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Abstract 

 

 

Molecular simulations of biological molecules require an accurate description of molecular interactions 

through a force field (FF). The focus of this Perspectives article is on all-atom lipid FFs. Recent additions to the 

CHARMM36 lipid FF continue to expand a researcher’s ability to probe membrane structure and function with a 

wide variety of biologically important lipids. Currently, there is an effort to reduce the assumptions in all-atom 

lipid FFs. The inclusion of long-range dispersion interaction through particle-mesh Ewald is allowing for more 

accurate descriptions of lipid bilayer and monolayer properties without additional computational cost. Soon, 

simulations with lipid FFs will no longer depend on short-range cutoffs and will accurately represent long-range 

dispersion. This requires efficient FF parameterization with an automated approach due to FF complexity. In 

addition, polarizable FFs for lipids will be important for the next generation of simulations that accurately 

represent how molecule interactions respond to a varied environment. 
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1. Introduction 

Lipids are an essential biological building block that provide structure to cellular membranes and limit the 

movement of molecules across the membrane to that primarily controlled by transmembrane proteins. Although 

a strong focus on disease has been how proteins and their mutations play an important role in health, lipids play 

a critical role in biological processes and mechanisms.1 From a biotechnological perspective, lipids are important 

to vaccine development and have been used as delivery vehicles and promoting an immune response with lipid 

nanoparticles and are key to the efficacy of the messenger RNA-based SARS-CoV-2 vaccines.2-4  

Molecular simulations of biomolecules, such as lipids, rely on accurate descriptions of interactions that yield 

forces between molecules to probe the natural movement of molecules in their environment. This requires an 

accurate mathematical representation of molecular forces known as a force field (FF). This Perspectives article 

will briefly introduce the complexity of all-atom pair-wise additive lipid FFs. The focus here will be on 

summarizing key FFs used by the AMBER and CHARMM communities and how these have recently been 

applied to ether lipids and modeling bacterial membranes.  

Until recently, lipid FFs assumed that long-range van der Waals interactions need not be included. However, 

the development of methods to incorporate long-range dispersion energies efficiently in simulations has opened 

the door to consider developing a lipid FF that includes long-range dispersion. Since it has been shown that lipid 

FFs cannot simultaneously represent lipid bilayer and monolayer properties,5 the inclusion of this long-range 

interaction is crucial for a well-balanced FF. With many experimental observables as targets for FF optimization 

with lipid assemblies, the development of automated approaches to parameter optimization will guide the 

improvement of FFs. This Perspectives article will summarize some recent work on this with a focus in using 

thermodynamic reweighting to guide the lipid parameter optimization.6, 7 

Finally, this Perspectives article will present the next generation of lipid FFs that include electronic 

polarization. The CHARMM community approach using the Drude Oscillator will be introduced and its current 

limitations. The methods developed for the automization of parameter fitting in the pairwise-additive FF are 

incorporated in optimization of the Drude FF to improve its current inaccuracies in membrane mechanical 

properties.  

 

2. All-atom Pair-wise Additive Lipid Force Fields 

This section briefly presents the common mathematical description of the interaction between atoms in a lipid 

system, i.e., the force field, and a summary how these are obtained. More details can be found in a past review 

article.8  The FF used to describe the all-atom CHARMM36 (C36) lipid FF9 generally follows the classical Class 

I FF with harmonic bonded terms, dihedrals, and non-bonded terms (van der Waals and electrostatics) as shown 
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in eq. 1. However, C36 contains a Urey-Bradley cross-term for a few triplicates so has a  Class II functional form 

for these cases. 

𝑈(𝑟1, 𝑟2, ⋯ , 𝑟𝑁)

= ∑ 𝑘𝑏,𝑖𝑗(𝑟𝑖𝑗 − 𝑟0,𝑖𝑗)
2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘𝜃,𝑖𝑗𝑘(𝜃𝑖𝑗𝑘 − 𝜃0,𝑖𝑗𝑘)
2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝑘𝑢𝑏,𝑖(𝑖+2)(𝑟𝑖𝑖(𝑖+2) − 𝑟0,𝑖𝑖(𝑖+2))
2

𝑐𝑟𝑜𝑠𝑠

+ ∑ 𝑘𝜙,𝑖𝑗𝑘𝑙(𝜙𝑖𝑗𝑘𝑙 − 𝜙0,𝑖𝑗𝑘𝑙)
2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟

+ ∑ ∑ 𝑘𝜑,𝑛 (1 + 𝑐𝑜𝑠(𝑛𝜑𝑖𝑗𝑘𝑙 − 𝛿𝑛))

∀𝑛𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ 𝜀𝑖𝑗 [(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

12

− 2 (
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

6

]
𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 

𝑝𝑎𝑖𝑟𝑠

+ ∑
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐

 

              (1) 

The bond and angle terms in eq. (1) are typically obtained to match structural and spectroscopic data of small 

molecules and if none is available then quantum mechanical calculations are performed to fit these parameters. 

The equilibrium distance (r0), angles (0, 0), and associated force constants (kb, k, kub, k) are treated as universal 

for each atom type. The improper terms are typically added to maintain chiral or planar centers. The C36 lipid FF 

does not contain CMAP terms that are present for proteins.10 

The last three terms in eq. (1) are the most integral to bilayer properties and careful optimization is required 

to develop an accurate lipid FF. For most widely-used all-atom lipid FFs, the dihedral term is a correction to the 

non-bonded potential as interactions separated by three chemical bonds (1-4 interactions) include the electrostatic 

and Lennard-Jones (LJ) interactions (with or without a scaling factor depending on the family of the force field, 

i.e., AMBER and CHARMM).8 These are typically fit to high-level quantum mechanical (QM) calculations of 

torsional profiles for relevant small molecules. The Slipid11, 12 and Lipid1413 FFs follow the AMBER community 

use of the restricted electrostatic potential approach (RESP)14 to obtain partial charges using QM and LJ 

parameters are optimized to experimental observables. However, the CHARMM-community takes the 

supramolecular approach with charges and Lennard-Jones terms obtained from small molecule-water interactions 

and additional fits to experimental observables.15-17  

Traditionally the optimization of FF parameters took advantage of the transferability of functional group 

parameters so that small molecules can act as a guide in developing an accurate FF for the macromolecule, here 

phospholipids. The last three terms in eq. (1) are coupled and thus optimization requires simultaneous fitting or 

procedure for parameter refinement. Simulations of small molecules (alkanes, alkenes, ethers, phosphates, etc.) 

compared to bulk experiments (densities, heats of vaporization, free energy of solvation, diffusion, etc.) are used 

to fit or refine atomic non-bonded parameters (, Rmin, q). Then, the dihedral potential can be fit to QM torsional 

profiles based on the non-bonded parameters. This approach had a benefit to not require expensive all-atom lipid 

bilayer simulations in the optimization of FF parameters assuming that the small molecule parameters were 
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transferrable to the larger lipid. For the alkane to lipid-acyl chain, this transferability was a good assumption. 

However, considering the lipid head group and the glycerol region connecting the two acyl chains, transferability 

was more difficult and ultimately required some parameter optimization based on bilayer simulations for the C36 

lipid FF.9 With the current computational speed, optimization procedures of the lipid FF are moving towards more 

automated and lipid-bilayer focused to allow for more accurate parameters (see Section 4). 

Although there is always room for improvement in FF parameters, the general careful optimization of the C36, 

Slipid, and Lipid14 FFs has allowed for accurate simulations of lipid bilayers ranging from one lipid type to 

multiple lipids to systems with proteins. The details of lipid diversity can be found in a past review,8 but overall 

the Lipid14 FF is limited to phosphatidylcholine (PC), phosphatidylethanolamine (PE) and cholesterol lipids, 

Slipids has additional diversity including phosphatidylglycerol (PG), phosphatidylserine (PS), sphingolipids and 

polyunstaturated lipids. However, the C36 FF has been developed for a wide range of lipid types including 

phosphitylinositols, various sterols, gylcolipids, ether lipids, etc. Our recent addition of plasmalogen lipids with 

their vinyl ether chain (Fig 1A)18 will allow for development of membrane models for neuronal membranes that 

have a significant proportion of these lipids. The lipid diversity and testing accuracy across varied temperatures 

and lipid compositions19-21 has allowed for development of accurate model membranes such as that of the plasma 

membrane of Psudomonas aeruginosa (Fig 1B).22 For example, these model membranes have been used to probe 

peptide binding to yeast organelles23 and the mechanism of the serotonin receptor in a model neuronal membrane 

(Fig 1C).24  

 

 

Figure 1. A. PLAPE (C18(Plasm-18:1PE)) with POPC bilayer at 2:1 ratio with water in red hollow spheres, carbon in silver, oxygen 

in red, phosphorous in gold, nitrogen in blue and the ether oxygen in magenta.18 B. Plasma membrane of P. aeruginosa in the biofilm 

condition with PE lipids in blue, PG lipids in orange, and lipids (PE and PG) with cyclopropane-containing chains in green.22 C. 5-

HT3 (light blue) embedded in a membrane of cholesterol (blue), SDPC (red) and POPC (yellow).24 
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3. Importance in including Long-range van der Waals Interactions  

The FF function described above is half of the story with regards to simulating a condensed phase system. In 

reality, molecules interact based on position and if a distance is large then its interaction is essentially zero. This 

can be used to reduce the number of calculations for the non-bonded parts to eq (1) (last two terms). Traditionally, 

to save computational time, cutoffs were used in which interactions beyond a cutoff are ignored. Although the 

strongest interaction is local, long-range (LR) effects can have a significant contribution to the energy state of a 

molecule in a liquid. This is especially important for the slowly decaying Coulombic term of the FF and thus it is 

widely accepted that the use of particle-Mesh Ewald25 for electrostatics is required for simulations.26 

Since the dispersion term in the LJ potential decays ∝ 𝑟−6 compared to the electrostatic slower decay ∝ 𝑟−1, 

ignoring LR LJ dispersion might appear to be a reasonable assumption. For some examples this is the case when 

electrostatics dominate the interaction between molecules like the density of water. However, if you consider the 

water/air surface tension, there is a slight dependence in this value for cutoffs at 10 Å (cutoff value used with 

some FFs) with PME electrostatics, which are 5-7% off compared to values from 25 Å cutoffs (Figure 2).27 This 

cutoff dependance is even stronger with molecules dominated by weaker LJ dispersion interactions, e.g., alkanes. 

The hexadecane/air surface tension shows a strong dependence on cutoff with 60% reduction in surface tension 

at 10 Å cutoff compared to 24 Å. The FF developer has two options: 1. Fit a FF that ignores the LR LJ and is an 

effective fit lumping the LR effects into the shorter range or 2. Fit a FF that explicitly incorporates the LR LJ. 

Although Option #1 could be used, the accuracy of the short-range interaction is sacrificed. Option #2 has been 

the choice in developing FF parameters based on small molecule studies and was used in the development of the 

C36 lipid FF but not used until recently in lipid simulations, i.e., the long-range correction was used for small 

molecule fits but then standard LJ cutoffs are used in simulations with bilayers. 
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Figure 2. Surface tension of water (black) and hexadecane (red) with air taken from past work.27, 28  

 

For simple isotropic systems, the inclusion of LR LJ can be incorporated with a radial distribution function 

approximation for the LR contribution. However, for systems of biological interest, especially lipid membranes, 

this isotropic assumption is invalid. Lagüe et al.29 used a pressure-based LR correction (LRC) for LJ that increased 

the pressure of the system based on the LR forces. This worked well for simple alkanes and some bilayers and 

monolayers, but is a correction based on the average pressure effect due to the LR effects. A more rigorous 

approach focusing on the LR effect at a given state would require extending PME to include LJ dispersion. In 

1995, Essmann et al.30 demonstrated the use of Ewald dispersion in PME but not until recently has a form been 

developed for popular simulation programs like GROMACs31 and CHARMM28 (with the method referred to as 

LJ-PME here). These methods allow for efficient LR LJ calculations that are effectively at the cost of standard 

cutoffs used for LJ potentials.  

Although recent inclusion of LR LJ to simulation programs has allowed for the use of LJ-PME, current lipid 

FFs are generally tuned a represent experiment with a cutoff for the LJ interactions. For the C36 lipid FF, lipid 

bilayers should be run with a force-based switching function that brings the force to zero at 12 Å, so as to 

reproduced the published accuracy of this FF on various lipids.9, 18, 20, 32-37 However, not including the LR LJ in 

lipid monolayers is known to result in inaccurate property prediction, i.e., pressure-area isotherm.5 This leads to 

an unsatisfying result that requires a different approach for bilayers and monolayers to agree with experimental 

observables. With a multi-dimensional parameter space and many experimental observables, the use of an 

automated approach for optimizing parameters and predicting how parameter changes influence membrane 

properties now allows6, 7 for a more efficient reaching of an improved FF to universally represent the lipid bilayer 

and monolayer with LJ-PME.  
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4. Focus on Semi-Automated Parameter Optimization 

Force field optimization requires a detailed focus on all contributions to the interaction and one that should 

accurately represent interactions beyond the initial fit. The ability to transfer FF parameters to common functional 

groups is ideal and allows for consistency between other portions of the FF. For example, parameters developed 

for the lipids with optimization to properties of bilayers and monolayers must be also accurate for other 

biomolecules that interact with the membrane, i.e., proteins, nucleic acids, or carbohydrates. Care must be taken 

in automatic parameter optimization that overfitting could lead to potential issues with predicting properties. 

Automated FF development has expanded recently and includes some initial efforts to the lipid FF.6, 7 The 

ForceBalance method was used that utilizes a regularized least-squared objective function which prevents 

overfitting by incorporating a penalty term to reduce large variations. This limited the change of the parameters 

and resulted in a RMS of change from the initial values to 10.9%.7 Analytical gradients were used in a Levenberg- 

Marquardt algorithm for optimization based on an ensemble average of a thermodynamic property and the energy 

with a given parameter set. The optimization was done on to match area per lipid and order parameters and appears 

to work well for the optimizing parameter and agrees with experiments for a single lipid, but the computational 

cost for this approach is not ideal for developing a model based on a larger set of experimental observables and 

varied lipids. 

Instead, in collaboration with Drs. Richard Pastor, Andreas Krämer, and Bernard Brooks, thermodynamic 

reweighting with regularization was used to predict parameter sets that best match experimental observables 

without the need to calculate membrane properties for various parameter sets.6, 7  Moreover, with the inclusion of 

LJ-PME, optimization can be performed with the aim to match bilayer and monolayer properties. This approach 

essentially reduces the time required to optimize a FF down from years to a manner of a couple months. The key 

is to use statistical thermodynamics of parameter sensitivity estimated with thermodynamic reweighting,7  

𝑺𝑝𝑟𝑜𝑝(𝝀, 𝜹𝝀) = 〈𝒇𝑠𝑖𝑚〉𝝀+𝛿𝝀 − 〈𝒇𝑠𝑖𝑚〉𝝀  =
〈𝒇𝑠𝑖𝑚𝑒−𝛽(𝑈𝝀+𝜹𝝀−𝑈𝝀)〉𝝀

〈𝑒−𝛽(𝑈𝝀+𝛿𝝀−𝑈𝝀)〉𝝀

− 〈𝒇𝑠𝑖𝑚〉𝝀                      (2) 

 

where 𝑺𝑝𝑟𝑜𝑝 is the sensitivity matrix of properties,  is the original parameter set and  is the perturbation of 

that parameter set. 〈∙〉 denotes the average over trajectory, which is also the ensemble average of parameter set , 

approximately. As long as the underlying description of the partition function in  is correct with the  

perturbation, this approach can use simulations of a starting parameter set to predict changes in parameters to 

better match experimental observations. Details of the methods to optimize can be found in reference 7, but 

perturbations are limited to small changes in parameter space, several hundredths of a partial atomic charge, 3% 

for Rmin/2 and 10% for .6 Multiple passes in the optimization are typically required to result in a well fit parameter 

set but with C36 as a starting point only two to three passes are required for convergence. This is approach is 
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semi-automated as weight factors and parameter restraints can be adjusted during the optimization process.6 

Ultimately with the use of GPUs, a single pass for optimization requires only a few days. 

One of the key aspects in optimization was to consider the range of parameter space optimization. This 

approach can certainly be used to optimize much of the lipid head group, but is this necessary and would this lead 

to overfitting? We tested optimizations of the entire PC head group (Global) versus that of the glycerol backbone 

(Linkage).6 The phosphate parameters in the CHARMM FF were carefully parameterized based on nucleic acids 

and adjustments to these parameters should only be made if it was deemed necessary for the lipid FF. Maintaining 

transferability and balance in how the phosphate interacts with other biological molecules and water is important 

for a general FF for all biological molecules. Our investigation on the Global versus Linkage optimization 

demonstrated that the reduced optimization set resulted in fits that were within statistical errors of the Global set 

(see Table 4 of reference 6) and thus the Linkage optimization was deemed to be appropriate for optimizing 

parameters for phospholipids.6 The optimization for our initial training set of dipalmitoylphosphatidylcholine 

(DPPC), dimyristoylphosphatidylcholine (DMPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC) bilayer properties (area per lipid, chain order parameters, area compressibility) and DPPC monolayer 

isotherm showed convergence in three optimization steps for the Global and two steps for the Linkage parameter 

sets. The change in the optimized non-bonded properties for the Global set was more monotonic compared to the 

Linkage but both showed convergence.6 Consequently, the Linkage optimization resulted in excellent agreement 

for tested bilayer and monolayer properties with LJ-PME. 

The next test on optimization was to extend this approach to lipids besides the saturated and monounsatured 

PC lipids. Further optimizations was done for PC lipids with an ether linkage and validation of transferability of 

parameters was tested for PE and PG lipids.7  The optimization of the ether linkage resulted in excellent agreement 

with scattering-based experimental properties. The PC lipids (saturated and monounsaturated tails) were tested 

across a wider range of temperatures (303-333K) on x-ray and neutron form factors and associated estimates in 

membrane thickness and area per lipid and the agreement was excellent.7 The area compressibility and deuterium 

order parameters also showed strong agreement with experiment for C36 LJ/PME. However, the PG lipids 

showed some inaccuracy in the order parameter suggesting further optimization of the glycerol group is needed 

to obtain a less packed membrane and decrease the order parameters to better match experiment. For some lipids, 

like PE, C36 parameters can be transferred but other lipids (PG and likely PS) require additional optimization.7 

C36 LJ/PME is likely compatible with the CHARMM protein FF but further validation is necessary. 

 

5. Next Generation Force Fields that Include Polarization 

Although the development of pair-wise additive FF has continued, the assumption of a fixed partial charge 

that is not influenced by the environment can be a severe assumption. The distribution of partial charges of a 
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molecule in water compared to in an alkane-like environment will change and is related to the polarizability. Not 

including the polarization effect will have inaccuracies when considering residues exposed to water versus a 

membrane core, estimating the free energy of solvation of molecules in water compared to an organic solvent, 

permeation of drugs across a bilayer, etc. Although including polarization is important, the computational cost 

has been high and consequently limited in application. 

There are many approaches to consider the polarization of molecules in molecular simulation and these have 

been used and developed over the last several decades. Traditionally, polarization has been incorporated using 

fluctuating charge (FQ) or induced dipole/multipole approaches,38 but these have traditionally used self-consistent 

iterative approaches that are computationally demanding. Original developments in the lipid polarizable FF, 

considered this approach and Patel and co-workers developed a working FF for some common lipids.39, 40 The 

importance of considering larger lipid membrane patches and the inclusion of proteins in membrane requires an 

approach that is computationally more efficient. 

The CHARMM community has moved to using a Drude Oscillator approach41, 42 to include polarization with 

a more efficient approach. A virtual particle (Drude particle) has a charge 𝑞𝐷,𝑖 that is connected to a polarizable 

atom i and is harmonically restrained with a force of kD. The Drude particle fluctuates due to the variation in the 

electrostatic environment to represent the electron cloud response to its local environment. Therefore, the Drude 

FF can use a Class I energy function (eq. (3)) with an additional term to describe the energy associated with the 

Drude particle:43 

𝑈𝐷𝑟𝑢𝑑𝑒(𝑟1, ⋯ , 𝑟𝑁, 𝑟𝐷1, ⋯ , 𝑟𝐷𝑛) =
1

4𝜋𝜀0
(∑

𝑞𝐷,𝑖𝑞𝑗

‖𝑟𝐷𝑖 − 𝑟𝑗‖
𝑖<𝑗

+ ∑
𝑞𝐷,𝑖𝑞𝐷,𝑗

‖𝑟𝐷𝑖 − 𝑟𝐷𝑗‖
𝑖<𝑗

) +
1

2
∑ 𝑘𝐷‖𝑟𝐷𝑖 − 𝑟𝑖‖2

𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑏𝑙𝑒 
𝑎𝑡𝑜𝑚𝑠 𝑖

 

(3) 

The charge of the Drude particle is represented by its polarizability ( 𝛼𝑖 ) with 𝑞𝐷,𝑖 = √𝑘𝐷𝛼𝑖 . To save 

computational time, an extended Lagrangian method is used where the Drude particle has 0.4 amu in mass taken 

from the associated heavy atom.44, 45 This way the simulation can proceed like a pairwise additive simulation and 

only requires the cost of an additional particle for each heavy atom. Due to frequency of motion, simulations 

require a 1 fs timestep compared to generally a 2 fs timestep used with all-atom pairwise additive simulations.  

The development of the Drude polarizable FF for lipids for applications to lipid bilayers started with water 

and alkanes.41-43 In 2013,46 the first Drude polarizable FF was developed for DPPC and further optimized and 

extended to other PC lipids and PE lipids.47 This most up-to-date Drude FF utilized a restrained ensemble-

maximum entropy methodology to obtain accurate representations of the NMR order parameters of the head 

group. For the tested lipids, the structural properties of lipid bilayers are in reasonable agreement with experiment 

(area per lipid, NMR order parameters, bilayer density profiles, and thicknesses) and the pairwise additive model. 



10 

 

However, the lateral area compressibility for the Drude lipids was at least twice that of experiment suggesting 

further improvement is warranted that will likely use the thermodynamic reweighting approach as discussed above.  

 

6. Conclusions 

Our initial headway into including long-range Lennard-Jones into parametrization and simulations for lipid 

bilayers has been successful for PC and PE lipids. The C36/LJ-PME FF can now represent bilayer and monolayers 

simultaneously and remove the dependence of LJ cutoff on properties by including LJ with PME. The use of 

thermodynamic reweighting is an attractive approach to optimize parameters, especially with a reasonable starting 

point that the original C36 FF provides. As noted here, the anionic lipids (PG and PS) will require additional 

parameterization to match the experimental observables. Since C36 without LJ-PME has an exhaustive set of 

lipids, C36/LJ-PME will need to be tested and parameters optimized for the varied set of lipids. Other important 

lipids, i.e., cholesterol, sphingolipids, and lipids polyunsaturated chains, will be the initial focus before optimizing 

lipids that are less common. The use of thermodynamic reweighing is certainly not limited to lipid FF 

development and can be applied to the development of any molecular force field. 

In addition to new optimization routines, the use of hydrogen mass repartitioning (HMR)48, 49 or virtual sites50 

has been shown to be important to maintain FF accuracy but allows for simulations with 4-5 fs timesteps that will 

allow for roughly twice the speedup compared to standard approaches. These approaches will continue to be 

tested to determine if these can be routinely used for membrane simulations. 

Finally, the next generation of lipid FFs will need to include polarization to accurately represent many 

properties. A collaborative effort is currently underway between various labs including mine, Alex MacKerell (U. 

Maryland – Baltimore), Richard Pastor (NIH), Benoît Roux (U. Chicago), in optimizing the Drude FF. The 

thermodynamic reweighing approach is currently being used to improve the general agreement in properties and 

focusing on obtaining an accurate description of lipid bilayers and improving the representation of the area 

compressibility modulus. As with C36/LJ-PME, this will require an extensive effort to optimize the FF for a wide 

range of lipid types. With an updated and accurate Drude lipid FF, molecule partitioning in membranes relative 

to water will be better described compared to a pairwise additive FFs that cannot represent the change in 

environment. Simulating how drugs partition into cellular membranes will benefit from an accurate Drude FF. 

Expect in the next few years more updates and improved lipid FFs for both the pairwise additive and polarizable 

force fields! 
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