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In this paper, we study the conjecture of Gardner and 
Zvavitch from [22], which suggests that the standard Gaussian 
measure γ enjoys 1

n
-concavity with respect to the Minkowski 

addition of symmetric convex sets. We prove this fact up to 
a factor of 2: that is, we show that for symmetric convex K
and L, and λ ∈ [0, 1],

γ(λK + (1 − λ)L)
1

2n ≥ λγ(K)
1

2n + (1 − λ)γ(L)
1

2n .

More generally, this inequality holds for convex sets containing 
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concavity, with p > 0, with respect to the addition of 
symmetric convex sets.
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1. Introduction

Throughout this paper, we work in n-dimensional Euclidean space, which we denote 
by Rn. The unit ball in Rn will be denoted by Bn

2 and the unit sphere by Sn−1. The 
Lebesgue measure of a measurable set A ⊂ Rn is denoted by |A|.

Recall that a Borel measure μ on Rn is called log-concave if for every pair of Borel 
sets K and L,

μ(λK + (1 − λ)L) ≥ μ(K)λμ(L)1−λ. (1)

More generally, μ is called p-concave for p ≥ 0, if

μ(λK + (1 − λ)L)p ≥ λμ(K)p + (1 − λ)μ(L)p. (2)

Log-concavity corresponds to the limiting case p = 0. By Hölder’s inequality, if p > q ≥ 0, 
and a measure is p-concave, it is also q-concave.

Borell’s theorem ensures that a measure with a log-concave density is log-concave [6]. 
Further, the celebrated Brunn-Minkowski inequality states that for all Borel sets K and 
L, and for every λ ∈ [0, 1],

|λK + (1 − λ)L| 1
n ≥ λ|K| 1

n + (1 − λ)|L| 1
n . (3)

See more on the subject in Gardner’s survey [21], and some classical textbooks in Convex 
Geometry, e.g. Bonnesen, Fenchel [5], Schneider [37]. In view of Hölder’s inequality, (3)
implies the log-concavity of the Lebesgue measure:

|λK + (1 − λ)L| ≥ |K|λ|L|1−λ. (4)

The homogeneity of the Lebesgue measure ensures that, in fact, (4) is equivalent to (3). 
However, this is not the case for general (non-homogeneous) measures μ on Rn: the 
log-concavity property (1) does not imply the stronger inequality

μ(λK + (1 − λ)L) 1
n ≥ λμ(K) 1

n + (1 − λ)μ(L) 1
n . (5)

In fact, (5) cannot hold in general for a probability measure: if K is fixed, and L is 
shifted far away from the origin, then the left hand side of (5) is close to zero (thanks to 
the decay of the measure at infinity), while the right hand side is bounded from below 
by a positive constant.

Gardner and Zvavitch conjectured [22] that for the standard Gaussian measure γ, any 
pair of symmetric convex sets K and L, and any λ ∈ [0, 1], one has

γ(λK + (1 − λ)L) 1
n ≥ λγ(K) 1

n + (1 − λ)γ(L) 1
n . (6)
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In fact, initially they considered the possibility that (6) may hold for sets K and L

containing the origin, but a counterexample to that was constructed by Nayar and Tkocz 
[31].

Symmetry seems to play a crucial role in the improvement of isoperimetric type in-
equalities. One simple example when such a phenomenon occurs is the Poincaré inequal-
ity (sometimes also referred to as Wirtinger’s inequality): for any C1-smooth 2π-periodic 
function ψ on R,

1
2π

π∫
−π

ψ2 dx −

⎛
⎝ 1

2π

π∫
−π

ψ dx

⎞
⎠

2

≤ 1
2π

π∫
−π

(ψ′)2 dx, (7)

and in the case when ψ is also π-periodic one has the stronger inequality

1
2π

π∫
−π

ψ2 dx −

⎛
⎝ 1

2π

π∫
−π

ψ dx

⎞
⎠

2

≤ 1
8π

π∫
−π

(ψ′)2 dx. (8)

Note that π-periodicity of ψ is equivalent to the property that ψ is an even function 
on S1 after identification of the circle S1 with [0, 2π) under the mapping t → eit. The 
standard proof of (7) applies the Fourier series expansion:

ψ(x) = a0√
2π

+
∞∑

n=1

an cos nx√
π

+ bn sin nx√
π

.

Observe that 
∫ π

−π
ψ(x)dx =

√
2πa0, 

∫ π

−π
ψ2dx = a2

0 +
∑∞

n=1 a2
n + b2

n, and 
∫ π

−π
(ψ′)2dx =∑∞

n=1 n(a2
n + b2

n). This implies (7). If, in addition, ψ is π-periodic, then

2π∫
0

ψ(x) cos xdx =
2π∫

0

ψ(x) sin xdx = 0,

and we get (8). See, e.g., Groemer [23], Theorem 4.4.1 on page 149.
In general, given a log-concave probability measure μ with density e−V such that

∇2V ≥ k1Id, k1 > 0,

one has, for any C1 function ψ,

∫
ψ2 dμ −

(∫
ψ dμ

)2

≤ 1
k1

∫
|∇ψ|2 dμ; (9)

this follows from the Brascamp-Lieb inequality [10]. Cordero-Erasquin, Fradelizi and 
Maurey [18] proved a strengthening of (9). This strengthening implies, in particular, 
that if ψ and V are additionally even, then
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∫
ψ2 dμ −

(∫
ψ dμ

)2

≤ 1
2k1

∫
|∇ψ|2 dμ. (10)

In recent years, a number of conjectures have appeared concerning the improvement 
of inequalities of Brunn-Minkowski type under additional symmetry assumptions. For 
instance, in the case of the Gaussian measure, Schechtman, Schlumprecht and Zinn [38]
obtained an exciting inequality in the style of the conjecture of Dar [19]; Tehranchi [39]
has recently found an extension of their results, which is also a strengthening of the 
famous Gaussian correlation conjecture, recently proved by Royen [33] (see also Latała, 
Matlak [29]).

One of the most famous of these conjectures is the Log-Brunn-Minkowski conjecture 
of Böröczky, Lutwak, Yang and Zhang (see [7], [8], [9]). It states that for all symmetric 
convex bodies K and L with support functions hK and hL,

|λK +0 (1 − λ)L| ≥ |K|λ|L|1−λ, (11)

where +0 stands for the geometric mean

λK +0 (1 − λ)L = {x ∈ Rn : 〈x, u〉 ≤ hK(u)λhL(u)1−λ ∀u ∈ Sn−1}. (12)

Böröczky, Lutwak, Yang and Zhang [7] showed that the Log-Brunn-Minkowski conjecture 
holds for n = 2. Saroglou [35] and Cordero-Erasquin, Fradelizi, Maurey [18] proved 
that (11) is true when K and L are unconditional (that is, they are symmetric with 
respect to every coordinate hyperplane). The conjecture was verified in a neighborhood 
of the Euclidean ball by Colesanti, Livshyts and Marsiglietti [16], [17]. In [28], Kolesnikov 
and E. Milman found a relation between the Log-Brunn-Minkowski conjecture and the 
second eigenvalue problem for certain elliptic operators. In addition, the “local version” 
of the Log-Brunn-Minkowski conjecture was verified in [28] for the cube and for lq-
balls, q ≥ 2, when the dimension is sufficiently large. By “local version”, we mean an 
inequality of isoperimetric or Poincaré type, obtained by differentiating the inequality 
on an appropriate family of convex sets. Building on the results from [28], Chen, Huang, 
Li, Liu [12] managed to verify the Lp-Brunn-Minkowski inequality for symmetric sets, 
using techniques from PDE. Saroglou [36] showed that the validity of (11) for all convex 
bodies is equivalent to the validity of the analogous statement for an arbitrary log-
concave measure. Rotem [32] proved the Log-Brunn-Minkowski conjecture for complex 
convex bodies.

In [30], Livshyts, Marsiglietti, Nayar and Zvavitch proved that the Log-Brunn-
Minkowski conjecture implies the conjecture of Gardner and Zvavitch. In fact, if (11)
was proved to be true, then (5) would hold for any even log-concave measure μ and for 
all symmetric convex K and L. Therefore, (5) holds for all unconditional log-concave 
measures and unconditional convex sets, as well as for all even log-concave measures and 
symmetric convex sets in R2.

The main result of this paper is the following.
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Theorem 1.1. Let μ be a symmetric log-concave measure on Rn with density e−V (x), for 
some convex function V : Rn → R. Suppose that k1, k2 > 0 constants such that

∇2V ≥ k1Id, (13)

where ∇2V stands for the Hessian of V , and

ΔV ≤ k2n. (14)

Let R = k2/k1 ≥ 1. Then for symmetric convex sets K and L, and any λ ∈ [0, 1], one 
has

μ(λK + (1 − λ)L) c
n ≥ λμ(K) c

n + (1 − λ)μ(L) c
n , (15)

where

c = c(R) = 2
(
√

R + 1)2
.

Recall that the standard Gaussian measure γ is the measure with the density (
1/

√
2π

)n
e− |x|2

2 . In this case, ∇V = x, ∇2V = Id, and hence k1 = k2 = R = 1. 
Therefore, Theorem 1.1 implies 1/2n-concavity of the standard Gaussian measure. We 
shall prove a more general fact.

Theorem 1.2. Let γ be the standard Gaussian measure. For convex sets K and L in Rn

which contain the origin, and any λ ∈ [0, 1], one has

γ(λK + (1 − λ)L) 1
2n ≥ λγ(K) 1

2n + (1 − λ)γ(L) 1
2n . (16)

Interestingly, it was shown by Nayar and Tkocz [31] that only under the assumption 
of the sets containing the origin, (6) fails in dimension two. Theorem 1.2 shows, however, 
that (16) does hold, even under this assumption. See Remark 6.7 for more discussion.

In order to derive all our results, we reduce the problem to its infinitesimal version 
following the approach of [13], [16], [17], [25], [26], [27], [28]. In particular, we use a 
Bochner-type identity obtained in [25]. The arguments are based on the application 
of the elliptic boundary value problem Lu = F with Neumann boundary condition 
uν = f . Our main result corresponds to the simplest choice of F , namely F = 1. 
However, we demonstrate that a choice of non-constant F can lead to sharp estimates 
(see Section 6). This is an important observation which we believe could be useful for 
further developments. In Section 6 we also prove that constant c in (15) can be estimated 
by the parameter

inf
K

⎡
⎣1 − 1

nμ(K)

∫
〈(∇2V + 1

n
∇V ⊗ ∇V )−1∇V, ∇V 〉 dμ

⎤
⎦ ,
K
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where the infimum is taken over all symmetric convex sets.
This paper is organized as follows. In Section 2, we outline the high-level structure of 

the proof of Theorem 1.1, with the goal of indicating the main steps in the estimate. In 
Sections 3, 4 and 5 we proceed with the said steps, one at a time. At the end of Section 5
we include the proof of Theorem 1.2. In Section 6 we discuss some concluding remarks: 
namely, in subsection 6.1 we formulate a more general version of Theorem 1.1 and in 
subsection 6.2 we discuss a more general approach to the proof which recovers the result 
of Gardner and Zvavitch about dilates of convex bodies.

Acknowledgment. First author supported by RFBR project 20-01-00432, and the Simons 
Foundation. Second author supported by NSF CAREER DMS-1753260. The article was 
prepared within the framework of the HSE University Basic Research Program. The work 
was partially supported by the National Science Foundation under Grant No. DMS-
1440140 while the authors were in residence at the Mathematical Sciences Research 
Institute in Berkeley, California, during the Fall 2017 semester. The authors are grateful 
to Emanuel Milman for fruitful discussions. The authors are very grateful to Tomacz 
Tkocz for pointing out to them Lemma 5.3, leading to the formulation of Theorem 1.2. 
The authors are grateful to the anonymous referee for the detailed and helpful report.

2. High-level structure of the proof

We shall work in Rn. Throughout, K stands for a convex body (compact convex set 
with non-empty interior) and μ for a log-concave measure with density e−V , where V
is convex function. The norm sign || · || with respect to a matrix stands for the Hilbert-
Schmidt norm

‖A‖ =
√

Tr(AAT).

Given vectors a, b ∈ Rn the corresponding tensor product a ⊗ b is a bilinear form de-
fined by

a ⊗ b(v, w) = 〈a, v〉〈b, w〉.

We shall assume without loss of generality that V is twice continuously differentiable, 
the boundary of K is C2-smooth and K is strictly convex; the general bounds follow by 
approximation. The notation ∇2u stands for the Hessian matrix of u.

Most of our results deal with the following two classes of sets which are closed under 
Minkowski convex combinations:

Fsym = {symmetric convex sets},

Fo = {convex sets containing the origin}.
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In this section, we outline the steps of the proof by gradually introducing several 
definitions and lemmas. Proofs of the lemmas will be given in subsequent sections.

Definition 2.1. Fix the dimension n ∈ N. Consider a family F of convex sets in Rn

which is closed under Minkowski convex combinations. The Gardner-Zvavitch constant 
C0 = C0(μ, F) is the largest number so that for all convex sets K, L ∈ F , and for any 
λ ∈ [0, 1],

μ(λK + (1 − λ)L)
C0
n ≥ λμ(K)

C0
n + (1 − λ)μ(L)

C0
n . (17)

It can be verified, by considering small balls centered at the origin, that

C0(μ, Fsym) ≤ 1

for every log-concave measure μ which is not supported on a proper subspace of Rn. By 
Hölder’s inequality, (17) implies (6) for all c ∈ [0, C0]. Therefore, we shall be concerned 
with estimating C0 from below.

We consider the weighted Laplace operator L associated with the measure μ, that is

Lu = Δu − 〈∇u, ∇V 〉. (18)

In the case when μ is Gaussian, this operator is commonly referred to as the Ornstein-
Uhlenbeck operator. We shall make use of the generalized integration by parts identity: 
for any u, v ∈ C2(Rn),

∫
Rn

v · Lu dμ = −
∫
Rn

〈∇v, ∇u〉 dμ.

Definition 2.2. Define C1 = C1(μ, F) to be the largest number, such that for every 
u ∈ C2(K) and K ∈ F with Lu = 1K ,

1
μ(K)

∫
K

||∇2u||2 + 〈∇2V ∇u, ∇u〉 dμ ≥ C1(μ, F)
n

.

The first key step in our proof is outlined in the following lemma:

Lemma 2.3. For every family F of convex sets in Rn closed under Minkowski convex 
combinations,

C0(μ, F) ≥ C1(μ, F).

Next, we conclude with two more lemmas.
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Lemma 2.4. Assume that ∇2V ≥ k1Id.

(1) Assume, in addition, that V is even. Then for every ε ∈ [0, 1],

C1(μ, Fsym) ≥ 1
μ(K)

∫
K

1
|∇V |2

(1+ε)nk1
+ 1

1−ε

dμ.

(2) For every family F of convex sets which is closed under Minkowski convex combina-
tions, one has

C1(μ, F) ≥ 1
μ(K)

∫
K

1
|∇V |2

nk1
+ 1

dμ.

Lemma 2.5. Fix a convex function V on Rn. Assume that ΔV ≤ k2n. Fix a constant 
k1 > 0 and let R = k2/k1.

(1) If a convex set K and the measure μ with density e−V satisfy 
∫

K
∇V dμ = 0, then 

there exists an 0 < ε < 1 such that

1
μ(K)

∫
K

1
|∇V |2

(1+ε)nk1
+ 1

1−ε

dμ ≥ 2
(
√

R + 1)2
.

(2) For the standard Gaussian measure γ and for every convex set K which contains the 
origin, we have

1
γ(K)

∫
K

1
|x|2

n + 1
dγ ≥ 1

2 .

Proof of Theorem 1.1. The theorem follows immediately from Lemma 2.3 applied to 
F = Fsym, Lemma 2.4 (1) and Lemma 2.5 (1), in view of the Definition 2.1. �
Proof of Theorem 1.2. Since ∇V = x and k1 = 1, the theorem follows immediately from 
Lemma 2.3, Lemma 2.4 (2) and Lemma 2.5 (2), in view of the Definition 2.1. �
3. Proof of Lemma 2.3

The proof of Lemma 2.3 is a combination of a variational argument, integration by 
parts, and an application of the Cauchy-Schwarz inequality. We start by introducing the 
variational argument.
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3.1. Variational argument

Infinitesimal versions of Brunn-Minkowski type inequalities have been considered and 
extensively studied in [1], [3], [4], [13], [14], [15], [24], [27], [28], [16], [17].

Following Schneider ([37], page 115) we say that a convex body K is of class C2 if 
its support function is of class C2. Further, we say that K is of class C2

+ if K is of 
class C2 and admits positive Gauss curvature. We say that a function h : Sn−1 → R is a 
C2

+(Sn−1)-function if it is a support function of a C2
+ convex body.

Let h be the support function of a C2
+ convex body K and let ψ ∈ C2(Sn−1). Then

hs = h + sψ ∈ C2
+(Sn−1), (19)

if s is sufficiently small (say |s| ≤ a for some appropriate a > 0). Hence for every s in 
this range there exists a unique C2

+ convex body Ks with support function hs. For an 
interval I, we define the one-parameter family of convex bodies

K(h, ψ, I) = {Ks : hKs
= h + sψ, s ∈ I}.

Lemma 3.1. Assume that μ is a log-concave measure with twice continuously differentiable 
density, c is a positive constant, and F is a family of convex sets closed under Minkowski 
convex combinations. The inequality

μ(λK + (1 − λ)L) c
n ≥ λμ(K) c

n + (1 − λ)μ(L) c
n (20)

holds for all K, L ∈ F and every λ ∈ [0, 1], if and only if for every one-parameter family 
K(h, ψ, I) such that Ks ∈ F for every s ∈ I, one has

d2

ds2 μ(Ks)
∣∣∣∣
s=0

· μ(K0) ≤ n − c

n

(
d

ds
μ(Ks)

∣∣∣∣
s=0

)2

. (21)

Proof. Assume first that μ satisfies (20). The equality hKs
= h + sψ, s ∈ I, and the 

linearity of support functions with respect to Minkowski addition, imply that for every 
s, t ∈ I and for every λ ∈ [0, 1]

Kλs+(1−λ)t = λKs + (1 − λ)Kt.

The inequality (20) implies

μ(Kλs+(1−λ)t)
c
n = μ(λKs + (1 − λ)Kt)

c
n ≥ λμ(Ks) c

n + (1 − λ)μ(Kt)
c
n ,

which means that the function μ(Ks) c
n is concave in s on I. This implies (21). We add 

that μ(Ks) is twice differentiable in s, in view of our smoothness assumptions on K and 
ψ. This fact can be observed, for example, using Lemma 6.1 from [16], in which μ(K) is 
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expressed in terms of the support function of K. Plugging h + sψ into this formula gives 
a twice differentiable function in s. In the notation of Lemma 6.1 in [16], F stands for 
the density of μ.

Conversely, suppose that for every system K(h, ψ, I) with Ks ∈ F , whenever s ∈ I, 
the function μ(Ks) c

n has non-positive second derivative at 0, i.e. (21) holds. We observe 
that this implies concavity of μ(Ks) c

n on the entire interval I. Indeed, given s0 in the 
interior of I, consider h̃ = h + s0ψ, and define a new system K̃(h̃, ψ, J), where J is a 
new interval such that h̃ + sψ = h + (s + s0)ψ ∈ C2

+ for every s ∈ J . Then the second 
derivative of μ(Ks) c

n at s = s0 is negative, as it is equal to the second derivative of 
μ(K̃s) c

n at s = 0. Thus (21) implies concavity of s → μ(Ks) c
n on [0, 1]:

μ
c
n (Ks) ≥ sμ

c
n (K1) + (1 − s)μ c

n (K0), ∀s ∈ [0, 1].

Take s = 1 − λ, h = hK , ψ = hL − hK and observe that Ks = λK + (1 − λ)L. Therefore 
(20) holds. This completes the proof. �

The normal vector to the boundary of K at the point x will be denoted by nx. Recall 
our assumption that K is strictly convex and C2-smooth, so the outward unit normal 
vector is unique; the general case may be derived by approximation. We shall write

μ∂K(x) = e−V (x) · Hn−1|∂K ,

where Hn−1 stands for the (n − 1)-dimensional Hausdorff measure; the notation ∇∂K

means the boundary gradient (i.e., the projection of the gradient onto the support hy-
perplane). The second fundamental form of ∂K will be denoted by II, and the weighted 
mean curvature at a point x is given by

Hx = tr(II) − 〈∇V, nx〉.

The following proposition was shown by Kolesnikov and Milman [26] (see the proof 
of Theorem 6.6):

Proposition 3.2. Let f : ∂K → R be given by f(x) = ψ(nx). Then

μ(Ks)′|s=0 =
∫

∂K

f(x) dμ∂K(x);

μ(Ks)′′|s=0 =
∫

∂K

(
Hxf2 − 〈II−1∇∂Kf, ∇∂Kf〉

)
dμ∂K(x).

Definition 3.3. For a fixed class F of convex sets which is closed under dilates, and a 
convex body K ∈ F , we consider a class CF(K) of C2-smooth real-valued functions on 
∂K, given by
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CF (K) = {f(x) = hL(nx) − hK(nx) : L ∈ F , t > 0} ∩ C2(∂K).

Lemma 3.1 and Proposition 3.2 imply:

Corollary 1. Fix a class F of convex sets in Rn which is closed under Minkowski convex 
combinations. Suppose that for any convex body K ∈ F and for any function f(x) ∈
CF (K),

∫
∂K

(
Hxf2 − 〈II−1∇∂Kf, ∇∂Kf〉

)
dμ∂K(x) − n − C

nμ(K)

⎛
⎝∫

∂K

f(x) dμ∂K(x)

⎞
⎠

2

≤ 0. (22)

Then

C0(μ, F) ≥ C.

3.2. Integration by parts

The following Bochner-type identity was obtained by Kolesnikov and Milman. It is 
a particular case of Theorem 1.1 in [25] (note that Ricμ = ∇2V in our case). This is a 
generalization of a classical result of R.C. Reilly.

Proposition 3.4. Let u ∈ C2(K) and un = 〈∇u, nx〉 ∈ C1(∂K). Then
∫
K

(Lu)2dμ =
∫
K

(
||∇2u||2 + 〈∇2V ∇u, ∇u〉

)
dμ + (23)

∫
∂K

(Hxu2
n − 2〈∇∂Ku, ∇∂Kun〉 + 〈II∇∂Ku, ∇∂Ku〉) dμ∂K(x).

3.3. Proof of Lemma 2.3

In view of Corollary 1 it is sufficient to verify (22) with C = C1(μ, F). Fix a C1

function f : ∂K → R. In the case when 
∫

∂K
f dμ∂K = 0, we automatically get (22)

with an arbitrary constant C, as a consequence of the log-concavity of μ (see Theorem 
1.1 in [26]). Indeed, in this case (22) is simply identical to the infinitesimal form of 
log-concavity.

If 
∫

∂K
f dμ∂K �= 0, then after a suitable renormalization one can assume that ∫

∂K
f dμ∂K = μ(K).

Let u be the solution of the Poisson equation

Lu = 1

with the Neumann boundary condition for every x ∈ ∂K
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〈∇u(x), nx〉 = f(x).

We refer to subsection 2.4 in [26], where the reader can find the precise statement ensuring 
well-posedness of this equation and several references to classical PDE’s textbooks (see 
e.g. [20]) for further reading.

Applying (23) and the definition of C1(μ, F) one obtains

μ(K) ≥ C1(μ, F)
n

μ(K) +
∫

∂K

(Hxf2 − 2〈∇∂Ku, ∇∂Kf〉 + 〈II∇∂Ku, ∇∂Ku〉) dμ∂K(x).

Recall that for a symmetric positive-definite matrix A,

〈Ax, x〉 + 〈A−1y, y〉 ≥ 2〈x, y〉. (24)

Indeed, choosing an orthogonal frame making A diagonal with eigenvalues λi we reduce 
(24) to the inequality

n∑
i=1

λix
2
i +

n∑
i=1

y2
i /λi ≥ 2

n∑
i=1

xiyi,

which follows from the arithmetic-geometric mean and Cauchy-Schwarz inequalities.
Applying (24) with A = II, x = ∇∂Ku and y = ∇∂Kf , we obtain

∫
∂K

(
Hxf2 − 〈II−1∇∂Kf, ∇∂Kf〉

)
dμ∂K(x) − n − C1(μ, F)

n
μ(K) ≤ 0.

The result of the lemma now follows from Corollary 1. �
4. Proof of Lemma 2.4

Firstly, suppose that u is a C2-smooth function on a symmetric convex set K with 
Lu = 1K on K.

Since K is symmetric and V is even, the function u is even as well. Indeed, we get by 
symmetry that (u(x) + u(−x))/2 is a solution to our system as well. Uniqueness of the 
solution implies u(−x) = u(x).

To prove the lemma, it suffices to show that∫
K

||∇2u||2 + 〈∇2V ∇u, ∇u〉 dμ ≥ 1
n

∫
K

1
|∇V |2

(1+ε)nk1
+ 1

1−ε

dμ. (25)

By the Cauchy-Schwarz inequality,∫
||∇2u||2dμ ≥ 1

n

∫
|Δu|2dμ. (26)
K K
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Indeed, to see why (26) is true, recall that ||∇2u||2 =
∑n

i=1 λ2
i , where λ1, ..., λn are the 

eigenvalues of ∇2u, and recall also that Δu =
∑n

i=1 λi.
Note that the symmetry of u implies

∫
K

uxi
dμ = 0. (27)

By the Brascamp–Lieb inequality (see [2], Theorem 4.9.1, or [10]), we have
∫
K

u2
xi

dμ ≤
∫
K

〈(∇2V )−1∇uxi
, ∇uxi

〉dμ.

Applying the lower bound for ∇2V and summing over i = 1, ..., n, we get
∫
K

||∇2u||2dμ ≥ k1

∫
K

|∇u|2 dμ. (28)

In addition, we observe that the lower bound ∇2V ≥ k1Id also yields
∫
K

〈∇2V ∇u, ∇u〉dμ ≥ k1

∫
K

|∇u|2dμ. (29)

Let ε > 0. Multiplying (26) by 1 − ε, multiplying (28) by ε, summing the resulting two 
inequalities, and then using (29), we arrive at

∫
K

(||∇2u||2 + 〈∇2V ∇u, ∇u〉)dμ ≥
∫
K

(1 − ε

n
|Δu|2 + k1(1 + ε)|∇u|2

)
dμ. (30)

Writing

Δu = Lu + 〈∇V, ∇u〉 = 1K + 〈∇V, ∇u〉,

we get that the right hand side of (30) equals
∫
K

[1 − ε

n
1 + 2〈∇u,

1 − ε

n
∇V 〉 + 〈Aε∇u, ∇u〉

]
dμ, (31)

where

Aε = 1 − ε

n
∇V ⊗ ∇V + k1(1 + ε)Id.

Note that Aε is positive semi-definite, since it is a sum of positive semi-definite matrices. 
Using (24) once again, this time with A = Aε, x = ∇u and
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y = −1 − ε

n
∇V,

we see that (31) is greater than or equal to
∫
K

1 − ε

n

(
1 − 1 − ε

n
〈A−1

ε ∇V, ∇V 〉
)

dμ. (32)

We observe that for any vector z ∈ Rn and for all a, b ∈ R,

(aId + bz ⊗ z)−1
z = z

a + b|z|2 . (33)

Applying (33) with a = (1 − ε)/n, b = k1(1 + ε), and z = ∇V , we rewrite (32) as

k1(1 + ε)
∫
K

1
|∇V |2 + k1n 1+ε

1−ε

dμ =
∫
K

dμ
|∇V |2

k1(1+ε) + n
1−ε

. (34)

The proof of part (1) is complete.
Secondly, if the class F is arbitrary, we apply the same estimate with ε = 0 and 

avoid using (28). Note that (28) is the only place where the symmetry was used. This 
completes the proof of part (2). �
5. Proof of Lemma 2.5

We shall need the following lemma, where symmetry is used in the crucial way: namely, 
we use the simple fact that log-concave even functions on the real line are concave at 
zero.

Lemma 5.1. For a log-concave measure μ with density e−V and a convex body K, satis-
fying

∫
K

∂V

∂xi
dμ = 0, (35)

for all i = 1, ..., n, we have
∫
K

|∇V (x)|2dμ ≤
∫
K

ΔV dμ.

Proof. Let i ∈ {1, ..., n}. By the Prékopa-Leindler inequality ([21], Theorem 4.2), the 
function

g(t) =
∫

e−V (x+tei) dx
K
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is log-concave in t. In particular,

g(0)g′′(0) − g′(0)2 ≤ 0. (36)

Note that

g′(0) = −
∫
K

∂V

∂xi
e−V (x) dx = 0. (37)

Therefore, by (36),

g′′(0) =
∫
K

(
− ∂2V

∂2xi
+

(
∂V

∂xi

)2
)

e−V (x) dx ≤ 0. (38)

Applying (38) and summing over i = 1, ..., n, we obtain the conclusion of the lemma. �
Remark 5.2. Alternatively, Lemma 5.1 follows directly for the Brascamb–Lieb inequality 
applied to the functions Vxi

:

∫
K

V 2
xi

dμ ≤
∫

〈(D2V )−1∇Vxi
, ∇Vxi

〉dμ =
∫
K

Vxixi
dμ.

Here we use log-concavity of the measure 1Ke−V dx

The next lemma shows that, in the case of the standard Gaussian measure, the con-
clusion of Lemma 5.1 holds under an even weaker assumption of the sets containing the 
origin. Recall that a set K is called star-shaped if it contains the interval {tx, t ∈ [0, 1]}
for every x ∈ K.

Lemma 5.3. Suppose K is a star-shaped body, and γ is the standard Gaussian measure. 
Then ∫

K

|x|2dγ(x) ≤ nγ(K). (39)

Proof. Consider the function g(s) = γ(sK). Note that g is non-decreasing, since K is 
star-shaped. Observe that, by Proposition 3.2,

g′(1) = 1
(2π) n

2

∫
∂K

〈nx, x〉e− x2
2 dHn−1,

where by dHn−1 we denote the Hausdorff measure on ∂K.
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Applying the divergence theorem, we therefore get

0 ≤ g′(1) =
∫
K

div
( 1

(2π) n
2

xe− |x|2
2

)
dx = nγ(K) −

∫
K

|x|2dγ.

This inequality implies (39). �
5.1. Proof of Lemma 2.5

To prove (1) we use Jensen’s inequality ([34], Theorem 3.3) and convexity of the 
function x → 1/(1 + x) for x > 0. We get

1
μ(K)

∫
K

1
|∇V |2

(1+ε)nk1
+ 1

1−ε

dμ ≥ 1
1

μ(K)
∫

K
|∇V |2

(1+ε)nk1
dμ + 1

1−ε

. (40)

Next, we apply (40) and Lemma 5.1 along with the assumption ΔV ≤ nk2, to infer that

1
μ(K)

∫
K

1
|∇V |2

(1+ε)nk1
+ 1

1−ε

dμ ≥ 1
R

1+ε + 1
1−ε

, (41)

where, as before, R = k2/k1. Plugging in the optimal value of

ε = R + 1 − 2
√

R

R − 1 ,

we finish the proof of part (1).
Next, to obtain part (2) of the Lemma, we substitute ε = 0 in (40) to arrive at

1
μ(K)

∫
K

1
|∇V |2

nk1
+ 1

dμ ≥ 1
1

μ(K)
∫

K
|∇V |2

nk1
dμ + 1

. (42)

Recalling that V (x) = |x|2/2, part (2) follows from applying Lemma 5.3 to the right 
hand side of (42). �

Note, that in the case of the standard Gaussian measure the optimal choice is ε = 0.

6. Concluding remarks

6.1. An improved estimate

Throughout this subsection sets are assumed to be origin-symmetric and functions 
are assumed to be even.

We outline a sharper, more general estimate for the Gardner-Zvavitch constant.
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We recall that C(K, μ) is called the Poincaré constant of μ|K if it is the smallest 
number a such that for all C1-smooth functions f on K, one has

∫
K

f2dμ − 1
μ(K)

⎛
⎝∫

K

fdμ

⎞
⎠

2

≤ a

∫
K

|∇f |2dμ. (43)

Theorem 6.1. Let F be a collection of origin-symmetric convex bodies in Rn which is 
closed under Minkowski convex combinations. Let

C = C(μ, F) = sup
ε∈[0,1)

(1 − ε) inf
K∈F

⎡
⎣1 − 1

nμ(K)

∫
K

〈A−1∇V, ∇V 〉 dμ

⎤
⎦ ,

where

A = ∇2V + 1
n

∇V ⊗ ∇V + ε

(1 − ε)C(K, μ) Id

and C(K, μ) is the Poincaré constant of μ|K .
Then, for all K, L ∈ F , and for every λ ∈ [0, 1]

μ(λK + (1 − λ)L) C
n ≥ λμ(K) C

n + (1 − λ)μ(L) C
n .

In particular,

C ≥ inf
K∈F

⎡
⎣1 − 1

nμ(K)

∫
K

〈(∇2V + 1
n

∇V ⊗ ∇V )−1∇V, ∇V 〉 dμ

⎤
⎦ .

Proof. Consider an even C2 function u : K → R such that Lu = 1K . Then, by (26), 
along with the fact that Δu = 1 + 〈∇V, ∇u〉,

∫
K

||∇2u||2 + 〈∇2V ∇u, ∇u〉 dμ ≥
∫
K

1
n

|1 + 〈∇V, ∇u〉|2 + 〈∇2V ∇u, ∇u〉 dμ

=
∫
K

1
n

+ 2
n

〈∇V, ∇u〉 + 〈(∇2V + 1
n

∇V ⊗ ∇V )∇u, ∇u〉 dμ.

Next we apply the Poincarè inequality (43) to every uxi
(here we use that u and V are 

even, hence 
∫

uxi
dμ = 0):

∫
K

u2
xi

dμ ≤ C(K, μ)
∫
K

|∇uxi
|2dμ.

Thus
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∫
K

|∇u|2dμ ≤ C(K, μ)
∫
K

‖∇2u‖2dμ,

and for every ε ∈ [0, 1] one has
∫
K

||∇2u||2 + 〈∇2V ∇u, ∇u〉 dμ ≥ ε

C(K, μ)

∫
K

|∇u|2dμ

+ (1 − ε)
∫
K

1
n

+ 2 〈∇V, ∇u〉
n

+ 〈(∇2V + 1
n

∇V ⊗ ∇V )∇u, ∇u〉 dμ

= (1 − ε)
(∫

K

1
n

+ 2 〈∇V, ∇u〉
n

+ 〈A∇u, ∇u〉 dμ
)

.

Applying (24) with the positive-definite matrix A, and Lemma 2.3, we complete the 
proof. �

Theorem 1.1 follows directly from Theorem 6.1. Perhaps, C(μ, F) could be estimated 
for the class of symmetric convex sets under less restrictive assumptions than ∇2V ≥ k1Id
and ΔV ≤ n.

6.2. The case of non-constant F , and the Gardner-Zvavitch conjecture for dilates

In this subsection we show that the choice of a constant F in the equation Lu = F is 
not always optimal. We give an example showing that a result could be obtained with a 
non-constant F .

Definition 6.2. For a C2-smooth even function F : K → R, with 
∫

K
F dμ �= 0, let CF be 

the largest number, such that for every u ∈ C2(K) with Lu = F ,

∫
K

||∇2u||2 + 〈∇2V ∇u, ∇u〉 dμ ≥
∫
K

F 2 dμ − n − CF

nμ(K)

⎛
⎝∫

K

F dμ

⎞
⎠

2

. (44)

We define

C2(μ) = sup
F

CF ,

where the supremum runs over all C2-smooth even functions F : K → R, with 
∫

K
F dμ �=

0.

We observe the following straightforward

Claim 2. C2(μ) ≥ C1(μ, Fsym).
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Note that the proof of Lemma 2.3 implies, in fact, a stronger statement:

Lemma 6.3. C0(μ, Fsym) ≥ C2(μ).

It is possible that in the case of the standard Gaussian measure, the only sub-optimal 
place in our argument is the application of Lemma 2.3 in place of the stronger statement 
of Lemma 6.3: indeed, solving the Neumann system with F �= 1K could lead to a better 
bound, however our current proof of Lemma 2.4 does not allow us to use this freedom.

Finally, we outline the following result.

Lemma 6.4. Let K be a convex body with 
∫

K
xdγ(x) = 0, let γ be the Gaussian measure 

and let

V (x) = u(x) = |x|2
2

on K. Let

F = Lu = n − |x|2

on K. Then

∫
K

||∇2u||2 + 〈∇2V ∇u, ∇u〉 dγ ≥
∫
K

F 2 dγ − n − 1
nγ(K)

⎛
⎝∫

K

F dγ

⎞
⎠

2

. (45)

Proof. For all x ∈ K,

1
4 ||∇2|x|2||2 = n; 1

4

∣∣∣∇|x|2
∣∣∣2

= |x|2.

Hence, (45) becomes

nγ(K) +
∫
K

|x|2 dγ ≥ n2γ(K) − 2n

∫
K

|x|2 dγ +
∫
K

|x|4 dγ (46)

−

⎛
⎝n2γ(K) − 2n

∫
K

|x|2 dγ + 1
γ(K)

(∫
K

|x|2 dγ

)2
⎞
⎠

+ 1
n

⎛
⎝n2γ(K) − 2n

∫
K

|x|2 dγ + 1
γ(K)

(∫
K

|x|2 dγ

)2
⎞
⎠ .

Rearranging this inequality, we obtain
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⎡
⎣∫

K

|x|4 dγ − 1
γ(K)

(∫
K

|x|2 dγ

)2

− 2
∫
K

|x|2 dγ

⎤
⎦ +

⎡
⎣−

∫
K

|x|2 dγ + 1
nγ(K)

(∫
K

|x|2 dγ

)2
⎤
⎦ ≤ 0. (47)

Recall Lemma 2 from [18] (which was a key tool in obtaining the B-theorem):

∫
K

|x|4 dγ − 1
γ(K)

(∫
K

|x|2 dγ

)2

− 2
∫
K

|x|2 dγ ≤ 0. (48)

In addition, Lemma 5.1 implies that

−γ(K) + 1
n

∫
K

|x|2 dγ ≤ 0. (49)

Applying (48) and (49) we obtain the validity of (47), which in turn implies the validity 
of (45). �

As a consequence of Lemma 6.3 and Lemma 6.4, we confirm the conjecture of Gardner 
and Zvavitch in the case when K and L are dilates. This result was previously obtained 
by Gardner and Zvavitch [22], where the authors also used (48). We include the following 
proposition merely for completeness.

Proposition 6.5. Let K be a convex set such that 
∫

K
xdγ(x) = 0. Let L = aK for some 

a > 0. Then for every λ ∈ [0, 1],

γ(λK + (1 − λ)L) 1
n ≥ λγ(K) 1

n + (1 − λ)γ(L) 1
n .

Proof. Note that the class F of dilates of the same convex body is closed under 
Minkowski convex combinations. Recall, from the proof of Lemma 3.1, that arbitrary 
K and L can be interpolated by a one-parameter family K(h, ψ, I) with h = hK and 
ψ = hL − hK . Recall as well that the boundary condition in the Neumann problem we 
considered is given by f(x) = ψ(nx) = hL(nx) − hK(nx). In the case when L = aK, we 
are dealing with

f(x) = (a − 1)hK(nx) = (a − 1)〈x, nx〉.

By Corollary 1 and Proposition 3.4, we see that to verify the proposition, is suffices to 
show that for some u : K → R with

〈∇u, nx〉 = f(x) = (a − 1)〈x, nx〉, (50)
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one has

∫
K

||∇2u||2 + 〈∇2V ∇u, ∇u〉 dγ ≥
∫
K

(Lu)2 dγ − n − 1
nγ(K)

⎛
⎝∫

K

Lu dγ

⎞
⎠

2

. (51)

It remains to note that u = a−1
2 |x|2 satisfies (50), and that Lemma 6.4, along with 

the homogeneity of (51), implies the validity of (51) for u = a−1
2 |x|2. �

Remark 6.6. Note that Proposition 6.5 implies the validity of the conjecture of Gardner 
and Zvavitch in dimension 1, since every pair of symmetric intervals are dilates of each 
other. Furthermore, directly verifying (45) in the case n = 1 boils down to proving the 
elementary inequality

α(R) =
R∫

0

(t4 − 3t2)e− t2
2 dt ≤ 0,

which follows from the fact that α(0) = α(+∞) = 0, α(R) decreases on [0, 
√

3] and 
increases on [

√
3, +∞]. It of course also follows from (48) and (49), but that would be 

an overkill.
It is curious to note that Lemma 2.3 is also sharp when n = 1: for every u : [−R, R] →

R with Lu = 1 and with the boundary condition u′(R) = −u′(−R), one has

β(R) =
∫ R

−R
[(u′′)2 + (u′)2]e− t2

2 dt∫ R

−R
e− t2

2 dt
≥ 1.

In fact, equality is never attained unless R = 0, and limR→0 β(R) = 1. A routine compu-
tation shows that β(R) is strictly increasing in R, and limR→∞ β(R) = ∞. Furthermore, 
β(R) grows very fast.

This indicates that our proof of Lemma 2.4 is sub-optimal, at least in the case n = 1: 
we replace the term which includes |∇u|2 with the much smaller term, while |∇u|2 has 
large growth. The constant 1/2 which we get after such replacement is attained when 
R = ∞, and in fact the estimate decreases as R increases, contrary to the actual behavior 
of β(R).

Remark 6.7. Consider p = 0.5C0(γ2, Fo), that is the largest number such that for any 
pair of convex sets K and L in R2 containing the origin, and for any λ ∈ [0, 1],

γ(λK + (1 − λ)L)p ≥ λγ(K)p + (1 − λ)γ(L)p.

Nayar and Tkocz [31] showed that p < 0.5. Furthermore, using their argument, one may 
observe that p ≤ 1 − 2 ≈ 0.363. Our results imply that p ≥ 0.25. Therefore,
π
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p ∈ [0.25, 0.363].

We would like to add that our proof, in fact, indicates a bit more:

p ≥ inf
K∈Fo

1
γ(K)

∫
K

1
x2 + 2dγ(x). (52)

A numerical computation shows that

1
2π

∫
R2

e− x2
2 dx

x2 + 2 ≈ 0.298. (53)

Using Caffarelli’s contraction theorem [11], one may observe that for any symmetric (and 
not just containing the origin) convex set K in R2,

1
γ(K)

∫
K

1
x2 + 2dγ(x) ≥ 0.298. (54)

Indeed, Caffarelli’s theorem guarantees the existence of a 1-Lipschitz map T which pushes 
forward the Gaussian measure to its restriction on K. In case K is symmetric, one has 
T (0) = 0, and the 1-Lipschitz property yields |T (x)| = |T (x) −T (0)| ≤ |x −0| = |x|. Hence 
the normalized integral from (54) is greater than the corresponding integral over R2.

However, this does not provide an insight into calculating the infimum from (52), 
which runs over the class of all convex sets containing the origin. In any case, this 
infimum does not exceed 0.298, and therefore it is certainly smaller than 0.363.

In conclusion, unfortunately, combining our estimate with the example of Nayar and 
Tkocz [31], one may not determine the value of p explicitly.
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