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Abstract—Numerical weather predictions used for wind power
forecasting might not be updated in a timely manner in practice,
due to its high computational complexity and complicated post-
processing. Thus, the accuracy of wind power forecasts could be
significantly compromised especially during wind ramp events.
This paper presents an innovative method for improving regional
wind power ramp forecasting through ensemble learning of
numerical weather prediction models, by using real-time weather
measurements as the supervisory data. The numerical weather
prediction models are combined to minimize the discrepancy
between the forecast values and the real-time measurements in
the trend of wind ramps, and the weights of the linear combi-
nation are calculated through gradient boosting. The proposed
method is non-intrusive and could be efficiently carried out
online. The proposed method is evaluated on historical ERCOT
wind power ramp events, and compared with existing ensemble
aggregation method using simple averaging. The results reveal
the effectiveness of the proposed method for improving wind
power forecasting during wind ramp events.

Index Terms—Ensemble learning, numerical weather predic-
tion, wind ramp forecasting

I. INTRODUCTION

Grid integration of wind power has been benefited by

enhanced short-term wind power forecasting that are based

on numerical weather prediction (NWP) [1]. NWP uses math-

ematical models of the atmosphere to predict future weather

conditions [2] and have been widely incorporated as the engine

for wind power forecasting systems [3]. These mathematical

models are comprised of partial differential equations that

govern the physical principles of the atmosphere, which are

solved numerically with given initial conditions. Then, the

output of NWP is post-processed by model output statistics

[4], for which statistical methods are applied to the output

of NWP models so that they match the surface observations

at lower layers. When applied to short-term wind power

forecasting, NWP faces two key technical challenges. First,

numerically solving partial differential equations can be very

computationally intensive [5], and meanwhile, the error caused

by the disparity between the numerical solution and the exact

solution of the partial differential equations could accumulate

over the rolling horizon [6]. Second, these partial differential

equations are typically conditioned or parameterized by exoge-

nous physical processes (e.g., solar radiation, terrain condition,

etc.) [7], which introduces a variety of inherent uncertainty

to the models and prediction results. As a practical solution,

ensemble forecasting has been utilized to gauge the confidence

of forecast by accounting for the stochastic nature and inherent

uncertainty of atmospheric processes [8]. Basically, ensemble

forecasting utilizes multiple NWP models and/or by varying

the physical parametrization or initial conditions of individual

models. Particularly, probabilistic wind power forecasts could

also be produced from ensemble forecasts [6].

Due to the high computational burden, NWP produces out-

put sporadically. For example, the major NWP systems in prac-

tice, including the Global Forecast System (GFS) and North

American Mesoscale Forecast System (NAM), are refreshed

every six hours [9], and the Weather Research and Forecasting

Model (WRF) is run 8 times a day [10]. Most recently,

effort has been made toward incorporating the hourly-updated

Rapid Refresh (RAP) NWP for wind forecasting through

the Wind Forecast Improvement Project II [11]; however,

the extreme computational expense of numerical experiments

prevents its immediate application to wind power forecasting.

Consequently, during the time period of a few hours when the

NWP results are yet to be refreshed, the actual wind speed can

deviate dramatically from the forecasts, especially for wind

ramp events. Then, the resulting wind power forecasts could

have significant error. To deal with this challenging issue, this

paper investigates post-processing methods of ensemble NWP

for improved wind power forecast.

A literature survey on short-term wind power prediction is

given by reference [12], which covers the state-of-the-art NWP

models that have been applied to wind power forecasting.

Wind power forecasting that utilizes ensemble NWP and prog-

nosis of forecast uncertainty is proposed in reference [13]. An

approach for constructing probabilistic wind power forecasting

from NWP models, together with calibration and smoothing

involving the use of statistical time series models, is proposed

in reference [14]. The factor of diurnal cycle and its impact

on wind power forecasting based on both deterministic and

ensemble NWP systems are revealed in reference [15]. Wind

power re-forecast using NWP for generating past forecast

data that could be combined with historical observation data

for statistical model building and calibration is presented in

reference [16], and case studies using major NWP systems

are conducted. The statistical features of NWP are explored

in reference [17], based on which an autoregressive integrated

moving average model is constructed to adjust the prediction

output for improved wind power forecast. A novel approach

for mining the bad data of NWP that constructing improved

wind power forecasting model is proposed by reference [18].

Reference [19] utilizes three-dimensional convolutional neural
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Fig. 1. ERCOT hourly wind power, 15 PM, Feb 26th,2017.

networks to extract the spatio-temporal features from the

output data of NWP for wind farm power forecasting. Different

from existing work, this paper is focused on the critical time

window (1-3 hours ahead of impending wind power ramps)

while refreshed NWP results are not available, and utilizes

real-time weather measurements to improve the forecast of

ensemble NWP models.

The rest of the paper is organized as follows. A motivating

case and the NWP models used in this study are introduced

in Section II. Section III presents the proposed approach for

improve the forecast of ensemble NWP models. Numerical

experiments using real-world data are presented in Section IV.

Finally, conclusions are given in Section V.

II. NWP FOR WIND POWER FORECASTING

A. Wind Power Forecasting

The ERCOT’s short-term wind power forecast (STWPF) is

produced hourly for an episode of rolling 168 hours for the

wind production potential of each wind generation resource

in ERCOT. The primary service vendor for ERCOT’s wind

power forecasting is UL/AWS Truepower [20], which utilizes

the Mesoscale Atmospheric Simulation System (MASS) [21]

as NWP. Hourly forecast for each wind generation resource is

delivered to individual wind generation resource 15 minutes

after the hour, and the aggregate forecast is available for public

access [22]. These forecasts are used by ERCOT for day-ahead

and intra-day reliability unit commitment as well as by wind

power producers for plant scheduling and market operations.

Due to the accuracy or refreshing rate of NWP, hourly wind

power forecasting of ERCOT might have significant errors.

Such an instance is illustrated in the forecasting snapshot

[22] of Fig. 1, where the day-ahead and the most recent

STWPF (the red and blue lines in Fig. 1, restively) deviated

significantly from the realized wind power (the green line in

Fig. 1) during a large down ramp event. It is observed that

during the time period from 6 AM-10 AM, the most recent

hourly forecasts captured the trend of the down ramp, but

failed to quantify the magnitude correctly. More importantly,

Fig. 2. Mesonet wind speed and ERCOT hourly wind power (May, 2015).

during the time period from 10 AM-12 PM, the realized wind

power remained in the down ramp, while the most recent

hourly forecasts began to ramp up. On key observation is

that if this evidence of down ramp could be incorporated

to calibrate the NWP-based forecast, the huge forecasting

error (amounting to 3.3 GW) at 12 PM could be mitigated.

Motivated by this event, this paper is devoted to developing

methods that utilize real-time observation data to calibrate and

imrpove wind power forecasting from an ensemble of NWP

models, especially for wind power ramp events.

B. Real-time Weather Measurement

As could seen from Fig. 4(a), a majority of ERCOT’s wind

farms are located in the West Texas and Panhandle regions.

These regions are covered and monitored by the Mesonet

system [23] comprised of over 130 observation stations. The

Mesonet stations collect measurement data on weather obser-

vations, including wind speed, direction, temperature, solar

radiation, humidity, etc. The stations take measurements every

3 seconds, and send 1-minute average values to data center.

Figure 2 illustrates the Mesonet measurement data on hourly

average wind speed versus the ERCOT farm-level hourly

wind power production, plotted for 86 Mesonet sites and 135

ERCOT wind farms that have no missing data during that time

period. It could be seen that the ‘envelop’ formed by the wind

speed time series has a similar shape with that of the ERCOT

wind farm power production time series; however, it leads the

wind power down ramp occurred from 2 AM to 6 AM, May

29th, by 4 hours, and the wind power up ramp occurred from

0 AM to 3 AM, May 30th, by 3 hours. This is because the

Mesonet stations cover an extended geographical region, and

thus the ramp of observed wind speed could lead that in the

wind power production within that region.

C. Ensemble NWP

The ensemble NWP used in this study is from the real-

time weather prediction system [24], which contains a 42-

member ensemble forecast system and utilizes the Advanced

Research WRF (WRF-ARW) model [25] . The NWP models
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Fig. 3. Wind speed measurements and NWP data.

Fig. 4. (a) Mesonet sites and ERCOT wind farms and (b) WRF simulation
domain

utilize 12 km-by-12 km grid cells encompassing the southwest

U.S. and 4 km-by-4 km grid cells over Texas and portions

of surrounding states for two nested domains (see Fig. 4(b))

possessing 38 vertical levels. The ensemble comprised of eight

physical schemes are both data assimilation and forecasting

systems. The initial conditions are obtained through an en-

semble Kalman filter assimilation procedure [24], and more

ensemble members are created by varying the initial conditions

from these eight physical schemes. The output of the ensemble

forecast system is updated every three hours.

For wind power down ramp event on the May 29th, 2015,

the wind speed measurement of a selected Mesonet station

is compared with the ensemble forecasts, as illustrated in

Fig. 3. The corresponding WRF-ARW NWP is run by using

re-analysis data available at 0300 UTC for the eight physical

schemes, and is then interpolated for 120 m (which is the

typical wind turbine hub height). The Mesonet wind speed

measurements are collected at an elevation of 33ft (10m). Note

that the NWP for 10m is unattainable as the lowest vertical

layer is above 10m, and also, the NWP values for 120m are

generally higher than the measured ones at 10m, as can be

seen from Fig. 3. One key observation from Fig. 3 is that

for the down ramp time period, i.e., from 0 AM-4 AM, the

measured wind speed drops dramatically; however, not all the

NWP values are following the same trend. Specifically, four

among the eight schemes, ‘SHIN’, ‘YSU’, ‘QNSE-EDMF’,

and ’Breherton’, correctly predict the trend (dropping); in

sharp contrast, for some other schemes, the forecasted values

are even climbing. In this case, if all eight schemes are used

with equal weights to produce a point forecast, a significant

forecasting error could be produced. However, if any side

information or evidence on the credibility of the eight schemes

(e.g., by inspecting how their predicted wind speed matches

the real-time Mesonet measurements), the significant forecast

error could be reduced by assigning different weights to NWP

models. The above observation provides significant insights

on utilizing real-time Mesonet measurements to weigh the

schemes in an ensemble NWP, built on which the proposed

approach is developed as described in what follows.

III. PROPOSED APPROACH

The proposed approach first scores the NWP models based

on how well their forecasts match the Mesonet wind speed

measurements, and then additively combines the NWP models.

A. Scoring NWP Models

How well an NWP model matches the wind speed measure-

ments could be easily measured by the model’s forecasting

error. However, one tricky issue arises that the wind speed

measurements are collected at 33ft (10m) while the output of

the NWP does not contain data for 33ft (10m). To circumvent

this situation, the sample correlation coefficient between the

NWP and the wind speed measurements could be utilized

instead; this is plausible since in the example in Fig. 3, it

has been seen that correctly predicting trend is of top priority

for wind ramps. Figure 5 shows the centered and normalized

wind speed data of two NWP models, in comparison to the

wind speed measurements for one Mesonet site during a 4-

hour time window (10PM, May 28th - 1AM, May 29th, 2015).

Note that the 4-hour time window is immediately ahead of

the large down ramp event in Fig. 2. It can be seen that

the model ‘Boulac’ predicts the wrong trend, resulting in a

low correlation coefficient of -0.884, while the model ‘QNSE-

EDMF’ matches the measured wind speed very well with a

correlation coefficient as high as 0.935. Indeed, the model

‘QNSE-EDMF’ predicts correctly the trend in the wind speed

for the following down ramp, as seen from Fig. 3. With this

insight, the NWP models could be scored as follows.

Specifically, let wnt=(wn(t−T ),· · · ,wn(t−1))T be the wind

speed measurements at the n-th (n=1,· · · ,N ) Mesonet site
within a time window of size T that is immediately ahead

of the forecasting time instant t. Let unt and σnt denote the

sample-based mean and standard deviation of the wind speed

measurements of the n-th Mesonet site. Then, the centered
and normalized wind speed measurements are given by:

ynt =
wnt − unt√
T − 1σnt

. (1)

The sample correlation-based score of the k-th (k=1,· · · ,K)
NWP model fk(·) is given by:

snkt = yT
ntfk(xn, t), (2)



Fig. 5. Sample correlation coefficient-based score.

where fk(xn, t) is the centered and normalized wind speed by
the k-th NWP model for the geographical location xn (the

latitude and longitude) of the grid cell that covers the n-th
Mesonet site). It can be seen that snkt∈[−1, 1], and a score
of 1 indicates the k-th NWP matches perfectly with the n-th
Mesonet measurements in its trend. Note that one NWP model

would have totally N scores by the N Mesonet sites.

B. An Additive Ensemble Model

Generally, ensemble forecasting methods combine NWP

models to produce a more accurate point forecast. One such

approach is by model averaging [26], which may simply adopt

equal weights for averaging or by following a certain criterion,

e.g., Akaike’s information criterion and Bayes’ information

criterion, for averaging. In the proposed approach, by leverag-

ing the well-posed sample correlation coefficient-based scores,

an additive ensemble model as a weighted combination of the

NWP models is developed as follows:

FK(x) =
K∑

k=1

akfk(x), (3)

where ak is the weight for the k-th NWP model, x is the

geographical index of the grid cell to be forecasted for. For

brevity, the time index t is omitted from here on. Intuitively,

the weight ak should be higher when the scores of the k-th
NWP model on all the N Mesonet sites are all high. Then, the

objective boils down to finding the weights ak for an optimal

additive ensemble model FK(x), which could quantified by
the following aggregate score by all the N Mesonet sites:

SN =
1
N

N∑

n=1

yT
nFK(x). (4)

With this insight, to find the weights ak could be casted as

an ensemble learning problem under the supervised learning

framework, with the following aspects:

1) Weak learner: Each NWP model constitutes a weak

leaner. A weak learner produces wind speed forecasts for

any location within the region. The weak learners are to be

combined in an additive manner as in (3) towards obtaining a

strong learner that produces more accurate forecasts.
2) Meta supervisory data: The wind speed measurements

from the Mesonet sites comprise the meta supervisory data.

Specifically, each individual Mesonet forms a ‘training data

point’. The wind speed measurements within the time window

of T of a Mesonet site is used to score the weak learners. The

score of a weak learner (an NWP model) on a training data

point (a Mesonet site) is given by (2). It can be seen from

(2) that the score of the weak learner takes values in [-1,1]. A

higher score indicates that the weak learner performs better on

the training data point, in the sense that the forecast produced

by the NWP model has a higher correlation with measured

wind speed and thus correctly captures the trend for wind

ramps. The scoring scheme is designed in analogy to the scores

of binary classification models in supervised learning, in which

a binary classification model scores 1 when its classification

result matches the label of a training data point.
3) Strong learner: The strong learner is obtained from the

additive model of the weak learners, as shown in (3). The

additive coefficients, i.e., the weights of the weak learner,

could be obtained through an ensemble-learning procedure

using the training data points from Mesonet sites. Then, the

strong learner as the additive model could be used to ‘gener-

alize’ wind speed forecasts for any location (particularly for

the wind farm locations) of the region. Further, the produced

wind speed forecast is expected to be more accurate than the

one produced by individual weak learners (NWPs).

C. An Ensemble Learning Method
The objective is to build an additive ensemble model from

the K ‘weak’ NWP models, by using available N ‘training

data points’ from the N Mesonet sites. Particularly, the score

of the k-th ‘weak’ model on the n-th ‘training data point’ is
given by snk in (2) which takes value in [−1, 1]. The weights
ak of each ‘weak’ model could be obtained by minimizing a

well-defined cost function.
1) A surrogate cost function: based on the score function

defined in (2), the following surrogate cost function parame-

terized by the weights a could be adopted:

CN (FK ;a) =
N∑

n=1

dnlog2(1 + e−yT
n FK(x)), (5)

where dn= 1
N is the data weight. The above cost function is

adopted since log2(1+e−yT
n FK(x)) acting as an upper bound

for −yT
nFK(x). Therefore, minimizing CN (·) forms a well-

posed problem towards obtaining an additive ensemble model

that has a high score on the ‘training data points’ of the

Mesonet sites. Further, it is easy to see from (5) is convex,

continuous, and Lipschitz differentiable w.r.t. to FK . There-

fore, according to Theorem 1 of reference [27], CN (·) could be
efficiently minimized in a gradient descent (gradient boosting)

manner.
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Fig. 6. Ensemble learning of NWP models.

2) weights: An iterative gradient-descent method similar to
that in reference [28] could be adopted to solve for the weights

ak. Specifically, for the k-th step (k=1,· · ·K) of the iterations,
an NWP model fk is chosen so that it is closest to the neg-
ative gradient of CN at Fk−1,i.e.,−�CN (Fk−1). Further, the
weight ak is solved for, as the ‘step size’ for the corresponding

‘gradient’ fk, by minimizing Gk(a)�CN (Fk−1+afk). Then,
the NWP model fk is added to Fk−1 to obtain the additive

ensemble model of the k+1-th step, i.e., Fk=Fk−1+akfk.
More specifically, Fk−1 for k=1 is set to zero. The closeness
of fk to �CN (Fk−1) could be quantified by the following
inner product between them:

〈fk,−�CN (Fk−1)〉 =
1
ln2

N∑

n=1

dnsnk

1 + e−yT
n Fk−1(xn)

, (6)

Further, if 〈fk,−�CN (Fk−1)〉>0 holds, there exists a unique
a∈R+ that minimizes Gk(a), which is achieved at G′

N (a) =
0, which could be easily solved by using numerical methods. It
is possible that 〈fk,−�CN (Fk−1)〉<0, i.e., even the best one
among the remaining K+1−k models contributes negatively
to the present additive model, then, ak would be negative,

which can also numerically solved.

3) Scaling weights: The additive ensemble model in (3) is
obtained by additively combining the weak learners according

to their weights. It is noted that in classic binary classifica-

tion problems, scaling the voting weights won’t change the

classification result (as the classification decision is made by

inspecting the sign of Fk); however, the additive ensemble

model in (3) in this work is used to produce wind speed

forecasts, and thus the scales of the voting weights would have

significant impact over the forecasting results. Therefore, an

additional post-processing step is necessary to augment the

output of the additive ensemble model. Specifically, a scaling

factor a0 is applied to the additive ensemble model, and it is

found by minimizing the mean squared error between all the

individual NWP models, as follows:

a∗
0 = argmin

a0

∑K

k=1
(a0FK(x) − fk(x))2, (7)

where x is the data of wind speed forecast within the time

window of T for an individual wind farm.

4) Training data weights: For improved wind power fore-
casting performance, it could be necessary to train an additive

ensemble model for each individual wind farm. One feasible

method is to adapt the weights of the training data points,

dn, for each wind farm. For a wind farm, the wind speed

measurements from the Mesonet sites in proximity would be

of higher values than those from remote Mesonet sites. With

this insight, distance-based data weights could be adopted:

dn =
1
Z

1
1 − e−γ||xn−xf ||2 , (8)

where xn and xf are the geographical coordinate (the latitude

and longitude) of the n-th Mesonet site and a wind farm, re-
spectively, Z is a normalizing constant such that

∑N
n=1 dn=1,

and γ (γ>0)is a control parameter that tunes the effect of
the distance ||xn−xf ||2 on the data weight dn (particularly,

when γ−1 is much smaller than distance, the date weights

tend to be equal; and when γ−1 is much larger than distance,

the date weights tend to be inversely proportional to distance).

Similarly, correlation-based data weights could also be adopted

by using the correlation of the wind speed measurements of

Mesonet sites to wind power production of wind farms:

dn =
1
Z

1
1 + e−γyT

n Pf
, (9)

in which yn is normalized wind speed measurements, Pf is

wind farm power, and the parameters Z and γ are similar to
that of the distance-based data weights.
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Fig. 7. Power curves for wind farm a) ‘BLSUMMIT’ and b) ‘ANACACHO’.

IV. NUMERICAL EXPERIMENT

A. Measurement and Experimental Data

Hourly wind power data for 135 wind farms in ERCOT

within the covered region of the 86 Mesonet stations of year

2015, together with the corresponding hourly wind speed data

of the Mesonet sites are used for numerical experiment. The

hourly wind speed data is obtained by averaging over the 1-

minute or 5-minute Mesonet measurements. In addition, re-

analysis data for NWP is obtained by using eight physical

schemes of WRF-ARW for an inner domain that covers the

same geographical region with a grid cell size of 3km-by-3km

and refreshing rate of 3 hrs. Using the latitude and longitude

information, the grid cells that contain a Mesonet site or an

ERCOT wind farm is identified, and its NWP data is retrieved

and interpolated for the hub height of turbines.

Once the wind speed forecast is produced from the results

of the NWP models, the wind power forecast for a wind farm

is obtained by using the wind farm power curve. The wind

farm power curve, which maps wind speed forecast to wind

power forecast, is constructed by fitting a piecewise curve

comprised of polynomial and linear segments to historical data

on collated wind speed and power measurements in a least

square manner. Two example power curves are illustrated in

Fig. 7. It can be seen that the smaller wind farm ‘BLSUMMIT’

has a rated power output of 9 MW, and its power curve is

closer to the manufacture’s power curve of a single wind

turbine; while for the larger wind farm ‘ANACACHO’ rated

at 99 MW, and the extended geographical area of the wind

farm induces time lag between turbines reaching cut-out mode,

leading to a smooth cut-out segment.

B. Test Results for A Single Wind Farm

The proposed methods are applied to the 2015 data of the

wind farm ‘BRISCOE’ which contains 81 units and is rated

at 150 MW. There were 1,523 instances of wind power ramp

events that had an hourly change of 22.5 MW (i.e., 15% of

its rated capacity). Table I summarizes the test results. Two

benchmark methods as the current practice or state-of-the-

art are considered: 1) a single NWP model, and 2) a simple

average of the ensemble (noted as ‘Ensemble-Ave’ in Table I).

The single NWP model is chosen as the physical scheme

‘YSU’ which turned out to be the best among the ensemble

in the test. Three proposed methods are also tested, which

are with equal data weights, distance-based data weights,

and correlation-based data weights (noted as ‘Proposed-ED’,

‘Proposed-DD’, and ‘Proposed-CD’ respectively in Table I).

The control parameter γ is set to 0.735 which is the inverse
of the standard deviation of the Mesonet coordinates for the

method ‘Proposed-DD’, and to 1.863 which is the inverse of

the mean correlation coefficient for the method ‘Proposed-

ED’. Then, the normalizing parameter Z are calculated ac-

cordingly. The forecast error is measured in mean absolute

percentage error (MAPE), mean absolute error (MAE), and

root mean square error (RMSE). It can be seen that the en-

semble methods significantly outperform the single best NWP

model, and all the three proposed methods have comparable

improvement over the state-of-the-art method ‘Ensemble-Ave’.

TABLE I
WIND POWER RAMP FORECAST ERROR FOR WIND FARM ‘BRISCOE’

MAPE MAE RMSE
Single NWP 13.12 % 6.84 MW 8.96 MW
Ensemble-Ave 10.33 % 4.97 MW 6.33 MW
Proposed-DD 9.16 % 4.52 MW 5.35 MW
Proposed-ED 9.12 % 4.46 MW 5.16 MW
Proposed-CD 9.09 % 4.41 MW 5.07 MW

C. Test Results for A Region

Among the 135 wind farms, 97 wind farms that have

correlation coefficients of 0.6 or above with at least four

Mesonet sites in the year 2015 data are selected for testing the

proposed methods. This selection is to ensure that the training

data points formed by the Mesonet sites are sufficient and

pertinent to the produced forecasting model for the selected

wind farms. The proposed methods are tested on 852 large

ramp events that has an hourly power ramp of 1,000 MW

and above, including 453 up ramps and 399 down ramps.

The results of forecast error in MAPE are summarized in

Table. II with breakdown into up ramps and down ramps.

Further, it is noted that the proposed methods utilize the real-

time weather measurements in a time window to calculate

the score according to (2). Thus, it would be interesting to

investigate the impact of the duration of consecutive ramps

on the accuracy of the proposed methods. The breakdown of

wind power ramps by duration and the results on forecast error

with regard to the ramp duration are illustrated in Fig. 8. For

brevity, the up ramp and down ramp events are plotted in the

same figure. Specifically, in Fig. 8, a duration of ‘-5’ indicates

that a large down ramp occurs after four consecutive hours of

wind power reduction. It can be seen that the large wind power

ramp events are concentrated in the range of duration of 2-5

hours. Further, the proposed methods perform slightly better

for wind power ramps with longer duration. This is because
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Fig. 8. (a) histogram of large wind power ramp by ramp duration (- for down
ramps and + for up ramps) and (b) forecast error of Proposed-CD w.r.t. ramp
duration.

the longer the wind ramp has been, the more trustworthy the

correlation-based score is and thus the more accurate wind

power ramp forecast is.

TABLE II
REGIONAL WIND POWER RAMP FORECAST ERROR (IN MAPE)

Single Ensemble- Proposed- Proposed- Proposed-
NWP Ave DD ED CD

overall 15.26% 12.61% 10.84% 10.95% 10.65%
up ramps 15.34% 12.64% 10.66% 10.78% 10.72%
down ramps 15.17 % 12.58 % 11.04 % 11.14% 10.57%

V. CONCLUSION

Meso-scale weather measurements contain pertinent infor-

mation regarding the change of wind speed and wind power.

Despite that NWP may have already incorporated these data

into their input, the relatively low refreshing rate makes

the most recent measurements not used by these models in

a timely manner. In this study, an innovated method for

weighted averaging of ensemble weather predictions according

to their scores evaluated from the correlation with real-time

measurements is developed. This method is non-intrusive, in

the sense that it does not modify the output of individual NWP,

which has great potentials to be adopted in applications. It is

worth noting that although the presented numerical results are

focused on hourly wind power ramp forecast, the proposed

method can be used for wind power ramp forecasting at

higher time resolutions. This is because the Mesonet real-time

measurements are at 1-minute or 5-minutes timescale. Further,

the ever-lasting expansion of the Mesonet system would enable

wind power ramp forecast for more extended regions.
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