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We provide a new construction for a set of boxes approximating 
axis-parallel boxes of fixed volume in [0, 1]d . This improves upper 
bounds for the minimal dispersion of a point set in the unit cube 
and its inverse in both the periodic and non-periodic settings 
in certain regimes. In the case of random choice of points our 
bounds are sharp up to double logarithmic factor. We also apply 
our construction to k-dispersion.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The dispersion of a given subset P of the d-dimensional unit cube [0, 1]d is the supremum over 
volumes of axis-parallel boxes in the cube that do not intersect P , where by an axis-parallel box 
we mean a polytope with facets parallel to coordinate hyperplanes. The minimal dispersion is the 
infimum of the dispersions of all possible subsets P ⊂ [0, 1]d of cardinality n. This definition was in-
troduced in [20] modifying a notion from [12]. This notion has many applications in different areas 
and attracted a significant attention of researchers in recent years. We refer to [1,4,21,25] and refer-
ences therein for the history of estimating the minimal dispersion and relations to other branches 
of mathematics, to [3,10,14,16,22,27,28] for recent developments and best known bounds and to 
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[13,23,26] for the dispersion of certain sets. In this note we improve some upper bounds for the mini-
mal dispersion on the cube and for its inverse function. We also discuss corresponding bounds on the 
torus and k-dispersion (the notion introduced in [11], which slightly modifies the standard definition 
by allowing to have at most k points in the intersection of a given set P and an axis-parallel box). An 
important feature of our results is that we consider the dispersion and its inverse as functions of two 
variables without fixing one of the parameters. The improvement of previous results is achieved by a 
new construction of an approximating family of axis-parallel boxes (periodic or non-periodic) needed 
to be checked for a random choice of points.

1.1. Notation

We denote Qd := [0, 1]d . We will use the notation | · | for either cardinality of a finite set or for 
the d-dimensional volume of a measurable subset of Rd (the precise meaning will be always clear 
from the context). The set of all axis-parallel boxes contained in the cube is denoted by Rd , that is

Rd :=
{

d∏
i=1

Ii | Ii = [ai,bi) ⊂ [0,1]
}

. (1)

Given a finite set P ⊂ Qd its dispersion is defined as

disp(P ) = sup{|B| | B ∈ Rd, B ∩ P = ∅}.
The minimal dispersion is defined as the function of two variables n and d as

disp∗(n,d) = inf
P⊂Qd|P |=n

disp(P ).

Its inverse function is

N(ε,d) = min{n ∈N | disp∗(n,d) ≤ ε}.
In this paper it will be more convenient to obtain bounds for the function N(ε, d), then bounds for 
disp∗(n, d) follow automatically.

Letters C, C ′, C0, C1, c, c0, c1, etc, always mean absolute positive constants (that is, numbers inde-
pendent of any other parameters).

1.2. Known results

We first discuss best bounds in the “classical” regime when ε → 0 much faster than d → ∞. The 
first upper bound

N(ε,d) ≤ 2d−1

n

d−1∏
i=1

pi,

where pi denotes the ith prime, was given by Rote and Tichy [20] (see also [4]). It was improved by 
Larcher (see [1]) to

N(ε,d) ≤ 27d+1

ε
.

Very recently it was improved by Bukh and Chao [3] to

N(ε,d) ≤ C d2 lnd
. (2)
ε

2
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Since one clearly has disp∗(n, d) ≥ 1/(n + 1), we have N(ε, d) ≥ 1/ε − 1, this shows that for a fixed 
d and ε → 0, we have N(ε, d) ∼ Cd/ε. The first lower bound which grows with the dimension was 
obtained by Aistleitner, Hinrichs, and Rudolf, who proved that for every ε ∈ (0, 1/4),

N(ε,d) ≥ log2 d

8ε
(3)

(this bound is a combination of Corollary 1 in [1] and Lemma 2 [1], which implies N(ε, d) ≥ log2(d +
1) whenever ε < 1/4). Moreover, Buch and Chao [3] proved that for ε ≤ (4d)−d one has

N(ε,d) ≥ d

eε
. (4)

We would like to note that from results of Dumitrescu and Jiang [4,5] (see also [3]), it follows that 
for every d the following limit exists

�d = lim
n→∞ndisp∗(n,d).

In particular, from Buch and Chao bounds it follows that d/e ≤ �d ≤ C d2 lnd.
On the other hand, if we fix ε and consider d → ∞, then the best upper bound is due to Sosnovec 

[22] who proved for ε < 1/4

N(ε,d) ≤ C ′
ε log2 d. (5)

This bound matches (3), showing N(ε, d) ∼ Cε log2 d for ε < 1/4. The original proof of Sosnovec does 
not give a good dependence of C ′

ε on ε. It was improved in [27] by Ullrich and Vybíral and later in 
[14] by the first named author to

C ′
ε ≤ C

ln(e/ε)

ε2
. (6)

We also would like to mention that in the same paper Sosnovec showed that for ε > 1/4, N(ε, d) ≤
1 + (ε − 1/4)−1, which was improved by MacKay [16] to

N(ε,d) ≤ π√
ε − 1/4

− 3

for ε ∈ (1/4, 1/2). For ε ≥ 1/2 we have N(ε, d) = 1 (it is enough to consider the point (1/2, ..., 1/2)).
We finally discuss the case when both d and 1/ε are growing to ∞ with a comparable speed. In 

[21] Rudolf proved

N(ε,d) ≤ 8d

ε
log2

(
33

ε

)
. (7)

This bound with different numerical constants also follows from much more general results in [2], 
where the VC dimension of Rd was used, and from the fact that this VC dimension equals to 2d). 
Rudolf used a random choice of points uniformly distributed in Qd . His bound is better than the 
upper bound (2) in the regime

ε ≥ exp(−C d lnd).

Then in [14] the first named author proved that for every d ≥ 2 and ε ≤ 1/2,

N(ε,d) ≤ C (lnd ln(e/ε) + d ln ln(e/ε))

ε
, (8)

which is better than the upper bound (2) for

ε ≥ exp(−C d2).
3
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1.3. New results

Our main result is

Theorem 1.1. Let d ≥ 2 and ε ∈ (0, 1/2]. Then

N(ε,d) ≤ 12e
4d ln ln(8/ε) + ln(1/ε)

ε
.

Moreover, the random choice of points with respect to the uniform distribution on the cube Qd gives the result 
with high probability.

Remarks. 1. Let us compare this result to the previously known ones. When ε ≤ d−d , we obtain

N(ε,d) ≤ C

ε
ln

(
1

ε

)
.

This improves the upper bound (8) by lnd factor and is very close to log2 d/(8ε) given by (3). On the 
other hand, when ε ≥ e−d , we get the same upper bound as (8), namely 12edε−1 ln ln(8/ε).

2. We would like to mention, that Hinrichs, Krieg, Kunsch, and Rudolf [10] investigated the best bound 
that one can get using a random choice of points uniformly distributed in the cube. They showed that 
one cannot expect anything better than

max

{
c

ε
ln

(
1

ε

)
,

d

2ε

}
. (9)

Thus our result is the best possible for this method up to ln ln(e/ε) factor in the first summand.

3. Our proof is also based on a random choice of points and is very similar to proofs in [21,14]. In 
such proofs one tries to produce a finite set of “test” boxes, such that if a property (in our case — each 
test box contains no random points) holds for every test box, then the property holds for all boxes. 
The simplest way to produce such test boxes is to create a set of axis-parallel boxes of large enough 
volume such that each axis-parallel box of volume ε contains one test box. Since at the end one uses 
a union bound it is very important to control the cardinality of the set of test boxes. Rudolf used 
the concept of δ-cover [21,7] for this purpose, while the first named author [14] used a more direct 
construction. In this paper we suggest another construction which seems right for this problem, see 
Proposition 3.2. The main idea of this construction comes from a work of the second named author on 
random matrices [15]. We would also like to mention that, surprisingly, our new construction does 
not lead to any improvement for large ε, that is for ε ≥ 1/d — we may apply our new set of test 
boxes, but the bound will be the same as in [14].

Thus, combining bounds of Theorem 1.1 with bounds (2), (5), and (6), the current state of the art 
can be summarized in

N(ε,d) ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C lnd
ε2

ln
( 1
ε

)
, if ε ≥ ln2 d

d ln ln(2d) ,

C d
ε ln ln

( 1
ε

)
, if ln2 d

d ln ln(2d) ≥ ε ≥ d−d,

C
ε ln

( 1
ε

)
, if d−d ≥ ε ≥ d−d2 ,

C d2 lnd
ε , if ε ≤ d−d2 ,

or in the following picture
4
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Finally, we would like to mention that in terms of the minimal dispersion, Theorem 1.1 is equiva-
lent to the following theorem.

Theorem 1.2. There exists an absolute constant C ≥ 1 such that the following holds. Let d ≥ 2 and n ≥ 4d. 
Then

disp∗(n,d) ≤ C
lnn + d ln ln(n/d)

n
.

Moreover, the random choice of points with respect to the uniform distribution on the cube Qd gives the result 
with high probability.

Recall that in the case 2 lnd ≤ n ≤ d2 ln2 lnd

ln2 d
, a better bound was proved in [14], namely Theo-

rem 1.3 there (or combination of (5) with (6)) gives

disp∗(n,d) ≤
(
C lnd

n
ln

( n

lnd

))1/2

.

1.4. Dispersion on the torus

The dispersion on the torus can be described in terms of periodic axis-parallel boxes. We denote 
such a set by R̃d , that is

R̃d :=
{

d∏
i=1

Ii(a,b) | a,b ∈ Qd

}
, (10)

where

Ii(a,b) :=
{

(ai,bi), whenever 0 ≤ ai < bi ≤ 1,

[0,1] \ [bi,ai], whenever 0 ≤ bi < ai ≤ 1.

The dispersion of a finite set P ⊂ Qd on the torus, the minimal dispersion on the torus, and its inverse 
are defined in the same way as above, but using sets from R̃d , that is

d̃isp(T ) = sup{|B| | B ∈ R̃d, B ∩ T = ∅}, d̃isp
∗
(n,d) = inf|P |=n

d̃isp(P ),

and
5
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Ñ(ε,d) = min{n ∈N | d̃isp∗
(n,d) ≤ ε}.

The lower bound

Ñ(ε,d) ≥ d

ε

was obtained by Ullrich [25]. We would like to emphasize that contrary to the non-periodic case, 
even in the case of large ε, the lower bound is at least d. The upper bound

Ñ(ε,d) ≤ C lnd (d + ln(e/ε))

ε
, (11)

was obtained by the first named author [14], who improved Rudolf’s bound [21] (8d/ε) (lnd
+ ln(8/ε)). Note that since the VC dimension of R̃d is not linear in d [6], results of [2] would lead to 
worse bounds. We improve upper bound (11) in the case ε ≤ 1/d by removing the factor lnd in front 
of the second summand.

Theorem 1.3. Let d ≥ 2 and ε ∈ (0, 1/2]. Then

Ñ(ε,d) ≤ 24e
2d ln(2d) + ln(e/ε)

ε
.

Moreover, the random choice of points with respect to the uniform distribution on the cube Qd gives the result 
with high probability. Equivalently, there exists an absolute constant C > 1 such that for d ≥ 2 and n ≥ 1 one 
has

d̃isp
∗
(n,d) ≤ C

d lnd + lnn

n
.

The proof is essentially the same as for Theorem 1.1, but some adjustments are required in the 
construction of approximating sets. This leads to a slightly worse bound. See the remark preceding 
Proposition 3.3 for the details. We would also like to note that the Hinrichs–Krieg–Kunsch–Rudolf’s 
result on best possible lower bound (9) which may be obtained by using random points uniformly 
distributed on the cube holds for the periodic setting as well, therefore the summand ln(e/ε) is 
unavoidable by this method.

2. Preliminaries

Given a positive integer m we denote [m] = {1, 2, ..., m}. Recall that the sets Rd and R̃d were 
defined in (1) and (10) respectively. Given ε > 0, we consider sets of (periodic) axis-parallel boxes of 
volume at least ε,

Bd(ε) :=
{
B ∈ Rd | |B| ≥ ε

}
and B̃d(ε) :=

{
B ∈ R̃d | |B| ≥ ε

}
.

We also consider anchored axis-parallel boxes (that is, containing the origin as a vertex), defined as

B0
d(ε) :=

{
B ∈ R0

d | |B| ≥ ε
}
, where R0

d :=
{

d∏
i=1

Ii | Ii = [0,bi) ⊂ [0,1]
}

. (12)

Definition 2.1 (δ-approximation for Bd(ε)). Given 0 < δ ≤ ε ≤ 1 we say that N ⊂ Rd is a δ-
approximation for Bd(ε) if for every B ∈Bd(ε) there exists B0 ∈N such that B0 ⊂ B and

|B0| ≥ δ.

We define a δ-approximation for B0
d (ε) and B̃d(ε) in a similar way.
6
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Remark. This definition is a slight modification of the notions of δ-net and δ-dinet from [14]. An 
essentially the same notion was recently considered in a similar context by M. Gnewuch [8].

A variant of the following lemma using random points and the union bound was proved in [21]
(see Theorem 1 there). We will use the following formulation taken from [14] (see Lemma 2.3 and 
Remark 2.4 there). The proof in [14] was provided for δ-nets, but it is easy to check that the same 
proof works for δ-approximations.

Lemma 2.2. Let d ≥ 1 and ε, δ ∈ (0, 1). Let N be a δ-approximation for Bd(ε) and let Ñ be a δ-approximation 
for B̃d(ε). Assume both |N | ≥ 3 and |Ñ | ≥ 3. Then

N(ε,d) ≤ 3 ln |N |
δ

and Ñ(ε,d) ≤ 3 ln |Ñ |
δ

.

Moreover, the random choice of independent points (with respect to the uniform distribution on Qd) gives the 
result with probability at least 1 − 1/|N |.

We finally discuss covering numbers. Let K and L be subsets of a linear space X . The covering 
number N(K , L) is defined as the smallest integer N such that there are x1, . . . , xN in X satisfying

K ⊂
N⋃

i=1

(xi + L). (13)

For a convex body K ⊂ Rm and γ ∈ (0, 1), we will need an upper bound for the covering number 
N(K , −γ K ). We could use a standard volume argument, which would be sufficient for our results, 
but we prefer to use a more sophisticated estimate by Rogers-Zong [19], which leads to slightly better 
constants.

Let m ≥ 1, we set θm = sup θ(K ), where the supremum is taken over all convex bodies K ⊂ Rm

and θ(K ) is the covering density of K (see [18] for the definition and more details). It is known (see 
[17], [18]) that θ1 = 1, θ2 ≤ 1.5, and, by a result of Rogers,

θm ≤ inf
0<x<1/m

(1 + x)m(1 −m ln x) <m(lnm + ln lnm + 5)

for m ≥ 3. We will use following lemma from [19].

Lemma 2.3. Let m > 1 and K and L be two convex bodies in Rm. Then

N(K , L) ≤ θm
|K − L|

|L| ,

in particular, for every γ > 0.

N(K ,−γ K ) ≤ 7m lnm

(
1+ γ

γ

)m

.

3. Cardinality of approximating sets

We start with anchored boxes. The following lemma in a more general setting was proved in [15]
(see Lemma 3.10 there). We provide a direct proof in our setting. Recall that B0

d(ε) was defined by 
(12).

Proposition 3.1. Let d ≥ 2 be an integer, ε ∈ (0, 1), and γ > 0. Let δ = ε1+γ . Then the size of an optimal 
(ε1+γ )-approximation of B0

d(ε) equals to
7
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N(Sd−1,−γ Sd−1) ≤ 7d lnd

(
1+ γ

γ

)d−1

,

where Sd−1 is a regular (d − 1)-dimensional simplex.

Proof. We first identify each box in R0
d with its right upper corner, that is, each box B = ∏d

i=1[0, bi)
we identify with b = {bi}di=1. Since each box B ∈ B0

d (ε) contains an anchored box of volume precisely 
equal to ε we may restrict ourself to considering only boxes of volume ε.

For β ≥ 1 consider the sets

Ad(ε
β) =

{
b = {bi}di=1 ∈ Qd |

d∏
i=1

bi = εβ

}
(we use them with β = 1 and β = 1 +γ ). It is enough to prove that there exists a set N0 ⊂Ad(ε

1+γ )

(of an appropriate cardinality) such that for every b = {bi}di=1 ∈ Ad(ε) there exists a = {ai}di=1 ∈ N0
satisfying ai ≤ bi for every i ≤ d.

Consider the function fε : (0, 1] → [0, ∞) defined by

fε(t) = ln(1/t)

ln(1/ε)
.

Note that if bi ≥ 0, i ≤ d, are such that 
∏

i bi = εβ , then

d∑
i=1

fε(bi) =
d∑

i=1

ln(1/bi)

ln(1/ε)
= 1

ln(1/ε)
ln

d∏
i=1

(1/bi) = β.

Let Fε : (0, 1]d → (0, ∞]d be defined by Fε({xi}di=1) = { fε(xi)}di=1. Denote

C+ := {x = {xi}di=1 ∈ Rd | ∀i ≤ d : xi ≥ 0},
C− := {x = {xi}di=1 ∈ Rd | ∀i ≤ d : xi ≤ 0}, and

H := {x = {xi}di=1 ∈ Rd |
d∑

i=1

xi = 1}.

Note that for each fixed β ≥ 1 the function Fε is a bijection between Ad(ε
β) and βH ∩ C+ . Thus it is 

enough to check that there exists a set N1 ⊂ (1 + γ )H ∩ C+ such that for every x = {xi}di=1 ∈ H ∩ C+
there exists y = {yi}di=1 ∈ N1 satisfying yi ≥ xi for every i ≤ d (note here that fε is a decreasing 
function).

Identify H with (d − 1)-dimensional Euclidean space X centered at e := (1/n, ..., 1/n). Let Sd−1 =
H∩C+ (the regular simplex with vertices at the standard basis vectors of Rd). Given y ∈ (1 +γ )H∩C+
consider the set S(y) := (y +C−) ∩ H . Then y serves as an approximation for all points in S(y) ∩ Sd−1
in the above sense, that is, for every point x ∈ S(y) we have yi ≥ xi for every i ≤ d. In other words, we 
need to estimate the cardinality of a (minimal) set of y’s such that the sets S(y) cover Sd−1. Noticing 
that S(y) is a shift of −γ Sd−1 (where the multiplication of Sd−1 by −γ is taken in X with respect to 
the origin e), this means that we have to estimate the covering number N(Sd−1, −γ Sd−1). Applying 
Lemma 2.3 we complete the proof. �

Next we obtain a bound for cardinality of a δ-approximation for Bd(ε).

Proposition 3.2. Let d ≥ 2 be an integer, ε ∈ (0, 1), and γ > 0. Let δ = ε1+γ /4. There exists a δ-
approximation N for Bd(ε) of cardinality at most

7d lnd
(1+ 1/γ )d(ln(e/ε1+γ ))d

1+γ
.

ε

8
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Proof. Let δ0 = ε1+γ and N0 be δ0-approximation for B0
d(ε) of cardinality at most 7d lnd (1+ 1/γ )d

constructed in Proposition 3.1. In order to construct δ-approximation for Bd(ε) we consider shifts of 
multiples of boxes from N0. For each B = ∏d

i=1[0, bi) ∈ N0 we consider the following set of points, 
that will be used for shifts,

LB :=
{
{kibi/d}di=1 | ∀i ≤ d : ki ∈Z, 1 ≤ ki ≤ 1− d + d/bi

}
.

Denoting cd = 1 − 1/d and using that 
∏d

i=1 bi = δ0 and the inequality between arithmetic and geo-
metric means twice, we observe

|LB | ≤
d∏

i=1

(
1− d + d

bi

)
=

d∏
i=1

d

bi
(1− cdbi) ≤ dd

δ0

(
1− cd

d

d∑
i=1

bi

)d

≤ dd

δ0

⎛⎝1− cd

(
d∏

i=1

bi

)1/d⎞⎠d

= dd

δ0

(
1− cdδ

1/d
0

)d
.

Since

cdδ
1/d
0 ≥

(
1− 1

d

)(
1− ln(1/δ0)

d

)
≥ 1− ln(e/δ0)

d
,

we obtain

|LB | ≤ (ln(e/δ0))d

δ0
.

Next consider a box

K =
d∏

i=1

[xi, yi) ∈ Bd(ε).

Denote x = {xi}di=1, y = {yi}di=1, and a = {ai}di=1 = y − x. Then K = x + A, where

A =
d∏

i=1

[0,ai) ∈ B0
d(ε).

Let

B =
d∏

i=1

[0,bi) ∈ N0

be a box which δ0-approximates A. Then, since x + B ⊂ x + A = K ⊂ Qd , we have 0 ≤ xi ≤ 1 − bi for 
all i ≤ d. Therefore, for every i ≤ d there exists a positive integer ki(x) such that

(ki(x) − 1)bi
d

≤ xi <
ki(x)bi

d
and

ki(x)bi
d

≤ 1− bi + bi
d

.

Take zi = ki(x)bi/d and z = {zi}di=1. Then z ∈LB and

K ⊃
d∏

i=1

[xi, xi + bi) ⊃
d∏

i=1

[zi, zi + cdbi) = z +
d∏

i=1

[0, cdbi) = z + cdB.

This implies that
9
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N :=
⋃

B∈N0

⋃
z∈LB

(z + cdB)

is (cdd δ0)-approximation for Bd(ε) of cardinality

|N | ≤ |N0| (ln(e/δ0))d

δ0
≤ 7d lnd

(1+ 1/γ )d(ln(e/ε1+γ ))d

ε1+γ
.

Since cdd ≥ 1/4 for d ≥ 2, this implies the desired result. �
Remark. Note that dealing with periodic boxes and having a periodic box x + ∏d

i=1[0, bi) we cannot 
conclude that xi + bi ≤ 1, therefore, in the proof above, we have to consider all possible xi ≤ 1. Thus, 
for each box B ∈ B0

d (ε) we will have to adjust the definition of LB to

LB :=
{
y = {kibi/d}di=1 | ∀i ≤ d : ki ∈Z, 1 ≤ ki ≤ 1+ d/bi

}
.

This will change the upper bound of cardinality of LB to

|LB | =
d∏

i=1

(
1+ d

bi

)
≤

d∏
i=1

2d

bi
= (2d)d

δ0
.

The rest of the proof will be same with minor adjustments to the periodic intervals. This will lead to 
the following proposition.

Proposition 3.3. Let d ≥ 2 be an integer, ε ∈ (0, 1), and γ > 0. Let δ = ε1+γ /4. There exists a δ-
approximation N for B̃d(ε) of cardinality at most

7d lnd
(1+ 1/γ )d(2d)d

ε1+γ
.

Propositions 3.2 and 3.3 together with Lemma 2.2 immediately imply the main results. We provide 
proofs for completeness.

Proof of Theorems 1.1 and 1.3. We choose γ = 1/ ln(1/ε), so that ε1+γ = ε/e. Let δ = ε1+γ /4 =
ε/(4e). Let N and N ′ be δ-approximations constructed in Propositions 3.2 and 3.3 with cardinali-
ties

|N | ≤ 7d lnd
(1+ 1/γ )d (ln(e/ε1+1/γ ))d

ε1+γ
≤ 7ed lnd

(ln(e/ε))d (ln(e2/ε))d

ε

and

|N ′| ≤ 7d lnd
(1 + 1/γ )d(2d)d

ε1+γ
≤ 7ed lnd

(ln(e/ε))d (2d)d

ε

Thus

ln |N | ≤ 2d ln ln(e2/ε) + ln(1/ε) + ln(7ed lnd) ≤ 4d ln ln(8/ε) + ln(1/ε)

and

ln |N ′| ≤ d ln ln(e/ε) + ln(1/ε) + d ln(2d) + ln(7ed lnd)

≤ 2d ln ln(e/ε) + 2d ln(2d) + ln(1/ε)

≤ 4d ln(2d) + 2 ln(e/ε).

Lemma 2.2 implies the result. �

10
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4. k-dispersion

Following [11], given k ≥ 0 and a finite set P ⊂ Qd we define its k-dispersion as

k-disp(P ) = sup{|B| | B ∈ Rd, |B ∩ P | ≤ k}.
In this way the standard dispersion is 0-dispersion. A similar notion in the context of star discrepancy 
of a given set and anchored boxes was considered in [24,9]. Then the minimal k-dispersion is defined 
as the function of two variables n and d as

k-disp∗(n,d) = inf
P⊂Qd|P |=n

k-disp(P ).

Clearly, if k ≥ n then k-disp∗(n, d) = 1, therefore we consider k ≤ n only. Moreover, by partitioning Qd

in two axis-parallel boxes of volume 1/2, we immediately get that,

1/2 ≤ k-disp∗(n,d) ≤ 1 for n/2 ≤ k ≤ n. (14)

As above, we will work with its inverse,

Nk(ε,d) = min{n ≥ k | k-disp∗(n,d) ≤ ε}.
In [11] the following bound was proved

1

8
min

{
1,

k + log2 d

n

}
≤ k-disp∗(n,d) ≤ C max

{
lnn

√
lnd

n
,
k ln(n/k)

n

}
,

or, equivalently,

c
k + log2 d

ε
≤ Nk(ε,d) ≤ C max

{
ln2(e/ε)

ε2
lnd,

k ln(e/ε)

ε

}
.

Note that in the cases k ≤ lnd or k > lnd and ε ≤ lnd
k the upper bound behaves as ((ln(e/ε))/ε)2 lnd

which cannot be sharp as ε → 0. We improve the upper bound in the next theorem.

Theorem 4.1. Let d ≥ 2, k ≥ 0, and ε ∈ (0, 1/2]. Then

Nk(ε,d) ≤ 80e
d ln ln(8/ε) + k ln(e/ε)

ε
.

Moreover, the random choice of independent points (with respect to the uniform distribution on Qd) gives the 
result with probability tending to 1 as either d → ∞ or ε → 0. Equivalently, there exists an absolute constant 
C > 0 such that for n ≥ 4d and k ≤ n/2, one has

k-disp∗(n,d) ≤ C
k ln(n/k) + d ln ln(n/d)

n
.

Note that for k = 0 this is Theorem 1.1 and that in view of (14), we don’t consider k ≥ n/2 in the 
“moreover” part of the theorem. The proof of Theorem 4.1 for k ≥ 1 repeats the proof of Theorem 1.1, 
we just need to slightly adjust Lemma 2.2 in the following way.

Lemma 4.2. Let d ≥ 1, k ≥ 1, and ε, δ ∈ (0, 1). Let N be a δ-approximation for Bd(ε) such that |N | ≥ 3. Then

Nk(ε,d) ≤ 5

δ
(ln |N | + k ln(e/δ)) .

Moreover, the random choice of independent points (with respect to the uniform distribution on Qd) gives the 
result with probability at least 1 − 1/|N |.
11
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Proof. Let N be a δ-approximation for Bd(ε). Consider N independent random points X1, . . . , XN

uniformly chosen from Qd . By the definition of a δ-approximation, it is enough to show that with the 
required probability, there exists a realization of Xi ’s with the following property: every B ∈ N with 
|B| ≥ δ contains at least k + 1 points. Fix a box B ∈ N . Let E be the event that B contains at most k
points out of Xi ’s. Then there exists A ⊂ [N] with cardinality |A| = N − k such that for every j ∈ A, 
X j /∈ B . Thus

P (E) ≤ P
({∃A ⊂ [N] | |A| = N − k, ∀ j ∈ A : X j /∈ B

})
≤

∑
A⊂[N]

|A|=N−k

P
(∀ j ∈ A : X j /∈ B

) ≤
(
N

k

)
(1− δ)N−k

<

(
eN

k

)k

exp(−(N − k)δ).

Therefore, by the union bound,

P ({∃B ∈ N : B contains at most k points}) < |N |
(
eN

k

)k

exp(−(N − k)δ).

Thus, as far as |N | ( eNk )k
exp(−(N − k)δ) ≤ 1/|N |, X j ’s satisfy the desired property with required 

probability. This inequality is equivalent to

2 ln |N | + k ln
eN

k
≤ δ(N − k). (15)

It remains to show that

N =
⌊
5 ln |N |

δ
+ 5k ln(e/δ)

δ

⌋
satisfies (15). First note that such a choice of N satisfies N ≥ 5k, hence

δ(N − k) ≥ 4δN

5
≥ 4 ln |N |. (16)

We have also N/k ≥ 5δ−1 ln(e/δ). Using that f (x) = x/(ln(ex)) is increasing on (1, ∞)), the latter 
inequality implies that N/k ≥ 2.5δ−1 ln(eN/k). This leads to

δ(N − k) ≥ 4δN

5
≥ k ln

eN

k
. (17)

Since (16) and (17) yield (15), this completes the proof. �
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