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Abstract—Numerical weather predictions used for wind power
forecasting might not be updated in a timely manner in practice,
due to its high computational complexity and complicated post-
processing. Thus, the accuracy of wind power forecasts could be
significantly compromised especially during wind ramp events.
This paper presents an innovative method for improving regional
wind power ramp forecasting through ensemble learning of
numerical weather prediction models, by using real-time weather
measurements as the supervisory data. The numerical weather
prediction models are combined to minimize the discrepancy
between the forecast values and the real-time measurements in
the trend of wind ramps, and the weights of the linear combi-
nation are calculated through gradient boosting. The proposed
method is non-intrusive and could be efficiently carried out
online. The proposed method is evaluated on historical ERCOT
wind power ramp events, and compared with existing ensemble
aggregation method using simple averaging. The results reveal
the effectiveness of the proposed method for improving wind
power forecasting during wind ramp events.

Index Terms—Ensemble learning, numerical weather predic-
tion, wind ramp forecasting

I. INTRODUCTION

Grid integration of wind power has been benefited by
enhanced short-term wind power forecasting that are based
on numerical weather prediction (NWP) [1]. NWP uses math-
ematical models of the atmosphere to predict future weather
conditions [2] and have been widely incorporated as the engine
for wind power forecasting systems [3]. These mathematical
models are comprised of partial differential equations that
govern the physical principles of the atmosphere, which are
solved numerically with given initial conditions. Then, the
output of NWP is post-processed by model output statistics
[4], for which statistical methods are applied to the output
of NWP models so that they match the surface observations
at lower layers. When applied to short-term wind power
forecasting, NWP faces two key technical challenges. First,
numerically solving partial differential equations can be very
computationally intensive [5], and meanwhile, the error caused
by the disparity between the numerical solution and the exact
solution of the partial differential equations could accumulate
over the rolling horizon [6]. Second, these partial differential
equations are typically conditioned or parameterized by exoge-
nous physical processes (e.g., solar radiation, terrain condition,
etc.) [7], which introduces a variety of inherent uncertainty
to the models and prediction results. As a practical solution,
ensemble forecasting has been utilized to gauge the confidence
of forecast by accounting for the stochastic nature and inherent

uncertainty of atmospheric processes [8]. Basically, ensemble
forecasting utilizes multiple NWP models and/or by varying
the physical parametrization or initial conditions of individual
models. Particularly, probabilistic wind power forecasts could
also be produced from ensemble forecasts [6].

Due to the high computational burden, NWP produces out-
put sporadically. For example, the major NWP systems in prac-
tice, including the Global Forecast System (GFS) and North
American Mesoscale Forecast System (NAM), are refreshed
every six hours [9], and the Weather Research and Forecasting
Model (WRF) is run 8 times a day [10]. Most recently,
effort has been made toward incorporating the hourly-updated
Rapid Refresh (RAP) NWP for wind forecasting through
the Wind Forecast Improvement Project II [11]; however,
the extreme computational expense of numerical experiments
prevents its immediate application to wind power forecasting.
Consequently, during the time period of a few hours when the
NWP results are yet to be refreshed, the actual wind speed can
deviate dramatically from the forecasts, especially for wind
ramp events. Then, the resulting wind power forecasts could
have significant error. To deal with this challenging issue, this
paper investigates post-processing methods of ensemble NWP
for improved wind power forecast.

A literature survey on short-term wind power prediction is
given by reference [12], which covers the state-of-the-art NWP
models that have been applied to wind power forecasting.
Wind power forecasting that utilizes ensemble NWP and prog-
nosis of forecast uncertainty is proposed in reference [13]. An
approach for constructing probabilistic wind power forecasting
from NWP models, together with calibration and smoothing
involving the use of statistical time series models, is proposed
in reference [14]. The factor of diurnal cycle and its impact
on wind power forecasting based on both deterministic and
ensemble NWP systems are revealed in reference [15]. Wind
power re-forecast using NWP for generating past forecast
data that could be combined with historical observation data
for statistical model building and calibration is presented in
reference [16], and case studies using major NWP systems
are conducted. The statistical features of NWP are explored
in reference [17], based on which an autoregressive integrated
moving average model is constructed to adjust the prediction
output for improved wind power forecast. A novel approach
for mining the bad data of NWP that constructing improved
wind power forecasting model is proposed by reference [18].
Reference [19] utilizes three-dimensional convolutional neural
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Fig. 1. ERCOT hourly wind power, 15 PM, Feb 26th,2017.

networks to extract the spatio-temporal features from the
output data of NWP for wind farm power forecasting. Different
from existing work, this paper is focused on the critical time
window (1-3 hours ahead of impending wind power ramps)
while refreshed NWP results are not available, and utilizes
real-time weather measurements to improve the forecast of
ensemble NWP models.

The rest of the paper is organized as follows. A motivating
case and the NWP models used in this study are introduced
in Section II. Section III presents the proposed approach for
improve the forecast of ensemble NWP models. Numerical
experiments using real-world data are presented in Section IV.
Finally, conclusions are given in Section V.

II. NWP FOR WIND POWER FORECASTING
A. Wind Power Forecasting

The ERCOT’s short-term wind power forecast (STWPF) is
produced hourly for an episode of rolling 168 hours for the
wind production potential of each wind generation resource
in ERCOT. The primary service vendor for ERCOT’s wind
power forecasting is UL/AWS Truepower [20], which utilizes
the Mesoscale Atmospheric Simulation System (MASS) [21]
as NWP. Hourly forecast for each wind generation resource is
delivered to individual wind generation resource 15 minutes
after the hour, and the aggregate forecast is available for public
access [22]. These forecasts are used by ERCOT for day-ahead
and intra-day reliability unit commitment as well as by wind
power producers for plant scheduling and market operations.
Due to the accuracy or refreshing rate of NWP, hourly wind
power forecasting of ERCOT might have significant errors.
Such an instance is illustrated in the forecasting snapshot
[22] of Fig. 1, where the day-ahead and the most recent
STWPF (the red and blue lines in Fig. 1, restively) deviated
significantly from the realized wind power (the green line in
Fig. 1) during a large down ramp event. It is observed that
during the time period from 6 AM-10 AM, the most recent
hourly forecasts captured the trend of the down ramp, but
failed to quantify the magnitude correctly. More importantly,
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Fig. 2. Mesonet wind speed and ERCOT hourly wind power (May, 2015).

during the time period from 10 AM-12 PM, the realized wind
power remained in the down ramp, while the most recent
hourly forecasts began to ramp up. On key observation is
that if this evidence of down ramp could be incorporated
to calibrate the NWP-based forecast, the huge forecasting
error (amounting to 3.3 GW) at 12 PM could be mitigated.
Motivated by this event, this paper is devoted to developing
methods that utilize real-time observation data to calibrate and
imrpove wind power forecasting from an ensemble of NWP
models, especially for wind power ramp events.

B. Real-time Weather Measurement

As could seen from Fig. 4(a), a majority of ERCOT’s wind
farms are located in the West Texas and Panhandle regions.
These regions are covered and monitored by the Mesonet
system [23] comprised of over 130 observation stations. The
Mesonet stations collect measurement data on weather obser-
vations, including wind speed, direction, temperature, solar
radiation, humidity, etc. The stations take measurements every
3 seconds, and send 1-minute average values to data center.
Figure 2 illustrates the Mesonet measurement data on hourly
average wind speed versus the ERCOT farm-level hourly
wind power production, plotted for 86 Mesonet sites and 135
ERCOT wind farms that have no missing data during that time
period. It could be seen that the ‘envelop’ formed by the wind
speed time series has a similar shape with that of the ERCOT
wind farm power production time series; however, it leads the
wind power down ramp occurred from 2 AM to 6 AM, May
29th, by 4 hours, and the wind power up ramp occurred from
0 AM to 3 AM, May 30th, by 3 hours. This is because the
Mesonet stations cover an extended geographical region, and
thus the ramp of observed wind speed could lead that in the
wind power production within that region.

C. Ensemble NWP

The ensemble NWP used in this study is from the real-
time weather prediction system [24], which contains a 42-
member ensemble forecast system and utilizes the Advanced
Research WRF (WRF-ARW) model [25] . The NWP models
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Fig. 4. (a) Mesonet sites and ERCOT wind farms and (b) WRF simulation
domain

utilize 12 km-by-12 km grid cells encompassing the southwest
U.S. and 4 km-by-4 km grid cells over Texas and portions
of surrounding states for two nested domains (see Fig. 4(b))
possessing 38 vertical levels. The ensemble comprised of eight
physical schemes are both data assimilation and forecasting
systems. The initial conditions are obtained through an en-
semble Kalman filter assimilation procedure [24], and more
ensemble members are created by varying the initial conditions
from these eight physical schemes. The output of the ensemble
forecast system is updated every three hours.

For wind power down ramp event on the May 29th, 2015,
the wind speed measurement of a selected Mesonet station
is compared with the ensemble forecasts, as illustrated in
Fig. 3. The corresponding WRF-ARW NWP is run by using
re-analysis data available at 0300 UTC for the eight physical
schemes, and is then interpolated for 120 m (which is the
typical wind turbine hub height). The Mesonet wind speed
measurements are collected at an elevation of 33ft (10m). Note
that the NWP for 10m is unattainable as the lowest vertical
layer is above 10m, and also, the NWP values for 120m are
generally higher than the measured ones at 10m, as can be
seen from Fig. 3. One key observation from Fig. 3 is that
for the down ramp time period, i.e., from 0 AM-4 AM, the
measured wind speed drops dramatically; however, not all the
NWP values are following the same trend. Specifically, four
among the eight schemes, ‘SHIN’, ‘YSU’, ‘QNSE-EDMF’,
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and ’Breherton’, correctly predict the trend (dropping); in
sharp contrast, for some other schemes, the forecasted values
are even climbing. In this case, if all eight schemes are used
with equal weights to produce a point forecast, a significant
forecasting error could be produced. However, if any side
information or evidence on the credibility of the eight schemes
(e.g., by inspecting how their predicted wind speed matches
the real-time Mesonet measurements), the significant forecast
error could be reduced by assigning different weights to NWP
models. The above observation provides significant insights
on utilizing real-time Mesonet measurements to weigh the
schemes in an ensemble NWP, built on which the proposed
approach is developed as described in what follows.

III. PROPOSED APPROACH

The proposed approach first scores the NWP models based
on how well their forecasts match the Mesonet wind speed
measurements, and then additively combines the NWP models.

A. Scoring NWP Models

How well an NWP model matches the wind speed measure-
ments could be easily measured by the model’s forecasting
error. However, one tricky issue arises that the wind speed
measurements are collected at 33ft (10m) while the output of
the NWP does not contain data for 33ft (10m). To circumvent
this situation, the sample correlation coefficient between the
NWP and the wind speed measurements could be utilized
instead; this is plausible since in the example in Fig. 3, it
has been seen that correctly predicting trend is of top priority
for wind ramps. Figure 5 shows the centered and normalized
wind speed data of two NWP models, in comparison to the
wind speed measurements for one Mesonet site during a 4-
hour time window (10PM, May 28th - 1AM, May 29th, 2015).
Note that the 4-hour time window is immediately ahead of
the large down ramp event in Fig. 2. It can be seen that
the model ‘Boulac’ predicts the wrong trend, resulting in a
low correlation coefficient of -0.884, while the model ‘QNSE-
EDMF’ matches the measured wind speed very well with a
correlation coefficient as high as 0.935. Indeed, the model
‘QNSE-EDMF’ predicts correctly the trend in the wind speed
for the following down ramp, as seen from Fig. 3. With this
insight, the NWP models could be scored as follows.

Specifically, let Wy =(wy, 1) -+ ;Wn—1))" be the wind
speed measurements at the n-th (n=1,--- ,N) Mesonet site
within a time window of size 7' that is immediately ahead
of the forecasting time instant t. Let u,; and o,; denote the
sample-based mean and standard deviation of the wind speed
measurements of the n-th Mesonet site. Then, the centered
and normalized wind speed measurements are given by:

Vot = Wnt — Unt
t = =
VT = o

The sample correlation-based score of the k-th (k=1,--- |K)
NWP model f;(-) is given by:

ey

2

Snkt = yztfk(xm t),
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Fig. 5. Sample correlation coefficient-based score.

where f}, (2, t) is the centered and normalized wind speed by
the k-th NWP model for the geographical location z,, (the
latitude and longitude) of the grid cell that covers the n-th
Mesonet site). It can be seen that s,;:€[—1,1], and a score
of 1 indicates the k-th NWP matches perfectly with the n-th
Mesonet measurements in its trend. Note that one NWP model
would have totally N scores by the N Mesonet sites.

B. An Additive Ensemble Model

Generally, ensemble forecasting methods combine NWP
models to produce a more accurate point forecast. One such
approach is by model averaging [26], which may simply adopt
equal weights for averaging or by following a certain criterion,
e.g., Akaike’s information criterion and Bayes’ information
criterion, for averaging. In the proposed approach, by leverag-
ing the well-posed sample correlation coefficient-based scores,
an additive ensemble model as a weighted combination of the
NWP models is developed as follows:

K
Fr(z) =Y afi(z), 3)
k=1

where ay is the weight for the k-th NWP model, = is the
geographical index of the grid cell to be forecasted for. For
brevity, the time index t is omitted from here on. Intuitively,
the weight aj should be higher when the scores of the k-th
NWP model on all the N Mesonet sites are all high. Then, the
objective boils down to finding the weights a; for an optimal
additive ensemble model F g (x), which could quantified by
the following aggregate score by all the N Mesonet sites:

1 N
Sy = N;yZFK(x)- 4)

With this insight, to find the weights a; could be casted as
an ensemble learning problem under the supervised learning
framework, with the following aspects:

1) Weak learner: Each NWP model constitutes a weak
leaner. A weak learner produces wind speed forecasts for
any location within the region. The weak learners are to be
combined in an additive manner as in (3) towards obtaining a
strong learner that produces more accurate forecasts.

2) Meta supervisory data: The wind speed measurements
from the Mesonet sites comprise the meta supervisory data.
Specifically, each individual Mesonet forms a ‘training data
point’. The wind speed measurements within the time window
of T" of a Mesonet site is used to score the weak learners. The
score of a weak learner (an NWP model) on a training data
point (a Mesonet site) is given by (2). It can be seen from
(2) that the score of the weak learner takes values in [-1,1]. A
higher score indicates that the weak learner performs better on
the training data point, in the sense that the forecast produced
by the NWP model has a higher correlation with measured
wind speed and thus correctly captures the trend for wind
ramps. The scoring scheme is designed in analogy to the scores
of binary classification models in supervised learning, in which
a binary classification model scores 1 when its classification
result matches the label of a training data point.

3) Strong learner: The strong learner is obtained from the
additive model of the weak learners, as shown in (3). The
additive coefficients, i.e., the weights of the weak learner,
could be obtained through an ensemble-learning procedure
using the training data points from Mesonet sites. Then, the
strong learner as the additive model could be used to ‘gener-
alize’ wind speed forecasts for any location (particularly for
the wind farm locations) of the region. Further, the produced
wind speed forecast is expected to be more accurate than the
one produced by individual weak learners (NWPs).

C. An Ensemble Learning Method

The objective is to build an additive ensemble model from
the K ‘weak’ NWP models, by using available N ‘training
data points’ from the N Mesonet sites. Particularly, the score
of the k-th ‘weak’ model on the n-th ‘training data point’ is
given by s, in (2) which takes value in [—1,1]. The weights
ay, of each ‘weak’ model could be obtained by minimizing a
well-defined cost function.

1) A surrogate cost function: based on the score function
defined in (2), the following surrogate cost function parame-
terized by the weights a could be adopted:

N
Cn(Fria) = Y dylogy(1 + e ¥ Fr@), 5)
n=1
where dn:% is the data weight. The above cost function is

adopted since log2(1+e_vaz Fx(#)) acting as an upper bound
for —yI'F (). Therefore, minimizing Cy(-) forms a well-
posed problem towards obtaining an additive ensemble model
that has a high score on the ‘training data points’ of the
Mesonet sites. Further, it is easy to see from (5) is convex,
continuous, and Lipschitz differentiable w.r.t. to F . There-
fore, according to Theorem 1 of reference [27], Cn (-) could be
efficiently minimized in a gradient descent (gradient boosting)
manner.
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2) weights: An iterative gradient-descent method similar to
that in reference [28] could be adopted to solve for the weights
ag. Specifically, for the k-th step (k=1,- - - K) of the iterations,
an NWP model f}, is chosen so that it is closest to the neg-
ative gradient of C'x at Fy_1.i.e.,—VCn(F;_1). Further, the
weight ay, is solved for, as the ‘step size’ for the corresponding
‘gradient’ fj,, by minimizing Gk(a)éCN(Fk_l—i—afk). Then,
the NWP model f}, is added to F;_; to obtain the additive
ensemble model of the k+1-th step, i.e., Fp=F;_1+aify.
More specifically, Fj_; for k=1 is set to zero. The closeness
of fi to VCN(Fj_1) could be quantified by the following
inner product between them:

dnsnk
1+ e YaFr-1(zn)’

&
:@Z

n=1

(fr, —VCN(Fi-1)) (6)

Further, if (f;,,—VCn(Fj—1))>0 holds, there exists a unique
a€R™ that minimizes G (a), which is achieved at G’y (a)
0, which could be easily solved by using numerical methods. It
is possible that (f;,,—VCy(F;_1))<O0, i.e., even the best one
among the remaining K +1—k models contributes negatively
to the present additive model, then, a; would be negative,
which can also numerically solved.

3) Scaling weights: The additive ensemble model in (3) is
obtained by additively combining the weak learners according
to their weights. It is noted that in classic binary classifica-
tion problems, scaling the voting weights won’t change the
classification result (as the classification decision is made by
inspecting the sign of F); however, the additive ensemble
model in (3) in this work is used to produce wind speed
forecasts, and thus the scales of the voting weights would have
significant impact over the forecasting results. Therefore, an
additional post-processing step is necessary to augment the
output of the additive ensemble model. Specifically, a scaling
factor ag is applied to the additive ensemble model, and it is
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found by minimizing the mean squared error between all the
individual NWP models, as follows:
K
aj = axgminy_,  (aoFi(@) = @)’ (D
where x is the data of wind speed forecast within the time
window of 7" for an individual wind farm.

4) Training data weights: For improved wind power fore-
casting performance, it could be necessary to train an additive
ensemble model for each individual wind farm. One feasible
method is to adapt the weights of the training data points,
dy, for each wind farm. For a wind farm, the wind speed
measurements from the Mesonet sites in proximity would be
of higher values than those from remote Mesonet sites. With
this insight, distance-based data weights could be adopted:

1 1

dy=~-— "
O R [

(@)
where x,, and x are the geographical coordinate (the latitude
and longitude) of the n-th Mesonet site and a wind farm, re-
spectively, Z is a normalizing constant such that Zgil dp,=1,
and v (y>0)is a control parameter that tunes the effect of
the distance ||x,,—xy||> on the data weight d,, (particularly,
when =1 is much smaller than distance, the date weights
tend to be equal; and when 4! is much larger than distance,
the date weights tend to be inversely proportional to distance).
Similarly, correlation-based data weights could also be adopted
by using the correlation of the wind speed measurements of
Mesonet sites to wind power production of wind farms:

1 1
T Z14+ewWiPs’

n C))
in which y,, is normalized wind speed measurements, P is
wind farm power, and the parameters Z and v are similar to
that of the distance-based data weights.
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IV. NUMERICAL EXPERIMENT
A. Measurement and Experimental Data

Hourly wind power data for 135 wind farms in ERCOT
within the covered region of the 86 Mesonet stations of year
2015, together with the corresponding hourly wind speed data
of the Mesonet sites are used for numerical experiment. The
hourly wind speed data is obtained by averaging over the 1-
minute or 5-minute Mesonet measurements. In addition, re-
analysis data for NWP is obtained by using eight physical
schemes of WRF-ARW for an inner domain that covers the
same geographical region with a grid cell size of 3km-by-3km
and refreshing rate of 3 hrs. Using the latitude and longitude
information, the grid cells that contain a Mesonet site or an
ERCOT wind farm is identified, and its NWP data is retrieved
and interpolated for the hub height of turbines.

Once the wind speed forecast is produced from the results
of the NWP models, the wind power forecast for a wind farm
is obtained by using the wind farm power curve. The wind
farm power curve, which maps wind speed forecast to wind
power forecast, is constructed by fitting a piecewise curve
comprised of polynomial and linear segments to historical data
on collated wind speed and power measurements in a least
square manner. Two example power curves are illustrated in
Fig. 7. It can be seen that the smaller wind farm ‘BLSUMMIT’
has a rated power output of 9 MW, and its power curve is
closer to the manufacture’s power curve of a single wind
turbine; while for the larger wind farm ‘ANACACHO’ rated
at 99 MW, and the extended geographical area of the wind
farm induces time lag between turbines reaching cut-out mode,
leading to a smooth cut-out segment.

B. Test Results for A Single Wind Farm

The proposed methods are applied to the 2015 data of the
wind farm ‘BRISCOE’ which contains 81 units and is rated
at 150 MW. There were 1,523 instances of wind power ramp
events that had an hourly change of 22.5 MW (i.e., 15% of
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its rated capacity). Table I summarizes the test results. Two
benchmark methods as the current practice or state-of-the-
art are considered: 1) a single NWP model, and 2) a simple
average of the ensemble (noted as ‘Ensemble-Ave’ in Table I).
The single NWP model is chosen as the physical scheme
‘YSU’” which turned out to be the best among the ensemble
in the test. Three proposed methods are also tested, which
are with equal data weights, distance-based data weights,
and correlation-based data weights (noted as ‘Proposed-ED’,
‘Proposed-DD’, and ‘Proposed-CD’ respectively in Table I).
The control parameter 7 is set to 0.735 which is the inverse
of the standard deviation of the Mesonet coordinates for the
method ‘Proposed-DD’, and to 1.863 which is the inverse of
the mean correlation coefficient for the method ‘Proposed-
ED’. Then, the normalizing parameter Z are calculated ac-
cordingly. The forecast error is measured in mean absolute
percentage error (MAPE), mean absolute error (MAE), and
root mean square error (RMSE). It can be seen that the en-
semble methods significantly outperform the single best NWP
model, and all the three proposed methods have comparable
improvement over the state-of-the-art method ‘Ensemble-Ave’.

TABLE I
WIND POWER RAMP FORECAST ERROR FOR WIND FARM ‘BRISCOE’
MAPE MAE RMSE
Single NWP 13.12 % | 6.834 MW | 8.96 MW
Ensemble-Ave | 10.33 % | 497 MW | 6.33 MW
Proposed-DD | 9.16 % 4.52 MW | 535 MW
Proposed-ED | 9.12 % | 4.46 MW | 5.16 MW
Proposed-CD | 9.09 % | 441 MW | 5.07 MW

C. Test Results for A Region

Among the 135 wind farms, 97 wind farms that have
correlation coefficients of 0.6 or above with at least four
Mesonet sites in the year 2015 data are selected for testing the
proposed methods. This selection is to ensure that the training
data points formed by the Mesonet sites are sufficient and
pertinent to the produced forecasting model for the selected
wind farms. The proposed methods are tested on 852 large
ramp events that has an hourly power ramp of 1,000 MW
and above, including 453 up ramps and 399 down ramps.
The results of forecast error in MAPE are summarized in
Table. II with breakdown into up ramps and down ramps.
Further, it is noted that the proposed methods utilize the real-
time weather measurements in a time window to calculate
the score according to (2). Thus, it would be interesting to
investigate the impact of the duration of consecutive ramps
on the accuracy of the proposed methods. The breakdown of
wind power ramps by duration and the results on forecast error
with regard to the ramp duration are illustrated in Fig. 8. For
brevity, the up ramp and down ramp events are plotted in the
same figure. Specifically, in Fig. 8, a duration of ‘-5’ indicates
that a large down ramp occurs after four consecutive hours of
wind power reduction. It can be seen that the large wind power
ramp events are concentrated in the range of duration of 2-5
hours. Further, the proposed methods perform slightly better
for wind power ramps with longer duration. This is because
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duration.

the longer the wind ramp has been, the more trustworthy the

correlation-based score is and thus the more accurate wind

power ramp forecast is.

TABLE II
REGIONAL WIND POWER RAMP FORECAST ERROR (IN MAPE)
Single | Ensemble- | Proposed- | Proposed- | Proposed-
NWP Ave DD ED CD
overall 15.26% 12.61% 10.84% 10.95% 10.65%
up ramps 15.34% 12.64% 10.66% 10.78% 10.72%
down ramps | 15.17 % 12.58 % 11.04 % 11.14% 10.57%

V. CONCLUSION

Meso-scale weather measurements contain pertinent infor-
mation regarding the change of wind speed and wind power.
Despite that NWP may have already incorporated these data
into their input, the relatively low refreshing rate makes
the most recent measurements not used by these models in
a timely manner. In this study, an innovated method for
weighted averaging of ensemble weather predictions according

to their scores evaluated from the correlation with real-time

measurements is developed. This method is non-intrusive, in
the sense that it does not modify the output of individual NWP,
which has great potentials to be adopted in applications. It is
worth noting that although the presented numerical results are
focused on hourly wind power ramp forecast, the proposed
method can be used for wind power ramp forecasting at
higher time resolutions. This is because the Mesonet real-time

measurements are at 1-minute or 5S-minutes timescale. Further,

the ever-lasting expansion of the Mesonet system would enable
wind power ramp forecast for more extended regions.
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