg 4; pos posterior, t1-t4 trunk segment 1-trunk segment 4

excluding the posteriormost region (Fig. 7f, {’). He-WntA At stage 13, segmentation is clearly visible in the form
was expressed in the ectodermal layer in the anterior- of ectodermal furrows and endomesodermal pouches
most region of the developing trunk and posteriormost  (Fig. 5e, f) [100]. He-Wnt4 was expressed strongest in the
part of the head (Fig. 7g—h). endomesodermal layer of the developing trunk (Fig. 8a,
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b). At stage 13, He-Wnt5 expression looked very simi-
lar to its expression at stage 12. At this stage, He-Wnt5
was primarily expressed in a ventrolateral region of the
ectodermal layer of the developing head (Fig. 8c, d). He-
Whntll was expressed broadly across developing embryos
(Additional file 3: Fig. S2k). He-Wnt16B was expressed in
the lateral ectoderm of the third and fourth trunk seg-
ment, excluding the posteriormost region of the fourth
trunk segment (Fig. 8e, f). He-WntA was expressed in a
dorsolateral stripe in the boundary between the head and
the first trunk segment (Fig. 8g, g’).

At stage 14, developing legs are clearly visible (Fig. 5g,
h). Other features, such as pharynx and trunk ganglia
are also visible [100]. At this stage, He-Wnt4 was very
weak or absent (Additional file 3: Fig. S2d). He-Wnt5
was expressed broadly across the inner surface of devel-
oping legs, between the developing hind legs, in the
ventrolateral ectoderm of the head, and in the develop-
ing pharynx (Fig. 9a-b”). He-Wntl1 exhibited strongest
expression in the posteriormost region of the AP axis,
between the developing hind legs, at this stage (Fig. 9c,
d). We also detected staining for He-Wntll in other
parts of the embryo (Additional file 3: Fig. S2I). At stage
14, He-WntA was expressed in a dorsolateral ectodermal
stripe between the head and first trunk segment, and
in the developing pharynx (Fig. 9g, g’). He-Wnt16B was
expressed in a stripe in each developing leg (Fig. 9e, f; ”).
We also detected expression of this gene in the posteri-
ormost region between the developing hind legs (Fig. e,
f”), and near the posterior part of the pharynx, which
likely represents the esophagus (Fig. 9f).

Discussion

Evolutionary dynamics of Wnt genes in Tardigrada
Orthologs of Wnt2, Wnt4, Wnt5, Wnt9, Wntll, Wntlé,
and WnutA are conserved in Tardigrada (Fig. 1). By con-
trast, Wntl, Wnt6, Wnt7, Wnt8, and Wntl0 are missing
in the genomes of two tardigrade species, H. exempla-
ris and R. varieornatus. These genes were most likely
lost specifically within the tardigrade lineage (Fig. 10).
However, these two tardigrade species are fairly closely
related [78]. Therefore, whether these genes were lost
in an ancestor of all tardigrades, or within crown group
Tardigrada is unclear. Likewise, it is difficult to place the
duplication event that gave rise to Wnt16 paralogs. It is
clear that this duplication event occurred somewhere in
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the tardigrade lineage, because tardigrade Wnt16 genes
formed a well-supported monophyletic group in our phy-
logenetic analyses (Fig. 1). It is also clear that these genes
evolved by a duplication event that occurred in an ances-
tor of both H. exemplaris and R. varieornatus, rather
than by independent duplication events (Fig. 10). The fact
that the closest relative of He-Wnt16A is Rv-Wnt16A and
the closest relative of He-Wnt16B is Rv-Wnt16B supports
this conclusion (Fig. 1). As with the losses of Wnt genes,
this duplication event could have occurred in any com-
mon ancestor of H. exemplaris and R. varieornatus in the
tardigrade lineage. Genomic data from more distantly
related tardigrade species would enable a more precise
phylogenetic resolution of tardigrade specific losses and
duplication of Wnt genes. By contrast, we can more pre-
cisely resolve the absence of Wut2 in the genome of R.
varieornatus as a loss in the lineage leading to this species
after it split from the lineage leading to H. exemplaris,
because Wnt2 is retained in H. exemplaris and outgroups
of Tardigrada (Fig. 10).

Additionally, our results suggest that Wnt genes are
dispersed throughout a chromosome or several chro-
mosomes in the tardigrade species that we investigated,
rather than clustered like Wnt genes in some other ani-
mal genomes [2, 5, 59]. The dispersion of Wnt genes in
the genome most likely represents a derived state and
could be related to the extensive loss of Wnt genes. Dis-
persion of ancestrally clustered paralogs in tardigrade
genomes has been previously suggested for Hox genes
and NK homeobox genes [75, 102]. Therefore, disper-
sion of ancestrally clustered paralogs of developmental
genes could represent a general pattern of genome evo-
lution in the tardigrade lineage. The evolution of rapid
embryogenesis has been suggested to abrogate purifying
selection that would otherwise maintain clustered Hox
genes and Parahox genes [103], and may also explain the
dispersion of Wnt genes and NK homeobox genes in tar-
digrade genomes. Additionally, dispersion of ancestrally
clustered paralogous developmental genes has been sug-
gested to represent a general outcome of miniaturization
[74].

In contrast to the extensive loss of Wnt orthologs,
we identified nearly all other components of the cWnt
signaling pathway in tardigrades (Table 1). This was not
surprising given that cWnt signaling regulates many
developmental processes in other animals. However, we

(See figure on next page.)

Fig. 6 In situ hybridization results for Wnt genes in stage 11 H. exemplaris embryos. Green color represents gene expression. Nuclei are labeled
with DAPI (blue). Images that share the same letter represent data from the same embryo. Arrowheads point to internal cells that connect to the
ectoderm at the posterior end. Anterior is towards the top. a Six3 expression in early elongation stage embryos. b Six3 expression in late elongation
stage embryos. ¢ Wnt2 expression. d Wnt 4 expression. e, f Wnt5 expression in early elongation stage embryos. g Wnt5 expression in late elongation
stage embryos. h Wnt11 expression. i Wnt168B expression. j WntA expression. f, g, ", j’ Bilateral view showing internal anatomy. h” Bilateral view of
outer ectoderm. All other panels show lateral views of embryos that are facing right. a'-d’, h’, i’ show internal anatomy of laterally viewed embryos
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Fig. 7 Insitu hybridization results for Wnt genes in stage 12 H. exemplaris embryos. Green color represents gene expression. Nuclei are labeled
with DAPI (blue). Images that share the same letter represent data from the same embryo. Anterior is towards the top. a Six3 expression. Dashed
line outlines the posterior tip. b Wnt4 expression. ¢, d Wnt5 expression. e Wnt11 expression. f Wnt16B expression. g, h WntA expression. All panels
show lateral views of embryos that are facing right except for d and h which are bilateral views showing internal anatomy. a’, b’, €', f’ show internal
anatomy of laterally viewed embryos. b’ Dashed lines outline developing endomesodermal pouches. d, h Dashed line demarcates the boundary
between the head and the trunk

were unable to identify an ortholog of arrow (Additional
file 2: S1), referred to as Lrp5/6 in many animals, which
codes for a co-receptor of Wnt ligands [88—90, 104]. The
closest match to arrow in tardigrades is a gene that most
likely codes for an Lrpl ortholog (Figs. 3c, 4). Possibly,
the Wnt ligands that were lost in Tardigrada represent
the Wnt ligands that required Arrow as a co-receptor to
activate cWnt signaling in the ancient ancestors of tardi-
grades. To test this hypothesis, more studies are required
to determine exactly which Wnt ligands require Arrow
for cWnt signaling broadly across Metazoa.

Potential correlates of Wnt gene loss in Tardigrada
Barring initial redundancy, which is a poor explanation
for long-term retention of Wnt paralogs [3], the loss of

Wnt genes in the tardigrade lineage is most likely asso-
ciated with modifications to development in Tardigrada.
However, identifying exactly how development has been
modified in tardigrades is extremely difficult, especially
given the relatively scarce functional data for most Wnt
genes. Additionally, we should not draw strong con-
clusions based on the loss of several Wnt genes in Tar-
digrada, given that gene loss is very common in this
lineage [97, 105], and given that the loss of one or more
Wnt gene(s) is fairly common across Metazoa [3]. None-
theless, a comparative approach may help explain the
extensive loss of Wnt genes in Tardigrada. First, we note
that, in addition to tardigrades, several other secondar-
ily miniaturized animals exhibit extensive loss of Wnt
genes (Fig. 10, Caenorhabditis, Adineta, Schmidtea,



Chavarria et al. BMC Ecology and Evolution (2021) 21:223

Page 12 of 21

Fig. 8 In situ hybridization results for Wnt genes in stage 13 H. exemplaris embryos. Green color represents gene expression. Nuclei are labeled
with DAPI (blue). Images that share the same letter represent data from the same embryo. Anterior is towards the top. a, b Wnt4 expression. ¢, d
Wnt5 expression. e, f Wnt168 expression. g, g’ WntA expression. a, ¢, e, g Lateral view of embryos that are facing right. d, g’ Bilateral views showing
external anatomy. f Bilateral view showing internal anatomy. Dashed line demarcates the boundary between the head and the trunk.a, b, c, e, g
Dashed lines demarcate segment boundaries. t1-t4 trunk segment 1-trunk segment 4

Dimorphilus, Hofstenia) [3, 5, 97, 106, 107]. The exten-
sive loss of Wnt genes in some secondarily miniaturized
animals may be due to the evolution of simpler cell fate
specification mechanisms related to reduction in cell
number and simplified morphology that often accompa-
nies miniaturization. Along these lines, our expression
data suggest that combinatorial interactions among Wnt
genes may play a much less important role during devel-
opment of tardigrades compared to typical macroscopic
animals. In arthropods, onychophorans, and anne-
lids, several Wnt genes are coexpressed in the posterior
growth zone and are expressed in similarly positioned
segmentally reiterated stripes [3, 28, 108]. Although
Wnt genes exhibit different expression patterns during
appendage development between arthropods and onych-
ophorans (see below), within each lineage, several Wnt
genes exhibit very similar expression patterns during
appendage development [3, 28, 63]. Similar expression
patterns of different Wnt genes in arthropods, onych-
ophorans, and annelids most likely reflect combinatorial
interactions of these genes during development [3]. Nec-
essary combinatorial interactions of several Wnt paral-
ogs could partly explain their conservation across much
of Metazoa. None of the Wnt genes in H. exemplaris
exhibited highly similar expression patterns during seg-
mentation or leg development. Therefore, combinatorial

interactions between Wnt orthologs must be less impor-
tant during development of tardigrades. In some second-
arily miniaturized animals, like tardigrades, one or more
Wnt genes may become superfluous or redundant with a
reduced requirement of combinatorial interactions, ulti-
mately leading to loss by neutral evolutionary processes.

A second non-mutually exclusive possibility is that the
loss of one or more Wnt genes in Tardigrada is related to
the loss of posterior growth, a process that is regulated
by c¢Wnt signaling in many macroscopic animals [20,
21, 27, 109, 110]. As with tardigrades, posterior growth
is reduced, absent, or highly modified in many second-
arily miniaturized animals ([79, 100, 111, 112], Martin-
Durdn JM, pers. comm.), which have also lost several
Wnt genes (Fig. 10, Caenorhabditis, Adineta, Schmidtea,
Dimorphilus, Hofstenia). Additionally, long germband
insects may retain fewer ancestral Wnt genes than their
short germband relatives that continue to utilize poste-
rior growth (Fig. 10, compare the long germband insects
Drosophila, Anopholes, and Apis to the shortband insect
Tribolilum) [3]. Arrow/Lrp5/6 is also necessary for nor-
mal posterior growth in arthropods and vertebrates [54,
113-115]. Therefore, the loss of arrow/Lrp5/6 in tar-
digrades and several other miniaturized animals may
represent an additional genomic signature of the loss of
posterior growth in these animals.
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1-14leg 1-leg 4

Wnt168

Fig. 9 Insitu hybridization results for Wnt genes in stage 14 H. exemplaris embryos. Green color represents gene expression. Nuclei are labeled with
DAPI (blue). Images that share the same letter represent data from the same embryo. Arrows point to the developing pharynx. Asterisks mark the
region between the posteriormost legs. Anterior is towards the top. a, b Wnt5 expression. a Ventral surface of legs is in view. b, b” Dorsal surface of
legs is toward the outside and the ventral surface is toward the inside of the embryo. ¢, d Wnt11 expression. d Bilateral view. The posterior end of
embryo is outlined. e, f Wnt16B expression. g WntA expression. a-b”, e, f’, f” Dashed lines outline legs. a, ¢, e, g Lateral view of embryos that are
facing right. b-b”, f-f”, g’ Bilateral view showing internal anatomy. g, g’ Dashed lines demarcate the boundary between the head and the trunk.

Although feasible, there are significant difficulties asso-
ciating the loss of Wnt genes and arrow/Lrp5/6 with the
loss of posterior growth. First, the loss of arrow/Lrp5/6
is not tightly associated with the loss of Wnts genes or
posterior growth. For example, D. gyrociliatus retains
an arrow/Lrp5/6 ortholog (Figs. 3¢, 4; Additional file 2:
S1), but is missing several Wnt genes (Fig. 10, Dimorphi-
lus) [97] and lacks posterior growth (Martin-Durén JM,
pers. comm.). Likewise, although long germband insects
have lost several Wnt genes and do not utilize posterior
growth, they retain arrow [88]. Therefore, arrow clearly
plays important developmental roles besides regulat-
ing posterior growth. Evidence for an additional role of
arrow/Lrp5/6 comes from studies of the flatworm S.
mediterranea. In this species, this gene is required to reg-
ulate posterior cell fate and proliferation during AP axis
regeneration [98]. Second, given the sparse data available

in regards to which Wnt gene regulates posterior growth,
and the apparent interchangeability of Wnt gene function
in this process based on data that are available [26, 58],
it is not possible to associate with confidence the loss of
any particular Wnt gene in tardigrades with the loss of
posterior growth. Nonetheless, based on a comparative
perspective, it remains possible that reduced combina-
torial interactions and the loss of posterior growth, both
associated with miniaturization, contributed to the loss
of several Wnt genes and arrow/Lrp5/6 in Tardigrada.

Wnt genes and regionalized AP cell fate specification

Several Wnt genes appeared to be expressed in regional-
ized patterns along the developing AP axis during embry-
ogenesis in H. exemplaris. Given the absence of segment
markers during elongation, it is difficult to determine
precisely where the Wnt genes are expressed during this
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Fig. 10 Summary of distribution of Wnt orthologs in metazoan genomes.“X"in white boxes indicates the loss of a Wnt gene.”?"in white boxes
indicates that a fully sequenced genome is unavailable for the associated lineage, so it is unclear whether the ortholog has been lost, or is present,
but unsequenced. Gray boxes associated with Hofstenia indicate unclear orthology of the four Wnt genes found in the genomes of representatives
of this lineage. Dashed lines coming off of Hofstenia represent different hypotheses of the relationship of this lineage with other bilaterians. The
interrelationships of panarthropod phyla (Arthropoda, Onychophora, Tardigrada) are depicted as a polytomy because they are not currently
resolved [69]. Arthropoda = Drosophila—Ixodes; Onychophora = Euperipatoides; Hypsibius—-Ramazzottius = Tardigrada

stage relative to each other (Fig. 6). However, the relative
order of expression along the AP axis of some Wnt genes
appeared to be maintained between the elongation stage
and later stages during which segmental features are
developing (Figs. 7, 8, 9). In other bilaterians, Wnt genes
play a critical role in establishing the AP axis by pro-
moting posterior identity, in part, by repressing anterior
identity [9, 15-19]. We did not detect expression of any
Wnt genes at the anterior pole of embryos at the elon-
gation stage, besides He-Wnt9 and He-Wntl1, genes that
exhibited very broad expression patterns. Therefore it is
possible that some Wnt genes are playing roles in pro-
moting posterior identity in H. exemplaris and other tar-
digrades. Interestingly, several Wnt genes are expressed

in regionalized AP patterns in the onychophoran Euperi-
patoides kanangrensis during early stages of segmen-
tation [28]. Based on these regionalized patterns, it has
been suggested that Wnt genes may specify segment
identities in onychophorans [28]. Potentially, one or more
Wnt genes are playing a role in specifying segment iden-
tities in tardigrades. Future functional studies may help
resolve this issue.

Wnt genes and segment polarity

In many arthropods, wg, en, and hh, interact positively as
part of a regulatory network to establish segment polarity
[30-34, 4345, 50, 52, 57]. A segmentally reiterated pat-
tern of gene expression emerges, which includes a stripe
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of wg expression positioned immediately in front of a
stripe of en and hh expression. Parasegmental boundaries
develop between the stripes of wg and the stripes of en
and hh expression. Parasegmental boundaries are then
replaced by segmental boundaries, which develop poste-
rior to the en and hh stripes. In spiders, a different Wnt
gene most likely substitutes for wg to regulate segment
polarity [58]. Segment polarity genes have been inves-
tigated in two onychophoran species, Euperapatoides
kanangrensis [64, 65] and E. rowelli [66]. The expression
patterns of the segment polarity genes in onychophorans
are remarkably similar to those in arthropods. However,
in contrast to arthropods, in onychophorans, Wnt genes
and other segment polarity genes, besides en in E. kanan-
grensis, are first expressed in stripes after the earliest
signs of segmentation appear [64, 66]. Therefore, unlike
in arthropods, wg and other Wnt genes most likely do not
play a role in segment formation in onychophorans [28,
64, 66]. Nonetheless, a conserved segment polarity net-
work is most likely regulating intrasegmental patterning
in onychophorans after segments develop [65, 66].

In H. exemplaris, the first signs of segmentation are
the formation of endomesodermal pouches [100]. He-En
expression is first detected in the ectoderm at a later stage
in segmentally reiterated stripes immediately anterior to
where ectodermal furrows develop between the underly-
ing endomesodermal pouches [116]. Our results suggest
that wg has been lost in the tardigrade lineage. Therefore,
if cWnt signaling regulates en expression to establish seg-
ment polarity in the tardigrades of our study, this inter-
action must be mediated though a different Wnt gene.
No Wnt gene was expressed in stripes in the ectoderm
at the earliest stages of the segmentation process in H.
exemplaris (Figs. 7, 8). It is possible that cWnt signaling
is not required for maintaining en expression during seg-
ment formation in Tardigrada. However, cWnt signaling
could be maintaining en expression during segment for-
mation in Tardigrada via a slightly modified mechanism.
He-Wnt4 was expressed broadly throughout the endo-
mesodermal layer of the trunk during segment formation
(Figs. 7b; 8a, b), rather than in the ectoderm as would be
expected for a Wnt gene interacting with en. Nonethe-
less, the ligand that He-Wnt4 encodes could be provid-
ing a signal to En expressing cells. No other Wnt gene
was expressed in a segmentally reiterated pattern that
would be indicative of a role in segment formation. The
only Wnt gene that was expressed in a stripe-like pattern
in H. exemplaris was He-Wnt16B, which was expressed
later in developing legs (Fig. 9e, f; f”). Although this gene
is unlikely to be playing a role in segment formation, its
stripe-like expression pattern may indicate a later acting
segment polarity function. However, by the time that legs
are visible, He-En is no longer expressed in segmentally
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reiterated stripes [116]. Taken together, our results raise
the interesting possibility that Wnt genes may not play a
role in regulating segment polarity via regulatory inter-
actions with en in Tardigrada. The precise developmen-
tal roles of Wnt4, Wnt16B, and other Wnt genes need
to be clarified before a strong conclusion can be drawn
regarding a role of cWnt signaling in regulating segment
polarity, or the lack thereof, in Tardigrada. Additionally,
other commonly conserved components of the segment
polarity network, such as /k, need to be investigated in
tardigrades. Resolving these issues is critical for deter-
mining the antiquity of the roles that the segment polar-
ity network plays during development in Arthropoda and
Onychophora.

Wnt genes and leg development

In arthropods, Wnt genes also play important roles in
regulating appendage development. First, wg activates
expression of Distal-less (DII) to initiate appendage out-
growth [46, 51, 117, 118]. DIl most likely also regulates
appendage growth in onychophorans [119, 120]. Wg and
several other Wnt genes are expressed in a distal pattern
in developing appendages in E. kanangrensis, suggesting
that wg, and potentially other Wnt genes, may also be reg-
ulating growth via DI/ in onychophorans [28, 120]. DI/ is
expressed broadly across the developing legs of H. exem-
plaris, and most likely plays a role in regulating leg out-
growth in Tardigrada [82]. The tardigrades we analyzed
appear to have lost wg. Therefore, wg cannot be activat-
ing DIl expression in these species. It is possible that Wnt
signaling is not required for activating DIl expression in
Tardigrada. Alternatively, one or more other Wnt genes
may play this role. Wnt4 is a potential candidate for
regulating DI/ expression in tardigrades. In H. exempla-
ris, this gene is expressed in the endomesodermal layer
below where legs will develop in the overlying ectoderm
(Fig. 8a, b). Two additional strong candidates are Wnt5
and Wnt16B (discussed in more detail below), which are
both expressed strongly in developing legs (Fig. 9a-b; e, f;
f”). Functional studies are required to determine whether
these Wnt genes or others are required to activate DI/
expression in Tardigrada.

Later in appendage development in arthropods, wg
specifies ventral appendage fate [40, 42, 46, 51, 121-123].
As with wg, several other Wnt genes are expressed in
the developing ventral leg domain in arthropods and
likely play a redundant or combinatorial role in speci-
fying ventral appendage fate [3, 60, 62, 63]. Unlike in
arthropods, no Wnt genes are expressed in the ventral
appendage domain in onychophorans [28]. It has been
suggested that ventral expression of Wnt genes in devel-
oping appendages evolved in the arthropod lineage [28].
The tardigrades that we studied lack a wg ortholog, so
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this gene cannot be playing a role in establishing ventral
appendage fate in these species. However, in H. exempla-
ris, He-Wnt5 is expressed on the inner side of developing
legs (Fig. 9a—b’). Although not definitive, we interpret the
inner side of the developing legs as ventral (Fig. 5h). In
this interpretation, He-Wnt5 may specify ventral append-
age fate in H. exemplaris. Wnt5 is not expressed in a ven-
tral stripe in developing legs of arthropods [3, 58, 63].
This may indicate that a role of WntS in specifying ven-
tral fates in developing H. exemplaris legs, even if pre-
sent, is not homologous to the function that Wnt genes
play in specifying ventral fates in arthropod appendages.

We detected expression of He-Wntl16B in a stripe in
each developing leg (Fig. e, f; £”). Although not defini-
tive, these stripes may lay in the posterior region of each
developing leg (Fig. 5g, h). The insects that have been
studied most extensively, D. melanogaster and T. cas-
taneum, lack a Wntl6 ortholog [3]. In chelicerates and
the millipede Glomeris marginata, Wntl6 is expressed
in the distal tip and a ventral stripe, or just in a ventral
stripe, in developing legs [3, 58, 63]. The Wnt16 ortholog
of the onychophoran E. kangrenesis is expressed at the
distal tip and in a posterior stripe in developing legs
and other appendages, besides the frontal appendage, in
which it is only expressed in a posterior stripe [28]. It is
possible that a posterior stripe of Wnt16 in developing
appendages was inherited in tardigrades and onychoph-
orans from the last common ancestor of these lineages.
Depending on the interrelationships of the panarthropod
phyla (reviewed in [69]), this ancestor could represent the
last common ancestor of Panarthropoda, in which case,
the absence of a posterior stripe of Wnt16 in developing
arthropod appendages would represent a derived state of
Arthropoda.

Conclusions

Studies of tardigrades hold the potential to help resolve
the evolution of developmental mechanisms in Panar-
thropoda. Our study revealed interesting possibilities
regarding the evolution of the roles of Wnt signaling in
regulating the development of key features of Panar-
thropoda—segmentation and appendages. Although
in many respects the anatomy of tardigrades may best
represent the anatomy of the last common ancestor of
Panarthropoda [124, 125], we cannot assume that devel-
opmental mechanisms in Tardigrada represent ancestral
panarthropod mechanisms. In fact, studies indicate that
tardigrade development is highly derived with simplifi-
cation representing a common theme of developmental
evolution in this lineage. For example, tardigrades have
lost several Hox genes, and thus the Hox code must be
simpler in modern tardigrades then it was in the last
common ancestor of Panarthropoda [75]. Tardigrades
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are also missing a dachshund ortholog, indicating that leg
patterning is simpler in modern tardigrades than it was in
the last common ancestor of Panarthropoda [82]. In this
study, we discovered that tardigrades have lost several
Wnt genes. Other miniaturized animals are also missing
several Wnt genes. In fact, Tardigrada, Nematoda, and
Rotifera, which are all miniaturized animals [73, 74, 91,
92], exhibit the highest level of gene loss among animals
with sequenced genomes [105]. In terms of the body plan,
miniaturization is associated with anatomical simplifica-
tion and reduction in cell number [73, 74, 91, 92]. Devel-
opment of the simple body plans of highly miniaturized
animals would not be expected to require the complex
mechanisms that control development of larger animals.
As developmental mechanisms, such as posterior growth
or cell fate specification mechanisms that require com-
plex combinatorial interactions, are lost in association
with miniaturization, the genes that once regulated these
processes may also be lost. Therefore, we propose that
independent cases of extreme miniaturization in animals
explain remarkable examples of convergence in terms of
genome and developmental evolution.

Methods

Identifying candidate genes and phylogenetic analyses
Reciprocal BLAST searches were performed to identify
candidate genes. We collected sequences from a genome
assembly for R. varieornatus [85], and a genome assem-
bly [71], an embryonic transcriptome assembly [126], and
an adult transcriptome assembly [127] for H. exemplaris.
We also collected sequences from genome or transcrip-
tome assemblies for A. vaga [94], S. mediterranea [95],
H. miamia [96], D. gyrociliatus [97], and E. kanangren-
sis [65]. All other sequences that we included in our phy-
logenetic analyses were publicly available in GenBank.
We confirmed that candidate genes encoded predicted
protein domains by CD search analysis [83]. For phylo-
genetic analyses, protein sequences were aligned with
MUSCLE [128]. For Wnt analyses, we aligned sequences
to a previously published matrix [3]. Information about
sequences used in phylogenetic analyses is available in
Additional file 4: S2. Alignments were trimmed using
Gblocks [129, 130]. Alignments were visually inspected
in Mesquite [131]. Alignments are available in Addi-
tional file 5: FASTA alignments. The LG model [132]
was used for phylogenetic analyses, with an estimated
proportion of invariable sites and an estimated gamma
shape parameter with four substitution rate categories.
Maximum likelihood analyses were performed with
PhyML [133]; branch support was calculated by boot-
strap (500 replicates) and the aLRT SH-like method. We
produced majority rule consensus trees in Mesquite with
required tree topologies set to 0.5 from three maximum
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likelihood trees [131]. Bayesian analyses were performed
with MrBayes with Nchains=4 [134]. Tracer was used
to diagnose convergence [135]. Posterior probabilities
were calculated from 4500 trees from the posterior tree
distribution.

PCR and cloning

Primers were designed from H. exemplaris gene
sequences (sequences available upon request). GoTaq
Green Master Mix (Promega) was used to amplify frag-
ments of Wnt genes from H. exemplaris embryonic
c¢DNA. Fragments were cloned into the pCR4-TOPO
TA vector (Invitrogen). This strategy worked for all Wnt
genes besides He-Wntl16A and He-WntA. He-Wntl6A
was amplified from a single exon from genomic template.
A He-WntA fragment was synthesized by Integrated
DNA Technologies. Sanger sequencing was performed
by Eton Bioscience to confirm the identity of cloned or
synthesized sequences.

In situ hybridization and imaging

In situ hybridization was performed by following a
published protocol [136]. This protocol has been used
successfully for several previous studies of tardigrade
development [75, 76, 82]. After completion of the in situ
hybridization protocol, embryos were mounted on
slides in DAPI-Flouromount-G (SouthernBiotech). DIC
and fluorescence images were captured on an Olympus
FV1000 Fluoview confocal microscope. We used the flu-
orescence properties of the chromogenic in situ hybridi-
zation stain to capture confocal data [137]. Fluorescence
data were collected using a UPlanSApo 100x/1.40 oil
objective, a 405 nm laser to capture DAPI data, and a
635 nm laser using the Cy5 excitation and detection pre-
sets in the Olympus Fluoview software to capture in situ
data. Brightness and contrast of confocal stacks were
adjusted in Image]. Images were produced in the Volume
Viewer plugin in Image]. Image levels were adjusted in
Photoshop.
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nevadensis.
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