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Abstract

There�has�been�a�steady�rise�in�the�use�of�dormant�propagules�to�study�biotic�responses�

to�environmental�change�over�time.�This�is�particularly�important�for�organisms�that�

strongly�mediate�ecosystem�processes,�as�changes�in�their�traits�over�time�can�pro-

vide�a�unique�snapshot�into�the�structure�and�function�of�ecosystems�from�decades�

to�millennia� in� the�past.�Understanding�sources�of�bias�and�variation� is�a�challenge�

in� the� field� of� resurrection� ecology,� including� those� that� arise� because�often-�used�

measurements� like�seed�germination�success�are� imperfect� indicators�of�propagule�

viability.�Using�a�Bayesian�statistical�framework,�we�evaluated�sources�of�variability�

and�tested�for�zero-�inflation�and�overdispersion�in�data�from�13�germination�trials�of�

soil-�stored�seeds�of�Schoenoplectus americanus,�an�ecosystem�engineer�in�coastal�salt�

marshes�in�the�Chesapeake�Bay.�We�hypothesized�that�these�two�model�structures�

align�with�an�ecological�understanding�of�dormancy�and�revival:�zero-�inflation�could�

arise�due�to�failed�germinations�resulting�from�inviability�or�failed�attempts�to�break�

dormancy,�and�overdispersion�could�arise�by�failing�to�measure�important�seed�traits.�

A�model�that�accounted�for�overdispersion,�but�not�zero-�inflation,�was�the�best�fit�to�

our�data.�Tetrazolium�viability�tests�corroborated�this�result:�most�seeds�that�failed�

to�germinate�did�so�because�they�were�inviable,�not�because�experimental�methods�

failed� to�break�their�dormancy.�Seed�viability�declined�exponentially�with�seed�age�

and�was�mediated�by�seed�provenance�and�experimental�conditions.�Our�results�pro-

vide�a�framework�for�accounting�for�and�explaining�variability�when�estimating�prop-

agule�viability�from�soil-�stored�natural�archives�which�is�a�key�aspect�of�using�dormant�

propagules�in�eco-�evolutionary�studies.

K E Y W O R D S

Bayesian�hierarchical�modeling,�germination,�resurrection�ecology,�Schoenoplectus americanus,�

seed�viability
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1� |� INTRODUC TION

Reviving�dormant�propagules�can�be�a�powerful�approach�for�study-

ing�biotic�responses�to�global�change�(Weider�et�al.,�2018).�This�ap-

proach� is�often� referred� to�as� ‘resurrection�ecology,’� and� it� serves�

as�a� lens� for�examining�genetic� and� phenotypic� change�over� time,�

for� inferring� processes�underlying� responses� to� stressor� exposure�

(Brendonck�&�De�Meester,�2003;�Burge�et�al.,�2018;�Weider�et�al.,�

2018),�and�for�lending�insight�into�climatic�and�ecosystem�processes�

across�historical�time�(Burge�et�al.,�2018).�Foundational�resurrection�

ecology�research�provided�empirical�evidence�of�rapid�evolution� in�

short-�lived�zooplankton�(De�Meester�et�al.,�2011;�Frisch�et�al.,�2014;�

Geerts�et�al.,�2015;�Hairston�et�al.,�1999;�Kerfoot�et�al.,�1999).�More�

recently,�persistent�soil-�stored�seed�banks�have�become�recognized�

as�a�promising�resource�for�reconstructing�records�of�plant�responses�

to� environmental� change� (Blum� et� al.,� 2021;� Fennell� et� al.,� 2014;�

Summers�et�al.,�2018).�Seeds�recovered�from�time-�stratified�soils�and�

sediments�have�long�served�as�proxy�records�of�past�geological-��and�

climate-�related�conditions�such�as�relative�sea-�level�rise�(e.g.,�Jarrell�

et�al.,�2016;�Saunders,�2003;�Saunders�et�al.,�2006;�Törnqvist�et�al.,�

2004).� Soil-�stored� seeds,� especially� from� sedges� and� rushes,� are�

now�increasingly�being�revived�to�gain�insight�into�demographic�and�

genetic�variation�over�time� (Bennington�et�al.,�1991;�Fennell�et�al.,�

2014;� Gugerli� et� al.,� 2005;�McGraw,� 1993;� Summers� et� al.,� 2018;�

Vavrek� et� al.,� 1991).� Importantly,� traits� of� sedges� and� rushes� are�

tightly� linked�to�biogeochemical�processes�such�as�carbon�seques-

tration�(Kirwan�&�Megonigal,�2013;�Langley�&�Megonigal,�2010),�so�

understanding� their� trait�variation�across� time�also� lends�essential�

insight� into� broader� ecosystem�processes� from�earlier� decades� to�

centuries.�Despite�these�advances�and�the�potential�implications�of�

this�work,� the� use� of� soil-�stored� seed� banks� for� eco-�evolutionary�

studies�is�still�limited�(Blum�et�al.,�2021;�Etterson�et�al.,�2016;�Franks�

et�al.,�2008),�partly�due�to�concerns�of�biased�representation�that�are�

common�within�the�field�of�resurrection�ecology�(Brendonck�&�De�

Meester,� 2003;�Hairston�&�Kearns,�2002;�Weis,�2018).�Therefore,�

understanding�and�constraining�uncertainty�around�propagule�via-

bility�and�revival�could�help�allay�concerns�about�biased�representa-

tion�(Summers�et�al.,�2018).

Seminal� agricultural� and� ecological� studies� of� seed� germina-

tion� and� dormancy� (Biere,� 1991;� Chouard,� 1960;�Heydeker,� 1977;�

Kalisz,� 1989;� Mayer� &� Poljakoff-�Mayber,� 1982;� Srivastava,� 2002)�

have�demonstrated�that�several� factors�can�result� in�biased�repre-

sentation.� For� example,� a� nonrandom� subset� of� seeds� that� fall� to�

the�ground�may�enter�the�seed�bank�(Franks�et�al.,�2018;�Templeton�

&�Levin,�1979;�Weis,�1982).�Bias�might�also�arise�from�progressive�

attrition� (i.e.,�mortality),�where� viability� (and� thus� revival)� declines�

with�time�since�burial� (Hairston�et�al.,�1996;�Summers�et�al.,�2018;�

Weis,�2018).�Nonrandom�attrition�can�occur� if,� for�example,�seeds�

exhibit�differences�in�traits�like�size�or�coat�thickness�that�influence�

the�likelihood�of�persistence�(Bakker�et�al.,�1996;�Mohamed-�Yasseen�

et�al.,�1994;�Schwienbacher�et�al.,�2010),�or�if�there�is�pre-�emergence�

selection�acting�on�traits�that�covary�with�germination�or�seed�via-

bility� (Weis,�2018).�Similarly,�biased�representation� in� ‘resurrected’�

populations�might� arise� if� experimental� approaches� result� in� non-

random�germination� (i.e.,� apparent�bias�due� to�artificial� selection).�

Random�variation�that�is�unrelated�to�seed�traits�or�experimental�de-

sign�may�also�affect�seed�revival.�Finally,�as�germinated�seeds�usually�

represent�only�a�small� subset�of� the�corresponding�historical�pop-

ulation,� accounting� for� sampling� error� in� subsequent� experiments�

could�be�important�in�estimating�uncertainty�in�evolutionary�change�

over� time.� Disentangling� potential� sources� of� bias� and� variation�

could�substantially�advance�understanding�of�how�seed�germination�

data�can�serve�as�a�proxy�estimate�of�viability�and�thus�improve�our�

understanding� of� how� dormant� propagules� can� be� used� for� eco-�

evolutionary�studies.

Bias�can�overall�be�minimized�by�using�study�species�with�large�

propagule�population�sizes,�reducing�the�likelihood�of�uneven�sam-

pling� and� false� signatures� of� selection� (Brendonck� &�De�Meester,�

2003;�Weider�et�al.,�1997).�Using�study�species�that�produce�highly�

resilient� propagules� can� also� reduce� bias� (e.g.,� Blum� et� al.,� 2021;�

Summers�et�al.,�2018).�This�is�well-�reflected�in�paleoecological�stud-

ies� of� coastal� marshes,� which� have� frequently� focused� on� sedges�

that�produce�large�crops�of�seeds�with�durable�coats�capable�of�per-

sisting�in�marsh�soils�for�up�to�millennia�(Brush,�2001;�Jarrell�et�al.,�

2016;� Miller� et� al.,� 1997;� Saunders,� 2003;� Sherfy� &� Kirkpatrick,�

1999;� Törnqvist� et� al.,� 2004).�Notably,� prior�work�with� a� century-�

long�Schoenoplectus americanus�seed�bank�demonstrated�that�some�

potential�drawbacks�could�be�overcome� (Summers�et�al.,�2018).� In�

that�study,�seeds�of�S. americanus�from�five�stratified�soil�layers�span-

ning�approximately�100�years�demonstrated�genotypic�differences�

among�different�age�cohorts�and�between�age�cohorts�and�extant�

plants.�Genetic�diversity�(i.e.,�allelic�richness,�heterozygosity)�based�

on�microsatellite�genotyping�did�not�decline�with�depth,�suggesting�

that�the�observed�pattern�of�differentiation�is� likely�not�due�to�at-

trition.�Despite�these�findings,�there�remain�outstanding�questions�

about�the�fraction�of�seeds�recovered�from�the�S. americanus�seed�

bank�that�failed�to�germinate.�For�example,�it�is�unknown�if�the�seeds�

that�fail�to�germinate�are�inviable,�if�methods�to�break�dormancy�fail,�

and�how�seed�age�mediates�these�processes.�Further,�the�extent�to�

which�traits�related�to�seed�dormancy�are�correlated�with�those�of�

adult�plants�is�unknown,�and�this�is�critical�to�the�understanding�of�

whether� cohorts� of� resurrected� propagules� are� representative� of�

historical�populations�(Bennington�&�McGraw,�1995).

Even�when�a� large�number�of�durable�propagules�are�available�

for�study�as�in�Summers�et�al.� (2018),�estimating�seed�viability�can�

be� difficult.�Destructive� assays� like� tetrazolium� tests� that� register�

cellular� respiration� (Santos� et� al.,� 2007)� can� deliver� valuable� per-

spectives� on� seed� viability� but� prevent� subsequent� use� (e.g.,� for�

constructing�experimental�populations).�Estimates�of�the�probability�

of�germination� success� from�germination� trials�used� to� “resurrect”�

dormant�propagules�thus�serve�as�imperfect�proxy�measurements�of�

seed�viability�and�allow�for�germinated�propagules�to�be�used�in�fur-

ther�study.�We�suggest�that�post�hoc�hierarchical�statistical�model-

ing�(e.g.,�Hobbs�&�Hooten,�2015)�can�help�identify�and�differentiate�

some�of�the�sources�of�variability�and�bias�from�experimental�data�

on�proxy�measures�of�viability�like�germination�success.�For�example,�
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we�can�use�statistical�models�to�better�understand�how�much�our�

estimates�of�germination�rate�vary�due�to�experimental�methods�in-

dicating� how� generalizable� viability� estimates� are� for� a� species� or�

population.

Thus�far,�the�process�of�viability�decay�in�persistent�soil-�stored�

seedbanks�has�largely�been�characterized�under�artificial�or�seminat-

ural�conditions�(Burnside�et�al.,�1986;�Kilivaan�&�Bandurski,�1981)�like�

short-�term�burial�experiments�(e.g.,�Schütz,�2000).�Some�mathemati-

cal�modeling�(Cohen,�1966)�has�also�provided�insight�into�tradeoffs�

(e.g.,� germination� vs.� storage)� that� can� influence� seed� burial,� per-

sistence,�and�viability.�Empirical�estimation�of�in situ�viability�decay�

can� thus� offer� valuable,� and� arguably�more� realistic,� perspectives�

on�how�seeds�persist�under�natural�conditions�(Fennell�et�al.,�2014;�

Summers�et�al.,�2018).�Moreover,�because�it�can�yield�insight�into�the�

merits�of�different�methods�taken�to�elicit�germination�of�dormant�

seeds,�empirical�estimation�of�in situ�viability�using�statistical�models�

can�be�useful�for�testing�hypotheses�about�the�likelihood,�magnitude�

and�source(s)�of�variability,�and�bias�due�to�experimental�conditions.�

Linking�understanding�of�seed�banking�ecology�with�the�design�of�

statistical� models� can� provide� even� greater� insight.� For� example,�

bias� in� seed�germination�data�can� result�because� seeds�can� fail� to�

germinate�(i.e.,�zeros�in�the�data)�as�a�result�of�inviability�or�because�

attempts�at�revival�failed�to�break�dormancy.�Zero-�inflated�statistical�

models,�which�are�often�used�to�account� for�zeros�that�arise� from�

separate� processes� (Hooten�&�Hefley,� 2019)�might� therefore�be� a�

reasonable�choice�of�statistical�likelihood�for�fitting�germination�trial�

data�to�improve�understanding�of�the�process(es)�underlying�germi-

nation�failures.

In�this�study,�we�evaluated�the�in situ�viability�of�soil-�stored�seeds�

using�germination� trial� data� from�S. americanus,� a�dominant� sedge�

that�serves�as�a�model�species�for�studying�plant�and�coastal�marsh�

ecosystem� responses� to�global� change� (Drake,�2014).�Previous� re-

search� from�Summers�et� al.� (2018)� suggests� that� germination� suc-

cess� of� soil-�stored� S. americanus� seeds� declines� with� seed� depth.�

However,� it� is� still� unclear�whether� this� is� because� seeds� become�

increasingly� inviable�with�depth,� if�experimental�methods� to�break�

dormancy�fail�at�increasing�rates�with�depth,�or�both.

Here,� we� use� seed� germination� data� from�more� than� a� dozen�

experimental� assays� to� characterize� seed� viability� and�develop�hi-

erarchical� Bayesian� models� to� account� for� and� explain� variation�

in� germination� success� related� to� seed� age,� seed�provenance,� and�

experimental� conditions.�We� used� a�model� selection� approach� to�

assess�the�merits�of� four�possible�statistical�models�factorially,� for�

which�we�either�included�or�did�not�include�model�components�that�

account�for�zero-�inflation�and�overdispersion� in�our�data� (Table�1).�

This� design� allowed� us� to� test� hypotheses� motivated� by� ecologi-

cal� understanding� of� how� biases� can� influence� germination� suc-

cess.�First,�we�hypothesized� that�a�zero-�inflated�model�might�best�

fit� our�data�because� both�seed�mortality�and�an� inability� to�break�

dormancy�of�viable�seeds�can� lead� to�germination�failure�and�give�

rise�to�an�over-�representation�of�zeros�in�experimental�data�(Table�1;�

Figure� S3).�We� evaluated� the� alternative� hypothesis� that� a�model�

accounting� for�overdispersion�might�best� fit�our�data�because�key�

covariates,�such�as�those�related�to�seed�quality�(e.g.,�seed�size,�seed�

coat�thickness)�or�the�environmental�conditions�in�which�the�seeds�

were�buried,�were�not�accounted� for� in�our� analysis� (Table�1).�We�

used�the�best�fit�model�to�test�the�coupled�hypothesis�that�viability�

and�germination�were�nonrandom�due� to�differences� in� age,� seed�

provenance,� and� experimental�methods� taken� to�break�dormancy.�

Finally,�we�confronted�our�model� selection� results�with�data� from�

tetrazolium�tests�of�seed�viability�as�a�means�to�support�whether�or�

not�seed�germination�success�serves�as�an�adequate�proxy�for�seed�

viability,�or�similarly,�if�our�success�breaking�dormancy�changed�as�a�

function�of�seed�age.

Through� this� approach,�we�can� assess�bias� and�variability� that�

may�arise� from�experimental� conditions,� those� that�may�arise� due�

to�pools�of�viable�and�inviable�seeds�of�varying�ages�failing�to�ger-

minate,�and�importantly,�from�using�germination�trial�data�as�a�proxy�

for�seed�viability.�Our�results�provide�practical�guidance�for�reviv-

ing� soil-�stored� seeds� for� reconstructing� decadal� to� century-�long�

records�of�plant� responses�to�environmental�change�by� illustrating�

the�magnitude� and� direction� of� treatment� effects� on� germination�

success�(Dagne,�2004;�Lambert,�1992)�and�demonstrating�the�ability�

for�germination�success�to�serve�as�a�proxy� for�seed�viability.�Our�

analysis�does�not�account�for� important�sources�of�bias�and�varia-

tion�that�dictate�how�representative�“resurrected”�plants�are�of�their�

respective� historical� cohorts,�which�would� require� information� on�

how�correlated�traits�related�to�seed�dormancy�are�to�traits�of�adult�

plants.�Instead,�we�provide�a�framework�for�assessing�some�biases�

for�which� we� have� germination� trial� and� tetrazolium� viability� test�

data�to�inform.

2� |� METHODS

2.1� |� Study�species

The� C3� sedge� S. americanus� (previously� known� as� Scirpus olneyi)�

has�been� the� focus�of� foundational� research�on� coastal�marsh� re-

sponses�to�global�environmental�change�including�elevated�atmos-

pheric�CO2,�nutrient�loading,�warming,�and�biological�invasions�(e.g.,�

Drake,�2014;�Langley�&�Megonigal,�2010;� Langley�et� al.,� 2013;� Lu�

et�al.,�2019;�Noyce�et�al.,�2019).�Along�the�Atlantic�and�Gulf�coasts�of�

North�America,�S. americanus�is�often�the�dominant�plant�in�brack-

ish�marshes�where� salinity� varies� between�3.5� and�10�ppt� (Smith,�

1995).�Reproduction�in�S. americanus�involves�both�asexual�(i.e.,�veg-

etative� tillering)� and� sexual� reproduction.� S. americanus� produces�

semispherical�seeds�with�durable�coats�(Miller�et�al.,�1997;�Sherfy�&�

Kirkpatrick,�1999),�contributing�to�postburial�persistence�and�viabil-

ity�(Mohamed-�Yasseen�et�al.,�1994).�Together,�these�seed�traits�along�

with�tidally-�driven�recurring�sediment�deposition�can�engender�the�

formation�of�highly�stratified�seed�banks�that�persist�for�decades�to�

millennia� (Brush,�2001;� Jarrell� et� al.,� 2016;� Lee,�1992;� Peterson�&�

Baldwin,�2004;�Saunders,�2003;�Törnqvist�et�al.,�2004).

Profiles�of�S. americanus� seed� banks� have� proven� to� be�a�use-

ful� resource�for�a�diverse�range�of� research�pursuits.�For�example,�
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profiles�have�been�used�to�reconstruct�salinity�conditions�and�sea-�

level�rise�(Saunders,�2003;�Törnqvist�et�al.,�2004)�because�how�much�

S. americanus�primary�productivity�contributes�to�soil�organic�matter�

accumulation�depends�on�salinity� (Choi�et�al.,�2001;�Langley�et�al.,�

2013;�Ross�&�Chabreck,�1972).�Seed�bank�profiles�have�also�been�

used�to�inform�demographic�shifts�of�S. americanus�across�historical�

time�(Jarrell�et�al.,�2016;�Saunders,�2003).�Notably,�Summers�et�al.�

(2018)�demonstrated� that�S. americanus� seeds�could�be� revived� to�

reconstruct�century-�long�records�of�genetic�variation�and�to�assem-

ble�experimental�populations�to�study�eco-�evolutionary� responses�

to� environmental� change.� Blum� et� al.� (2021)� also� reconstructed� a�

century-�long� record�of�evolution,� focusing�on� the�gain�and� loss�of�

salinity�tolerance�in�S. americanus�relative�to�estuarine�conditions�in�

the�Chesapeake�Bay.

2.2� |� Seed�collections

We�obtained�all�soil-�stored�seeds�from�marshes�in�the�Chesapeake�

Bay�and�Delaware�Bay�watersheds� (Figure� 1,�Table� 2).�Kirkpatrick�

Marsh�was�the�source�of�34.4%�of�all�seeds�(3644�of�10,588�seeds)�

used�in�germination�trials.�Kirkpatrick�Marsh�is�a�tidal�brackish�marsh�

on�the�Rhode�River,�a�subestuary�of�the�Chesapeake�Bay�in�Maryland�

(USA)�with�a�tidal�range�of�44�cm�and�a�salinity�range�of�4–�15�ppt�

(Keller�et�al.,�2009).�Since�1987,�Kirkpatrick�Marsh�has�hosted�a�CO2 

enrichment�study�(Drake,�2014)�and�several�other�studies�of�marsh�

responses� to� environmental� change� (Langley� &�Megonigal,� 2010;�

Langley�et�al.,�2013;�Noyce�et�al.,�2019).�We�collected�a�monolith�of�

soil� (30�cm�diameter,�35�cm�deep)�from�Kirkpatrick�Marsh� in�2002�

and� a� comparable�monolith� (30� cm�diameter,� 50� cm�deep)� from�a�

TA B L E  1�Description�of�statistical�models�including�underlying�hypotheses�and�reasoning.�Example�probability�distributions�are�shown�

for�each�of�the�four�models�on�the�left�with�the�number�of�seeds�planted�equal�to�10.�Parameter�values�for�the�distributions�were�chosen�to�

accentuate�differences�in�the�shapes�of�the�probability�distributions.�For�each�model,�the�hypotheses/justification�for�the�statistical�model�

specification�are�written�(gray�background)�above�the�biological�hypotheses/justification�(white�background)

 Example probability distribution Hypotheses and/or justification

The number of seeds germinated out of the number planted 
for a group of seeds with the same experimental conditions, 
provenance, and depth age is a proportion. Variation in the
data is as expected under a binomial distribution.

The proportion of seeds germinated overall declines with seed 
age and is a function of experimental conditions and seed 
provenance.

Excess zeros seen in the data (e.g. 0 seeds germinated out of 
10 planted) arise from a separate Bernoulli process.

The probability of seed viability decreases with seed age. The 
proportion of viable seeds germinated is a function of seed 
age, experimental conditions, and seed provenance.

The variation in the data (including excess zeros) is greater 
than expected from the binomial distribution (i.e. 
overdispersion).

The proportion of seeds germinated declines with seed age 
and is a function of experimental conditions and seed 
provenance. Missing covariates, for example, result in 
overdispersion in the data.

The variation in the data is greater than expected from the 
binomial distribution (i.e. overdispersion) and excess zeros 
arise from a separate Bernoulli process.

The probability of seed viability decreases with seed age. 
Germination success of viable seeds is a function of seed 
age, experimental conditions, and seed provenance. Missing 
covariates, for example, result in overdispersion in the data.
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study�site�on�Delaware�Bay�in�2008.�We�also�obtained�seeds�from�

this�location�and�in�three�neighboring�locations� in�the�Rhode�River�

basin�(Figure�1,�Table�2;�locations�2,�3,�and�10)�in�2009�and�2017�and�

from�six�other� locations�across�the�Chesapeake�Bay�and�Delaware�

Bay�between�2008�and�2018�(Figure�1,�Table�2;�locations�4–�9)�with�

25.4�cm�diameter,�50–�65�cm�schedule-�30�PVC�cylinder�cores.�For�

comparison,�we�also�obtained�contemporary�seeds�from�accessions�

being�grown� in�greenhouses�originating� from�the�Chesapeake�Bay�

and�Delaware�Bay�study�sites�(locations�4�&�9).

We�stratigraphically�isolated�seeds�from�the�soil�monoliths�and�

cores.�We�first�cut�each�core�and�monolith�perpendicular�to�the�ver-

tical�axis�in�2�cm-�thick�segments�and�then�washed�the�segments�over�

a�1�mm�sieve.�We�visually� identified�and�counted�all�S. americanus 

seeds�remaining�on�the�sieve�and�stored�them�in�freshwater�condi-

tions�at�4°C.�We�excluded�cracked�and�partial�seeds�(i.e.,�empty�seed�

coats)�in�subsequent�germination�trials.

2.3� |� Assessment�of�seed�age�and�seed�bank�

stratification

To�verify�the�age�and�sedimentary�stratification�of�seeds,�we�dated�

three�sediment�cores�collected�from�Kirkpatrick�Marsh�according�to�

radioisotope�activity�(Supplemental�Materials).�We�relied�on�depths�

and�age�estimates�of�sediment�from�Kirkpatrick�Marsh�to�approxi-

mate�the�ages�of�other�seeds�used�in�the�study,�understanding�that�

the� sediment� accumulation� rate� likely� varies� among� the� sampled�

marshes�depending�on�local�hydrology,�sediment�loads,�and�tidal�in-

undation�patterns� (Pethick,�1981).�We�accounted� for� some�of� this�

variability�using�information�from�the�three�sampled�cores�in�the�sta-

tistical�modeling�described�below.

2.4� |� Germination�experiments

We� conducted� 13� germination� experiments� from� 2003� to� 2019�

using�S. americanus�seeds�sieved�from�the�soil�monoliths�and�cores�

(Table�S1;�see�Supplementary�Materials�for�details).�Each�experiment�

was�treated�as�an�independent�investigation,�with�the�exception�of�

a�series�of�continuous�germination�trials�with�no�clear�start�and�end�

date� that� were� conducted� in� 2016–�2017,�which� we� grouped� as� a�

single� experiment.�We�note� that�data� from� the� first� two�germina-

tion�experiments�were�previously�analyzed�in�Summers�et�al.�(2018).�

We�manipulated�growing�conditions�such�as�temperature�(four�lev-

els:�25°C,�30°C,�20°C�daytime/15°C�nighttime,�27°C�daytime/15°C�

nighttime),� media� (three� levels:� sand,� sand� and� soil� mix,� growth�

media� [Murashige� and� Skoog� salt� and� vitamin,� sucrose,� and� agar�

mixture]),�pretreatment�of�seeds�(yes�or�no),�and�photoperiod�(three�

levels:�15�h�light/9�h�dark,�12�h�light/12�h�dark,�0�h�light/24�h�dark)�

within�and�across�the�experiments,�to�identify�optimal�conditions�for�

germinating�seeds�(Table�S1,�Supplemental�Materials).�While�multi-

ple�pretreatments�such�as�bleach�and�gibberellic�acid�were�used�to�

increase� germination� success,� preliminary� analysis� suggested� that�

there�were�no�differences�among�pretreatments�(Figure�S2),�so�we�

pooled� all� pretreated� seeds� together� to� compare� with� those� that�

were�untreated.

The�number�of�seeds�used�in�each�experiment�varied�consider-

ably�according�to�source� (i.e.,�provenance)�and�soil�depth�(Table�2).�

For�some�source�locations,�we�used�only�a�subset�of�recovered�seeds�

in�germination�trials,�and�some�trials�focused�in�particular�on�seeds�

recovered�from�deeper�soil�layers.�All�plants�that�germinated�during�

the�course�of�the�experiments�were�transplanted�into�a�50:50�mix-

ture� of� sand� and� potting� soil� (Fafard� and� Sons)� and�maintained� in�

a� greenhouse� for� later� assessments� of� genetic� and� phenotypic�

variation.

2.5� |� Hierarchical�models

We� fit� four� hierarchical� Bayesian� regression� models,� each� with� a�

different�statistical�likelihood�function,�to�data�on�germination�suc-

cess� for� all� experiments� combined.� Germination� success� was� de-

fined�as�the�number�of�successful�germinants�out�of�the�number�of�

seeds�planted�and�was�predicted�by�the�fixed�effects�of�seed�age,�

experimental� temperature,� experimental� medium,� experimental�

photoperiod,�and�whether�or�not�seeds�were�pretreated�before�the�

germination�trial.�We�also�included�a�random�intercept�as�a�grouping�

variable�for�seed�provenance�(11�locations).�Thus,�we�quantified�the�

proportion�of�seeds�that�germinated�within�each�unique�combination�

F I G U R E � 1�Seed�source�locations�(i.e.,�provenance)�in�the�

Chesapeake�Bay�region�of�the�mid-�Atlantic�coast�of�the�United�

States.�1�=�Kirkpatrick�Marsh,�2�=�Corn�Island,�3�=�Hog�Island,�
4 =�Virginia,�5�=�Bay�Bridge,�6�=�Eastern�Shore,�7�=�Blackwater�
Wildlife�Refuge,�8�=�Taylors�Island,�9�=�Delaware�Bay,�10�=�Sellman�
Creek.�Locations�1,�2,�3,�and�10�are�located�at�the�Smithsonian�

Environmental�Research�Center�and�comprise�73.4%�of�all�seeds�

used�in�germination�trials
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of� experimental� conditions,� mean� seed� age� (as� predicted� by� seed�

depth;� one� of� 75� possible� depth� intervals),� and� seed� provenance.�

The�proportion�of�seeds�that�germinate�within�a�group�of�seeds�of�

the�same�covariate�values�is�synonymous�with�the�probability�that�

one�seed�within�that�group�would�germinate.�We�originally�included�

a�second�random�intercept�to�group�observations�by�experimental�

assay,�but� this�did�not�explain�appreciable�variation� in�germination�

success,�so�we�removed�the�term�from�all�subsequent�models.

Using�a�hierarchical�Bayesian�approach�allowed�us�to�account�for�

and� explain� important� sources� of� variability� in� our� data.� First,�we�

accounted�for�variability�in�estimates�of�the�fixed-�effect,�seed�age.�

We�calculated�the�age�of�groups�of�seeds�of�the�same�depth�interval�

using�a�calibrated�quadratic�regression�between�soil�depth�and�mean�

soil�age�estimated�from�210Pb�activity�and�bulk�density� (Figure�S1,�

Supplemental�Materials).�We�propagated�variance�across�cores�from�

that�calibration�through�the�hierarchical�models�using�the�following�

quadratic�regression�equation�xn = 훾0 + 훾1dn + 훾2dn
2
+ 휖n where dn 

is�the�depth�of�the�seed�layer,�xn�is�the�predicted�seed�age�in�years,�

γj�(for�j�in�0,�1,�2)�are�regression�coefficients,�and�ϵn�is�residual�error.�

Thus,�the�fixed�effect�of�seed�age�for�a�group�of�seeds�collected�from�

the� same�depth� from� the�marsh� surface� in� the� regression�models�

is� a� random� variable� with� a� distribution� (i.e.,� “errors-�in-�variables”;�

Dietze,�2017).�We�also�accounted�for�variation� in�germination�suc-

cess�by� including�a� random�intercept�for�seed�provenance.�Finally,�

we�partitioned�variability�in�model�estimates�of�germination�success�

by�including�fixed�effects�describing�experimental�conditions.�Mixed�

effects�modeling�approaches�like�this�(Bolker�et�al.,�2009)�can�help�

overcome�uneven�representation�across�source�locations�and�exper-

imental�treatments�(Gelman�et�al.,�2013),�allowing�for�better�deter-

mination�of�how�each�factor�contributes�to�variability�in�germination�

success.

2.6� |� Model�likelihoods�and�fitting

All� of� the� hierarchical� regressions� had� a�binomial� likelihood� struc-

ture� because� our� response� variable� was� a� proportion� (i.e.,� seeds�

germinated/seeds� planted)� for� groups� of� seeds� that� shared� the�

same� experimental� treatment� combination,� seed� provenance,� and�

seed�depth� (i.e.,� predicted�mean�age;�Table�1).� Preliminary� assess-

ment� of� the� germination� data� suggested� that� they� could� be� zero-�

inflated�(ZI)�and/or,�more�generally,�overdispersed�(OD)�(Figure�S3).�

Thus,� to�find� the�best�fit�model,�we�constructed� four�models�with�

or�without� zero-�inflation� and�overdispersion� components�within� a�

binomial� regression.� Accordingly,�Model� 1� had� a� generic� binomial�

likelihood� (−ZI/−OD),� Model� 2� had� a� zero-�inflated� binomial� likeli-

hood�(+ZI/-�OD),�Model�3�had�a�beta-�binomial�likelihood�(−ZI/+OD),�
and�Model�4�had�a�zero-�inflated�beta-�binomial�likelihood�(+ZI/+OD)�
(Table�1;�see�Supplementary�Materials�for�full�model�specifications).

These�models�can�be� linked� to�hypothesized�biological�mecha-

nisms�underlying�germination�success� (Table�1).�As�zeros�can�arise�

from� two� separate� processes� in� zero-�inflated� models� (Hooten� &�

Hefley,�2019),�we�hypothesized�that�failed�germinations�due�to�seed�

inviability�were�related�to�the�Bernoulli�portion�of�the�zero-�inflated�

model� (excess� zeros)� and� zeros� resulting� from� failure� to�break� the�

dormancy�of�viable�seeds�were�related�to�the�binomial�portion�of�the�

zero-�inflated�model.�Specifically,�we�hypothesized�that�seed�viability�

decreased�with�seed�age�as�a�separate�process�from�the�germination�

success�of�viable�seeds�declining�with�seed�age�while�also�being�me-

diated�by�experimental� conditions� and� seed� provenance� (Table�1).�

For�the�beta-�binomial�models�that�accounted�for�overdispersion,�we�

hypothesized�that�overdispersion�could�have�arisen�because�we�did�

not� account� for� important� covariates� related� to� seed� quality� (e.g.,�

seed�size,�thickness�of�seed�coat)�or�the�environment�in�which�seeds�

were�buried�(Table�1).

We�fit�each�hierarchical�Bayesian�model�using�STAN�in�the�com-

puting�environment�R�(version�4.0.3;�R�Core�Team,�2019),�which�is�

a� program� for� Hamiltonian�Monte-�Carlo� Bayesian� sampling� (rstan 

version�2.21.1;�Stan�Development�Team,�2020).�We�determined�that�

running�each�model�with� three�chains� for�10,000� iterations� (2000�

warm-�up)� with� a� thinning� interval� of� three� iterations� allowed� for�

convergence�of� all� coefficient�estimates.�We�used� the� following�R�

packages� for� data� manipulation,� postprocessing,� and� plotting:� ti-

dyverse�(version�1.3.0;�Wickham�et�al.,�2019),�ggmcmc�(version�1.4.1;�

Fernández-�i-�Marín,� 2016),� loo� (version� 2.3.1;� Vehtari� et� al.,� 2020),�

and cowplot�(version�1.0.0;�Wilke,�2019).

2.7� |� Model�checking�and�selection

We�used�posterior�predictive�checks�(Gelman�et�al.,�2014),�one�of�the�

most�common�forms�of�model�checking�in�Bayesian�statistics�(Conn�

et�al.,�2018),�as�the�primary�criteria�for�assessing�the�fit�of�the�four�

competing�hierarchical�models.�At�each�iteration�of�the�Monte-�Carlo�

sampling� procedure,�we� simulated�a� dataset� of� the� same� size� and�

structure� from�the�posterior�distribution�using�only�the�model�pa-

rameter�values�at�that�iteration.�We�then�calculated�three�summary�

statistics�of� interest� (mean�number�of� seeds�germinated�across�all�

groups�of�seeds,�standard�deviation�of�the�number�of�seeds�germi-

nated�across�all�groups�of�seeds,�the�number�of�groups�of�seeds�with�

zero�germinants)�for�each�of�the�simulated�datasets.�This�resulted�in�

a�distribution�of�summary�statistic�values�(one�value�for�each�Monte-�

Carlo� iteration)� for�comparison�with�the�summary�statistic�derived�

from� the� experimental� data.�We� inferred� that� a� candidate� model�

could� reasonably� give� rise� to� our� data� if� the� observed� values� fell�

within�the�95%�quantiles�of�the�summary�statistic�distributions.�We�

used�Watanabe-�Akaike� Information�Criterion� (Gelman�et�al.,�2014;�

Watanabe,�2010)�and�LOO�(leave-�one-�out)�cross-�validation�(Vehtari�

et�al.,�2017)�as�additional�criteria�for�selecting�the�best�fit�model.

2.8� |� Seed�viability�tests

We�used� data� from� two� tetrazolium� seed� viability� assays� (Lacroix�

&�Mosher,�1995)� to�further�evaluate� the�hypothesis� that� two�pro-

cesses�drive�variability� in� germination� trial� data�with� seed�age:� (1)�
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germination�success�declines�with�seed�age�because�seeds�decline�in�

viability,�and�(2)�germination�success�declines�with�seed�age�due�to�

a�greater�difficulty�in�breaking�seed�dormancy.�We�conducted�tests�

on�a�subset�of� seeds�that�failed� to�germinate� (n =�470�seeds).�We�

assessed�whether�the�proportion�of�viable�seeds�that�failed�to�ger-

minate�varied�according�to�seed�age�using�a�binomial�regression�with�

seed�depth�as�a�fixed�effect.

3� |� RESULTS

3.1� |� Seed�age�and�stratigraphy

Sediments�from�Kirkpatrick�Marsh,�the�origin�of�34.4%�of�seeds�for�

our�germination�trials,�did�not�exhibit�evidence�of�stratigraphic�mix-

ing� according� to� radiometric� analysis.� A� combination� of� 210Pb and 
137Cs� activity�provided� the�approximate� ages�of� the� top�30� cm�of�

sediment,� encompassing� nearly� all� seeds� recovered� from� the� site.�

Uncertainty�in�dating�across�the�three�cores�was�accounted�for�in�the�

hierarchical�Bayesian�models�by�including�seed�age�as�a�random�vari-

able�(Figure�S1).�For�example,�a�seed�collected�at�a�depth�of�20�cm�

would�have�a�95%�probability�of�being�within�94�and�120�years�old,�

with�an�estimated�mean�seed�age�of�107�years.

3.2� |� Model�selection�results

Posterior� predictive� checks� indicated� that� the� best� fit� models�

were�Model� 3� (beta-�binomial)� and�Model� 4� (zero-�inflated� beta-�

binomial)� (Figure� 2).� Assessing� posterior� predictive� checks� for�

multiple�summary�statistics�revealed�why�Models�1�and�2�did�not�

fit� the�data�as�well�as� the�other� two�models.�Model�1� (binomial)�

was�able�to�capture�the�true�mean�with�high�precision�(Figure�2a),�

but� it� failed� to� capture� the�number�of� zeros� (Figure�2c)� and� the�

spread� in� the� data� (Figure� 2b).�Model� 2� (zero-�inflated� binomial)�

successfully�captured�the�number�of�zeros�(Figure�2c)�but�under-

predicted�the�mean�(Figure�2a)�and�failed�to�capture�the�spread�in�

the�data�(Figure�2b).

Our� model� selection� criteria� corroborated� our� results� from�

the�posterior�predictive�model� checks� (Table� S2).�Models� 3� and�4�

were�a�better� fit� to�our�data� than�Models�1�and�2,�whereas� there�

was�no�appreciable�difference�between�the�fits�of�Models�3�and�4.�

Observed� vs.� predicted� plots� of� the� number� of� seeds� germinated�

for� each� unique� trial� also� indicated� adequate�model� fit� for�Model�

3� (Figure�3a,�R2 =�0.87)�and�Model�4� (Figure�S4,�R2 =�0.87),�while�
Models�1�and�2�overconfidently�predicted�germination�probabilities�

(Figure�S4).�There�was�no�evidence� that� the�zero-�inflation�compo-

nent�of�the�zero-�inflated�beta-�binomial�model�(Model�4)�varied�with�

seed�age�(95%�credible�interval�[CI]�slope:�[−10.50,�7.82]),�and�there�

were�minimal�differences�in�the�predictive�ability�between�Models�3�

and�4�(Figure�2,�Table�S2).�Therefore,�we�selected�the�beta-�binomial�

model� (Model� 3)� as� the�best� fit� and�most� parsimonious�model� for�

subsequent�analyses.

3.3� |� Predictors�of�germination�success

Seed� germination� success� declined� exponentially� with� seed� age�

in� the� beta-�binomial� model� (slope:� −1.32,� 95%� CI� [−1.62,� −1.04],�

Figure�3b).�On�average,�modern�seeds�were�predicted�to�have�a�ger-

mination�probability�of�21.8%�[14.1,�31.3],�whereas�seeds�collected�

at�20�cm�depths�(estimated�age:�107�years)�were�predicted�to�have�a�

germination�probability�of�2.5%�[1.3,�4.3].

Experimental� conditions� mediated� the� proportion� of� seeds�

that�germinated�in�a�trial�(Figure�4).�The�choice�of�media�and�pre-

treatment�of�seeds�were�particularly�influential�in�explaining�aver-

age�germination�success.�For�example,�for�seeds�collected�near�the�

soil�surface,�planting�on�sand�and�holding�all�other�experimental�

conditions�constant�resulted�in�an�average�predicted�germination�

probability�of�29.7%�[12.1,�53.4].�In�contrast,�those�for�which�seed�

endosperm�was�grown�on�a�growth�medium�(Murashige�and�Skoog�

salt� and� vitamin,� sucrose,� and� agar� mix)� had� a� predicted� germi-

nation�probability�of�4.4%�[0.1,�31.6]�(Figure�4b).�Seeds�near�the�

marsh�surface�that�were�pretreated�(e.g.,�bleach,�gibberellic�acid)�

had� an� average� predicted� germination� probability� of� 3.0%� [0.4,�

11.4]�while�untreated�seeds�had�an�average�predicted�germination�

F I G U R E � 2�Comparisons�of�the�four�hierarchical�models�fit�to�germination�trial�data.�Colored�distributions�are�posterior�predictive�

distributions�for�three�summary�statistics�(a)�mean�number�of�seeds�germinated,�(b)�standard�deviation�of�the�number�of�seeds�germinated,�

and�(c)�number�of�trials�with�no�successful�germination.�Black�dashed�lines�in�each�of�the�panels�represent�the�true�value�of�the�summary�

statistic�from�the�observed�data.�Distributions�that�encompass�the�true�value�of�the�summary�statistic�suggest�that�the�model�could�give�rise�

to�the�observed�data
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probability� of� 25.5%� [16.0,� 37.1]� (Figure� 4c).� Temperature� and�

photoperiod�had�a�lesser�influence�on�germination�rates�on�aver-

age�than�did�the�media�and�pretreatment�the�seeds�experienced.�

However,�warmer,�fluctuating�temperatures�(Figure�4a),�and�hav-

ing� a� 15-�h� daytime/9-�h� nighttime� photoperiod� (Figure� 4d)� pro-

moted�germination.

Seed� provenance� explained� considerable� variation� in� germina-

tion�success� (Figure�5).�The� largest�difference�attributable� to�seed�

provenance�occurred�between�Kirkpatrick�Marsh�and�Corn� Island,�

which�are�both�located�at�the�Smithsonian�Environmental�Research�

Center� (Figure� 1,� locations�1�&� 2).� The� difference� in� average�pre-

dicted�germination�probability�between�these�locations�for�seeds�at�

the�shallowest�depths�(difference�=�17.3%�[12.5,�21.6])�was�compa-
rable�in�magnitude�to�differences�attributable�to�experimental�con-

ditions�in�the�germination�trials.

3.4� |� Seed�viability�tests

Most�seeds�that�failed�to�germinate�in�the�subset�of�trials�for�which�

we�conducted�tetrazolium�tests�were�inviable:�only�10.4%�of�seeds�

tested�were�determined� to�be�viable� using� tetrazolium� as� an� indi-

cator.� The� proportion� of� tetrazolium-�determined� viable� seeds� de-

creased�with� seed�depth� (Figure�6).� This� suggests� that�declines� in�

germination� success� are�more� likely�driven�by�declines� in� seed�vi-

ability�than�limitations�of�the�methods�used�to�germinate�seeds�and�

corroborates�that�a�zero-�inflated�component�is�not�necessary�to�ef-

fectively�model�the�distribution�of�the�observed�data.

4� |� DISCUSSION

Understanding�sources�of�variability�and�bias�in�propagule�viability�

can�strengthen� inferences�drawn�from�soil-�stored�natural�archives�

about�biotic� responses� to�environmental� change.�We� conducted�a�

hierarchical� statistical�analysis�using�data� from�13�germination�ex-

periments�accounting�for�and�explaining�variability�in�S. americanus 

germination� success,� a�proxy� for� seed� viability.�Using� a�model� se-

lection�approach,�we�found�that�a�beta-�binomial�model�best�fit�our�

experimental�data,�indicating�our�data�were�overdispersed,�but�not�

zero-�inflated.� We� corroborated� results� from� our� model� selection�

analysis�with� seed� viability� data� from� tetrazolium� tests,� indicating�

that�seed�viability�declined�with�seed�age�more�so�because�of�pro-

gressively� lower�viability� than�decreasing� ability� to�break� the� dor-

mancy�of�still�viable�seeds.�Our�model�also�revealed�that�germination�

success�varied�by�methods�to�break�seed�dormancy�and�the�prov-

enance�of�the�seeds.�Our�findings�illustrate�how�gaining�insight�into�

variability�around�the�persistence�and�viability�of�soil-�stored�seeds�

can�help�ameliorate�some�concerns�about�latent�bias�and�thus�help�

guide�the�assembly�of�experimental�cohorts�to�reconstruct�decadal�

to�century-�long�records�of�the�evolutionary�responses�of�plants�to�

environmental�change.

F I G U R E � 3�(a)�Observed�vs.�predicted�germination�success�from�posterior�predictive�distributions�of�the�beta-�binomial�model�without�

zero-�inflation�(Model�3,�R2 =�0.87).�Points�represent�a�unique�germination�trial�across�seed�age,�seed�provenance,�temperature,�media,�
pretreatment,�and�photoperiod�(n =�298).�Bars�represent�95%�credible�intervals�around�predicted�means.�The�inset�graph�highlights�the�
high�density�of�points�where�there�were�five�or�fewer�germinants�in�a�trial.�(b)�Predicted�probability�of�germination�from�the�beta-�binomial�

model�without�zero-�inflation�(Model�3),�averaged�(with�weighting)�across�germination�trial�conditions.�The�solid�line�represents�the�median,�

and�the�dashed�lines�represent�the�95%�credible�interval.�Raw�data�are�depicted�as�points.�Overlapping�points�with�the�same�value�(e.g.,�

P(germination�success)�=�0)�are�shaded�darker
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4.1� |� Intrinsic�mechanisms�mediating�

germination success

To�assess�how�seed�germination�success�varied�with�seed�age,�we�

explicitly�linked�our�statistical�hypotheses�(i.e.,�choice�of�model�like-

lihoods)�with�our�understanding�of�seed�banking�ecology.�We�pro-

posed�that�variability�in�our�germination�trial�data�could�be�explained�

by� two� separate� processes� that� result� in� seed� germination� failure�

and/or�our�failure�to�measure�important�characteristics�of�the�seeds.�

We�then�proposed�statistical�models�that�would�best�capture�these�

potential� sources�of� variability� in� the�data.�While� our� germination�

trial�data�did�exhibit�a�large�number�of�zeros�(Figure�S3)—�with�59.1%�

of�observations�having�zero�germinants—�a�zero-�inflated�component�

was�not�necessary�nor�adequate� in�capturing�variation�in�germina-

tion�success�(Figure�2).�This�result�corroborates�the�findings�of�other�

ecological�modeling� analyses� that� explicitly� compare� zero-�inflated�

(e.g.,�zero-�inflated�Poisson)�and�overdispersed�models�(e.g.,�negative�

binomial)� for�count�data� (Sileshi,�2008;�Vaudor�et�al.,�2011).�Given�

F I G U R E� 4�Predicted�germination�

success�of�modern�seeds�for�(a)�

temperature�treatments,�(b)�media�

types,�(c)�whether�or�not�seeds�were�

pretreated,�and�(d)�experimental�

photoperiod�at�reference�level�

germination�trial�conditions�from�Model�3�

(temperature�=�27/15°,�media�=�sand/soil,�
pretreatment�=�none,�photoperiod�= 12 h 

daytime/12�h�nighttime).�Shaded�

distributions�are�calculated�from�

the�marginal�posterior�parameter�

distributions.�The�median�of�each�

distribution�is�denoted�with�a�point,�and�

the�95%�quantiles�are�shown�as�horizontal�

lines

F I G U R E � 5�The�effect�of�seed�provenance�on�germination�success�from�the�beta-�binomial�model�without�zero-�inflation�(Model�3).�Points�

in�(a)�represent�predicted�mean�values�of�random�effect�deviations�from�the�global�mean�with�thick�and�thin�bars�representing�90%�and�

95%�quantiles�of�the�highest�posterior�density�(HPD),�respectively.�Mean�predicted�germination�success�across�seed�age�is�shown�for�each�

location�(b)�for�ease�of�interpretation.�“Greenhouse”�represents�seeds�collected�from�plant�accessions�grown�in�a�greenhouse
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this�phenomenon,�comparing�the�performance�of�zero-�inflated�and�

overdispersed�models�when�fitting�data�with�a�large�number�of�zeros�

is�recommended�(Warton,�2005;�Warton�et�al.,�2016)�as�we�did�here�

because� these� distributional� assumptions� can� significantly� impact�

downstream�statistical�inference�(Vaudor�et�al.,�2011).

4.2� |� Seed�viability�and�viability�decay

Consistent�with�extrapolations�suggesting�that�sedge�seeds�can�per-

sist�for�15�to�≥130�years�(Schütz,�2000)�we�found�that�S. americanus 

seeds�can�remain�viable�for�more�than�a�century�(Figure�3b).�Seeds�

that�endure�for�more�than�three�to�five�years�are�generally�charac-

terized�as�persistent� (Thompson�et�al.,� 1998),� suggesting�that�soil-�

stored�S. americanus�seeds�exhibit�remarkable�resilience�to�aging�and�

environmental�exposure.� In�contrast� to�some�celebrated�examples�

of� exceptional� longevity,� such� as�Acacia and Lotus� seeds,� indicat-

ing� that� dry� storage� conditions� promote� persistence� for� centuries�

to�millennia� (Daws�et�al.,�2007;�Leino�&�Edqvist,�2010;�Long�et�al.,�

2015;�Shen-�Miller�et�al.,�1995),�our�findings�affirm�that�burial�due�to�

recurring�deposition�of�sediment�and�plant�detritus�combined�with�

soil�saturation�can�promote�in situ�persistence�of�seeds�(Bennington�

et�al.,�1991;�Fennell�et�al.,�2014;�McGraw�et�al.,�1991;�Morris�et�al.,�

2002;�Vavrek�et�al.,�1991).�This�likely�occurs�because�burial�and�inun-

dation�result�in�low,�stable�temperatures�and�anoxic�conditions�that�

reduce�microbial-�driven� decomposition� (Lee,� 1992;� Probert� et� al.,�

2009).�Our�results�also�support�prior�work�showing�that�traits�such�

as�a�small,�nearly�spherical�size�and�a�durable�coat,�characteristic�of�

S. americanus�seeds,�can�contribute�to�seed�persistence�in�soil�(Bakker�

et�al.,�1996;�Bass,�1980;�Fox,�1983;�Honda,�2008;�Mohamed-�Yasseen�

et�al.,�1994;�Moody-�Weis�&�Alexander,�2007;�Schwienbacher�et�al.,�

2010).�Consideration�of�both�factors�raises�the�possibility�that�highly�

persistent�soil-�stored�seed�banks�are�much�more�widespread�than�is�

currently�thought,�as�sedges�and�other�plants�with�seeds�exhibiting�

traits� that� engender� persistence� often� dominate� ecosystems�with�

wet,�anoxic� soils� such�as� tundra,�heathlands,� glades,�marshes,� and�

mangroves�that�collectively�have�a�large�global�footprint.

Though�S. americanus�seeds�remain�viable�for�a�century�or�more,�

we�found�that�germination�rates�declined�with� increasing�age� (i.e.,�

depth).�Germination�probability�declined�from�an�average�of�22%�in�

recent�sediments� to�3%� in�century-�old� sediments� (Figure�3b).� The�

estimated�rate�of�decline�in�the�germination�of�soil-�stored�S. ameri-

canus�seeds�falls�within�the�range�of�rates�estimated�for�decades-��to�

century-�old� seeds� in� museum� and� herbarium� collections.� For� in-

stance,�germination�rates�of�seeds�in�the�Museum�of�Natural�History�

in�Paris�varied�from�0%�after�55�years�(Melilotus lutea)�of�storage�to�

100%�after�158�years�(Cassia multijuga)�of�storage�(Becquerel,�1934;�

Bewley�et�al.,�2013).�The�estimated�rate�of�decline�also�falls�within�

the�range�of�rates�inferred�from�long-�term�burial�experiments.�Rates�

estimated�from�the�Beal’s�buried-�seed�experiment�started�in�1879�

vary�considerably,�with�average�annual�rates�ranging�from�2.5%�with�

≤40-�year� longevity� (Capsella bursa-�pastoris)� to� 0.9%� (Oenothera bi-

ennis)� and� 0.18%� (Verbascum blattaria)� with� ≥120-�year� longevity�

(Kilivaan�&�Bandurski,�1981;�Telewski�&�Zeevaart,�2002).�The�esti-

mated�rate�of�decline�in�the�germination�of�soil-�stored�S. americanus 

seeds� is� comparable� or� greater� than� declines� estimated� for� other�

soil-�stored�dormant�propagules.�For�example,�some�Daphnia�ephip-

pia�exhibit�up�to�75%�revival�over�century-�long�sedimentary�records�

(Burge�et�al.,�2018;�Frisch�et�al.,�2014;�Hairston�et�al.,�1995;�Weider�

et�al.,�1997).�However,�we�suggest�that�germination�rates�found� in�

this�study�can�provide�ample�sampling�of�historical�cohorts�for�eco-�

evolutionary�studies�(Blum�et�al.,�2021;�Summers�et�al.,�2018),�par-

ticularly�at�more�recent�seed�ages,�with�the�caveat�that�seed�traits�

are�not�strongly�genetically�correlated�with�adult�plant�traits.�Future�

empirical�work�is�warranted�to�assess�the�strength�of�bias�due�to�cor-

relations�between�seed�and�plant�traits�and�between�traits�related�to�

dormancy�and�plant�traits�as�emphasized�by�Weis�(2018).

Testing�the�fit�of�a�zero-�inflated�model�to�our�data�allowed�us�to�

assess�the�hypothesis�that�decline�in�seed�germination�success�with�

seed�age�could�arise�from�two�processes:�increases�in�the�likelihood�

of�seeds�being�inviable�with�age�or�declines� in�our�ability� to�break�

the�dormancy�of�older�seeds�that�have�been�buried�in�sediment�for�

longer.�Both�processes�could�result� from�progressive�deterioration�

of�seeds�due�to�microbial�degradation�or�more�prolonged�exposure�

to�unfavorable� environmental� conditions.� It� is� also� possible� that� a�

decline�in�germination�might�reflect�temporal�shifts�in�genetic�vari-

ation,�as�has�been�observed�in�S. americanus�(Summers�et�al.,�2018)�

because�traits�related�to�persistence�or�dormancy�can�be�heritable�

(Foley� &� Fennimore,� 1998).� Our�model� selection� analysis� showed�

that�a�zero-�inflated�model�did�not�adequately�capture�the�variation�

F I G U R E � 6�Proportion�of�viable�seeds�by�seed�depth�according�

to�tetrazolium�tests�of�seeds�that�failed�to�germinate�in�germination�

trials.�Dots�represent�an�independent�tetrazolium�trial�and�depth.�

The�bolded�line�represents�the�predicted�mean�from�a�binomial�

regression,�and�shaded�areas�represent�95%�confidence�intervals
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in�our�experimental�data�(Model�2)�and�did�not�contribute�to�infer-

ential�power�when�added�to�the�beta-�binomial�model�(Model�4).�This�

suggests�that�separating�intrinsic�(i.e.,�declining�viability)�and�oper-

ational� (i.e.,� inability� to�break�dormancy)� factors� that� can� result� in�

germination� failure�was�not�necessary� to�explain� the�variability� in�

the�germination�of�S. americanus�seeds�given�the�data�from�our�ger-

mination�trials.

Empirical�assays�of�seed�viability�support�our�model-�based�infer-

ences.�Tetrazolium�tests�supported�the�inference�that�seed�viability�

declines�with�seed�age:�there�was�no�evidence�to�suggest�that�the�

decline�in�germination�with�seed�age�found�in�our�trials�was�due�to�an�

increasing�inability�to�break�the�dormancy�of�viable�seeds�(Figure�6).�

This�is�a�promising�result�as�it�suggests�nondestructive�germination�

trial�data�are�an�adequate�proxy�for�destructive�tetrazolium�viability�

testing.�Thus,�assessing�seed�viability�and�using� resurrected�seeds�

for�eco-�evolutionary�experiments�need�not�be�separate�endeavors.

While� our� results� indicate� that� statistical� separation� of� zero-�

generating�ecological�processes�was�not�imperative�to�understand-

ing� how� seed� germination� success� declines�with� seed� age� for� our�

experiments,�it�is�nonetheless�important�to�recognize�that�different�

phenomena� can� influence� seed� germination� success� and� viability�

and�that�there�were�indeed�likely�seeds�that�failed�to�germinate�be-

cause�they�were�inviable�and�those�that�failed�to�germinate�because�

of� our� inability� to� break� their� dormancy.�A� zero-�inflated�modeling�

framework�might� still� prove�useful� for�estimating�viability� for�par-

ticular�age�cohorts�or�other�hatching�and�germination�experiments,�

which�tend�to�generate�data�with�zeros�that�can�reflect�different�un-

derlying�processes.�Within�the�statistical�literature,�zero�values�are�

referred�to�as�true�and�false�zeros� (Hooten�&�Hefley,�2019),�struc-

tural�zeros�(Warton�et�al.,�2016),�or�excess�zeros.�Regardless�of�how�

many�zeros�are�observed�in�the�data�and�the�inclination�to�separate�

zeros�in�a�statistical�framework,�we�concur�with�broader�recommen-

dations�(e.g.,�Warton,�2005;�Hooten�&�Hefley,�2019)�that�the�choice�

to�do�so�should�be�motivated�first�by�how�well�a�model�fits�the�data�

according�to�similar�model�checking�and�selection�approaches�illus-

trated�in�this�study.

4.3� |� Predictors�of�germination�success

The� results�from�our�best� fit�model� indicate�that�germination�suc-

cess�varied�by�experimental� conditions� (Figure�4),�with� the� largest�

differences�in�germination�success�arising�from�the�media�on�which�

seeds�were�germinated�(Figure�4b)�and�whether�or�not�seeds�were�

pretreated�(Figure�4c).�Temperature�regime�also�mediated�germina-

tion� success;� in� particular,� germination� success� was� higher� when�

seeds�were�exposed� to�warmer�daytime� temperatures� (Figure�4a).�

Similarly,� there�was� some� indication� that�germination� success�was�

optimized�under�a�fluctuating�temperature�regime�(Figure�4a).�This�

is�consistent�with�prior�work�showing�that�the�ability�to�break�the�

dormancy�of�sedge�seeds�increases�with�temperature�(Kettenring�&�

Galatowitsch,� 2007),� and� that� a� 10–�12°C� temperature� fluctuation�

is�an�optimal�treatment�for�germinating�seeds�from�several�species�

(Dietert�&�Shontz,�1978;�Kettenring�&�Galatowitsch,�2007;�Wagner�

&�Oplinger,� 2017a,� 2017b).�We� found� that� photoperiod� had�mini-

mal� influence�on�germination�success,�which�corroborates�findings�

from�germination�trials�of�ecologically�similar�sedge,�rush,�and�grass�

species�(Wagner�&�Oplinger,�2017a,�2017b).�Notably,�after�control-

ling� for� temperature,�media,� pretreatment,� and� photoperiod� there�

were�no�discernable�differences� in�germination�success�across�ex-

periments,�as� indicated�by�a� random�effect�variance�near�zero� for�

grouping�by�experimental�assay� (results�not�shown).�This�suggests�

that�other�unmanipulated�experimental�conditions�did�not�contrib-

ute� substantially� to� variation� in� germination� success� in� this� study.�

While� our� findings� offer� some� insight� about� the�merits� of� experi-

mental� optimization,� additional� experiments� explicitly� designed� to�

identify� optimal� germination� conditions� are�warranted� to� increase�

understanding�of�what�best�breaks�the�dormancy�of�highly�persis-

tent,�soil-�stored�seeds�of�S. americanus�(Marty�&�Kettenring,�2017).

We� found� that� seed� provenance� accounted� for� a� considerable�

amount�of�the�observed�variation�in�germination�success�(Figure�5).�

This� is�consistent�with�prior�work�showing�that�the�persistence�of�

seed�banks�can�be�geographically�variable�(Leck�&�Schütz,�2005)�and�

that�variation�in�germination�of�marsh�sedge�seeds�can�be�strongly�

influenced�by�their�geographic�source� (Marty�&�Kettenring,�2017).�

It� also� parallels� evidence� that� hatching� rates� of� dormant�Daphnia 

ephippia� vary� according� to� provenance� (Radzikowski� et� al.,� 2018).�

Variation� due� to� provenance�may� result� from� differences� in� long-�

term�exposure�to�environmental�conditions�that�influence�propagule�

persistence� and� viability.� For� example,� hatching� rates� of� Daphnia 

ephippia�can�be�depressed�by�long-�term�exposure�to�heavy�metals�

in�sediments� (Rogalski,�2015).� In�coastal�marsh�environments,�per-

sistence�might�reflect�local�hydrology�such�as�tidal�regime,�nutrient�

inputs,�and�other�factors�such�as�temperature�that�can�moderate�de-

composition�(Baskin�&�Baskin,�1998).

Interestingly,�the�most�extreme�differences� in�germination�suc-

cess� across� locations� were� between� Kirkpatrick� Marsh� and� Corn�

Island,� two� geographically� proximate� sites� at� the� Smithsonian�

Environmental�Research�Center�in�the�Chesapeake�Bay�(Figure�1,�lo-

cations�1�and�2).�Observed�differences�between�the�two�sites�could�

reflect� fine-�scale� intraspecific� genetic� differentiation.� Prior� work�

has�shown�that�S. americanus�exhibits�genetic�differentiation�within�

and� among� marshes� (Blum� et� al.,� 2010;� Summers� et� al.,� 2018).�

Germination�rates�can�be�moderately�to�highly�heritable�(e.g.,�Saeidi,�

2008),�and�like�other�life�history�attributes�(Reznick�et�al.,�1997),�the�

extent� of� heritability�might� differ� among� genetically� distinct� (sub)

populations�of�S. americanus.� This�hypothesis� is� supported�by�evi-

dence�that�seed�persistence�can�vary�among�populations�(Kochanek�

et�al.,�2009)�and�evidence�that�hatching�rates�of�Daphnia�ephippia�

vary�by�familial�descent�(De�Meester�&�De�Jager,�1993).�Additional�

assays�are�thus�needed�to�better�understand�how�spatially�variable�

extrinsic�and�intrinsic�factors�contribute�to�germination�variability.

It� is� important�to�note�that�our�inferences�are�constrained�by�

the�number�of�dated�sediment�cores�used�to�inform�our�estimates�

of�seed�age,�with�all�three�dated�cores�collected�from�Kirkpatrick�

Marsh� (Figure�1;� location�1).�Thus,� it� is�possible�that�variation� in�
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germination� success� explained� by� seed� provenance� could� have�

arisen� from� differences� in� the� relationship� between� seed� depth�

and�seed�age� across� locations� rather� than� the�proposed�alterna-

tives�above.�It�is�reasonable�to�expect�that�sedimentation�rates�and�

other�relevant�biogeochemical�processes�governing�sedimentation�

and�seed�age�by�depth�vary,�particularly�for�geographically�dispa-

rate�locations�(e.g.,�sites�in�Chesapeake�Bay�vs.�sites�in�Delaware�

Bay).�Although�we�sought�to�incorporate�some�of�this�variation�in�

our�estimates�of�seed�age�using�variability�across�sediment�cores�

(Figure�S1),�future�analyses�should�more�explicitly�account�for�this�

concern� to� disentangle� differences� in� seed� viability� due� to� seed�

age� and�differences�due� to�other�biogeochemical�characteristics�

of�the�source�location(s)�(i.e.,�provenance).

4.4� |� Future�work

Here,�we� identified� and� accounted� for� some� biases� and� sources�

of�variation�that�arise�when�using�germination�data�of�soil-�stored�

seeds�to�serve�as�a�proxy�for�seed�viability,�including�experimental�

conditions� and� distinguishing�between� viable� and� inviable� seeds�

as�a�function�of�seed�age.�While�we�do�not�address�all�significant�

biases�of�using�resurrected�propagules� in�eco-�evolutionary�stud-

ies� (e.g.,� “the� invisible� fraction”;� Weis,� 2018),� we� do� provide� a�

framework� for� integrating�data�and�statistical�models� that� could�

be�useful�in�future�studies.�Importantly,�our�approach�emphasizes�

accounting� for� uncertainty� using� hierarchical� Bayesian� models,�

which� can� be� useful� when� data� are� limited� (McNeish,� 2016)� or�

when�ecological�processes�are�nonlinear�(Hobbs�&�Hooten,�2015).�

We� contend� that� accounting� for� uncertainty�will� continue� to� be�

important�in�conceptualizing�how�plant�populations�have�evolved�

over�historical� time,�a�process�that�will� likely�always�be�hindered�

by� a� data� limitation� problem� (Franks� et� al.,� 2018),� but� wherein�

some�data�are�better�than�none�at�all� in�attempts�to�reconstruct�

ecosystem� structure� and� function� of� the� past.�While� challenges�

within�the�field�are�often�focused�on�the�possibility�of�biased�rep-

resentation�of�sampled�resurrected�propagules�to�their�historical�

cohort� (e.g.,� Bennington� &�McGraw,� 1995),� a� nuanced�modeling�

approach�could�also�account�for�the�unbiased�sampling�error�that�

arises�due�to�small�sample�sizes.

5� |� CONCLUSIONS

Our�findings�build�on�prior�work�(Blum�et�al.,�2021;�Jarrell�et�al.,�2016;�

Saunders,�2003;�Summers�et�al.,�2018),�indicating�that�S. americanus 

can�serve�as�a�model�for�studying�persistent�soil-�stored�seed�banks�

and�for�using�dormant�propagules�to�infer�evolutionary�change�of�an�

ecosystem�engineer�over�ecologically-�relevant�timescales.�Evidence�

that� in situ�viability�of�S. americanus�seeds�extends�for�a�century�or�

more�helps�lay�the�foundation�for�further�inquiry�about�the�ecophys-

iology,�environmental�conditions,�and�evolutionary�drivers�of�aging,�

decay,�and�dormancy�of�soil-�stored�seeds�(Long�et�al.,�2015).�Using�

a�hierarchical�Bayesian�modeling� approach,�we�accounted� for� and�

gained�valuable�perspective�on�what�underlies�variation�in�germina-

tion�data�using�seeds� resurrected� from�soil-�stored� seed�banks.�By�

complementing�other�recent�findings,�such�as�evidence�that�genetic�

diversity� of� S. americanus� plants� revived� from�seeds� does� not� de-

cline�with� time�since�burial� (Summers�et�al.,�2018),� insights�gained�

from�our�study�offer�further�support�for�the�premise�that�persistent�

and�stratified�soil-�stored�seed�banks�can�serve�as�resources�for�re-

constructing�decadal�to�century-�long�records�of�plant�responses�to�

environmental�change.�Importantly,�we�show�that�declines�in�germi-

nation�success�with�age�are�more�likely�due�to�declines�in�seed�viabil-

ity�rather�than�increasing�failure�to�break�dormancy,�indicating�that�

germination�trial�data�are�likely�an�adequate�proxy�for�seed�viability.�

However,�given�that�our�germination�data�were�overdispersed,�we�

suggest� that� further�advances�could� come�by�accounting� for� seed�

traits�such�as�coat�thickness�or�seed�size,�and�data�on�the�character-

istics�of�the�sediment�in�which�seeds�were�buried�to�explain�variation�

in�germination�success�and�viability�better.

Our� work� also� offers� some� guidance� for� breaking� dormancy�

to�assemble�depth/age� cohorts�of�S. americanus� for� time-�shift� ex-

periments� (Blanquart�&�Gandon,� 2013)� to� explore� the� role� of� ad-

aptation� in� response� to� past� and� near-�term� future� environmental�

change�(Bustos-�Segura�et�al.,�2014;�Davis�et�al.,�2005;�Orsini�et�al.,�

2013).�With� further� refinement,� the�use�of� soil-�stored�seed�banks�

could�provide�more�realistic�contexts,�in�contrast�to�space-�for-�time�

approaches� (Shaw�&�Etterson,�2012),� for� inferring� the�progression�

of� evolution� in� natural� populations� (Blum� et� al.,� 2021),� and� thus�

eventually� emerge� as� a� powerful� complement� to� similarly-�minded�

approaches�that�rely�on�ex situ�seed�archives�(Etterson�et�al.,�2016;�

Everingham�et�al.,�2021;�Franks�et�al.,�2008;�Summers�et�al.,�2018;�

Weis,�2018).
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