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1. Introduction

The dispersion of a given subset P of the d-dimensional unit cube [0, 1]¢ is the supremum over
volumes of axis-parallel boxes in the cube that do not intersect P, where by an axis-parallel box
we mean a polytope with facets parallel to coordinate hyperplanes. The minimal dispersion is the
infimum of the dispersions of all possible subsets P [0, 1] of cardinality n. This definition was in-
troduced in [20] modifying a notion from [12]. This notion has many applications in different areas
and attracted a significant attention of researchers in recent years. We refer to [1,4,21,25] and refer-
ences therein for the history of estimating the minimal dispersion and relations to other branches
of mathematics, to [3,10,14,16,22,27,28] for recent developments and best known bounds and to
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[13,23,26] for the dispersion of certain sets. In this note we improve some upper bounds for the mini-
mal dispersion on the cube and for its inverse function. We also discuss corresponding bounds on the
torus and k-dispersion (the notion introduced in [11], which slightly modifies the standard definition
by allowing to have at most k points in the intersection of a given set P and an axis-parallel box). An
important feature of our results is that we consider the dispersion and its inverse as functions of two
variables without fixing one of the parameters. The improvement of previous results is achieved by a
new construction of an approximating family of axis-parallel boxes (periodic or non-periodic) needed
to be checked for a random choice of points.

1.1. Notation

We denote Qg := [0, 1]%. We will use the notation | - | for either cardinality of a finite set or for
the d-dimensional volume of a measurable subset of R? (the precise meaning will be always clear
from the context). The set of all axis-parallel boxes contained in the cube is denoted by R4, that is

d

Ra:={[ ]l | li=1lai,b) C10,1]¢. (1)
i=1

Given a finite set P C Qg its dispersion is defined as

disp(P) =sup{|B| | B€ R4, BN P =0}.
The minimal dispersion is defined as the function of two variables n and d as
disp*(n,d) = inf disp(P).
(e
=n

Its inverse function is

N(e,d) =min{n € N | disp*(n, d) < &}.

In this paper it will be more convenient to obtain bounds for the function N(e, d), then bounds for
disp*(n, d) follow automatically.

Letters C, C’, Co, C1,c, Cg, C1, etc, always mean absolute positive constants (that is, numbers inde-
pendent of any other parameters).

1.2. Known results

We first discuss best bounds in the “classical” regime when & — 0 much faster than d — oco. The
first upper bound

d—1 d—-1

2
Ne.d) <= [

i=1
where p; denotes the ith prime, was given by Rote and Tichy [20] (see also [4]). It was improved by
Larcher (see [1]) to

7d+1
N(e,d) < .
&

Very recently it was improved by Bukh and Chao [3] to

Cd?Ind
N, d) < ———.
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Since one clearly has disp*(n,d) > 1/(n + 1), we have N(g,d) > 1/¢ — 1, this shows that for a fixed
d and ¢ — 0, we have N(g,d) ~ Cy4/¢. The first lower bound which grows with the dimension was
obtained by Aistleitner, Hinrichs, and Rudolf, who proved that for every ¢ € (0, 1/4),

I d
Ne.d) > ong

3)

(this bound is a combination of Corollary 1 in [1] and Lemma 2 [1], which implies N(e, d) > log,(d +
1) whenever & < 1/4). Moreover, Buch and Chao [3] proved that for & < (4d)~¢ one has

d
N d) = —. (4)

We would like to note that from results of Dumitrescu and Jiang [4,5] (see also [3]), it follows that
for every d the following limit exists

Lq = lim ndisp*(n, d).
n—oo

In particular, from Buch and Chao bounds it follows that d/e < ¢4 < Cd?Ind.
On the other hand, if we fix € and consider d — oo, then the best upper bound is due to Sosnovec
[22] who proved for € <1/4

N(e,d) < C.log,d. (5)

This bound matches (3), showing N(e,d) ~ C.log, d for € < 1/4. The original proof of Sosnovec does
not give a good dependence of C, on &. It was improved in [27] by Ullrich and Vybiral and later in
[14] by the first named author to

In(e/¢€)

!/
CL=C—g

(6)

We also would like to mention that in the same paper Sosnovec showed that for ¢ > 1/4, N(¢,d) <
1+ (¢ —1/4)~1, which was improved by MacKay [16] to

T
N, d) < —— -3
( ) = m
for € € (1/4,1/2). For € > 1/2 we have N(e,d) =1 (it is enough to consider the point (1/2,...,1/2)).
We finally discuss the case when both d and 1/¢ are growing to co with a comparable speed. In
[21] Rudolf proved

8d 33

This bound with different numerical constants also follows from much more general results in [2],
where the VC dimension of R4 was used, and from the fact that this VC dimension equals to 2d).
Rudolf used a random choice of points uniformly distributed in Qg4. His bound is better than the
upper bound (2) in the regime

e >exp(—CdInd).
Then in [14] the first named author proved that for every d > 2 and € <1/2,

C(Ind In(e/e) +dInln(e/¢))
c ,

N(e,d) <
which is better than the upper bound (2) for

& > exp(—Cd?).
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1.3. New results

Our main result is

Theorem 1.1. Letd > 2 and € € (0, 1/2]. Then

4dInln(8/¢) + In(1/¢)
; .

N(e,d) <12e

Moreover, the random choice of points with respect to the uniform distribution on the cube Qg gives the result
with high probability.

Remarks. 1. Let us compare this result to the previously known ones. When & <d~¢, we obtain

N(e,d) < < In <1> .
3 €

This improves the upper bound (8) by Ind factor and is very close to log, d/(8¢) given by (3). On the
other hand, when & > e~¢, we get the same upper bound as (8), namely 12ede~!InIn(8/e).

2. We would like to mention, that Hinrichs, Krieg, Kunsch, and Rudolf [10] investigated the best bound
that one can get using a random choice of points uniformly distributed in the cube. They showed that
one cannot expect anything better than

max{gln<1>,i}. (9)
& & 2¢e

Thus our result is the best possible for this method up to Inln(e/¢) factor in the first summand.

3. Our proof is also based on a random choice of points and is very similar to proofs in [21,14]. In
such proofs one tries to produce a finite set of “test” boxes, such that if a property (in our case — each
test box contains no random points) holds for every test box, then the property holds for all boxes.
The simplest way to produce such test boxes is to create a set of axis-parallel boxes of large enough
volume such that each axis-parallel box of volume & contains one test box. Since at the end one uses
a union bound it is very important to control the cardinality of the set of test boxes. Rudolf used
the concept of §-cover [21,7] for this purpose, while the first named author [14] used a more direct
construction. In this paper we suggest another construction which seems right for this problem, see
Proposition 3.2. The main idea of this construction comes from a work of the second named author on
random matrices [15]. We would also like to mention that, surprisingly, our new construction does
not lead to any improvement for large &, that is for € > 1/d — we may apply our new set of test
boxes, but the bound will be the same as in [14].

Thus, combining bounds of Theorem 1.1 with bounds (2), (5), and (6), the current state of the art
can be summarized in

CInd . In®d
2oIn(g), ifex dinincd)’

1
&
. 2
“inln(l), if fid->e>d™,

N(S,d) < & dInln(2d) 5
Sn(}), ifd4>e>d™,
Cd%Ind : —d?
=, if e <d™®,

or in the following picture
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Finally, we would like to mention that in terms of the minimal dispersion, Theorem 1.1 is equiva-
lent to the following theorem.

Theorem 1.2. There exists an absolute constant C > 1 such that the following holds. Let d > 2 and n > 4d.
Then

Inn+dlInln(n/d)
—

disp*(n,d) < C

Moreover, the random choice of points with respect to the uniform distribution on the cube Q4 gives the result
with high probability.

d?1n®Ind
n2
rem 1.3 there (or combination of (5) with (6)) gives

C Ind n 172
.y n
disp (n,d)<< = ln(l d)> .

Recall that in the case 2Ind <n < , a better bound was proved in [14], namely Theo-

1.4. Dispersion on the torus

The dispersion on the torus can be described in terms of periodic axis-parallel boxes. We denote
such a set by Ry, that is

d
Rg = ’]’[h(a,b) | a,be Qd], (10)

i=1

where

(ai, bi), whenever 0 <a; <b; <1,
[0, 1]\ [bi,a;], whenever 0 <b; <a; <1.

Ii(a, b) :=:

The dispersion of a finite set P C Qg4 on the torus, the minimal dispersion on the torus, and its inverse
are defined in the same way as above, but using sets from R, that is

disp(T) = sup{|B| | Be R4, BNT =@}, disp”(n, d) = lgnlaf disp(P),
=n

and
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N(s, d) =min{n € N | dfi\s/p*(n, d) <e}.

The lower bound

(=

N(e,d) > —

™

was obtained by Ullrich [25]. We would like to emphasize that contrary to the non-periodic case,
even in the case of large ¢, the lower bound is at least d. The upper bound

C Ind (d + In(e/¢€))
c )

was obtained by the first named author [14], who improved Rudolfs bound [21] (8d/¢) (Ind

+1n(8/¢)). Note that since the VC dimension of Ry is not linear in d [6], results of [2] would lead to

worse bounds. We improve upper bound (11) in the case € < 1/d by removing the factor Ind in front
of the second summand.

N(e,d) <

(11)

Theorem 1.3. Let d > 2 and ¢ € (0, 1/2]. Then

~ 2dIn(2 1
N(e,d) < 24e dln( d): n(e/s).

Moreover, the random choice of points with respect to the uniform distribution on the cube Qg gives the result
with high probability. Equivalently, there exists an absolute constant C > 1 such that ford > 2 and n > 1 one
has
—~ dind +Inn
dlsp*(n, d)<C—FF-—.

The proof is essentially the same as for Theorem 1.1, but some adjustments are required in the
construction of approximating sets. This leads to a slightly worse bound. See the remark preceding
Proposition 3.3 for the details. We would also like to note that the Hinrichs-Krieg-Kunsch-Rudolf’s
result on best possible lower bound (9) which may be obtained by using random points uniformly
distributed on the cube holds for the periodic setting as well, therefore the summand In(e/¢) is
unavoidable by this method.

2. Preliminaries

Given a positive integer m we denote [m] = {1, 2, ..., m}. Recall that the sets R4 and ﬁd were
defined in (1) and (10) respectively. Given ¢ > 0, we consider sets of (periodic) axis-parallel boxes of
volume at least ¢,

Ba(e) = {B €Rq | Bl ze} and  By(e) = {B eRq | |Bl zs}.
We also consider anchored axis-parallel boxes (that is, containing the origin as a vertex), defined as
d
BI(e) = [B eRrY | |B| zs}, where RO := []_[1,« | I; = [0, by) C[O,l]]. (12)
i=1

Definition 2.1 (§-approximation for By(¢)). Given 0 < 8§ <& <1 we say that N C Ry is a 8-
approximation for By(e) if for every B € B(g) there exists By € N such that Bo C B and

[Bo| > 4.

We define a §-approximation for Bg(a) and Ed(a) in a similar way.

6
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Remark. This definition is a slight modification of the notions of §-net and §-dinet from [14]. An
essentially the same notion was recently considered in a similar context by M. Gnewuch [8].

A variant of the following lemma using random points and the union bound was proved in [21]
(see Theorem 1 there). We will use the following formulation taken from [14] (see Lemma 2.3 and
Remark 2.4 there). The proof in [14] was provided for §-nets, but it is easy to check that the same
proof works for §-approximations.

Lemma 2.2. Letd>1andeg, s € (0, 1);LetN be a §-approximation for By (e) and let N bea 8-approximation
for By (). Assume both |[N| > 3 and |N'| > 3. Then

3In|N| 3In|N|
s

N(e,d) < and  N(e,d) < T

Moreover, the random choice of independent points (with respect to the uniform distribution on Qq) gives the
result with probability at least 1 — 1/|N/.

We finally discuss covering numbers. Let K and L be subsets of a linear space X. The covering
number N(K, L) is defined as the smallest integer N such that there are x1,...,xy in X satisfying

N
KcJwi+1). (13)
i=1
For a convex body K C R™ and y € (0, 1), we will need an upper bound for the covering number
N(K,—yK). We could use a standard volume argument, which would be sufficient for our results,
but we prefer to use a more sophisticated estimate by Rogers-Zong [19], which leads to slightly better
constants.
Let m > 1, we set 6, = supf(K), where the supremum is taken over all convex bodies K c R™
and 6(K) is the covering density of K (see [18] for the definition and more details). It is known (see
[17], [18]) that 61 =1, 6, < 1.5, and, by a result of Rogers,

Om < inf (14+x)™(1 —mlnx) <m(dnm+Inlnm+5)
O0<x<1/m

for m > 3. We will use following lemma from [19].

Lemma 2.3. Let m > 1 and K and L be two convex bodies in R™. Then
K —L|
N(K,L) < QmT,

in particular, for every y > 0.

-l m
N(K,—yK) <7mlnm (ﬂ) )
14

3. Cardinality of approximating sets

We start with anchored boxes. The following lemma in a more general setting was proved in [15]
(see Lemma 3.10 there). We provide a direct proof in our setting. Recall that Bg(e) was defined by
(12).

Proposition 3.1. Let d > 2 be an integer, & € (0,1), and y > 0. Let § = £'T7. Then the size of an optimal
(e17)-approximation of Bg (&) equals to
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d—1
1
N(Sg-1,—¥Sa-1) <7dInd (%) :
where Sq_1 is a regular (d — 1)-dimensional simplex.

Proof. We first identify each box in Rg with its right upper corner, that is, each box B = ]_[?:1[0, bi)

we identify with b = {bi}f: . Since each box B € Bg(s) contains an anchored box of volume precisely
equal to & we may restrict ourself to considering only boxes of volume ¢.
For B > 1 consider the sets

d
Aq(eP) = {bz{bi}?=1 €Qal []bi =eﬂ}

i=1
(we use them with 8 =1 and 8 =1+y). It is enough to prove that there exists a set Ny C Ag(e'*7)
(of an appropriate cardinality) such that for every b = {bi}?:l € Ag4(e) there exists a = {a,4}§.1:l e Moy
satisfying a; < b; for every i <d.
Consider the function f; : (0,1] — [0, co) defined by
In(1/t)
In(1/¢)"

Note that if b; > 0, i <d, are such that []; b; = ¢, then

fs(t) =

d

d d
NN\~ In(d/by 1 o
210 =2 ey = iz 10760 =P

Let Fg : (0,119 — (0, 00]¢ be defined by F,({x;}9_,) = { fe (x))}_,. Denote
Cii={x={x}, eR?|Vi<d:x >0},

Coi={x=1{x}_,eR?|Vi<d:x <0}, and

d
He={x={x}_ eR!| Y x=1}
i=1

Note that for each fixed B > 1 the function F, is a bijection between Ay4(s?) and SH NC.. Thus it is
enough to check that there exists a set N7 C (1+ y)H NCy such that for every x = {x,»}?:1 eHNCs:
there exists y = {yi}?=1 e N7 satisfying y; > x; for every i <d (note here that f. is a decreasing
function).

Identify H with (d — 1)-dimensional Euclidean space X centered at e := (1/n, ..., 1/n). Let Sg_1 =
HNC, (the regular simplex with vertices at the standard basis vectors of R%). Given y € (1+y)HNC,
consider the set S(y) := (y+C_)NH. Then y serves as an approximation for all points in S(¥y) N Sq_1
in the above sense, that is, for every point x € S(y) we have y; > x; for every i <d. In other words, we
need to estimate the cardinality of a (minimal) set of y’s such that the sets S(y) cover Sy_1. Noticing
that S(y) is a shift of —y Sq_1 (where the multiplication of S4_1 by —y is taken in X with respect to
the origin e), this means that we have to estimate the covering number N(Sq_1, —y Sq—1). Applying
Lemma 2.3 we complete the proof. O

Next we obtain a bound for cardinality of a §-approximation for By(¢).

Proposition 3.2.Let d > 2 be an integer, ¢ € (0,1), and y > 0. Let § = &'tV /4. There exists a §-
approximation N for B4(e) of cardinality at most

(1+1/y)4(n(e/e'*7))d
gty :

7dInd



YJCOM:101648

A.E. Litvak and G.V. Livshyts Journal of Complexity eee (eeee) seseee

Proof. Let 8o = &!*¥ and Ny be 8p-approximation for Bg(s) of cardinality at most 7dInd (1 + l/y)d
constructed in Proposition 3.1. In order to construct §-approximation for B;(¢) we consider shifts of
multiples of boxes from M. For each B = ]_[?:1[0, b;) € No we consider the following set of points,
that will be used for shifts,

Lp = [{k,-bi/al}?:1 | Vi<d:kieZ, 1<k <1 —d+d/b,-].

Denoting ¢4 =1 — 1/d and using that ]_[?=l b; = &p and the inequality between arithmetic and geo-
metric means twice, we observe

|£B|<1_[<1—d-|— ) ]i[ l—cdb)<—< Edi‘)

=1
1/d

d
d? dd 1a\d
<— 5 1—cd<1_[b> :%(l—cd(ﬁo ) .

Since
1/d 1 In(1/80) In(e/5o)
8 1—=)(1-—2)>1-
% ( d)( i ) d
we obtain
In(e/8o))¢
25| < UNE/%0)7
o

Next consider a box

d
K =] ]xi. v € Bae).

i=1

Denote x_{x,}l Y= {y,}l 1,anda_{a,}l 1 =Y —x. Then K =x+ A, where

d
A=]Ti0.a) € Bj(e).

i=1

Let

d
B= ]_[[0, bi) e Ny

i=1

be a box which §p-approximates A. Then, since x+B Cc x4+ A=K C Qqg, we have 0 <Xx; <1 — b; for
all i <d. Therefore, for every i <d there exists a positive integer k;(x) such that

ki(x) — 1)b; ki (x)b; ki(x)b b;
(z()d )lfxi< z(d)z and x(d)z 1_b'+EI

Take z; = k;(x)b;/d and z = {zi}?:1. Then z € L5 and
d d d

K> H[Xi, Xi +bi) D 1_[[21', Zi +cgbi) =z + l_[[O, cabi) =z +¢y4B.
i=1 i=1 i=1

This implies that
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N= U eran)
BeNy zeLlp

is (cg 8o)-approximation for By(¢e) of cardinality

(In(e/80)) 1+ 1/p)4(In(e/e1+7))
8o :

<
V< NG| =

<7dInd

Since CZ > 1/4 for d > 2, this implies the desired result. O

Remark. Note that dealing with periodic boxes and having a periodic box x + ]_[?:1[0, b;) we cannot
conclude that x; + b; < 1, therefore, in the proof above, we have to consider all possible x; < 1. Thus,

for each box B € Bg(s) we will have to adjust the definition of Lp to
Lp = {y = (kibi/d)l_, |Vi<d: kieZ, 1<k <1 +d/b,-} .
This will change the upper bound of cardinality of L5 to

d d d
d 2d (2d)
"‘B'Z“(”;)f b~ s
i=1

i=1 !

The rest of the proof will be same with minor adjustments to the periodic intervals. This will lead to
the following proposition.

Proposition 3.3. Let g > 2 be an integer, ¢ € (0,1), and y > 0. Let § = g1ty /4. There exists a §-
approximation N for By(¢) of cardinality at most

(1+1/y)4d)?

7dInd ISEY

Propositions 3.2 and 3.3 together with Lemma 2.2 immediately imply the main results. We provide
proofs for completeness.

Proof of Theorems 1.1 and 1.3. We choose y = 1/In(1/¢), so that g!*¥ =g/e. Let § = ¢!tV /4 =
£/(4e). Let N and N’ be §-approximations constructed in Propositions 3.2 and 3.3 with cardinali-
ties

(1+1/y)4 (In(e/e*1/7))d (In(e/))? (In(e?/e))¢

V| <7dInd T <7edInd .

and
1+1/y)42d)4 1 d (og)d
W) = 7ding EFEUDRDT_ o1 g Ince/en” @’
gty P

Thus

In|A] < 2dInln(e?/¢) +In(1/¢) + In(7ed Ind) < 4dInin(8/¢) + In(1/e)
and

In|N’| <dInln(e/e) +In(1/€) +dIn(2d) + In(7ed Ind)
<2dInln(e/g) + 2dIn(2d) + In(1/¢)
<4dIn(2d) 4+ 21In(e/¢).

Lemma 2.2 implies the result. O

10
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4. k-dispersion

Following [11], given k > 0 and a finite set P C Qg we define its k-dispersion as

k-disp(P) =sup{|B| | B€ R4, |BNP| <k}.

In this way the standard dispersion is O-dispersion. A similar notion in the context of star discrepancy
of a given set and anchored boxes was considered in [24,9]. Then the minimal k-dispersion is defined
as the function of two variables n and d as

k-disp*(n,d) = inf k-disp(P).
1|7PC|Qd
=n

Clearly, if k > n then k-disp*(n, d) = 1, therefore we consider k < n only. Moreover, by partitioning Qg
in two axis-parallel boxes of volume 1/2, we immediately get that,

1/2 <k-disp*(n,d) <1 for n/2<k<n. (14)
As above, we will work with its inverse,
Ni(g,d) = min{n > k| k-disp*(n, d) < ¢}.

In [11] the following bound was proved

1 1 /1 1
3 min{L %} < k-disp*(n, d) §Cmax[lnn an I<n§17n/k)]

or, equivalently,

k +log,d
6‘7
e

2
< Ni(e.d) < Cmax{ln ;(?2/8) Ind, kln(:/g) }

Note that in the cases k <Ind or k > Ind and € < % the upper bound behaves as ((In(e/s))/€)? Ind

which cannot be sharp as & — 0. We improve the upper bound in the next theorem.

Theorem 4.1. Letd > 2,k > 0, and ¢ € (0, 1/2]. Then

dInIn(8/¢) +kin(e/¢)
- .

Ni(e,d) < 80e

Moreover, the random choice of independent points (with respect to the uniform distribution on Qq) gives the
result with probability tending to 1 as either d — oo or € — 0. Equivalently, there exists an absolute constant
C > 0 such that forn > 4d and k < n/2, one has
kln(n/k) 4+ dInln(n/d)

; .

k-disp*(n,d) < C

Note that for k =0 this is Theorem 1.1 and that in view of (14), we don’t consider k >n/2 in the
“moreover” part of the theorem. The proof of Theorem 4.1 for k > 1 repeats the proof of Theorem 1.1,
we just need to slightly adjust Lemma 2.2 in the following way.

Lemmad4.2.Letd > 1,k > 1,and &, § € (0, 1). Let N be a §-approximation for B4(¢) such that |N'| > 3. Then

Ni(e,d) < g (In|N|+kln(e/8)) .

Moreover, the random choice of independent points (with respect to the uniform distribution on Q) gives the
result with probability at least 1 — 1/|N|.
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Proof. Let N be a §-approximation for By(g). Consider N independent random points X1,..., Xy
uniformly chosen from Q4. By the definition of a §-approximation, it is enough to show that with the
required probability, there exists a realization of X;'s with the following property: every B € N' with
|B| > & contains at least k + 1 points. Fix a box B € NV. Let £ be the event that B contains at most k

points out of X;'s. Then there exists A C [N] with cardinality |A| = N — k such that for every j € A,
X;j ¢ B. Thus

P@E) <P({3ACIN] | |A|I=N—k, YjeA: X; ¢B})
) N _k
< > P(v]eA;xj¢B)§(k> 1 =N

AC[N]
|A|=N—k

eN k
< <T> exp(—(N —k)d).

Therefore, by the union bound,
. . eN\*
P ({3B € N : B contains at most k points}) < |V (T) exp(—(N —k)J).

Thus, as far as || (%)k exp(—(N — k)8) < 1/|N|, X;'s satisfy the desired property with required
probability. This inequality is equivalent to

N
21n|N|+klneT§6(N—k). (15)

It remains to show that

N— LSln IV n 5kln(e/8)J
1) 8

satisfies (15). First note that such a choice of N satisfies N > 5k, hence

48N
8(N—I<)2Tz4ln|N|. (16)

We have also N/k > 581 In(e/8). Using that f(x) = x/(In(ex)) is increasing on (1,c0)), the latter
inequality implies that N/k > 2.561 In(eN/k). This leads to

45N N
8(N—I<)szklneT. (17)

Since (16) and (17) yield (15), this completes the proof. O
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