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Abstract

Molecular simulations of biological molecules require an accurate description of molecular interactions
through a force field (FF). The focus of this Perspectives article is on all-atom lipid FFs. Recent additions to the
CHARMM36 lipid FF continue to expand a researcher’s ability to probe membrane structure and function with a
wide variety of biologically important lipids. Currently, there is an effort to reduce the assumptions in all-atom
lipid FFs. The inclusion of long-range dispersion interaction through particle-mesh Ewald is allowing for more
accurate descriptions of lipid bilayer and monolayer properties without additional computational cost. Soon,
simulations with lipid FFs will no longer depend on short-range cutoffs and will accurately represent long-range
dispersion. This requires efficient FF parameterization with an automated approach due to FF complexity. In
addition, polarizable FFs for lipids will be important for the next generation of simulations that accurately

represent how molecule interactions respond to a varied environment.



1. Introduction

Lipids are an essential biological building block that provide structure to cellular membranes and limit the
movement of molecules across the membrane to that primarily controlled by transmembrane proteins. Although
a strong focus on disease has been how proteins and their mutations play an important role in health, lipids play
a critical role in biological processes and mechanisms.' From a biotechnological perspective, lipids are important
to vaccine development and have been used as delivery vehicles and promoting an immune response with lipid
nanoparticles and are key to the efficacy of the messenger RNA-based SARS-CoV-2 vaccines.>™

Molecular simulations of biomolecules, such as lipids, rely on accurate descriptions of interactions that yield
forces between molecules to probe the natural movement of molecules in their environment. This requires an
accurate mathematical representation of molecular forces known as a force field (FF). This Perspectives article
will briefly introduce the complexity of all-atom pair-wise additive lipid FFs. The focus here will be on
summarizing key FFs used by the AMBER and CHARMM communities and how these have recently been
applied to ether lipids and modeling bacterial membranes.

Until recently, lipid FFs assumed that long-range van der Waals interactions need not be included. However,
the development of methods to incorporate long-range dispersion energies efficiently in simulations has opened
the door to consider developing a lipid FF that includes long-range dispersion. Since it has been shown that lipid
FFs cannot simultaneously represent lipid bilayer and monolayer properties,’ the inclusion of this long-range
interaction is crucial for a well-balanced FF. With many experimental observables as targets for FF optimization
with lipid assemblies, the development of automated approaches to parameter optimization will guide the
improvement of FFs. This Perspectives article will summarize some recent work on this with a focus in using
thermodynamic reweighting to guide the lipid parameter optimization.®’

Finally, this Perspectives article will present the next generation of lipid FFs that include electronic
polarization. The CHARMM community approach using the Drude Oscillator will be introduced and its current
limitations. The methods developed for the automization of parameter fitting in the pairwise-additive FF are
incorporated in optimization of the Drude FF to improve its current inaccuracies in membrane mechanical

properties.

2. All-atom Pair-wise Additive Lipid Force Fields

This section briefly presents the common mathematical description of the interaction between atoms in a lipid
system, i.e., the force field, and a summary how these are obtained. More details can be found in a past review
article.® The FF used to describe the all-atom CHARMM?36 (C36) lipid FF® generally follows the classical Class

I FF with harmonic bonded terms, dihedrals, and non-bonded terms (van der Waals and electrostatics) as shown



in eq. 1. However, C36 contains a Urey-Bradley cross-term for a few triplicates so has a Class II functional form

for these cases.
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The bond and angle terms in eq. (1) are typically obtained to match structural and spectroscopic data of small
molecules and if none is available then quantum mechanical calculations are performed to fit these parameters.
The equilibrium distance (7o), angles (&, ¢), and associated force constants (k», ko, kus, k) are treated as universal
for each atom type. The improper terms are typically added to maintain chiral or planar centers. The C36 lipid FF
does not contain CMAP terms that are present for proteins.!”

The last three terms in eq. (1) are the most integral to bilayer properties and careful optimization is required
to develop an accurate lipid FF. For most widely-used all-atom lipid FFs, the dihedral term is a correction to the
non-bonded potential as interactions separated by three chemical bonds (1-4 interactions) include the electrostatic
and Lennard-Jones (LJ) interactions (with or without a scaling factor depending on the family of the force field,
i.e., AMBER and CHARMM).® These are typically fit to high-level quantum mechanical (QM) calculations of
torsional profiles for relevant small molecules. The Slipid'!*'? and Lipid14'? FFs follow the AMBER community
use of the restricted electrostatic potential approach (RESP)!* to obtain partial charges using QM and LJ
parameters are optimized to experimental observables. However, the CHARMM-community takes the
supramolecular approach with charges and Lennard-Jones terms obtained from small molecule-water interactions
and additional fits to experimental observables.'>!”

Traditionally the optimization of FF parameters took advantage of the transferability of functional group
parameters so that small molecules can act as a guide in developing an accurate FF for the macromolecule, here
phospholipids. The last three terms in eq. (1) are coupled and thus optimization requires simultaneous fitting or
procedure for parameter refinement. Simulations of small molecules (alkanes, alkenes, ethers, phosphates, etc.)
compared to bulk experiments (densities, heats of vaporization, free energy of solvation, diffusion, etc.) are used
to fit or refine atomic non-bonded parameters (&, Rmin, ¢). Then, the dihedral potential can be fit to QM torsional
profiles based on the non-bonded parameters. This approach had a benefit to not require expensive all-atom lipid

bilayer simulations in the optimization of FF parameters assuming that the small molecule parameters were
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transferrable to the larger lipid. For the alkane to lipid-acyl chain, this transferability was a good assumption.
However, considering the lipid head group and the glycerol region connecting the two acyl chains, transferability
was more difficult and ultimately required some parameter optimization based on bilayer simulations for the C36
lipid FF.? With the current computational speed, optimization procedures of the lipid FF are moving towards more
automated and lipid-bilayer focused to allow for more accurate parameters (see Section 4).

Although there is always room for improvement in FF parameters, the general careful optimization of the C36,
Slipid, and Lipid14 FFs has allowed for accurate simulations of lipid bilayers ranging from one lipid type to
multiple lipids to systems with proteins. The details of lipid diversity can be found in a past review,? but overall
the Lipid14 FF is limited to phosphatidylcholine (PC), phosphatidylethanolamine (PE) and cholesterol lipids,
Slipids has additional diversity including phosphatidylglycerol (PG), phosphatidylserine (PS), sphingolipids and
polyunstaturated lipids. However, the C36 FF has been developed for a wide range of lipid types including
phosphitylinositols, various sterols, gylcolipids, ether lipids, etc. Our recent addition of plasmalogen lipids with
their vinyl ether chain (Fig 1A)'® will allow for development of membrane models for neuronal membranes that
have a significant proportion of these lipids. The lipid diversity and testing accuracy across varied temperatures
and lipid compositions'*?! has allowed for development of accurate model membranes such as that of the plasma
membrane of Psudomonas aeruginosa (Fig 1B).?2 For example, these model membranes have been used to probe
peptide binding to yeast organelles?® and the mechanism of the serotonin receptor in a model neuronal membrane

(Fig 1C).4
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Figure 1. A. PLAPE (C18(Plasm-18:1PE)) with POPC bilayer at 2:1 ratio with water in red hollow spheres, carbon in silver, oxygen
in red, phosphorous in gold, nitrogen in blue and the ether oxygen in magenta.'® B. Plasma membrane of P. aeruginosa in the biofilm
condition with PE lipids in blue, PG lipids in orange, and lipids (PE and PG) with cyclopropane-containing chains in green.?> C. 5-
HT3 (light blue) embedded in a membrane of cholesterol (blue), SDPC (red) and POPC (yellow).*



3. Importance in including Long-range van der Waals Interactions

The FF function described above is half of the story with regards to simulating a condensed phase system. In
reality, molecules interact based on position and if a distance is large then its interaction is essentially zero. This
can be used to reduce the number of calculations for the non-bonded parts to eq (1) (last two terms). Traditionally,
to save computational time, cutoffs were used in which interactions beyond a cutoff are ignored. Although the
strongest interaction is local, long-range (LR) effects can have a significant contribution to the energy state of a
molecule in a liquid. This is especially important for the slowly decaying Coulombic term of the FF and thus it is
widely accepted that the use of particle-Mesh Ewald® for electrostatics is required for simulations.?

Since the dispersion term in the LJ potential decays o 7~ compared to the electrostatic slower decay o« r~1,
ignoring LR LJ dispersion might appear to be a reasonable assumption. For some examples this is the case when
electrostatics dominate the interaction between molecules like the density of water. However, if you consider the
water/air surface tension, there is a slight dependence in this value for cutoffs at 10 A (cutoff value used with
some FFs) with PME electrostatics, which are 5-7% off compared to values from 25 A cutoffs (Figure 2).2” This
cutoff dependance is even stronger with molecules dominated by weaker LJ dispersion interactions, e.g., alkanes.
The hexadecane/air surface tension shows a strong dependence on cutoff with 60% reduction in surface tension
at 10 A cutoff compared to 24 A. The FF developer has two options: 1. Fit a FF that ignores the LR LJ and is an
effective fit lumping the LR effects into the shorter range or 2. Fit a FF that explicitly incorporates the LR LlJ.
Although Option #1 could be used, the accuracy of the short-range interaction is sacrificed. Option #2 has been
the choice in developing FF parameters based on small molecule studies and was used in the development of the
C36 lipid FF but not used until recently in lipid simulations, i.e., the long-range correction was used for small

molecule fits but then standard LJ cutoffs are used in simulations with bilayers.
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Figure 2. Surface tension of water (black) and hexadecane (red) with air taken from past work.?”- 28

For simple isotropic systems, the inclusion of LR LJ can be incorporated with a radial distribution function
approximation for the LR contribution. However, for systems of biological interest, especially lipid membranes,

this isotropic assumption is invalid. Lagiie et al.*’

used a pressure-based LR correction (LRC) for LJ that increased
the pressure of the system based on the LR forces. This worked well for simple alkanes and some bilayers and
monolayers, but is a correction based on the average pressure effect due to the LR effects. A more rigorous
approach focusing on the LR effect at a given state would require extending PME to include LJ dispersion. In
1995, Essmann et al.’*® demonstrated the use of Ewald dispersion in PME but not until recently has a form been
developed for popular simulation programs like GROMACs?! and CHARMM?? (with the method referred to as
LJ-PME here). These methods allow for efficient LR LJ calculations that are effectively at the cost of standard
cutoffs used for LJ potentials.

Although recent inclusion of LR LJ to simulation programs has allowed for the use of LJ-PME, current lipid
FFs are generally tuned a represent experiment with a cutoff for the LJ interactions. For the C36 lipid FF, lipid
bilayers should be run with a force-based switching function that brings the force to zero at 12 A, so as to
reproduced the published accuracy of this FF on various lipids.” ' 2% 32-37 However, not including the LR LJ in
lipid monolayers is known to result in inaccurate property prediction, i.e., pressure-area isotherm.’ This leads to
an unsatisfying result that requires a different approach for bilayers and monolayers to agree with experimental
observables. With a multi-dimensional parameter space and many experimental observables, the use of an
automated approach for optimizing parameters and predicting how parameter changes influence membrane
properties now allows®’ for a more efficient reaching of an improved FF to universally represent the lipid bilayer

and monolayer with LJ-PME.



4. Focus on Semi-Automated Parameter Optimization

Force field optimization requires a detailed focus on all contributions to the interaction and one that should
accurately represent interactions beyond the initial fit. The ability to transfer FF parameters to common functional
groups is ideal and allows for consistency between other portions of the FF. For example, parameters developed
for the lipids with optimization to properties of bilayers and monolayers must be also accurate for other
biomolecules that interact with the membrane, i.e., proteins, nucleic acids, or carbohydrates. Care must be taken
in automatic parameter optimization that overfitting could lead to potential issues with predicting properties.

Automated FF development has expanded recently and includes some initial efforts to the lipid FF.>7 The
ForceBalance method was used that utilizes a regularized least-squared objective function which prevents
overfitting by incorporating a penalty term to reduce large variations. This limited the change of the parameters
and resulted in a RMS of change from the initial values to 10.9%.” Analytical gradients were used in a Levenberg-
Marquardt algorithm for optimization based on an ensemble average of a thermodynamic property and the energy
with a given parameter set. The optimization was done on to match area per lipid and order parameters and appears
to work well for the optimizing parameter and agrees with experiments for a single lipid, but the computational
cost for this approach is not ideal for developing a model based on a larger set of experimental observables and
varied lipids.

Instead, in collaboration with Drs. Richard Pastor, Andreas Kridmer, and Bernard Brooks, thermodynamic
reweighting with regularization was used to predict parameter sets that best match experimental observables
without the need to calculate membrane properties for various parameter sets.’ Moreover, with the inclusion of
LJ-PME, optimization can be performed with the aim to match bilayer and monolayer properties. This approach
essentially reduces the time required to optimize a FF down from years to a manner of a couple months. The key
is to use statistical thermodynamics of parameter sensitivity estimated with thermodynamic reweighting,’

] ) sim ,—B(Uz+52—U2) _
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where 8,4, 18 the sensitivity matrix of properties, 4 is the original parameter set and 64 is the perturbation of
that parameter set. (), denotes the average over trajectory, which is also the ensemble average of parameter set 4,
approximately. As long as the underlying description of the partition function in A is correct with the SA
perturbation, this approach can use simulations of a starting parameter set to predict changes in parameters to
better match experimental observations. Details of the methods to optimize can be found in reference ’, but
perturbations are limited to small changes in parameter space, several hundredths of a partial atomic charge, 3%
for Rmin/2 and 10% for £.® Multiple passes in the optimization are typically required to result in a well fit parameter

set but with C36 as a starting point only two to three passes are required for convergence. This is approach is
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semi-automated as weight factors and parameter restraints can be adjusted during the optimization process.’
Ultimately with the use of GPUs, a single pass for optimization requires only a few days.

One of the key aspects in optimization was to consider the range of parameter space optimization. This
approach can certainly be used to optimize much of the lipid head group, but is this necessary and would this lead
to overfitting? We tested optimizations of the entire PC head group (Global) versus that of the glycerol backbone
(Linkage).® The phosphate parameters in the CHARMM FF were carefully parameterized based on nucleic acids
and adjustments to these parameters should only be made if it was deemed necessary for the lipid FF. Maintaining
transferability and balance in how the phosphate interacts with other biological molecules and water is important
for a general FF for all biological molecules. Our investigation on the Global versus Linkage optimization
demonstrated that the reduced optimization set resulted in fits that were within statistical errors of the Global set
(see Table 4 of reference ©) and thus the Linkage optimization was deemed to be appropriate for optimizing
parameters for phospholipids.® The optimization for our initial training set of dipalmitoylphosphatidylcholine
(DPPC), dimyristoylphosphatidylcholine (DMPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC) bilayer properties (area per lipid, chain order parameters, area compressibility) and DPPC monolayer
isotherm showed convergence in three optimization steps for the Global and two steps for the Linkage parameter
sets. The change in the optimized non-bonded properties for the Global set was more monotonic compared to the
Linkage but both showed convergence.® Consequently, the Linkage optimization resulted in excellent agreement
for tested bilayer and monolayer properties with LJ-PME.

The next test on optimization was to extend this approach to lipids besides the saturated and monounsatured
PC lipids. Further optimizations was done for PC lipids with an ether linkage and validation of transferability of
parameters was tested for PE and PG lipids.” The optimization of the ether linkage resulted in excellent agreement
with scattering-based experimental properties. The PC lipids (saturated and monounsaturated tails) were tested
across a wider range of temperatures (303-333K) on x-ray and neutron form factors and associated estimates in
membrane thickness and area per lipid and the agreement was excellent.” The area compressibility and deuterium
order parameters also showed strong agreement with experiment for C36 LJ/PME. However, the PG lipids
showed some inaccuracy in the order parameter suggesting further optimization of the glycerol group is needed
to obtain a less packed membrane and decrease the order parameters to better match experiment. For some lipids,
like PE, C36 parameters can be transferred but other lipids (PG and likely PS) require additional optimization.’
C36 LJ/PME is likely compatible with the CHARMM protein FF but further validation is necessary.

5. Next Generation Force Fields that Include Polarization
Although the development of pair-wise additive FF has continued, the assumption of a fixed partial charge

that is not influenced by the environment can be a severe assumption. The distribution of partial charges of a
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molecule in water compared to in an alkane-like environment will change and is related to the polarizability. Not
including the polarization effect will have inaccuracies when considering residues exposed to water versus a
membrane core, estimating the free energy of solvation of molecules in water compared to an organic solvent,
permeation of drugs across a bilayer, etc. Although including polarization is important, the computational cost
has been high and consequently limited in application.

There are many approaches to consider the polarization of molecules in molecular simulation and these have
been used and developed over the last several decades. Traditionally, polarization has been incorporated using
fluctuating charge (FQ) or induced dipole/multipole approaches,*® but these have traditionally used self-consistent
iterative approaches that are computationally demanding. Original developments in the lipid polarizable FF,
considered this approach and Patel and co-workers developed a working FF for some common lipids.* *° The
importance of considering larger lipid membrane patches and the inclusion of proteins in membrane requires an
approach that is computationally more efficient.

The CHARMM community has moved to using a Drude Oscillator approach*!*** to include polarization with
a more efficient approach. A virtual particle (Drude particle) has a charge qp, ; that is connected to a polarizable
atom 7 and is harmonically restrained with a force of kp. The Drude particle fluctuates due to the variation in the
electrostatic environment to represent the electron cloud response to its local environment. Therefore, the Drude
FF can use a Class I energy function (eq. (3)) with an additional term to describe the energy associated with the

Drude particle:*
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The charge of the Drude particle is represented by its polarizability (a;) with qp; =/ kpa;. To save
computational time, an extended Lagrangian method is used where the Drude particle has 0.4 amu in mass taken
from the associated heavy atom.** % This way the simulation can proceed like a pairwise additive simulation and
only requires the cost of an additional particle for each heavy atom. Due to frequency of motion, simulations
require a 1 fs timestep compared to generally a 2 fs timestep used with all-atom pairwise additive simulations.
The development of the Drude polarizable FF for lipids for applications to lipid bilayers started with water
and alkanes.*!"* In 2013,% the first Drude polarizable FF was developed for DPPC and further optimized and
extended to other PC lipids and PE lipids.*’” This most up-to-date Drude FF utilized a restrained ensemble-
maximum entropy methodology to obtain accurate representations of the NMR order parameters of the head
group. For the tested lipids, the structural properties of lipid bilayers are in reasonable agreement with experiment

(area per lipid, NMR order parameters, bilayer density profiles, and thicknesses) and the pairwise additive model.
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However, the lateral area compressibility for the Drude lipids was at least twice that of experiment suggesting

further improvement is warranted that will likely use the thermodynamic reweighting approach as discussed above.

6. Conclusions

Our initial headway into including long-range Lennard-Jones into parametrization and simulations for lipid
bilayers has been successful for PC and PE lipids. The C36/LJ-PME FF can now represent bilayer and monolayers
simultaneously and remove the dependence of LJ cutoff on properties by including LJ with PME. The use of
thermodynamic reweighting is an attractive approach to optimize parameters, especially with a reasonable starting
point that the original C36 FF provides. As noted here, the anionic lipids (PG and PS) will require additional
parameterization to match the experimental observables. Since C36 without LJ-PME has an exhaustive set of
lipids, C36/LJ-PME will need to be tested and parameters optimized for the varied set of lipids. Other important
lipids, i.e., cholesterol, sphingolipids, and lipids polyunsaturated chains, will be the initial focus before optimizing
lipids that are less common. The use of thermodynamic reweighing is certainly not limited to lipid FF
development and can be applied to the development of any molecular force field.

In addition to new optimization routines, the use of hydrogen mass repartitioning (HMR)**4° or virtual sites>’
has been shown to be important to maintain FF accuracy but allows for simulations with 4-5 fs timesteps that will
allow for roughly twice the speedup compared to standard approaches. These approaches will continue to be
tested to determine if these can be routinely used for membrane simulations.

Finally, the next generation of lipid FFs will need to include polarization to accurately represent many
properties. A collaborative effort is currently underway between various labs including mine, Alex MacKerell (U.
Maryland — Baltimore), Richard Pastor (NIH), Benoit Roux (U. Chicago), in optimizing the Drude FF. The
thermodynamic reweighing approach is currently being used to improve the general agreement in properties and
focusing on obtaining an accurate description of lipid bilayers and improving the representation of the area
compressibility modulus. As with C36/LJ-PME, this will require an extensive effort to optimize the FF for a wide
range of lipid types. With an updated and accurate Drude lipid FF, molecule partitioning in membranes relative
to water will be better described compared to a pairwise additive FFs that cannot represent the change in
environment. Simulating how drugs partition into cellular membranes will benefit from an accurate Drude FF.
Expect in the next few years more updates and improved lipid FFs for both the pairwise additive and polarizable

force fields!
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