Advances in Mathematics 384 (2021) 107689

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com /locate/aim

MATHEMATICS

On the Gardner-Zvavitch conjecture: Symmetry )

Check for

in inequalities of Brunn-Minkowski type

Alexander V. Kolesnikov®, Galyna V. Livshyts "*

& National Research University Higher School of Economics, Russian Federation
b School of Mathematics, Georgia Institute of Technology, Atlanta, GA, United

States of America

ARTICLE INFO

ABSTRACT

Article history:

Received 4 September 2018
Received in revised form 25 August
2019

Accepted 27 August 2019

Available online 31 March 2021
Communicated by Erwin Lutwak

MSC:
primary 52

Keywords:

Convex bodies

log-concave measures
Brunn-Minkowski inequality
Gaussian measure
Brascamp-Lieb inequality
log-Minkowski problem

In this paper, we study the conjecture of Gardner and
Zvavitch from [22], which suggests that the standard Gaussian
measure 7y enjoys %—concavity with respect to the Minkowski
addition of symmetric convex sets. We prove this fact up to
a factor of 2: that is, we show that for symmetric convex K
and L, and X € [0, 1],

YK + (1= X)L) 2 > Xy(K)m + (1= A)y(L) 3.

More generally, this inequality holds for convex sets containing
the origin. Further, we show that under suitable dimension-
free uniform bounds on the Hessian of the potential, the
log-concavity of even measures can be strengthened to p-
concavity, with p > 0, with respect to the addition of
symmetric convex sets.

Published by Elsevier Inc.

* Corresponding author.

E-mail addresses: sascha77@mail.ru (A.V. Kolesnikov), glivshyts6@math.gatech.edu (G.V. Livshyts).

https://doi.org/10.1016/j.aim.2021.107689

0001-8708/Published by Elsevier Inc.


https://doi.org/10.1016/j.aim.2021.107689
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2021.107689&domain=pdf
mailto:sascha77@mail.ru
mailto:glivshyts6@math.gatech.edu
https://doi.org/10.1016/j.aim.2021.107689

2 A.V. Kolesnikov, G.V. Livshyts / Advances in Mathematics 384 (2021) 107689

1. Introduction

Throughout this paper, we work in n-dimensional Euclidean space, which we denote
by R™. The unit ball in R™ will be denoted by B and the unit sphere by S"~!. The
Lebesgue measure of a measurable set A C R™ is denoted by |A|.

Recall that a Borel measure p on R”™ is called log-concave if for every pair of Borel
sets K and L,

UK + (1= N)E) > p(K) (L)', 1)
More generally, p is called p-concave for p > 0, if
HOK + (1= ML) = \a(K)? + (1= Np(L)P. (2)

Log-concavity corresponds to the limiting case p = 0. By Holder’s inequality, if p > ¢ > 0,
and a measure is p-concave, it is also g-concave.

Borell’s theorem ensures that a measure with a log-concave density is log-concave [6].
Further, the celebrated Brunn-Minkowski inequality states that for all Borel sets K and
L, and for every A € [0,1],

IAK + (1= N)L|" > AK|* + (1= \)|L|=. (3)

See more on the subject in Gardner’s survey [21], and some classical textbooks in Convex
Geometry, e.g. Bonnesen, Fenchel [5], Schneider [37]. In view of Hoélder’s inequality, (3)
implies the log-concavity of the Lebesgue measure:

IAK + (1= NL| > [KP L (4)

The homogeneity of the Lebesgue measure ensures that, in fact, (4) is equivalent to (3).
However, this is not the case for general (non-homogeneous) measures g on R™: the
log-concavity property (1) does not imply the stronger inequality

POK + (1= X)L)™ > Au(K) 7 + (1= \u(L)7. (5)

In fact, (5) cannot hold in general for a probability measure: if K is fixed, and L is
shifted far away from the origin, then the left hand side of (5) is close to zero (thanks to
the decay of the measure at infinity), while the right hand side is bounded from below
by a positive constant.

Gardner and Zvavitch conjectured [22] that for the standard Gaussian measure v, any
pair of symmetric convex sets K and L, and any A € [0, 1], one has

YK + (1= N)L)7 > My(K)* + (1= A)y(L)7. (6)
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In fact, initially they considered the possibility that (6) may hold for sets K and L
containing the origin, but a counterexample to that was constructed by Nayar and Tkocz
[31].

Symmetry seems to play a crucial role in the improvement of isoperimetric type in-
equalities. One simple example when such a phenomenon occurs is the Poincaré inequal-
ity (sometimes also referred to as Wirtinger’s inequality): for any C''-smooth 27-periodic
function ¥ on R,

2

17T2 17T 17r/2
%/1/1 dx — g/wdw S% ()" du, (7)

and in the case when 1 is also m-periodic one has the stronger inequality

Uy v 2 s
1 9 1 1 "o
o [t a5 [ ar) <o [wran ®)

Note that m-periodicity of 1 is equivalent to the property that ¢ is an even function
on St after identification of the circle S with [0, 27) under the mapping t — €. The
standard proof of (7) applies the Fourier series expansion:

_ ao an Ccos N bn sin nx

Observe that [*_t(z)de = V2mao, [7_¢*de =ad +> 0. a2 +b2, and [*_(¢')%dx =
> n(a? + bi) ThlS implies (7). If, in addition, ¢ is - pemodlc7 then

27T

27
/’(/J(l‘) cos xdx = /’(/J(l‘) sin xdx = 0,
0

0

and we get (8). See, e.g., Groemer [23], Theorem 4.4.1 on page 149.
In general, given a log-concave probability measure p with density e~V such that

V2V > kiIld, k>0,

one has, for any C! function 1/,

/w2 du(/wdufgkil/ww i (9)

this follows from the Brascamp-Lieb inequality [10]. Cordero-Erasquin, Fradelizi and
Maurey [18] proved a strengthening of (9). This strengthening implies, in particular,
that if ¢ and V are additionally even, then
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[ du- (/w du)2 < op [ 196l du. (10)

In recent years, a number of conjectures have appeared concerning the improvement
of inequalities of Brunn-Minkowski type under additional symmetry assumptions. For
instance, in the case of the Gaussian measure, Schechtman, Schlumprecht and Zinn [38]
obtained an exciting inequality in the style of the conjecture of Dar [19]; Tehranchi [39]
has recently found an extension of their results, which is also a strengthening of the
famous Gaussian correlation conjecture, recently proved by Royen [33] (see also Latala,
Matlak [29]).

One of the most famous of these conjectures is the Log-Brunn-Minkowski conjecture
of Boroczky, Lutwak, Yang and Zhang (see [7], [8], [9]). It states that for all symmetric
convex bodies K and L with support functions hx and Ay,

IAK +o (1= N)L| > [K LM, (11)
where +( stands for the geometric mean
MK + (1= NL={zeR": (z,u) < hg(uw) hy(w)'= Yu e S"71}. (12)

Boroczky, Lutwak, Yang and Zhang [7] showed that the Log-Brunn-Minkowski conjecture
holds for n = 2. Saroglou [35] and Cordero-Erasquin, Fradelizi, Maurey [18] proved
that (11) is true when K and L are unconditional (that is, they are symmetric with
respect to every coordinate hyperplane). The conjecture was verified in a neighborhood
of the Euclidean ball by Colesanti, Livshyts and Marsiglietti [16], [17]. In [28], Kolesnikov
and E. Milman found a relation between the Log-Brunn-Minkowski conjecture and the
second eigenvalue problem for certain elliptic operators. In addition, the “local version”
of the Log-Brunn-Minkowski conjecture was verified in [28] for the cube and for [,
balls, ¢ > 2, when the dimension is sufficiently large. By “local version”, we mean an
inequality of isoperimetric or Poincaré type, obtained by differentiating the inequality
on an appropriate family of convex sets. Building on the results from [28], Chen, Huang,
Li, Liu [12] managed to verify the L,-Brunn-Minkowski inequality for symmetric sets,
using techniques from PDE. Saroglou [36] showed that the validity of (11) for all convex
bodies is equivalent to the validity of the analogous statement for an arbitrary log-
concave measure. Rotem [32] proved the Log-Brunn-Minkowski conjecture for complex
convex bodies.

In [30], Livshyts, Marsiglietti, Nayar and Zvavitch proved that the Log-Brunn-
Minkowski conjecture implies the conjecture of Gardner and Zvavitch. In fact, if (11)
was proved to be true, then (5) would hold for any even log-concave measure p and for
all symmetric convex K and L. Therefore, (5) holds for all unconditional log-concave
measures and unconditional convex sets, as well as for all even log-concave measures and
symmetric convex sets in R2.

The main result of this paper is the following.
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Theorem 1.1. Let i be a symmetric log-concave measure on R™ with density e~V (®) | for
some convex function V : R™ — R. Suppose that k1, ke > 0 constants such that

V2V > ky1d, (13)
where V2V stands for the Hessian of V, and
AV < k‘gn. (14)

Let R = ko/k1 > 1. Then for symmetric convex sets K and L, and any X € [0,1], one
has

PAK + (1= ANL)» > Mu(K)» + (1= Mp(L)», (15)

where

2
cfc(R) = m

Recall that 2the standard Gaussian measure ~ is the measure with the density
(I/M)ne_%. In this case, VV = z, V2V = Id, and hence k; = ks = R = 1.
Therefore, Theorem 1.1 implies 1/2n-concavity of the standard Gaussian measure. We
shall prove a more general fact.

Theorem 1.2. Let v be the standard Gaussian measure. For convex sets K and L in R™
which contain the origin, and any X\ € [0,1], one has

YK + (1= M) L)% > Ay (K)2n + (1 — A)y(L) 7. (16)

Interestingly, it was shown by Nayar and Tkocz [31] that only under the assumption
of the sets containing the origin, (6) fails in dimension two. Theorem 1.2 shows, however,
that (16) does hold, even under this assumption. See Remark 6.7 for more discussion.

In order to derive all our results, we reduce the problem to its infinitesimal version
following the approach of [13], [16], [17], [25], [26], [27], [28]. In particular, we use a
Bochner-type identity obtained in [25]. The arguments are based on the application
of the elliptic boundary value problem Lu = F with Neumann boundary condition
u, = f. Our main result corresponds to the simplest choice of F, namely F' = 1.
However, we demonstrate that a choice of non-constant F' can lead to sharp estimates
(see Section 6). This is an important observation which we believe could be useful for
further developments. In Section 6 we also prove that constant ¢ in (15) can be estimated
by the parameter

1 1
/<(v2v +-VVe VY)YV, VV)du| ,

inf [1—
'K nu(K)
K
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where the infimum is taken over all symmetric convex sets.

This paper is organized as follows. In Section 2, we outline the high-level structure of
the proof of Theorem 1.1, with the goal of indicating the main steps in the estimate. In
Sections 3, 4 and 5 we proceed with the said steps, one at a time. At the end of Section 5
we include the proof of Theorem 1.2. In Section 6 we discuss some concluding remarks:
namely, in subsection 6.1 we formulate a more general version of Theorem 1.1 and in
subsection 6.2 we discuss a more general approach to the proof which recovers the result
of Gardner and Zvavitch about dilates of convex bodies.

Acknowledgment. First author supported by RFBR project 20-01-00432, and the Simons
Foundation. Second author supported by NSF CAREER DMS-1753260. The article was
prepared within the framework of the HSE University Basic Research Program. The work
was partially supported by the National Science Foundation under Grant No. DMS-
1440140 while the authors were in residence at the Mathematical Sciences Research
Institute in Berkeley, California, during the Fall 2017 semester. The authors are grateful
to Emanuel Milman for fruitful discussions. The authors are very grateful to Tomacz
Tkocz for pointing out to them Lemma 5.3, leading to the formulation of Theorem 1.2.
The authors are grateful to the anonymous referee for the detailed and helpful report.

2. High-level structure of the proof
We shall work in R™. Throughout, K stands for a convex body (compact convex set

with non-empty interior) and u for a log-concave measure with density e~", where V/
is convex function. The norm sign || - || with respect to a matrix stands for the Hilbert-

[A]l =/ Tr(AAT).

Given vectors a,b € R™ the corresponding tensor product a ® b is a bilinear form de-
fined by

Schmidt norm

a®b(v,w) = {(a,v){(b,w).

We shall assume without loss of generality that V' is twice continuously differentiable,
the boundary of K is C?-smooth and K is strictly convex; the general bounds follow by
approximation. The notation V2u stands for the Hessian matrix of u.

Most of our results deal with the following two classes of sets which are closed under
Minkowski convex combinations:

Foym = {symmetric convex sets},

F, = {convex sets containing the origin}.
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In this section, we outline the steps of the proof by gradually introducing several
definitions and lemmas. Proofs of the lemmas will be given in subsequent sections.

Definition 2.1. Fix the dimension n € N. Consider a family F of convex sets in R"
which is closed under Minkowski convex combinations. The Gardner-Zvavitch constant
Co = Co(p, F) is the largest number so that for all convex sets K, L € F, and for any
A€ 10,1],

Co Co o
n n n

PAK + (1 =)L) = Au(K) ™ + (1= A)u(L) (17)

It can be verified, by considering small balls centered at the origin, that
C()(M,ngm) <1

for every log-concave measure p which is not supported on a proper subspace of R™. By
Holder’s inequality, (17) implies (6) for all ¢ € [0, Cp]. Therefore, we shall be concerned
with estimating Cy from below.

We consider the weighted Laplace operator L associated with the measure u, that is

Lu = Au— (Vu,VV). (18)

In the case when pu is Gaussian, this operator is commonly referred to as the Ornstein-
Uhlenbeck operator. We shall make use of the generalized integration by parts identity:
for any u,v € C%(R"),

/U~Lud,u= —/(Vv,Vu}d,u.

Rn Rn

Definition 2.2. Define C7; = Cy(u, F) to be the largest number, such that for every
u € C?(K) and K € F with Lu = 1,

01(/1,.7:)-

1 2,112 2
VVV >
(K)/HV ul]” + u, Vu) dp
K

The first key step in our proof is outlined in the following lemma:

Lemma 2.3. For every family F of convex sets in R™ closed under Minkowski convez
combinations,

Co(p, F) = Cr(p, F).

Next, we conclude with two more lemmas.
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Lemma 2.4. Assume that V2V > k1d.

(1) Assume, in addition, that V is even. Then for every e € [0, 1],

1 1
Cl(,uf f@ym) Z
’ |vv‘2 1
N(K) Kk (Q+e)nk: + 1—e

ds.

(2) For every family F of convex sets which is closed under Minkowski convex combina-
tions, one has

1 1
Ci(p, F) = / 3 dp.
1 ) n(K) S R 1

nk1

Lemma 2.5. Fiz a convex function V on R™. Assume that AV < kon. Fix a constant
k1 >0 and let R = ky /K.

(1) If a convex set K and the measure p with density e~V satisfy fK VVdu = 0, then
there exists an 0 < e < 1 such that

1 1 2

dp > .
vV|2 -
u(K) / e + (VR +1)2

(2) For the standard Gaussian measure v and for every convex set K which contains the
origin, we have

1 / 1 J >1

g | e Y =2 5

Y(EK) S R g 2
K n

Proof of Theorem 1.1. The theorem follows immediately from Lemma 2.3 applied to
F = Fsym, Lemma 2.4 (1) and Lemma 2.5 (1), in view of the Definition 2.1. O

Proof of Theorem 1.2. Since VV = x and k; = 1, the theorem follows immediately from
Lemma 2.3, Lemma 2.4 (2) and Lemma 2.5 (2), in view of the Definition 2.1. O

3. Proof of Lemma 2.3

The proof of Lemma 2.3 is a combination of a variational argument, integration by
parts, and an application of the Cauchy-Schwarz inequality. We start by introducing the
variational argument.
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3.1. Variational argument

Infinitesimal versions of Brunn-Minkowski type inequalities have been considered and
extensively studied in [1], [3], [4], [13], [14], [15], [24], [27], [28], [16], [17].

Following Schneider ([37], page 115) we say that a convex body K is of class C? if
its support function is of class C2. Further, we say that K is of class Ci if K is of
class C? and admits positive Gauss curvature. We say that a function h: S"! — R is a
C? (S™~!)-function if it is a support function of a C% convex body.

Let & be the support function of a C2 convex body K and let ¢ € C*(S™™!). Then

he =h+ s € C3(S"1), (19)

if s is sufficiently small (say |s| < a for some appropriate a > 0). Hence for every s in
this range there exists a unique CJQr convex body K with support function hs. For an
interval I, we define the one-parameter family of convex bodies

K(h,,I) = {K, : hg, =h+ s, s € I},

Lemma 3.1. Assume that u is a log-concave measure with twice continuously differentiable
density, c is a positive constant, and F is a family of convex sets closed under Minkowski
convexr combinations. The inequality

K + (1= NI)F > Mi(K)E + (1= Np(L) (20)

holds for all K, L € F and every X € [0,1], if and only if for every one-parameter family
K(h,,I) such that Ky € F for every s € I, one has
2
) . (21)
s=0

Proof. Assume first that p satisfies (20). The equality hx, = h + sy, s € I, and the
linearity of support functions with respect to Minkowski addition, imply that for every
s,t € I and for every A € [0,1]

@M(KS) 'N(KO) < EM(KS)

s=0 n

d? n—c<d

Kxsra-nt = AKs + (1 = V) K.
The inequality (20) implies
I K s 1-ne) ™ = pAK + (L= MK m > MK )™ + (1= (K,

which means that the function u(K,)= is concave in s on I. This implies (21). We add
that p(K) is twice differentiable in s, in view of our smoothness assumptions on K and
. This fact can be observed, for example, using Lemma 6.1 from [16], in which p(K) is



10 A.V. Kolesnikov, G.V. Livshyts / Advances in Mathematics 384 (2021) 107689

expressed in terms of the support function of K. Plugging h + s into this formula gives
a twice differentiable function in s. In the notation of Lemma 6.1 in [16], F' stands for
the density of u.

Conversely, suppose that for every system K(h,,I) with Ky € F, whenever s € I,
the function p(K,)= has non-positive second derivative at 0, i.e. (21) holds. We observe
that this implies concavity of u(K)» on the entire interval I. Indeed, given sq in the
interior of I, consider h = h + sgt, and define a new system K(h, 1, J), where J is a
new interval such that h + sv = h + (s + so) € C? for every s € J. Then the second
derivative of u(K,)» at s = so is negative, as it is equal to the second derivative of
w(Kg)# at s = 0. Thus (21) implies concavity of s — u(K)= on [0, 1]:

o (Ks) > spn (Ki) + (1= s)pn (Ko), Vs € [0,1].

Take s =1— A\, h = hg, v = hy, — hi and observe that K; = AK 4 (1 — A)L. Therefore
(20) holds. This completes the proof. O

The normal vector to the boundary of K at the point z will be denoted by n,. Recall
our assumption that K is strictly convex and C2-smooth, so the outward unit normal
vector is unique; the general case may be derived by approximation. We shall write

por(x) = e V@ H L o

where H"~! stands for the (n — 1)-dimensional Hausdorff measure; the notation Vg
means the boundary gradient (i.e., the projection of the gradient onto the support hy-
perplane). The second fundamental form of 9K will be denoted by II, and the weighted
mean curvature at a point x is given by

H, = tr(1l) — (VV,ny).

The following proposition was shown by Kolesnikov and Milman [26] (see the proof
of Theorem 6.6):

Proposition 3.2. Let f: 0K — R be given by f(x) = ¢ (n,). Then
WY oo = [ £(2) dutor ()
0K

WKL) om0 = / (Hof? — (17"Vor f. Vor f)) dpox(x).
oK

Definition 3.3. For a fixed class F of convex sets which is closed under dilates, and a
convex body K € F, we consider a class Cx(K) of C?-smooth real-valued functions on
0K, given by
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Cr(K)={f(z) = hr(ng) —hg(ng): L€ F, t>0}NC*OK).
Lemma 3.1 and Proposition 3.2 imply:

Corollary 1. Fiz a class F of convex sets in R™ which is closed under Minkowski convex
combinations. Suppose that for any conver body K € F and for any function f(z) €
Cf(K) ’

2

aé (H£* = (0 Vo . Vorc ) dison ) = 2o 4 f(@) dnox(@) | <0. (22
Then
CO(,UH-F) > C.

3.2. Integration by parts

The following Bochner-type identity was obtained by Kolesnikov and Milman. It is
a particular case of Theorem 1.1 in [25] (note that Ric, = V2V in our case). This is a
generalization of a classical result of R.C. Reilly.

Proposition 3.4. Let u € C*(K) and u, = (Vu,n,) € C1(OK). Then

/(Lu)Qdu:/(||V2uH2+(VQVVU,VU>)du+ (23)
K K

/ (Hyu? — 2(Varu, Voxun) + IV axu, Vo)) dusx ().

0K

3.3. Proof of Lemma 2.3

In view of Corollary 1 it is sufficient to verify (22) with C' = Cy(u,F). Fix a C!
function f : 9K — R. In the case when [, fdusx = 0, we automatically get (22)
with an arbitrary constant C, as a consequence of the log-concavity of u (see Theorem
1.1 in [26]). Indeed, in this case (22) is simply identical to the infinitesimal form of
log-concavity.

If faK fdusrx # 0, then after a suitable renormalization one can assume that
Jox f dnox = p(K).

Let u be the solution of the Poisson equation

Lu=1

with the Neumann boundary condition for every x € 0K
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We refer to subsection 2.4 in [26], where the reader can find the precise statement ensuring
well-posedness of this equation and several references to classical PDE’s textbooks (see
e.g. [20]) for further reading.

Applying (23) and the definition of Cy(p, F) one obtains

C1(,u,]:)

wK) > ——

M(K) + /(waz — 2<V3Ku, VaKf> + <HV@KU, VaKu>) duaK(x).
oK

Recall that for a symmetric positive-definite matrix A,
(Az,z) + (A7y,y) > 2(z,y). (24)

Indeed, choosing an orthogonal frame making A diagonal with eigenvalues \; we reduce
(24) to the inequality

zn:&‘x? + zn:y?/& > 2zn:$iyi,
i=1 i—1 i—1

which follows from the arithmetic-geometric mean and Cauchy-Schwarz inequalities.
Applying (24) with A =11, = Vggu and y = Vg f, we obtain

o n_Cl(:U'a}—)

- u(K) <0.

/ (Hof? — (7o f. Vor f)) dpox ()

OK

The result of the lemma now follows from Corollary 1. 0O
4. Proof of Lemma 2.4

Firstly, suppose that u is a C2-smooth function on a symmetric convex set K with
Lu=1g on K.

Since K is symmetric and V' is even, the function u is even as well. Indeed, we get by
symmetry that (u(z) + u(—2))/2 is a solution to our system as well. Uniqueness of the
solution implies u(—x) = u(x).

To prove the lemma, it suffices to show that

1 1
K Kk (+e)nk; + 1—¢

By the Cauchy-Schwarz inequality,

1
/ 9%y > / |Aufdp. (26)
K K
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Indeed, to see why (26) is true, recall that ||[V2ul|> = 3"7" | A\?, where Ay, ..., A, are the

7

eigenvalues of V2u, and recall also that Au = """ | \;.
Note that the symmetry of u implies

/umidu =0. (27)
K
By the Brascamp-Lieb inequality (see [2], Theorem 4.9.1, or [10]), we have
/uiidp < /((V2V)_1Vumi,Vumi>d,u.
K K

Applying the lower bound for V2V and summing over i = 1,...,n, we get
JIv2aPan = [ 190 e (28)
K K

In addition, we observe that the lower bound V2V > k;1d also yields

/<V2VVU,Vu>du >k / |Vu|2dp. (29)
K K
Let € > 0. Multiplying (26) by 1 — ¢, multiplying (28) by ¢, summing the resulting two
inequalities, and then using (29), we arrive at
1_

/(||V2u\|2+ (V2VVu, Vi) )dp > /(Tﬂmﬁ Fh( VP )dp (30)

K K
Writing

Au = Lu+ (VV,Vu) = 1 + (VV, Vu),

we get that the right hand side of (30) equals

1- 1-
/[ - 1+ 2(Vu, - SVV) + (A Vu, V) | dps, (31)
K

where
1—¢

Note that A, is positive semi-definite, since it is a sum of positive semi-definite matrices.
Using (24) once again, this time with A = A., = Vu and
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1—c¢
n

y=- Vv,

we see that (31) is greater than or equal to

n

/1 —c (1 - 1;5<A;1vv, VV>) dp. (32)
K

We observe that for any vector z € R™ and for all a,b € R,

d+bz@z)lz= ——
(ald+bz®2)" 2 PR (33)

Applying (33) with a = (1 —¢)/n, b=k1(1 +¢), and z = VV, we rewrite (32) as

1 du
k1(1+5)/ 2 it dM:/ : (34)
v jE NVE . n
LAVVE 4 kiniz v Tt T 1<

The proof of part (1) is complete.

Secondly, if the class F is arbitrary, we apply the same estimate with ¢ = 0 and
avoid using (28). Note that (28) is the only place where the symmetry was used. This
completes the proof of part (2). O

5. Proof of Lemma 2.5

We shall need the following lemma, where symmetry is used in the crucial way: namely,
we use the simple fact that log-concave even functions on the real line are concave at
zZero.

Lemma 5.1. For a log-concave measure p with density e~V and a convex body K, satis-
fying

oz, dp =0, (35)
K

foralli=1,...,n, we have
/|VV(a:)|2d,u < /AVdu.
K K

Proof. Let i € {1,...,n}. By the Prékopa-Leindler inequality ([21], Theorem 4.2), the
function

g(t) = / e Virtied dy

K
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is log-concave in t. In particular,

9(0)g"(0) = ¢'(0)* <0 (36)
Note that
ov
'0) — — V(@) gy =
7(0) / eV ds =0, (37)
K

Therefore, by (36),

2 2
4 i %

Applying (38) and summing over ¢ = 1, ..., n, we obtain the conclusion of the lemma. O

Remark 5.2. Alternatively, Lemma 5.1 follows directly for the Brascamb—Lieb inequality
applied to the functions V,,;:

/Vﬁid,u < /<(D2V)*1Vin,Vin>du = /vxmdu.
K K

Here we use log-concavity of the measure 1xe™ Y dx

The next lemma shows that, in the case of the standard Gaussian measure, the con-
clusion of Lemma 5.1 holds under an even weaker assumption of the sets containing the
origin. Recall that a set K is called star-shaped if it contains the interval {tz,¢ € [0,1]}
for every = € K.

Lemma 5.3. Suppose K is a star-shaped body, and v is the standard Gaussian measure.
Then

/ l2Pdy(z) < ny(K). (39)
K

Proof. Consider the function g(s) = v(sK). Note that g is non-decreasing, since K is
star-shaped. Observe that, by Proposition 3.2,

1

/1 _ _ - 7éd n—1
/()= g [ ey T,
OK

where by dH" ! we denote the Hausdorff measure on 0K.
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Applying the divergence theorem, we therefore get

|z|?

0<g'(1)= /dlv(@;) xe‘T>dx =nvy(K) — / |z|%dry.
K K

This inequality implies (39). O
5.1. Proof of Lemma 2.5

To prove (1) we use Jensen’s inequality ([34], Theorem 3.3) and convexity of the
function x — 1/(1 + z) for > 0. We get

1 1 1
> (40)
[vv|? 1 _vv|r 1
wK) 7 tomk T 1= K) Jx tremm e+ 1=

Next, we apply (40) and Lemma 5.1 along with the assumption AV < nks, to infer that

1 / 1 1
dyp > (41)
[VV]|? 1 - _R , 17
p(K) L o e 2+ ik

where, as before, R = ky/k;. Plugging in the optimal value of

_R+1-2VR
~  R-1 7

we finish the proof of part (1).
Next, to obtain part (2) of the Lemma, we substitute € = 0 in (40) to arrive at

1 / 1 1
dp = (42)
u(K) / ! 5 Tk Bl +1

Recalling that V(z) = |z|?/2, part (2) follows from applying Lemma 5.3 to the right
hand side of (42). O

Note, that in the case of the standard Gaussian measure the optimal choice is € = 0.
6. Concluding remarks
6.1. An improved estimate

Throughout this subsection sets are assumed to be origin-symmetric and functions

are assumed to be even.
We outline a sharper, more general estimate for the Gardner-Zvavitch constant.
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We recall that C(K,u) is called the Poincaré constant of u|x if it is the smallest
number a such that for all C'-smooth functions f on K, one has

2
/f%u—;éj(!f@ <a [|9fPdn (43)
K K

Theorem 6.1. Let F be a collection of origin-symmetric convex bodies in R™ which is
closed under Minkowski convex combinations. Let

C=C(u,F)= sup (1—¢) inf |1— /(A_1VV,VV>d,u ,

e€fo,1) KeF np(K)
K
where
A=V +ivvevws — 5 4
B n (1-¢)C(K,p)

and C(K, ) is the Poincaré constant of p|r .
Then, for all K, L € F, and for every A € [0, 1]

3lQ
3la

POK + (1= A)L)% > Mu(K) 7 + (1 - \u(L)

In particular,

1
C > inf [1-—

1
V2V 4 AUV 0 VY)YV ©
KeF nu(K) /<( Tavve ) VY VV) dp

K

Proof. Consider an even C? function u : K — R such that Lu = 1g. Then, by (26),
along with the fact that Au =1+ (VV, Vu),

1
/||v2u|\2 + (V2VVu, Vu) du > /E'l +(VV,Vu) > + (V2VVu, Vu) du
K K

1 2 1
— [ STV (TV 4 VYV @ V)V, V) di

K
Next we apply the Poincare inequality (43) to every u,, (here we use that u and V are

even, hence [u,,dp = 0):

2du.

/uidué C(Kw)/IVum
K K

Thus
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/ Vuldu < C(K, ) / IV2u2dp,
K K

and for every ¢ € [0, 1] one has

V2ul[? + (V?V'Vu, Vu) d 2;/ Vul?d
ZII P+ e iy | 9o

+(1—s)/%+2m/;’14vu>+<(vgv+%VV@VV)Vu, Vu) du
K
=(1 _6)(/%+2<VW/7;7VU> + <AVu,Vu>du).
K

Applying (24) with the positive-definite matrix A, and Lemma 2.3, we complete the
proof. O

Theorem 1.1 follows directly from Theorem 6.1. Perhaps, C(u, F) could be estimated
for the class of symmetric convex sets under less restrictive assumptions than V2V > k;Id
and AV <n.

6.2. The case of non-constant F, and the Gardner-Zvavitch conjecture for dilates

In this subsection we show that the choice of a constant F' in the equation Lu = F' is
not always optimal. We give an example showing that a result could be obtained with a
non-constant F.

Definition 6.2. For a C*-smooth even function F : K — R, with [, F'du # 0, let Cp be
the largest number, such that for every u € C?(K) with Lu = F,

—Cp
V2|2 + (V2VVu, V) d z/deu—” /Fd . 44
S+ )di | [ ra (44)
K K K
We define
C2(p) = sup Cp,
F

where the supremum runs over all C2-smooth even functions F : K — R, with [ x Fdp#
0.

We observe the following straightforward

Claim 2. Co(p) > Ci(p, Foym,)-
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Note that the proof of Lemma 2.3 implies, in fact, a stronger statement:
Lemma 6.3. Co (1, Fsym) > Ca(p).

It is possible that in the case of the standard Gaussian measure, the only sub-optimal
place in our argument is the application of Lemma 2.3 in place of the stronger statement
of Lemma 6.3: indeed, solving the Neumann system with F' # 1x could lead to a better
bound, however our current proof of Lemma 2.4 does not allow us to use this freedom.

Finally, we outline the following result.

Lemma 6.4. Let K be a convex body with fK xdy(x) =0, let v be the Gaussian measure
and let

2
V(ac):u(ﬂt:)zﬂ
2
on K. Let
F=TLu=n— |z
on K. Then
2
-1
V2|2 + (V2V Vu, Vu dWZ/F2d7—n— /Fd'y . 45
IZII P+ iz ) i | (15)

Proof. For all z € K,
1 1 2
V2P = n5 £ |VIal?| = ol
Hence, (45) becomes

ny (K) + / 2l dy > n?(K) — 2n / 2l dy + / 2 dy (46)
K K K

— [ n2v5) —2n!|x2d7+ﬁ<!|x2dv)

1, / ) 1 (/ ) )
+ — | n*v(K) — 2n z|*dy + —— z|“ d
- Y(K) KII 7y W(K)KH 7y

Rearranging this inequality, we obtain



20 A.V. Kolesnikov, G.V. Livshyts / Advances in Mathematics 384 (2021) 107689

/|x|4dv@(Zu%)zduwv "

—Zlml2dw+ WEK) (/I»”U|2d“7>2 <0. (47)

K

Recall Lemma 2 from [18] (which was a key tool in obtaining the B-theorem):

I[de—%M(Z|x2dv)2—2g|x|2dvgo. (48)

In addition, Lemma 5.1 implies that
1 2
—v(K) 4+ - |z|* dy < 0. (49)
K

Applying (48) and (49) we obtain the validity of (47), which in turn implies the validity
of (45). O

As a consequence of Lemma 6.3 and Lemma 6.4, we confirm the conjecture of Gardner
and Zvavitch in the case when K and L are dilates. This result was previously obtained
by Gardner and Zvavitch [22], where the authors also used (48). We include the following
proposition merely for completeness.

Proposition 6.5. Let K be a convex set such that fK xdy(z) = 0. Let L = aK for some
a > 0. Then for every A € [0, 1],

YK + (1= NL)7 > My(K)7 + (1= \y(L)7.

Proof. Note that the class F of dilates of the same convex body is closed under
Minkowski convex combinations. Recall, from the proof of Lemma 3.1, that arbitrary
K and L can be interpolated by a one-parameter family IC(h,v, ) with h = hg and
1 = hy, — h. Recall as well that the boundary condition in the Neumann problem we
considered is given by f(z) = ¥(n;) = hr(ng) — hx(n,). In the case when L = a K, we
are dealing with

J(@) = (a = Dhxe(ng) = (a - Dz, ny).

By Corollary 1 and Proposition 3.4, we see that to verify the proposition, is suffices to
show that for some u : K — R with

<V’LL,TLI> = f(.]?) = (CI, - 1)('1:) nac>7 (50)



A.V. Kolesnikov, G.V. Livshyts / Advances in Mathematics 384 (2021) 107689 21

one has

-1
V2ul[? + (V2VVu, V) d z/Lqﬂd - /Lud NG
ZH P+ iz [ a5 ! G1)

It remains to note that u = %;1|xz|? satisfies (50), and that Lemma 6.4, along with
the homogeneity of (51), implies the validity of (51) for u = 21[z|*>. O

Remark 6.6. Note that Proposition 6.5 implies the validity of the conjecture of Gardner
and Zvavitch in dimension 1, since every pair of symmetric intervals are dilates of each
other. Furthermore, directly verifying (45) in the case n = 1 boils down to proving the
elementary inequality

R
a(R) = /(t4 ~32)e 5 dt <0,
0

which follows from the fact that a(0) = a(+oo) = 0, a(R) decreases on [0,+/3] and
increases on [v/3, +00]. It of course also follows from (48) and (49), but that would be
an overkill.

It is curious to note that Lemma 2.3 is also sharp when n = 1: for every u : [-R, R] —
R with Lu = 1 and with the boundary condition u'(R) = —u/(—R), one has

A e G
f_RR e~ dt B

B(R)

In fact, equality is never attained unless R = 0, and limg_,o S(R) = 1. A routine compu-
tation shows that S(R) is strictly increasing in R, and limg_, o, S(R) = oo. Furthermore,
B(R) grows very fast.

This indicates that our proof of Lemma 2.4 is sub-optimal, at least in the case n = 1:
we replace the term which includes |Vu|? with the much smaller term, while |Vu|? has
large growth. The constant 1/2 which we get after such replacement is attained when
R = o0, and in fact the estimate decreases as R increases, contrary to the actual behavior

of B(R).

Remark 6.7. Consider p = 0.5C)(7y2,F,), that is the largest number such that for any
pair of convex sets K and L in R? containing the origin, and for any A € [0, 1],

YAK + (1= A)L)P = Ay (K)” + (1 = A)y(L)".

Nayar and Tkocz [31] showed that p < 0.5. Furthermore, using their argument, one may
observe that p <1 — % ~ 0.363. Our results imply that p > 0.25. Therefore,
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p € [0.25,0.363].

We would like to add that our proof, in fact, indicates a bit more:

1 1
> inf —— [ —— . 2
K

A numerical computation shows that

2

1 e~ T dx

— [ —— =~ 0.298.

277/ 2+ 2 0.298 (53)
R2

Using Caffarelli’s contraction theorem [11], one may observe that for any symmetric (and
not just containing the origin) convex set K in R?,

ﬁ / ﬁd'y(x) > 0.298. (54)
K

Indeed, Caffarelli’s theorem guarantees the existence of a 1-Lipschitz map T which pushes
forward the Gaussian measure to its restriction on K. In case K is symmetric, one has
T(0) = 0, and the 1-Lipschitz property yields |T'(x)| = |T'(z)—T(0)| < |x—0| = |z|. Hence
the normalized integral from (54) is greater than the corresponding integral over R2.

However, this does not provide an insight into calculating the infimum from (52),
which runs over the class of all convex sets containing the origin. In any case, this
infimum does not exceed 0.298, and therefore it is certainly smaller than 0.363.

In conclusion, unfortunately, combining our estimate with the example of Nayar and
Tkocz [31], one may not determine the value of p explicitly.
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