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A B S T R A C T   

Evapotranspiration (ET) is the total amount of water lost from evaporation and transpiration via plant growing 
media and plant surfaces. ET models have been widely researched for outdoor plants, forests, and wetlands. 
However, studies on ET models for controlled environment agriculture (CEA) are limited. Reliable predictions of 
ET in CEA are essential for quantifying the performance of CEA systems. This review focused on evaluating the 
twelve existing ET models that have been used for indoor ET estimation. Also, we provided an overview of the 
key parameters that affect ET in existing ET models and different calibration methods for ET models. We 
summarized existing studies on crop coefficient and stomatal conductance and reviewed case studies that utilized 
ET models for different CEA applications. We identified research gaps in ET modeling and highlighted research 
needs for ET parameter interdependence, validation of existing models for indoor farming, and a comprehensive 
crop resistance model.   

1. Introduction 

Vertical farming as the expansion of controlled environment agri
culture (CEA) advances urban food production. A key advantage to CEA 
is that food production can be located anywhere such as in urban or rural 
areas, thereby reducing food miles, carbon emissions, and improving 
food quality. Also, climatic variables in CEA can be controlled to opti
mize yield, shorten production time, or extend cultivation over a full 
cropping season. Compared to traditional open-field cultivation, it has 
the potential to significantly improve crop yield and water efficiency 
(Junzeng et al., 2008; Avgoustaki and Xydis, 2020). 

Evapotranspiration (ET), the total amount of water lost from evap
oration and transpiration via plant growing media and plant surfaces, is 
the major avenue for plants to lose water and exchange energy with their 
surroundings. ET plays a vital role in water and energy efficiency for 
CEA. About 99% of the water taken up by plants is lost via transpiration, 
with only 1% being used for metabolic activities (Rosenberg et al., 
1983). Plants use this process to transport nutrients from the growing 
media. In hydroponic cultivation, ET estimation is crucial for water 
management due to the lower water holding capacity and limited vol
ume of substrates. Furthermore, ET significantly contributes to an en
ergy balance through mass and heat transfer in CEA, which maintains 

favorable environmental conditions for plant growth. 
Besides ET measurements in the field using various methods such as 

lysimeters (Junzeng et al., 2008), substrate water balance (Cannavo 
et al., 2016), eddy covariance (Tanny et al., 2006), and sap flow gauge 
(Villarreal-Guerrero et al., 2012), ET models have been developed to 
predict crop ET from climatic parameters or in combination with crop 
physiological characteristics. ET models can be classified into reference, 
physical, and data-driven ET models. Reference ET is the ET rate from a 
reference surface (e.g. grass or alfalfa) and is represented by climatic 
formulas that were calibrated against lysimeter measurements from 
multiple locations (Wright, 1996; Allen et al., 1994). Such a reference 
crop is assumed to be a full, well-watered crop canopy. Reference ET 
models, relatively easy to use, require climatic parameters and a crop 
coefficient to estimate the actual ET value for a specific crop. Physical ET 
models are derived from energy balance equations (Allen and Hillel, 
2005; Stanghellini, 1987). These models do not require crop co
efficients. However, stomatal resistance, aerodynamic resistance, and/ 
or leaf area index are commonly needed in ET estimates using physical 
ET models. This increases the complexity of using physical ET models. 
Although ET models have been widely researched for outdoor cultivated 
plants, forests, and wetlands, there are limited studies on ET models for 
CEA. The data-driven method utilizes statistical regression or machine 
learning methods to predict ET based on measurement data. It usually 
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requires a large amount of data to train the ET model. 
This review focused on evaluating the twelve existing ET reference 

and physical models that have been used for indoor ET estimation. Also, 
we provided an overview of the key parameters that affect ET in existing 
ET models and different calibration methods for ET models. We sum
marized existing studies on crop coefficient and stomatal conductance 
models and reviewed case studies that utilized ET models for different 
CEA applications. In the end, we identified research gaps in ET modeling 
research and highlighted research needs for ET parameter interdepen
dence, validation of existing models for indoor farming, and a 

comprehensive crop resistance model. 

2. Parameters that influence ET 

Evaporation and transpiration occur simultaneously and are difficult 
to separate (Allen et al., 1998). At an early stage, crop ET is roughly 
100% due to evaporation, while at full crop cover, ET is about 90% 
transpiration (Fazlil-Ilahil, 2009; Lozano et al., 2017; Sigalingging and 
Rahmansyah, 2018; Prenger et al., 2002). The parameters that influence 
ET can be categorized into three groups: climatic, plant physiological, 

Nomenclature 

a Albedo [-] 
A Plant Leaf Area [cm2] 
ac Absorption Coefficient [-] 
AF Adjustment Factor Equal to 0.19 for Coastal Zones [-] 
b Empirical Parameter [-] 
c Resistance Model/Coefficient Constants [-] 
C FAO Penman-Monteith Constants [-] 
CAC Cultivation Area Cover [-] 
CAI Canopy Area Index [-] 
Cc Canopy Resistance Coefficient [-] 
Cp Specific Heat of Air [MJ/kg ◦C] 
Cs Soil Surface Resistance Coefficient [-] 
d Zero-Plane Displacement Height [m] 
dc Diffusion Coefficient [-] 
E Evaporation [mm/day, mm/h, W/m2] 
ek Extinction Coefficient [-] 
ET Evapotranspiration [mm/day, mm/h, W/m2] 
f Jarvis Model Mathematical Functions [-] 
g Conductance [m/s] 
G Soil Heat Flux [MJ/m2 day] 
GDD Growing Degree Day [◦C/day] 
Gr Grashof Number [-] 
h Convective Heat Transfer Coefficient of Air [W/m2 ◦C] 
H Crop Height [m/mm] 
I Radiation [W/m2] 
J Total Available Energy [W/m2] 
k Thermal Conductivity [W/m ◦C] 
K Empirical Parameters [-] 
Kc Crop Coefficient [-] 
Kcb Basal Crop Coefficient [-] 
Ke Soil Evaporation Coefficient [-] 
Kr Surface Soil Evaporation Attenuation Coefficient [-] 
l Characteristic Leaf Dimension [m] 
L Leaf Length [m] 
LAI Leaf Area Index [-] 
Nu Nusselt Number [-] 
PPFD Photosynthetic Photon Flux Density [μmol/m2/s] 
Pr Prandtl Number [-] 
r Resistances [s/m] 
Rc Reflection Coefficient [-] 
Re Reynolds Number [-] 
RH Hourly or Daily Mean Air Relative Humidity [%] 
rl Roughness length of reference surface [m] 
S Sensible Heat Flux [W/m2] 
Sa Salinity [g/kg] 
SP Proportion of Soil between the Soil and the Evaporation of 

the Soil [-] 
t Time [day] 
T Hourly or Daily Mean Air Temperature [◦C] 
Tc Crop Transpiration [mm/h] 

U Hourly or Daily Mean Air Velocity [m/s] 
VPD Vapor Pressure Deficit [kPa] 
W Leaf Width [m] 
WAP Weeks After Planting 
WF Wind Function [-] 
x Reference Measurement Height [m] 
z Wind Speed Measurement Height [m] 
α Priestley Taylor Coefficient [-] 
β Bowen Ratio [-] 
γ Psychrometric Constant [kPa/◦C] 
Δ The slope of the Saturation Vapor Pressure-Temperature 

Curve [kPa/◦C] 
λ Latent Heat of Vaporization [MJ/kg] 
λET Latent Heat Flux [W/m2] 
ρ Density [kg/m3] 
τ Transmissivity [-] 
χ Vapor Concentration [g/m3] 
ΔT Temperature Difference [◦C] 

Subscripts 
a Air/Aerodynamic (Crop) 
abs Effectively Absorbed 
b Boundary Layer 
c Crop Evapotranspiration 
e Aerodynamic (leaf) 
eff Effective 
est Estimated 
g Ground-Level 
i Stomatal (leaf) 
ini Initial Value 
l Leaf 
max Maximum 
mid Intermediate Value 
min Minimum 
n Net 
nl Long Wave 
ns Short Wave 
o Reference Evapotranspiration 
p Pan 
R Radiative 
s Surface (Canopy)/Stomatal (Crop)/Soil 
sc Calculated Solar Radiation 
t Unit Conversion [86400 s/day, 3600 s/h] 
w Evaporative Surface/Water 
x Extraterrestrial Solar Radiation 
z Wind Speed Measurement Height [m] 

Superscripts 
a Between Mean Canopy Flow and Reference Height 
c Canopy 
s Soil  
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and cultivation practices. 

2.1. Climatic parameters 

Climatic factors have the most influence on crop ET as well as 
growth. Such factors include net radiation, air temperature, relative 
humidity, and air velocity. Desired values for these climatic parameters 
were presented on common greenhouse cultivated crops (Nau, 2011; 
Baudoin et al., 2017; Currey et al., 2019; Meinen et al., 2018; Carney 
et al., 2016; Delavar et al., 2016; Drost, 2015; Duan et al., 2014; Peck
enpaugh, 2004; Karlsson, 2014; Wei, 2016; Fairbanks, U.o.A. Green
house gardening, 2013; Europe, 2020; Struik and Wiersema, 1999; Zha 
and Liu et al., 2018; Incrocci et al., 2006). 

Net radiation is the balance between incoming radiation to crops and 
outgoing radiation from the crops (Takakura et al., 2009). An increase in 
net radiation consequently could lead to an increase in the ET rate 
(Zhang et al., 2010; Jolliet and Bailey, 1992; Baille et al., 1994; Kittas 
et al., 1999). In considering both evaporation from the growth substrate 
and transpiration from plants, Villarreal-Guerrero et al. (2012) found 
radiation to account for about 60% of the estimated ET from the Stan
ghellini (Stanghellini, 1987), Penman-Monteith (Monteith, 1965), and 
Takakura (Takakura et al., 2005) models. While considering only tran
spiration from plants, Montero et al. (2001) found the radiation term to 
represent about 80% of the total crop transpiration during the early 
hours after sunrise using the Penman-Monteith model (Monteith, 1965). 

Another important parameter is air temperature. Each crop has an 
optimal range for which temperatures must be maintained for optimal 
crop production. The increase of ambient temperature in CEA could 
increase crop ET rate (Zhang et al., 2010; Pamungkas et al., 2014; 
Graamans et al., 2017; Gallardo et al., 1999; Liu et al., 2008). Thermal 
energy transfer from warm air to crops increases evapotranspiration 
rates. 

Vapor pressure deficit (VPD) measures the difference between 
saturated vapor pressure and actual vapor pressure. The relationship 
between ET and VPD can be more complicated than the other environ
mental parameters. Rather than considering VPD as an independent 
parameter, Monteith (1995) suggested that VPD was the outcome of the 
interaction between vegetation and the ambient environment. In a study 
by Boulard and Jemaa (1992), for hourly ET estimation, VPD signifi
cantly influenced ET (up to 43%). Prenger et al. (2002) also found both 
VPD and radiation to have strong correlations with ET. Liu et al. (2008) 
found daily banana ET to strongly depend on the mean air temperature 
and VPD. 

Air velocity influences aerodynamic resistance and ET. Proper air 
circulation in CEA is required to prevent the spread of diseases by 
avoiding wet spots. Air velocity is less than 0.2 m/s in a closed typically 
CEA (Casanova et al., 2009; Fernández et al., 2010) but could be much 
higher for naturally ventilated CEAs (Libardi et al., 2019; Jaafar and 
Ahmad, 2018). The increase of air velocity decreases aerodynamic 
resistance and increases crop ET (Ahmed et al., 2020; Jolliet and Bailey, 
1992). However, compared to other climatic parameters, the effects of 
air velocity on ET are small. 

2.2. Plant physiological parameters 

Plant physiological parameters such as leaf area index (LAI) and 
stomatal resistances (ri) have been used to predict ET rates. 

LAI is the ratio of the total leaf area to the cultivation surface or 
ground area and is an important parameter for physical ET models such 
as the Stanghellini model (Stanghellini, 1987). In some studies, LAI was 
calculated with leaf dimensions (length, width) and/or plant density 
(Kage et al., 2000; Demrati et al., 2007; Kittas et al., 1999; Salcedo et al., 
2017) through measurements on a periodical basis (weekly or biweekly) 
(Cannavo et al., 2016; Villarreal-Guerrero et al., 2012; Baille et al., 
1994; Pamungkas et al., 2014; Boulard and Jemaa, 1992; Toyin et al., 
2015; Acquah et al., 2018; Yang et al., 1990). Image analysis software 

such as Image J (Gao et al., 2011; Martin et al., 2013; Ahmad et al., 
2015) and Easy Leaf Area (Ahmad et al., 2015; Easlon and Bloom, 2014) 
can be used in estimating leaf area. LAI can be predicted by non-linear 
regression models as functions of crop thermal time (Salcedo et al., 
2017; Carmassi et al., 2013; Rouphael and Colla, 2004) or days after 
sowing (DAS) (Medrano et al., 2005) as well as by crop growth models 
such as TOMGRO (Battista et al., 2015; Bacci et al., 2012). 

Leaf stomatal resistance also affects ET, with an inverse relationship 
(Ali et al., 2016). At lower stomatal resistance, the stomata open and so 
allows the exchange of gas including water vapor, hence the increased 
ET rates, and vice versa. Stomatal resistance varies with the type of crop, 
environmental conditions, and water availability. Leaf stomatal resis
tance can be measured using a leaf porometer or infrared gas analyzer 
(IRGA). A recent study comparing leaf stomatal conductance measured 
using a leaf porometer and an IRGA suggested that calibration of the leaf 
porometer using IRGA would be necessary (Toro et al., 2019). Efforts 
have been made to develop stomatal resistance models which can be 
used for real-time estimation based on easy-to-measure parameters such 
as air temperature, VPD, and light levels. Stomatal resistance modeling 
is further discussed in depth in Section 3.2.2.2. 

Also, leaf temperature is another important driver of ET. Leaf tem
perature represents the outcome of energy balance between plants and 
the ambient environment (Yang et al., 1990). Leaf temperatures were 
reported to be lower than air temperatures during the daytime (Montero 
et al., 2001; Yang et al., 1990; Rouphael and Colla, 2004) in some 
studies, while leaf temperatures were reported to be warmer than air 
temperatures in other studies of crops grown in greenhouses (Demrati 
et al., 2007). The relationship between leaf temperature and air tem
perature depends on the magnitudes of terms related to net radiation 
and vapor pressure deficit and the amount of evaporativing cooling 
(Michaletz et al., 2016). 

2.3. Cultivation practices 

Various cultivation practices also influence crop ET. For example, the 
types and composition of substrate or soil play a key role in regulating 
ET rates. Soils with a better water holding capacity can increase the 
amount of water available for ET while those with poor water-holding 
capacities are prone to runoffs and cannot promote increased ET. In a 
study by Ondrašek et al. (2007) comparing Rockwool, peat, and perlite, 
they found the ET rate to depend on the water holding capacity of the 
substrate. ET rates were lower in perlite due to its low water holding 
capacity. Therefore, the characteristics of the substrate should be 
considered in planning irrigation management strategies. These char
acteristics include porosity, particle sizes, permeability, thickness, and 
compactness (Cascone et al., 2018). 

The salinity of the grow media also affects crop ET, decreasing lin
early with an increase in salinity (Blanco and Folegatti, 2003). Increased 
salinity reduces the leaf water content, increasing stomatal resistance, 
and ultimately reducing the ET rate (Boulard and Jemaa, 1992). 

Irrigation management techniques also influence crop ET. Depend
ing on the level of irrigation deficit, water available for plant ET may be 
affected. Reference ET models however apply to well-watered condi
tions with no crop water stress. However, this is sometimes far from 
reality where water conservation requires that the right amount of water 
be supplied to reduce water use but also maintain a high crop yield. 
Irrigation level and frequency, therefore, affect crop ET. In a study by 
Chopda et al. (2018) investigating the effect of five manageable allow
able depletion (MAD) levels: 10%, 20%, 30%, 40%, and 0% (the control 
in which the farmer irrigates every 7 days), the highest ET rate and crop 
yield were recorded at 10% MAD and the lowest at 40% MAD. Cannavo 
et al. (2016) also found that reducing irrigation levels to 75% of the 
reference, well-watered scenario, or greater had no severe effect on crop 
ET. As for the frequency of irrigation, they found irrigating once a day or 
more to be suitable for optimal crop ET. 

The most controlled factor that defines a CEA is climatic. However, 
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other factors such as irrigation practices and substrate salinity also play 
very important roles. In water stress conditions, even if incoming radi
ation, and vapor pressure deficit conditions are favorable, the ET rate 
would be low and could affect crop productivity. Therefore, careful 
attention should be paid to these factors to ensure that the plant ET rate 
is maintained at desired levels. In highly controlled CEA, these factors 
are usually continuously monitored and controlled for optimum crop 
yield. Existing studies have been focused on the effects of single pa
rameters on ET rates. further research that considers the interdependent 
nature of these parameters on the ET rate should be further pursued. For 
example, an increase in temperature increases ET, however, this could 
be counterbalanced by an increase in resistance in the presence of 
increased CO2 levels (Moriondo et al., 2015; Savabi and Stockle, 2001). 
The techniques of machine learning could help gain some insight into 
such interdependency, as well as in engineering new features as in the 
case of VPD, which could combine some of these parameters into a new 
one that better describes ET rates. 

3. ET models for CEA 

Although ET measurements can be conducted in the field, mathe
matical ET models are easy to implement, non-destructive, and suitable 
for real-time ET estimations. In this section, we categorize existing ET 
models into reference ET models, physical ET models, and data-driven 
ET models. 

3.1. Reference ET models 

Reference evapotranspiration is the evapotranspiration from a hy
pothetical, well-irrigated reference crop. Only climatic factors are 
considered in the ET estimation from reference ET models, specific crop 
physiological factors and soil factors are ignored. The accuracy of 
reference ET models depends on the type of reference used, measure
ment, and modeling as well as the accuracy of the crop coefficient used. 
The following sub-section looks at five commonly used reference ET 
models in CEA applications. It also discusses crop coefficients, an 
important parameter in computing the actual ET from reference ET. 

3.1.1. Model descriptions 

3.1.1.1. Priestley Taylor. This model, introduced by Priestley and Tay
lor (1972) ignores the aerodynamic term but uses the net radiation term 
in estimating ET. The aerodynamic term is instead replaced by a 
dimensionless multiplier α known as the Priestley-Taylor coefficient. 
The model equation is given in Equation (1): 

ETo = α 1
λ

Δ
Δ + γ

(In − G) (1)  

where: 

ETo −Daily Reference Evapotranspiration [mm/day] 
α −Priestley Taylor Coefficient [-] 
λ −Latent Heat of Vaporization [MJ/kg] 
Δ −Slope of the Saturation Vapor Pressure-Temperature Curve [kPa/ 
◦C] 
γ −Psychrometric Constant [kPa/◦C] 
In −Daily or Hourly Net Radiation [MJ/m2 day] 
G −Soil Heat Flux [MJ/m2 day] 

The coefficient α can be expressed as: 

α =

(
(1 + γ/Δ)

1 + β

)

(2)  

whereβ is the Bowen ratio and takes a value of 0.6. 
Transpiration can be calculated based on ET and LAI as follows 

(Droutsas et al., 2019): 

Tc = ETo
(
1 − e−ekLAI) (3)  

where: 

Tc −Crop Transpiration [mm/day] 
ETo −Daily Reference Evapotranspiration [mm/day] 
ek −Extinction Coefficient [-] 
LAI −Leaf Area Index [-] 

The Priestley-Taylor model gives good estimates in low advection 
conditions which prevails in some CEAs. In a study by Sharma et al. 
(2017), the Priestley-Taylor model was found to underestimate the ET of 
chile peppers by 17.5–37%, due to the absence of the advection term in 
its equation. The experiment was performed in a greenhouse located in 
New Mexico, equipped with evaporative coolers, exhaust fans, and 
automatic temperature controls. 

3.1.1.2. FAO-24 radiation. This model, based on solar radiation was 
developed by Doorenbos and Pruitt (1977). The equation of this model is 
given in Equation (4): 

ETo =
b
λ

(

Ig
Δ

Δ + γ

)

− 0.3 (4)  

where: 

ETo −Daily Reference Evapotranspiration [mm/day] 
λ −Latent Heat of Vaporization [MJ/kg] 
Δ −Slope of the Saturation Vapor Pressure-Temperature Curve [kPa/ 
◦C] 
γ −Psychrometric Constant [kPa/◦C] 
Ig −Ground-Level Solar Radiation [MJ/m2 day] 
b −Dimensionless Parameter [-] 

The dimensionless parameter b is expressed as: 

b = 1.066 − 0.13 × 10−2⋅RH + 0.045⋅U − 0.20 × 10−3⋅RH × U − 0.315

× 10−4⋅RH2 − 0.11 × 10−2⋅U2 (5)  

where: 

RH −Daily Mean Air Relative Humidity [%] 
U −Daily Mean Air Velocity [m/s] 

Casanova et al. (2009) found this model to have an average value of 
2.8 mm/day over 9 weeks, compared to measured lysimeter ET which 
was 1.5 mm/day. Thereby overestimating ET by 87% on average for ET 
estimation for lettuce in a chapel-type greenhouse in central Chile. In a 
study by Liu et al. (2008) on greenhouse banana ET estimation, the FAO 
Radiation model underestimated ET by roughly 40%, having a correla
tion coefficient of 0.52, and was outperformed by the FAO-Penman and 
FAO-Penman Monteith models. 

3.1.1.3. Hargreaves-Samani. This model was developed by Hargreaves 
and Samani (1985) and is solely based on temperature and solar radi
ation as shown in Equation (6): 

ETo =
1
λ

(0.0023)(Tmax − Tmin)
0.5

(T + 17.8)Ix (6)  

where: 

ETo −Daily Reference Evapotranspiration [mm/day] 
λ −Latent Heat of Vaporization [MJ/kg] 
Tmax −Daily Maximum Air Temperature [◦C] 
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Tmin −Daily Minimum Air Temperature [◦C] 
T −Daily Mean Air Temperature [◦C] 
Ix −Extraterrestrial Solar Radiation [MJ/m2 day] 

The extraterrestrial radiation (Ix) and solar radiation (Is) can be 
related as shown in Equation (7): 

Is = AF × Ix × ΔT0.5 (7)  

where: 

AF −adjustment factor [-] 
ΔT − mean maximum minus mean minimum temperature [◦C] 

Fernández et al. (2010) found the original Hargreaves-Samani 
equation from above to largely overestimate ET by 66% on average 
for a Mediterranean greenhouse without whitening. However, it im
proves with whitening (overestimating by 3%) and when the solar ra
diation term is multiplied by the greenhouse cover transmissivity τ 
(underestimating by 5%). Jaafar and Ahmad (2018) also tested a 
modified solar radiation model in a greenhouse equipped with a suction 
fan, in Beirut, Lebanon, based on estimates from the following 
expression: 

Isc = τ × AF × I × (ΔT)
0.5 (8)  

where: 

Isc − Calculated Solar Radiation [MJ/m2 day] 
τ − Transmissivity [-] 
AF − adjustment factor [-] 
I − Solar Radiation [MJ/m2 day] 
ΔT − mean maximum minus mean minimum temperature [◦C] 

3.1.1.4. FAO Penman. This model is an improvement from the original 
Penman (Penman, 1948) model. It includes a wind function as shown in 
Equation (9): 

ETo =
1
λ

[(
Δ

Δ + γ

)

(Rn − G) +

(
γ

Δ + γ

)

(6.43)(WF)(VPD)

]

(9)  

where: 

ETo −Daily Reference Evapotranspiration [mm/day] 
λ −Latent Heat of Vaporization [MJ/kg] 
Δ −Slope of the Saturation Vapor Pressure-Temperature Curve [kPa/ 
◦C] 
γ −Psychrometric Constant [kPa/◦C] 
In −Daily or Hourly Net Radiation [MJ/m2 day] 
G −Soil Heat Flux [MJ/m2 day] 
WF −Wind Function [-] 
VPD −Vapor Pressure Deficit [kPa] 

The wind function WF could be expressed as: 

WF = 1 + 0.0536⋅Uz (10)  

where: 

WF −Wind Function [-] 
Uz −Wind Speed at Height z [m/s] 

Liu et al. (2008) found the FAO Penman model to give the best 
correlation (0.67) for the estimation of banana ET in a greenhouse 
compared to four other ET models, however, it overestimated ET by 
roughly 27% on average. The study was performed in a greenhouse in 
Israel, equipped with cooling fans that operate whenever the tempera
tures within the greenhouse exceeded 30 ◦C. 

3.1.1.5. FAO-56 Penman-Monteith. The FAO-56 Penman-Monteith 
model (Allen et al., 1998) is the standard model for estimating reference 
ET and has been employed in CEA ET estimation with some satisfactory 
results. It represents ET from an extensive surface of grass crop with a 
height of 0.12 m, a crop resistance of 70 s/m, and an albedo of 0.23 
under non-limited soil water. The equation is given in Equation (11): 

ETo =
0.408Δ(In − G) + γ C1

T+273⋅U2⋅VPD
Δ + γ(1 + C2⋅U2)

(11)  

where: 

ETo −Daily Reference Evapotranspiration [mm/day] 
Δ −Slope of the Saturation Vapor Pressure-Temperature Curve [kPa/ 
◦C] 
γ −Psychrometric Constant [kPa/◦C] 
In −Daily or Hourly Net Radiation [MJ/m2 day] 
G −Soil Heat Flux [MJ/m2 day] 
T −Hourly or Daily Mean Air Temperature [◦C] 
C1 and C2 −FAO Penman-Monteith Constants [-] 
VPD −Vapor Pressure Deficit [kPa] 
U2 −Wind Speed at Height (z = 2 m) [m/s] 

The values of the constants C1 and C2 change based on the type of 
reference crop. These values are presented in Pereira et al. (2015). For 
wind speeds at heights other than 2 m, the following adjustments can be 
applied (Stokes et al., 2016): 

U2 = U⋅ln
(

(z2 − rl)
d

)/

ln
(

(z − rl)
d

)

(12)  

where: 

U2 −Wind Speed at Height (z = 2 m) [m/s] 
U −Wind Speed at Measurement Height z [m/s] 
z2 −Height = 2 m [m] 
z −Measurement Height [m] 
d −Zero plane displacement of reference surface = 0.07 m 
rl −Roughness length of reference surface = 0.013 m 

Generally, crop coefficients obtained using the alfalfa crop reference 
are usually lower compared to those obtained using clipped grass. 

In a low technology greenhouse in Brazil, Libardi et al. (2019) found 
the FAO Penman-Monteith model to generally underestimate the ET of 
pre-sprouted sugarcane plantlets between 22.9 and 24.2% across three 
different cultivars, especially after the second week of planting. This was 
attributed to an increase in LAI which is not captured by the FAO 
Penman-Monteith model. 

In many low-technology CEAs, air velocities could be approximately 
zero, therefore, the aerodynamic term in the above model equation 
could be neglected. Using both single and dual crop coefficients, Wang 
et al. (2018) found this model to underestimate daily eggplant ET by 
1.1% and 3.3% respectively in a naturally ventilated greenhouse in 
China. It improves if the maximum and minimum temperatures are used 
alongside the mean temperature in calculating the model parameters 
(Naoum and Tsanis, 2003). Windspeed was assumed to be negligible, 
hence it was given a value of zero in the model calculation. However, 
Zhang et al. (2010) found such modification to give poor estimates for 
cucumber ET in a solar greenhouse in North-East China, with a corre
lation coefficient of 0.46. This was attributed to the neglect of the 
aerodynamic term. 

The accuracy of reference ET models depends on the crop co
efficients. Therefore, they are usually not preferred especially for situ
ations where crop coefficient values are lacking, or local calibration is 
difficult to perform. Even for studies that compared reference ET models 
with physical models, the latter has been found to provide more accurate 
estimates. However, reference ET models are useful for situations in 
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which some measured climatic parameters are lacking. They are also 
relatively easy to implement and could give quick rough ET estimates. 
Of the reference ET models used in CEA ET estimation, the recom
mended FAO Penman-Monteith model is the most widely used. It can 
also be used for both daily and hourly ET estimations, adjusting the 
constants accordingly. The next sub-section further discusses the 
concept of crop coefficients and how they are derived. 

3.1.2. Crop coefficients 
The crop coefficient concept was first introduced by Jensen (Jensen, 

1968) to relate the ET of the desired crop over a chosen period to a 
“potential ET”. The Food and Agriculture Organization (FAO) of the 
United Nations recommends the single and dual crop coefficients 
method for the estimation of ET from reference ET models. This is 
because crop coefficients vary strongly with crop characteristics (Dutta 
et al., 2016) and to a limited extent with climate (Gallardo et al., 1999), 
therefore, it could be transferred to new locations and climates. For the 
single crop coefficient method, crop transpiration and soil evaporation 
effects are combined into a single value, whereas in dual crop co
efficients, these two effects are treated separately. Single crop coefficient 
can be obtained from crop ET measurements and reference ET mea
surements as shown in Equation (13): 

Kc =
ETc

ETo
(13)  

where: 

Kc − Crop Coefficient [-] 
ETc −Daily Crop Evapotranspiration [mm/day] 
ETo −Daily Reference Evapotranspiration [mm/day] 

Dual crop coefficient can be expressed as shown in Equation (14): 

(Kcb + Ke) =
ETc

ETo
(14)  

where: 

Kcb − Basal Crop Coefficient [-] 
Ke − Soil Evaporation Coefficient [-] 

In a study by Wang et al. (2018) on eggplant ET estimation, in a 
naturally ventilated greenhouse in China, both single and dual crop 
coefficients were found to give acceptable results (average mean abso
lute error = 0.23 mm/day and 0.22 mm/day respectively). However, the 
latter was closer to the measured values because the dual crop coeffi
cient improves the accuracy of the evaporation estimate. It also predicts 
crop yield better, as crop yield is determined by transpiration more than 
by evapotranspiration. 

Crop coefficients exist for many field-grown crops; however, these 
values cannot be used for CEA-grown crops because the microclimate is 
different for each case. A proper evaluation of the crop coefficient is 
necessary for accurate ET estimation. Crop coefficient values depend on 
the climatic conditions, type of calibration method and the type of ET 
model used (Lozano et al., 2017; Liu et al., 2008). They also depend on 
the irrigation management method used and apply to well-watered, 
optimal conditions. In situations of water stress, or conditions 
different from a relative humidity of 45% and wind speed of 2 m/s, 
adjustments are required to be able to apply FAO standard crop coeffi
cient values (Ragab, 2002). It also depends on the type of crop, growth 
stage, growing season, and length, as well as the cultivation technique, 
employed (Pamungkas et al., 2014; Sharma et al., 2017; Perez et al., 
2002). For example, for the same type of crop grown in the same con
ditions, the crop coefficient value can vary between a vertically sup
ported crop and a prostrate crop (Orgaz et al., 2005). This is because the 
vertically supported crop is capable of intercepting more net radiation. 

The same applies generally between tall and short crops, with the former 
having greater maximum crop coefficient values. Crop coefficients can 
also be affected by frequent wetting of soil surface and could increase to 
1 or 1.2 (Allen et al., 1998). 

Furthermore, crop coefficient changes with the crop growth stage 
therefore a constant value cannot be used for an entire cropping season 
(Blanco and Folegatti, 2003). Zhang et al. (2010) found a poor corre
lation (R2 = 0.46) between ETo and ETc when a constant crop coefficient 
value was used for the FAO Penman-Monteith model. Also, depending 
on the period used, the variability could be regular (Orgaz et al., 2005) 
or irregular (Zhang et al., 2010). 

FAO provides recommended crop coefficient values for field-grown 
crops. In many cases values are given for the three main growth stages 
of a crop – initial, middle, and end. In the study by Wang et al, (2018), 
eggplant crop coefficients were obtained using the recommended FAO 
values as a basis via the following formula: 

Kcest. = Kc + [0.04(U − 2) − 0.004(RHmin − 45) ](H/3)
0.3 (15)  

where: 

Kcest. − Estimated Crop Coefficient [-] 
Kc − FAO Recommended Crop Coefficient [-] 
U − Hourly or Daily Mean Air Velocity [m/s] 
RHmin − Minimum Hourly or Daily Mean Air Relative Humidity [%] 
H − Average height of the crop during the growing period [m] 

The above expression is used when the wind speed within the CEA is 
not 2 m/s and when the daily average minimum relative humidity is not 
45%. The same equation can also be used to compute the basal crop 
coefficient for the dual crop coefficient, replacing the FAO recom
mended crop coefficient value with the FAO recommended basal crop 
coefficient value. While the soil evaporation coefficient can be obtained 
as follows: 

Ke = Kr(Krmax − Kcb) ≤ SP⋅Kcmax (16)  

where: 

Ke − Soil Evaporation Coefficient [-] 
Kr − Surface Soil Evaporation Attenuation Coefficient [-] 
Krmax − Maximum Surface Soil Evaporation Attenuation Coefficient 
[-] 
Kcb − FAO Recommended Basal Crop Coefficient [-] 
SP − Proportion of Soil between the Soil and the Evaporation of the 
Soil [-] 
Kcmax − Maximum FAO Recommended Crop Coefficient [-] 

However, the soil evaporation coefficient can be ignored if soil 
evaporation is prevented by mulching. 

Crop coefficient values from ET experiments have been correlated 
with the growing degree day (GDD) for the estimation of crop co
efficients. Sharma et al. (2017) developed a relationship between GDD 
and experimental crop coefficient values to estimate the crop coefficient 
values for chile peppers. Libardi et al. (2019) also established this 
relationship and one between the Kc and LAI values for pre-sprouted 
sugarcane plantlets. In this study, a strong correlation was found be
tween crop coefficients and days after transplanting (DAT), GDD, and 
LAI. Therefore, a model can be created from these relationships for the 
estimation of crop coefficients. 

Crop coefficients can also be obtained from LAI. For partial cover 
horticultural crops, that is, with LAI less than 3, the Ritchie and Johnson 
(1990) approach can be used. First, the leaf area is estimated from the 
cumulative thermal time (TT) or GDD and a Gompertz function as fol
lows: 

A = Amaxexp[ − b⋅exp(K⋅GDD) ] (17) 
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where: 

A − Plant Leaf Area [cm2] 
Amax − Maximum Plant Leaf Area [cm2] 
b and K − Empirical Coefficients [-] 
GDD − Growing Degree Day [◦C/day] 

The crop coefficient can then be obtained as follows: 

Kc = Kcini +

[
Kcmid − Kcini

3

]

× LAI (18)  

where: 

Kc − Crop Coefficient [-] 
Kcini − Crop Coefficient value for initial crop development stage [-] 
Kcmid − Crop Coefficient value for middle crop development stage [-] 
LAI − Leaf Area Index [-] 

However, for crops such as pepper that get pruned frequently, the 
above approach cannot be used. Instead, a linear relationship between 
the crop coefficient and cumulative thermal time using LAI must be 
obtained. Orgaz et al. (2005) present a regression equation for sweet 
pepper in a low technology greenhouse in southeast Spain, however, 
such expression can only be used for sweet pepper cultivated under 
similar management methods. It would, therefore, need calibration for 
other environments, the expression is given in Equation (19): 

Kc = Kcini + 0.00176 × (GDD − 200) (19)  

where: 

Kc − Crop Coefficient [-] 
Kcini − Crop Coefficient value for initial crop development stage [-] 
GDD − Growing Degree Day [◦C/day] 

The crop coefficient also relates to the percentage of soil water 
content as well as weeks after planting (WAP). A regression correlation 
for the latter was presented by Toyin et al. (2015) as follows: 

Kc = − 0.007WAP2 + 0.097WAP − 0.005 (20)  

where: 

Kc − Crop Coefficient [-] 
WAP − Weeks After Planting 

Crop coefficient models have also been derived from climatic vari
ables. Junzeng et al. (2008) derived a relation between crop coefficient 
and climatic factors for tomato and cowpea. The model was based on air 
temperature TA, relative humidity RH, and ground surface temperature 
TG as well as some parameter coefficients. The equation for tomato (β =
0.317, γ = 0.037, ω  = −0.357, δ = −1.513) and cowpea (β = 0.406, γ =
−0.236, δ = −4.141) is shown in Equations (21) and (22) respectively: 

Kc = βTA + γRH + ωTG + δ (21)  

Kc = βTA + γTG + δ (22)  

where: 

Kc − Crop Coefficient [-] 
T − Air Temperature [◦C] 
RH − Relative Humidity [%] 
Tg − Ground Surface Temperature [◦C] 
β, γ, δ and ω − Empirical Constants [-] 

Crop coefficients play a key role in the simple estimation of ET from 

reference ET models. They make it possible to obtain accurate ET esti
mations while avoiding the difficulty of measuring some parameters. 
Crop coefficients combine several factors such as cultivar, stage of 
growth, plant density, season length, and canopy architecture into a 
single value. In many cases, such values could also be transferred from 
one location to another with little calibration. However, this means that 
for accurate estimation, local calibration must be performed which 
could sometimes be time-consuming. Also, only a limited number of CEA 
cultivated crops have published crop coefficient data, with the need for 
more studies to confirm the validity of such reported figures. Such 
studies with published data include typical greenhouse crops such as 
cucumber (Zhang et al., 2010; Blanco and Folegatti, 2003), tomato 
(Junzeng et al., 2008; Pamungkas et al., 2014; Acquah et al., 2018; Gong 
et al., 2019), melon (Lozano et al., 2017; Orgaz et al., 2005) and sweet 
pepper (Gallardo et al., 1999; Orgaz et al., 2005) as well as other crops 
such as banana (Liu et al., 2008), chile pepper (Sharma et al., 2017), 
sugarcane plantlets (Libardi et al., 2019), eggplant (Wang et al., 2018), 
green beans (Orgaz et al., 2005), water melon (Orgaz et al., 2005), leaf 
amaranth (Toyin et al., 2015), oil palm (Sigalingging and Rahmansyah, 
2018) and cowpea (Junzeng et al., 2008). The validity and reliability of 
crop coefficient values also depends on the ET experiment design (Allen 
et al., 2011). 

3.2. Physical ET models 

Most of the physical ET models in use are based on the thermal en
ergy balance of the canopy as shown in Equation (23). They consider the 
effects of net radiation In, soil/substrate heat flux G, sensible heat fluxS,

and latent heat fluxλET. They also require crop-specific parameters such 
as aerodynamic and stomatal resistance. Most models are modifications 
of the Penman-Monteith model (Equation (24)) to better cater to certain 
conditions. Most models differ in the way they treat the net radiation 
and resistances to vapor flux. A reason for such modifications could be to 
avoid the constant measurement and calibration of terms such as the 
stomatal and aerodynamic resistances. They consider both climatic and 
crop properties, in contrast, to reference ET models. 

λET = In − G − S (23)  

3.2.1. Model descriptions 

3.2.1.1. Penman-Monteith model. The Penman-Monteith model (Allen 
and Hillel, 2005; Monteith, 1965) assumes that a three-dimensional 
plant canopy can be modeled as a one-dimensional “big leaf”. Over 
this surface, radiation is absorbed, heat is exchanged, and latent energy 
is released. The equation includes a radiation term and an aerodynamic 
term. The model equation can be written as in Equation (24): 

ETc =
1
λ

Δ(In − G) +
ρa ⋅Cp⋅VPD

ra

Δ + γ
(

1 + rs
ra

) (24)  

where: 

ETc −Daily Crop Evapotranspiration [mm/day] 
λ −Latent Heat of Vaporization [MJ/kg] 
Δ −Slope of the Saturation Vapor Pressure-Temperature Curve [kPa/ 
◦C] 
γ −Psychrometric Constant [kPa/◦C] 
In −Daily Net Radiation [MJ/m2 day] 
G −Soil Heat Flux [MJ/m2 day] 
ρa −Mean Air Density [kg/m3] 
Cp −Specific Heat of Air [MJ/kg ◦C] 
VPD −Vapor Pressure Deficit [kPa] 
rs −(Bulk) Surface or Canopy Resistance [s/m] 
ra −Aerodynamic Resistance [s/m] 
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In a study by Villarreal-Guerrero et al. (2012), the Penman-Monteith 
model was found to generally overestimate the evapotranspiration of 
greenhouse cultivated bell pepper (summer season - natural ventilation 
and fogging: ~ 21%, R2 = 0.95, summer season - pad and fan: ~ 15%, 
R2 = 0.96) and tomato (fall season – pad and fan: ~ 11%, R2 = 0.51, 
spring season - pad and fan: ~ 10%, R2 = 0.90, spring season - natural 
ventilation and fogging: ~ 13%, R2 = 0.94). The authors attributed this 
to the fact that the model was originally developed to estimate ET for 
outdoor conditions. The study was performed in a medium technology 
greenhouse in Tucson, Arizona, using two cooling strategies (pad and 
fan cooling, and natural ventilation with high pressure fogging). Zhang 
and Lemeur (1992) also found the model to overestimate Ficus Benja
mina ET by roughly 27% on average, however, it had an R2 value (0.97) 
closer to unity. They concluded that this was because the model was 
sensitive to errors in the calculation of the aerodynamic resistance which 
they found to be equal to the radiation term, therefore in such cases, the 
accuracy of the aerodynamic resistance model is crucial. 

In another study by López-Cruz et al. (2008), the model was found to 
generally have a similar R2 value to the Stanghellini model (0.75) but a 
much larger root mean square error (17.1 to Stanghellini’s 2.4) for to
mato ET in a medium technology greenhouse in Mexico. The model 
performance also depends on the prevailing climatic conditions. In high 
solar radiation and VPD conditions, the model was found to have a lower 
R2 value (0.62) compared to Stanghellini’s (0.72). 

Zolnier et al. (2004) also found the Penman-Monteith model to have 
a good correlation with R2 values ranging from 0.82 to 0.93 for scenarios 
with LAI greater than 0.5. This was performed for three different culti
vars of lettuce, in a greenhouse without environmental controls, located 
in Brazil. Estimated errors were less than 0.03 mm/h. 

In some studies, the net radiation term is expressed as a function of 
the LAI and extinction coefficient k. This is because the Penman- 
Monteith equation considers a complete crop canopy which is not the 
case in practice (Qiu et al., 2013). The net radiation must, therefore, be 
multiplied by the radiation intercepted by the canopy given as in 
Equation (25): 

(1 − τ) = 1 − exp( − ek⋅LAI) (25)  

where: 

τ −Transmissivity [-] 
ek −Extinction Coefficient [-] 
LAI −Leaf Area Index [-] 

This helps to account for the gradual development of the canopy and 
improves the accuracy of the ET estimation. 

3.2.1.2. Stanghellini model. This model was developed by Stanghellini 
(1987) specifically for ET estimation in CEA or indoor conditions. It 
simulates a multi-layer canopy, using tomato crop cultivated in a single 
glass Venlo type CEA equipped with hot-water pipe heating. It has been 
extensively used by researchers for CEA ET estimation. The model 
equation is given as in Equation (26): 

ETc =
1
λ

Δ
γ (In − G) +

2⋅LAI⋅ρa ⋅Cp
γra

(VPD)

1 + Δ
γ + rs

ra

(26)  

where: 

ETc −Daily Crop Evapotranspiration [mm/day] 
λ −Latent Heat of Vaporization [MJ/kg] 
Δ −Slope of the Saturation Vapor Pressure-Temperature Curve [kPa/ 
◦C] 
γ −Psychrometric Constant [kPa/◦C] 
In −Daily Net Radiation [MJ/m2 day] 
G −Soil Heat Flux [MJ/m2 day] 

ρa −Mean Air Density [kg/m3] 
Cp −Specific Heat of Air [MJ/kg ◦C] 
VPD −Vapor Pressure Deficit [kPa] 
LAI −Leaf Area Index [-] 
ra −Aerodynamic Resistance [s/m] 
rs −(Bulk) Surface or Canopy Resistance [s/m] 
rR −Radiative Resistance [s/m] 

The inclusion of the LAI accounts for energy flux between multiple 
layers of leaves in a CEA canopy, while the factor of 2 includes both 
surfaces of the leaf. This term has been highlighted as the main reason 
for the improved performance under CEA conditions (López-Cruz et al., 
2008). There is also the inclusion of the radiative resistance term with a 
more detailed calculation of the incoming radiation flux. In the Stan
ghellini model, for the aerodynamic term, conditions within the CEA are 
treated as being in mixed convection. Therefore, these modifications 
make it more suitable for CEA ET estimations compared to other ET 
models. 

Net radiation for this model is obtained as the difference between the 
shortwave and longwave radiation as shown in the following equations 
(Eqs. (27)–(29)). 

In = Ins − Inl (27)  

Ins = 0.07⋅Is (28)  

Inl =
0.16⋅Kt⋅ρa⋅Cp⋅(T − To)

rR
(29)  

where: 

In −Daily Net Radiation [MJ/m2 day] 
Ins −Daily Net Short Wave Radiation [MJ/m2 day] 
Inl −Daily Net Long Wave Radiation [MJ/m2 day] 
Is −Daily Incoming Solar Radiation [MJ/m2 day] 
Kt −Unit Conversion [86400 s/day, 3600 s/h] 
ρa −Mean Air Density [kg/m3] 
Cp −Specific Heat of Air [MJ/kg ◦C] 
T −Air Temperature [◦C] 
Tl −Leaf Temperature [◦C] 
rR −Radiative Resistance [s/m] 

In that study by Villarreal-Guerrero et al. (2012), this model gave 
better estimates compared to Penman-Monteith and Takakura models 
(Takakura et al., 2005), with percentage errors between −5.5% to 7%, 
depending on the type of crop, season, and cooling strategy employed. 
Pamungkas et al. (2014) found the Stanghellini model slightly over
estimated ET but had a strong correlation with the measured ET for 
hydroponically cultivated tomatoes in a plant factory. Acquah et al. 
(2018) found a high correlation (R2 = 0.9) between the Stanghellini 
model ET and measured ET for tomatoes grown in a low technology, 
multi-span, Venlo-type greenhouse in Zhenjiang, China. Percentage 
deviation (overestimation) from measured ET was between 9.91 and 
14.16% from May to July. 

3.2.1.3. Fynn model. The Fynn model (Fynn et al., 1993) (Equation 
(30)) is derived from the Stanghellini model, using the crop canopy 
energy balance. However, it does not include the detailed radiation flux 
calculation of the Stanghellini model. The model assumes that the 
saturated vapor pressure at leaf temperature can be approximated as the 
saturated vapor pressure at air temperature as long as the temperature 
difference between the leaf and air temperature is less than 4 to 5 ◦C. 

ETc =
{2⋅LAI⋅ρa⋅Cp[VPD]/ra } + Δ(In − G)

λγ
[

1 + rs
ra

+ Δ
γ

] (30) 
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where: 

ETc −Daily or Hourly Crop Evapotranspiration [mm/day] 
Δ −Slope of the Saturation Vapor Pressure-Temperature Curve [kPa/ 
◦C] 
γ −Psychrometric Constant [kPa/◦C] 
In −Daily Net Radiation [MJ/m2 day] 
G −Soil Heat Flux [MJ/m2 day] 
ρa −Mean Air Density [kg/m3] 
Cp −Specific Heat of Air [MJ/kg ◦C] 
VPD −Vapor Pressure Deficit [kPa] 
LAI −Leaf Area Index [-] 
λ −Latent Heat of Vaporization [MJ/kg] 
ra −Aerodynamic Resistance [s/m] 
rs −(Bulk) Surface or Canopy Resistance [s/m] 

Prenger et al. (2002) modified the Fynn model, with the inclusion of 
a canopy area index (CAI) to improve the radiation flux calculation. It is 
defined as the ratio of the canopy area to the CEA floor area and helps to 
account for the radiation intercepted directly by the canopy. However, 
this was only tested for a scenario of four evenly spaced Red Maple trees 
in a greenhouse, therefore more rigorous testing is required especially 
for multiple plant scenarios to study its effectiveness. The modified 
equation is given as in Equation (31): 

ETc =
1
λ

[
Δ

Δ + γ
(

1 + rs
ra

)⋅CAI⋅(In − G) +
γ

Δ + γ
(

1 + rs
ra

)⋅2⋅LAI⋅
ρa⋅λ⋅(VPD)

ra
]

(31)  

where: 

ETc −Daily Crop Evapotranspiration [mm/day] 
Δ −Slope of the Saturation Vapor Pressure-Temperature Curve [kPa/ 
◦C] 
γ −Psychrometric Constant [kPa/◦C] 
In −Daily Net Radiation [MJ/m2 day] 
G −Soil Heat Flux [MJ/m2 day] 
ρa −Mean Air Density [kg/m3] 
Cp −Specific Heat of Air [MJ/kg ◦C] 
VPD −Vapor Pressure Deficit [kPa] 
LAI −Leaf Area Index [-] 
CAI −Canopy Area Index [-] 
λ −Latent Heat of Vaporization [MJ/kg] 
ra −Aerodynamic Resistance [s/m] 
rs −(Bulk) Surface or Canopy Resistance [s/m] 

In the study above (Prenger et al., 2002), the Fynn model was 
compared to the Stanghellini, Penman, and Penman-Monteith model. 
However, it had the poorest performance with a Nash-Sutcliffe model 
efficiency coefficient of −0.848, underestimating ET by roughly 45%. 

3.2.1.4. Baille model. The Baille (Baille et al., 1994) model is a modified 
form of the Penman-Monteith model that replaces the crop parameters 
difficult to measure with regression constants. However, the overall 
model equation still considers the effects of net radiation, leaf area 
index, and VPD. But with a reduction in the number of required pa
rameters, the model can be easily implemented once the model pa
rameters K1 and K2 have been determined. By knowing which parameter 
has the strongest effect on ET, better ET control can be obtained (Car
massi et al., 2013). These model parameters are estimations of radiative 
and advective terms appearing in the original Penman-Monteith model. 
The model equation is given as in Equation (32), where K1 and K2 are 
regression coefficients: 

ETc =
1
λ

[K1⋅In⋅(1 − exp( − ek⋅LAI) ) + K2⋅LAI⋅VPD ] (32)  

where: 

ETc −Daily Crop Evapotranspiration [mm/day] 
λ −Latent Heat of Vaporization [MJ/kg] 
K1 −Regression Coefficient [-] 
K2 −Regression Coefficient [-] 
In −Daily Net Radiation [MJ/m2 day] 
ek −Extinction Coefficient [-] 
VPD −Vapor Pressure Deficit [kPa] 
LAI −Leaf Area Index [-] 

Battista et al. (2015) used the Baille equation in the estimation of 
tomato ET in a glasshouse located in Italy equipped with fan-heaters, 
shading, and a closed-loop hydroponic system. The ET model makes 
use of coefficients that need to be adjusted based on the climate and crop 
characteristics and had an estimation error of less than 5%. A similar 
model was also employed by Medrano et al. (2005) for the ET estimation 
of cucumber cultivated in a naturally ventilated greenhouse in Almeria, 
Spain. The model used different day and night values for Coefficient K2, 
overestimating ET by 2% and 9% for the spring and autumn cropping 
cycle, respectively. 

3.2.1.5. Takakura model. This model was developed by Takakura et al. 
(2005) based on the CEA heat balance. However, it requires a crop 
solarimeter for accurate ET estimation. The solarimeter is used to 
accurately measure the net radiation and evaporative surface tempera
tures. The model equation is given as in Equation (33): 

ETc =
1
λ

[(In − G) − h(T − Tw) ] (33)  

where: 

ETc −Daily Crop Evapotranspiration [mm/day] 
λ −Latent Heat of Vaporization [MJ/kg] 
G −Soil Heat Flux [MJ/m2 day] 
h −Convective Heat Transfer Coefficient of Air [W/m2 ◦C] 
In −Daily Net Radiation [MJ/m2 day] 
T −Daily Mean Air Temperature [◦C] 
Tw −The temperature of the Evaporative Surface [◦C] 

Villarreal-Guerrero et al. (2012), found this model to be fairly ac
curate during the early morning, but overestimates early noon ET and 
underestimates ET values for the remaining hours of the day. The study 
investigated greenhouse cultivated pepper (summer season - natural 
ventilation and fogging: ~−7%, R2 = 0.90; summer season - pad and 
fan: ~−4%, R2 = 0.89) and tomato (fall season – pad and fan: ~−24%, 
R2 = 0.66; spring season - pad and fan: ~+7%, R2 = 0.86; spring season 
– natural ventilation and fogging: ~+2%, R2 = 0.88). Zhang and Lemeur 
(1992) performed ET estimations derived from the simple energy bal
ance equation (Equation (23)), with all fluxes being positive if entering 
the surface and negative if leaving. They found this model to predict 
Ficus Benjamina ET with an R2 value of 0.88, overestimating by 3 to 
13% on average. The model was also found to be unaffected by errors 
due to aerodynamic resistance. 

3.2.1.6. Graamans model. Graamans et al. (2017) developed a modified 
form of the Penman-Monteith model for lettuce grown in a plant factory. 
The model iteratively solves for the leaf temperature by ensuring that 
the energy balance equation is satisfied. In this model, the latent heat 
flux was derived in terms of the difference between the canopy vapor 
concentration χs and the air vapor concentration χa as shown in Equa
tion (34). 
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λET = LAI⋅λ⋅
(χs − χa)

rs + ra
(34)  

where: 

λET −Latent Heat Flux [W/m2] 
LAI −Leaf Area Index [-] 
λ −Latent Heat of Vaporization [J/kg] 
χs −Vapor Concentration at the canopy level [kg/m3] 
χa −Vapor Concentration of the air [kg/m3] 
ra −Aerodynamic Resistance [s/m] 
rs −(Bulk) Surface or Canopy Resistance [s/m] 

It also includes a sub-model for net radiation, based on the reflection 
coefficient as shown in Equation (35). 

In = (1 − Rc)⋅Iabs⋅CAC (35)  

where: 

In −Net Radiation [W/m2] 
Rc −Reflection Coefficient [-] 
Iabs −Effectively Absorbed Radiation [W/m2] 
CAC −Cultivation Area Cover [-] 

The sub-models for aerodynamic and stomatal resistances are pre
sented in Tables 2 and 3 respectively. However, a constant value was 
used for the aerodynamic resistance with different values to represent 
fan-on and fan-off scenarios. 

3.2.1.7. Shuttleworth-Wallace model. This model is based on a one- 
dimensional energy partition which leads to a combination equation 

that better accounts for the transformation from a sparse to a full canopy 
(Shuttleworth and Wallace, 1985; Fisher et al., 2005). It also requires 
stomatal, aerodynamic as well as surface resistance for bare soil. The 
model equations are given in Equations (36)–(46): 

λETc = λTc + λEs (36)  

where: 

λETc −Latent heat flux [W/m2] 
λTc −Latent heat flux of transpiration from canopy surface [W/m2] 
λEs −Latent heat flux from substrates [W/m2] 

λTc = Cc
ΔA +

((
ρaCpVPD − Δrc

aAs
)/(

ra
a + rc

a

) )

Δ + γ
(
1 +

(
rc

s /
(
ra

a + rc
a

) ) ) (37)  

λEs = Cs
ΔA +

((
ρaCpVPD − Δrc

a(A − As)
)/(

ra
a + rc

a

) )

Δ + γ
(
1 +

(
rs

s/
(
ra

a + rs
a

) ) ) (38)  

Cc =

[

1 +
c3c1

c2(c3 + c1)

]−1

(39)  

Cs =

[

1 +
c2c1

c3(c2 + c1)

]−1

(40)  

c1 = (Δ + γ)ra
a (41)  

c2 = (Δ + γ)rs
a + γrs

s (42)  

c3 = (Δ + γ)rc
a + γrc

s (43)  

J = (In − G) (44) 

Table 1 
Aerodynamic resistance models used in different studies.  

S/ 
N 

Study Resistance Model Equation ET Model Remark 

1. (Villarreal-Guerrero et al., 2012) Equation (51), Equation (55), Equation 
(58) 

Stanghellini The following averages were obtained for bell pepper (259 s/ 
m) and tomato (185 s/m) 
Heat transfer was taken to be via mixed convection. 

2. (Villarreal-Guerrero et al., 2012) 
re =

[ln(z − d)/z0 ]
2

K2⋅u  
Penman-Monteith The following averages were obtained for bell pepper (59 s/ 

m) and tomato (70 s/m) 
Where K2is von Karman Constant (=0.41)  

3. (Acquah et al., 2018) 
re = 220⋅

l0.2

U0.8  
Stanghellini Related to the characteristic leaf dimension and average 

interior air velocity. The average value of 145 s/m was 
obtained. 

4. (Jaafar and Ahmad, 2018) 
re =

1
K2⋅u

⋅ln
(

x − d
H − d

)

⋅ln
(

x − d
z0

)
Penman-Monteith Expressions for the estimation of z0 and d were provided by 

the authors. 
Where K2is von Karman Constant (=0.41)  

5. (Demrati et al., 2007) re =
Cp

1.95
|Tl − T|

0.25

l
+ 5.2

(
U
l

)0.5  
Penman-Monteith Where U is the air velocity in the CEA and is obtained as a 

ratio of the ventilation flux and surface of the opening section. 

6. (Graamans, 2017) 
re = 350⋅

(
1
U

)0.5
⋅LAI−1  

Graamans However static values were used for forced (100 s/m) and free 
(200 s/m) air circulation. 

7. (Yang et al., 1990) re =
1

dc⋅Nu  
Modified 
Penman-Monteith 

Where dc is the diffusion coefficient of water vapor in the air 
and Nu is calculated from Equation (60)  

8. (Pollet et al., 1998) 
re = 840⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
l

|Tl − T|

4

√ Penman-Monteith Modeled for conditions of free convection. 

9. (Zhang and Lemeur, 1992) Equation (50), Equation (58), Equation 
(59), Equation (64). 

Penman-Monteith Mixed and forced gave stable values, while leaf temperature 
cooler than air gave values closer to that obtained from an 
energy balance. 

10. (Bailey, 1993) Equation (51), Equation (57), Equation 
(58) and Equation (59) 

Penman-Monteith ET predictions made using forced and mixed convection gave 
better results 

11. (Baille et al., 1996) 
re =

1174⋅l0.5

(
l⋅|Tl − T| + 207⋅U2

)0.25  
– The model was based on Stanghellini’s (Stanghellini, 1987) 

formulation. 
12. Willits, 2003; Stanghellini and de Jong, 

1995) re =
1174⋅l0.5

(
l⋅|Tl − T| + 207⋅U2

)0.25  
Penman-Monteith The model was based on Stanghellini’s (Stanghellini, 1987) 

formulation. 
13. (Montero, 2001; Carmassi et al., 2013; 

Rouphael and Colla, 2004; Qiu et al., 
2013) 

Equation (51), Equation (57), Equation 
(58) and Equation (59) 

Penman-Monteith Free, forced, and mixed heat transfer equations were used and 
compared.  
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Js = (Ins − G) (45)  

Ins = Inexp( − ek⋅LAI) (46)  

where: 

Tc −Plant Transpiration [W/m2] 
Eg −Soil Evaporation [W/m2] 
Cc −Canopy Resistance Coefficient [-] 
Cs −Soil Surface Resistance Coefficient [-] 
J −Total Available Energy [W/m2] 
ρa −Air Density [kg/m3] 
Cp −Specific Heat of Air [J/kg ◦C] 
VPD −Water Vapor Pressure Deficit [kPa] 
rc
a −Bulk Boundary Layer Resistance of the vegetative elements in the 

canopy [s/m] 
Js −Available Energy to Soil Surface [W/m2] 
ra
a −Aerodynamic Resistance Between Mean Canopy Flow and 

Reference Height [s/m] 

Δ −The slope of the Saturation Vapor Pressure-Temperature Curve 
[kPa/◦C] 
γ −Psychrometric Constant [kPa/◦C] 
rc
s −Canopy Resistance [s/m] 

rs
s −Soil Surface Resistance [s/m] 

rs
a −Aerodynamic Resistance Between Soil Surface and Mean Canopy 

Flow [s/m] 
G −Soil Heat Flux [W/m2] 
In −Net Radiation [W/m2] 
Ins −Net Radiation Absorbed by Substrate [W/m2] 
ek −Extinction Coefficient [-] 
LAI −Leaf Area Index [-] 

Huang et al. (2020) employed this model for the estimation of cu
cumber ET in a Venlo-type greenhouse with an index of agreement of 
0.93. On average, it overestimated ET by 8.4% in the Spring season and 
by 27.6% during the autumn. An advantage of this model is that crop 
evapotranspiration can be easily separated into crop transpiration and 
soil evaporation. However, in a study by Gong et al. (2019) on solar 

Table 2 
Stomatal resistance models used in different studies.  

S/ 
N 

Study Resistance Model Equation ET Model Remark 

1. (Villarreal-Guerrero 
et al., 2012) ri = c1⋅

[
(In/(2⋅LAI) ) + c2

(In/(2⋅LAI) ) + c3

]

⋅
(
1 +c4⋅VPD2) Stanghellini The model had an R2 of 0.93 and rs values ranged from 

40 s/m during the day to 8000 s/m at night. 
2. (Villarreal-Guerrero 

et al., 2012) ri = c1⋅
[
In + c2

In + c3

]

⋅
(
1 +c4⋅VPD2) Penman- 

Monteith 
The model had an R2 of 0.93 and rs values ranged from 
40 s/m during the day to 8000 s/m at night 

3. (Montero et al., 2001) ri =
1

gmin +
(
gmax − gmin

)
⋅(2.27⋅I/(I + 1888) )

Penman- 
Monteith 

The model was found to be a function of Incident PAR 
radiation only. 
The model had an R2 of 0.98 

4. (Acquah et al., 2018) 
ri = 200

[

1 +
1

exp(0.05(τ × Is − 50) )

]
Stanghellini Model is a function of radiation and is derived from 

Boulard and Wang (Boulard and Jemaa, 1992). 
5. (Kittas et al., 1999) 

ri = rmin

(
b1 + Is
b2 + Is

)

⋅(1 +exp[c(VPD − 2.5) ] )
Baille The model was based on the radiation and the VPD. 

6. (López-Cruz et al., 
2008) ri = 82⋅

[
(In/(2⋅LAI) ) + 4.30
(In/(2⋅LAI) ) + 0.54

]

⋅
(

1 +0.023⋅(T − 24.5)
2

) Stanghellini The model was found to be a function of radiation and 
air temperature. 

7. (Jaafar and Ahmad, 
2018) 

ri =
1

b1 ⋅LAI
rc
s

+
b2

rs
s  

Penman- 
Monteith 

b1and b2 are empirical coefficients taken to be 1.52 and 
0.05 respectively.  

8. (Demrati et al., 2007) ri = rmin [1 + exp0.0033(In − 516.505) ]
−1  Penman- 

Monteith 
The model uses the radiation intensity at the crop level. 
The fit slightly improves with the addition of the VPD or 
leaf temperature. 

9. (Graamans, 2017) ri = 60⋅
1500 + PPFD
200 + PPFD  

Graamans The model was based on PPFD, considering other 
climatic parameters negligible. 

10. (Yang et al., 1990) ri = 142.7 + 953.9exp( −0.0081⋅I) Modified 
Penman- 
Monteith 

The model had an R2 of 0.647. However, since ri is a 
function of radiation only, it cannot account for 
nighttime variations.  

11. (Pollet et al., 1998) ri =

164⋅
31.029 + Is
6.740 + Is

⋅
(

1 +0.011(VPD − 3)
2

)
⋅
(

1 +0.016(T − 16.4)
2

)
Penman- 
Monteith 

The addition of successive parameters improved the 
correlation with solar radiation and VPD having the 
greatest effects. 

12. (Rouphael and Colla, 
2004) 

ri = 87.30 + 647.24 × exp( −0.0022⋅Iabs) Penman- 
Monteith 

Fitted for CEA cultivated zucchini. 

13. (Qiu, 2013) ri =
1

0.001 + 0.169(0.169Is/(Is + 1169) )

Penman- 
Monteith 

A significant correlation (R2 = 0.95) was found between 
solar radiation and stomatal resistance for hot pepper. 

14. (Ondrašek, 2007) 
ri = 200

[

1 +
1

exp(0.05(τ × Is − 50) )

]
Penman- 
Monteith 

The model was based on the external incoming radiation 
and the transmissivity of the CEA cover. 

15. (Zhang and Lemeur, 
1992) 

ri = 507exp( −0.00235⋅I) Penman- 
Monteith 

The model had an R2 of 0.78. 
The model was also found to be a function of solar 
radiation only, with the effect of leaf temperature and 
VPD unclear. 

16. (Bailey, 1993) ri = 46 +
54500
55 + I  

Penman- 
Monteith 

The model was found to be a function of Incident PAR 
radiation only. 
The model accounted for 92% of the observed variation. 

17. (Cannavo et al., 2016; 
Cannavo et al., 2016) 

ri = −115Is −139RH + 139Is⋅RH + 661Is2 −368RH3  Penman- 
Monteith 

The first equation represents the FFD model for pot 
planted New Guinea Impatiens 
While the second represents the Jarvis model for the 
same crop. 

ri = 48.1
(316.67 + Is)

8.87 + Is

(
1 −0.15(VPD − 2.84)

2
)

18. (Willits, 2003; 
Stanghellini and de 
Jong, 1995) 

ri = 82⋅
[
ac⋅Is + 4.30
ac⋅Is + 0.54

]

⋅
[
e0.3⋅Tl + 258
e0.3⋅Tl + 27

]

⋅ 

[

0.004 + e

−0.73⋅ρa⋅Cp⋅VPD
γλ

]−0.25  

Penman- 
Monteith 

The model was found to be a function of radiation, 
canopy temperature, and VPD. Where ac is the 
absorption coefficient based on the canopy 
transmissivity.  
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greenhouse tomato ET, this model was found to slightly overestimate ET 
at the initial growth stage, and underestimate ET at the mid-stage. It had 
an overall absolute relative error of 50.2%. On the other hand, for LAI 
values between 0.5 and 2.7, it estimated crop ET with an R2 value of 0.91 
and 0.94 in 2015 and 2016, respectively. 

3.2.1.8. Other modified Penman-Monteith models. Bailey et al. (1993) 
developed a modified form of the Penman-Monteith model for ficus 
Benjamina cultivated in a naturally ventilated glasshouse and plastic- 
covered greenhouse in the UK and Spain respectively. The model as
sumes that terms with a strong temperature dependence be expressed as 
exponential functions of temperature while others are evaluated at a 
temperature of 25 ◦C. An extinction coefficient of 0.625 was also 
assumed while the net radiation was replaced with global solar radia
tion. The model estimates ET with an error of ± 5%, its equation is 
shown in Equation (47): 

ETc =
1
λ

[
Is⋅exp(0.052⋅T)[1 − exp( − 0.625⋅LAI) ] + 49.4⋅LAI⋅VPD/l0.5

2⋅exp(0.038⋅T) + 0.00274⋅rs/l0.5

]

(47)  

where: 

ETc −Daily Crop Evapotranspiration [mm/day] 
Is −Daily Surface Radiation [MJ/m2 day] 
λ −LatentHeatofVaporization[MJ/kg]

T −Air Temperature [◦C] 
VPD −Vapor Pressure Deficit [kPa] 
LAI −Leaf Area Index [-] 
l −Characteristic Leaf Dimension [m] 
rs −Surface Resistance [s/m] 

Boulard and Jemaa (Boulard and Jemaa, 1992) developed a modified 
form of the Penman-Monteith model for soilless cultivated tomato, in an 
environment controlled plastic greenhouse, in which terms of the right 
and left-hand side are replaced by two constants (K1 and K2), leaving 
only the absorbed radiation and the VPD term. K1 and K2 can either be 
obtained via calculation, using measured parameters, or estimated via 
multiple regression: 

ETc =
1
λ

[K1⋅Is + K2⋅VPD] (48)  

where: 

ETc −Daily Crop Evapotranspiration [mm/day] 
Is −Daily or Hourly Surface Radiation [MJ/m2 day] 
λ −LatentHeatofVaporization[MJ/kg]

K1 −Model Constant [-] 
K2 −Model Constant [-] 
VPD −Vapor Pressure Deficit [kPa] 

Airman and Houter (1990) estimated the ET of a Nutrient Film 
Technique (NFT) cultivated tomato in a glasshouse with a modified form 
of the Penman-Monteith model. Their model equation required the 
measurements of net radiation absorbed by the crop per unit leaf area A 
and the VPD as well as the estimation of two model parameters that 
depend on the properties of water vapor. The model equation can be 
seen in Equation (49): 

ETc = K1(A + K2⋅VPD) (49)  

where: 

ETc −Daily Crop Evapotranspiration [mm/day] 
A −Leaf Area [m2] 
K1 −Model Parameters [-] 
K2 −Model Parameters [-] 
VPD −Vapor Pressure Deficit [kPa] 

In addition to the properties of water vapor, these model parameters 
also depend on the stomatal, cuticular, and aerodynamic conductance. 
However, Jolliet and Bailey (Jolliet and Bailey, 1992) found this model 
to overestimate ET by 62% with an R2 value of 0.59 due to its over
estimation of the effect of VPD. It was concluded that the use of constant 
values for the stomatal conductance was the main reason for such 
overestimation. This study was performed for NFT cultivated tomatoes 
in an environment-controlled greenhouse. Massa et al. (2011) also found 
a modified form of the Penman-Monteith model to underestimate water 

Table 3 
Models, input parameters, advantages and disadvantages of indoor ET models.  

S/ 
N 

ET Model Input 
Parameters 

Advantages Disadvantages Reference 

1. Priestley-Taylor T, Is. Useful in situations where complete climatic 
data is lacking 

Based on radiation and thus is unsuitable for high 
advection conditions 

(Liu et al., 2008; 
Sharma et al., 2017) 

2. FAO-24 Radiation T, Is. Accurate prediction for locations with humid 
climates in naturally ventilated greenhouses. 

Based on radiation and thus is unsuitable for high 
advection conditions 

(Liu et al., 2008) 

3. Hargreaves- 
Samani 

T, Is. Easy to use and requires few climatic parameters. Largely overestimates ET. (Fernández et al., 
2010) 

4. FAO Penman T, Is, RH, U. Takes advection term into account which 
improves its accuracy. 

Wind function is difficult to obtain. (Liu et al., 2008) 

5. FAO-56 Penman- 
Monteith 

T, Is, RH, U. Takes advection term into account which 
improves its accuracy. 
Standard Reference ET model. 

It underestimates reference evapotranspiration 
conditions with high evaporative demand. 

(Liu et al., 2008) 

6. Penman-Monteith T, Is, RH, U. It is the standard physical model and gives 
acceptable results in many applications. 

The need for stomatal and aerodynamic resistances 
poses a difficulty 

(Villarreal-Guerrero 
et al., 2012) 

7. Stanghellini 
Model 

T, Is, RH, U, 
LAI, Tl. 

A suitable model for CEA applications. The need for stomatal and aerodynamic resistances as 
well as the measurement of LAI poses a difficulty 

(Villarreal-Guerrero 
et al., 2012) 

8. Takakura Model T, Is, U, Tw. Easier to implement As the crop matures, careful adjustments of the 
solarimeter are required 

(Villarreal-Guerrero 
et al., 2012) 

9. Fynn Model T, Is, RH, U, 
LAI. 

Easier to implement and cost-effective compared 
to the Stanghellini model 

The assumption of equal air and leaf temperatures 
affects accuracy. 
Not well tested in multiple plant scenarios. 

(Prenger et al., 2002) 

10. Baille Model T, Is, RH, LAI. Easy to implement with few climatic parameters. Cannot be applied to multiple scenarios without 
recalibration. 

(Montero, 2001; 
Battista, 2015) 

11. Graamans Model T, Is, RH, U, 
LAI, Tl. 

Most applicable to emerging areas of CEA e.g. 
plant factories, shipping container farms, etc. 

The need for stomatal and aerodynamic resistances as 
well as the measurement of LAI poses a difficulty 

(Graamans, 2017) 

12. Shuttleworth and 
Wallace 

T, Is, RH, U. Separates evapotranspiration calculation into 
crop transpiration and soil evaporation. 

The need for stomatal and aerodynamic resistances 
poses a difficulty 

(Gong et al., 2019; 
Huang et al., 2020)  
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uptake by between 0.4 and 6.3% on average for soilless cultivated 
greenhouse tomatoes. 

Physical models offer a direct estimation of crop ET; however, they 
require a complete set of climatic data in addition to crop physiological 
parameters. The Penman-Monteith and Stanghellini models have been 
mostly used, however, accuracy varies from experiment to experiment. 
Simpler physical models like the Baille model offer an easier method for 
ET estimation, however, the constants K1 and K2 must be calibrated 
accordingly and as models include more constants for calibration, they 
become less physical based. 

Although the Stanghellini and Graamans model has been applied to 
high technology CEA such as plant factories, there is the need to further 
validate them for different crop types and cultivation practices. A key 
area for modification is the net radiation term, to accurately account for 
the proportion of artificial light (LED Lights) absorbed by the crop 
canopy. Conversion factors for the calculation of net radiation from LED- 
based lighting are lacking, compared to other artificial light sources such 
as HPS and Metal Halides. 

Furthermore, Environmental control through mechanical air condi
tioning systems helps provide optimal growth conditions. However, 
such systems are sometimes beset by control issues that hinder the tight 
control of conditions according to desired setpoints. These models also 
require the measurement of additional parameters such as LAI, leaf 
temperature, and stomatal resistance. Unlike air temperature, relative 
humidity, and light levels, these additional parameters are difficult to 
continuously measure. Therefore, spot measurements are usually taken, 
which in turn affects the accuracy of the model. 

With advancements in software technology, there is the possibility of 
having an all-in-one package that includes all ET models relevant for 
indoor ET estimation. Guo et al. (2016) developed an R package for 17 
commonly used outdoor ET models. Future studies could pursue a 
similar path in creating a unified package for CEA ET estimation. This 
would improve model consistency, implementation, comparison, and 
ease of selection. 

3.2.2. Aerodynamic and stomatal resistance 
Aerodynamic and stomatal resistance are important terms for most 

physical models. This sub-section discusses the different models and 
methods used in quantifying these terms. The stomatal resistance is the 
most difficult to model, however, most models are derived from two 
main models – the Jarvis (Jarvis, 1976) and the Ball (Ball et al., 1987; 
Ball, 1988) model. Some studies also try to use constant values for both 
resistances. While this might be acceptable for aerodynamic resistance, 
it could result in large errors if used for the stomatal resistance. There
fore, an accurate and dynamic model is required to obtain accurate ET 
estimates. For the sake of uniformity, leaf aerodynamic and stomatal 
resistances would be denoted by re and ri. While crop or canopy aero
dynamic and stomatal resistances would be denoted by ra and rs. In some 
studies, they are also treated as conductance which is simply the 
reciprocal of the resistance terms. Stomatal conductance is denoted by gs 
while the boundary layer conductance is denoted by gb. 

3.2.2.1. Aerodynamic resistance models. It represents the resistance to 
the flow of water vapor and sensible heat from the surface of the leaf to 
the surrounding air (Graamans et al., 2017). Aerodynamic resistance 
depends on the type of convection and the leaf-to-air temperature dif
ference (Zhang and Lemeur, 1992). One way to obtain the aerodynamic 
resistance is through the energy balance equation (Equation (23)) if the 
evapotranspiration is known. From here, the sensible heat can be ob
tained which then leads to the direct calculation of the aerodynamic 
resistance as shown in Equation (50). 

S =
ρa⋅Cp⋅(T − Tl)

re
(50)  

where: 

S −Sensible Heat Flux [W/m2] 
ρa −Air Density [kg/m3] 
Cp −Specific Heat of Air [MJ/kg ◦C] 
T −Air Temperature [◦C] 
Tl − Leaf Temperature [◦C] 
re −Leaf Aerodynamic Resistance [s/m] 

Alternatively, the aerodynamic resistance can also be obtained from 
the heat transfer coefficient h as shown in Equation (51): 

re =
ρa⋅Cp

h
(51)  

where: 

re −Leaf Aerodynamic Resistance [s/m] 
ρa −Air Density [kg/m3] 
Cp −Specific Heat of Air [MJ/kg ◦C] 
h −Convective Heat Transfer Coefficient of Air [W/m2 ◦C] 

The convective heat transfer coefficient depends on the Nusselt 
number which in turn depends on the mode of heat transfer (free, forced, 
or mixed) and nature of airflow (laminar or turbulent) within the CEA. 
For free convection, heat transfer is mainly due to the temperature dif
ference between the leaves and the surrounding air (McAdams, 1954). 
For forced convection, heat transfer is by air movement (Gröber and Erk, 
1961), while for mixed, both scenarios occur simultaneously (Stan
ghellini, 1987). There is no consensus in the literature on whether the 
heat transfer in the CEA is via free, forced, or mixed convection. Also, all 
modes and types of flow may occur simultaneously within a crop canopy 
(Yang et al., 1990; Kays and London, 1984). There is also a lack of 
consensus as to whether the flow over the crop canopy is considered 
laminar or turbulent. Yan et al. (2018) summarized the equations for 
computing the Nusselt number for the aerodynamic resistance term 
based on the type of flow (laminar or turbulent) and the prevailing mode 
of heat transfer (free, forced, or mixed). The convective heat transfer 
coefficient can also be obtained from the energy balance equation if the 
net solar radiation, ET, leaf, and air temperatures are known (Bailey 
et al., 1993). Zhang and Lemeur (1992) found the aerodynamic resis
tance values obtained from the Nusselt number method, especially the 
mixed convection approach to be more stable compared to that obtained 
from the energy balance approach 

Despite the lack of consensus over the prevalent heat transfer and 
airflow mode in CEA, in a few studies, a constant value has been used for 
the aerodynamic resistance (Prenger et al., 2002; Boulard and Jemaa, 
1992; Kittas et al., 1999; Ondrašek et al., 2007; López-Cruz et al., 2008). 
This could be attributed to the fact that it has little impact on the ac
curacy of the ET model and thus the ET estimate could be said to be un- 
sensitive to the aerodynamic resistance (Villarreal-Guerrero et al., 2012; 
Acquah et al., 2018). Furthermore, this makes sense in CEA with very 
little air movement due to its enclosure, also in combination with rela
tively large leaf areas (Ondrašek et al., 2007). Also, from experiments, 
the aerodynamic resistance is relatively stable for 24 h (Villarreal- 
Guerrero et al., 2012). In cases where wind speed measurements are 
lacking, aerodynamic resistance can be taken to be an empirical 
parameter (Kage et al., 2000). Table 1 summarizes several aerodynamic 
resistance models that have been used in CEA ET estimation studies. 

3.2.2.2. Stomatal resistance models. Stomatal resistance represents the 
resistance to the flow of vapor through the crop to the leaf surface. 
Different crops have different stomatal resistances; climatic, biological, 
and agronomical parameters also drive changes in stomatal resistance as 
well as water availability. However, empirical stomatal resistance 
models can be derived as a function of key climatic parameters, using the 
popular Jarvis multiplicative model (J model) (Jarvis, 1976). A general 
form of this model, looking at three common climatic parameters is 
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given in Equation (52), where rmin, the minimum internal resistance in s/ 
m, is usually taken from porometer measurements and used as a constant 
value in the model. The mathematical functions f1, f2 and f3 characterize 
the relationship between ri and the chosen climatic variables: 

ri(Is, Tl, VPD) = rmin⋅f1(Is)⋅f2(Tl)⋅f3(VPD) (52)  

where: 

ri −Leaf Stomatal Resistance [s/m] 
Is −Incoming Solar Radiation [W/m2] 
VPD − Vapor Pressure Deficit [kPa] 
rmin −Minimum Leaf Stomatal Resistance [s/m] 
Tl − Leaf Temperature [◦C] 
f1, f2andf3 − Mathematical Functions [-] 

Stanghellini (Stanghellini, 1987) presented a detailed model based 
on incoming radiation, VPD, leaf temperature, and CO2 concentration. 
The leaf stomatal resistance can be measured using a porometer, after 
which a relationship is established between the measured values and 
climatic parameters such as solar radiation, VPD, and air temperature to 
obtain a stomatal resistance model. A brief explanation of how such 
measurements are performed can be found in (Demrati et al., 2007). 
Examples of such stomatal resistance models as developed in literature 
are shown in Table 3 below. Hence, the canopy resistance rs can be 
obtained from the leaf stomatal resistance ri and effective LAI as shown 
in Equation (53): 

rs =
ri

LAIeff
(53)  

where: 

rs −Canopy Stomatal Resistance [s/m] 
LAIeff − Effective Leaf Area7 Index [-] 
ri −Leaf Stomatal Resistance [s/m] 

The actual LAI can be used in place of the effective LAI for LAI ≤ 2. 
While the effective LAI takes a value of 2 for 2 < LAI < 4 and 0.5 LAI for 
LAI ≥ 4 (Qiu et al., 2013). 

Alternatively, the canopy resistance can be calculated if the tran
spiration rate is known (Yang et al., 1990; Baille et al., 1996). This 
approach is preferable to measurements by porometer as it gives more 
canopy resistance values for varying environmental conditions 
(Montero et al., 2001). Also, at low radiation levels, it is difficult to 
obtain stomatal resistance estimates from porometer measurements. 
Montero et al. (2001) found this low radiation boundary to be 25 W/m2; 
and low VPD levels cause additional errors (Ewers and Oren, 2000). 
Porometer measurements may also affect the microclimate around the 
measured leaf, thereby affecting the measured transpiration (Bailey 
et al., 1993). It is also prone to biases and errors (Ali et al., 2016). 

Other studies have also employed the Ball-Berry model by Ball, 
Woodrow, and Berry (Ball et al., 1987; Ball, 1988). This model is based 
on the net assimilation of CO2 and environmental parameters at the 
canopy surface. It better describes the stomatal response to climatic and 
crop physiological characteristics. Compared with the Jarvis model, the 
Ball-Berry model gave better estimates, with the J model under
estimating in low PPFD and VPD conditions, especially for young plants 
(Baille et al., 1996). Whereas the B model partially accounts for varia
tion in plant age and varying climatic conditions. The use of constant 
values for maximum conductance or minimum resistance in the J model 
also affects its accuracy as well as its use of successive regression. 

Several steps have been taken to improve the accuracy of the J 
model. One is to calibrate the model using a large data set. Another 
method is to apply multiple regression in place of successive regression. 
This way, the effect of each parameter is considered simultaneously 
which improves its estimation. Other approaches have improved the 

Jarvis model by incorporating the phenomenological feedback of VPD 
on stomatal resistance (Oren et al., 1999) and including plant hydraulic 
and photosynthetic mechanisms that lead to stomatal resistance changes 
with water, nutrient, and light availability (Sperry et al., 2017; Mackay 
et al., 2015; Mackay et al., 2020; Ewers et al., 2000). Yet again, some 
experiments try to use the direct method by measuring the leaf stomatal 
resistance rather than the indirect method of estimating it from the 
measured evapotranspiration. Other models also exist that could be 
applied for stomatal resistance modeling in water-stressed conditions. 
Damour et al. (2010) gave an overview of models applicable for esti
mating leaf stomatal conductance. It included models based on atmo
spheric factors such as the J and B model common to CEA applications as 
well as others based on water availability. 

Stomatal resistance has also been modeled using the Full Factorial 
Design (FFD) technique (Ali et al., 2016). It is based on an optimized 
polynomial regression between the three key climatic parameters (ra
diation, relative humidity, and air temperature). Compared to the Jarvis 
model, it requires less data for calibration. This technique was able to 
estimate the stomatal resistance of pot-planted New Guinea Impatiens 
with an R2 value of 0.69 and slope of 0.89, compared to the J model (R2 

= 0.65, slope of 0.45). From experiments it was found that the effect of 
temperature was negligible, therefore the model equation depends on 
only radiation and humidity measurements as shown in Table 2. A 
drawback of this technique however is that it is limited to the few pa
rameters that can be replicated and controlled in a growth chamber. 

Some studies make use of two climatic parameters and deem them 
sufficient, in fact, in a study by Demrati et al. (2007) radiation and VPD 
is said to account for roughly 90% of the variations of leaf stomatal 
resistance, therefore others such as the air temperature and CO2 con
centration can be considered negligible (Jolliet and Bailey, 1992), 
although any such claims should be investigated using rigorous tests of 
parsimony based on both uncertainty in the data and the model struc
ture (Samanta et al., 2008). Villarreal-Guerrero et al. (2012) developed 
stomatal resistance models based on radiation and VPD for bell pepper 
and tomato. The constants for the models were obtained by taking 
measurements of the crop transpiration and obtaining the corresponding 
internal resistance values to fit the model equation. The model equation 
thus obtained is shown in Table 2, while the values of the constants 
within the equation for bell pepper and tomato are presented by the 
authors in their paper. 

Conversely, compared to the aerodynamic resistance, using constant 
values for the stomatal resistance could affect the accuracy of the ET 
estimation. Although some studies (Willits, 2003) have supposedly 
gotten acceptable results (in certain conditions) with the use of constant 
values, generally, its use leads to errors. Villarreal-Guerrero et al. (2012) 
found it to produce accurate results under specific climatic conditions, 
but under transient radiation and humidity conditions, it gave erroneous 
results. Therefore, in practical CEA applications, a resistance model is 
required, one that considers the changing climatic and plant growth 
status conditions within the CEA. 

The crop resistance generally fluctuates, taking up high values at 
night, early mornings, and late afternoons, this is because of the closure 
of the stomatal during this period. Whereas, during the day, the values 
are quite low as the presence of irradiance ensures the stomata remain 
opened for photosynthesis. In the case of plant factories with artificial 
lighting, the period for stomata opening and closure is determined by 
the photoperiod. Comparing the crop resistance for the Penman- 
Monteith and Stanghellini model from the study by Villarreal-Guer
rero et al. (2012), it can be seen from the model equations that the values 
obtained from the latter are relatively higher due to the factor of 2LAI. 

Determining what climatic parameters are to be considered in the 
stomatal resistance model is another area of discussion. Stomatal resis
tance has been found in multiple studies to depend on radiation levels 
(Demrati et al., 2007). Montero et al. (2001)) found the stomatal resis
tance of geranium leaf to decrease very slowly above a radiation value of 
500 µmol/m2 s and up to 1100 µmol/m2 s. However, other studies have 
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suggested the inclusion of additional parameters to increase the model 
accuracy. 

Aerodynamic and Stomatal resistance models help improve the ac
curacy of ET models. However, they can be difficult to obtain, especially 
stomatal resistance. Air velocities in CEAs are usually low, so the effect 
of the aerodynamic term on ET estimation may sometimes be negligible. 
This has seen the use of constant aerodynamic resistance values in some 
studies with acceptable ET estimates. However, the same does not apply 
for stomatal resistance as it plays a very important role in ET estimation 
and varies with the type of crop and prevailing environmental condi
tions. Therefore, accurate modeling of stomatal resistance is important. 
The J and B models have been used in CEA applications, with the J 
model being the most popular. However, both methods have their ad
vantages and shortcomings. There is a need for a comprehensive 
mechanistic crop resistance model that can better explain the in
teractions between the leaf characteristics, climatic variables, and 
fluxes. Regressive models such as the Jarvis model require local cali
bration on a crop by crop and sometimes season by season basis, this 
would not be suitable for real-time estimations due to the complexities 
required in generating such models. Advanced modeling techniques 
continue to explore the role of ABA and its effect on guard cell move
ments, as well as molecular level modeling of stomatal regulation. 
However, the goal should be the creation of a real-time, accurate, and 
easy-to-implement stomatal resistance model. Table 2 below summa
rizes the stomatal resistance models used in some studies. 

The choice of the ET model also depends on the estimation time step. 
ET Models suitable for daily estimation include the Priestly-Taylor, 
Penman, FAO Penman-Monteith, and Hargreaves-Samani models. 
Such models are easy to utilize due to data availability and could pro
vide quick ET estimates. ET models suitable for smaller timesteps 
include the Penman-Monteith, FAO Penman-Monteith, Baille, Graa
mans, and Stanghellini model (Acquah et al., 2018). Modified forms of 
the Penman-Monteith model such as the Baille (Baille et al., 1994) and 
Graamans (Graamans et al., 2017) have also been successfully employed 
for hourly ET estimation. Furthermore, hourly ET estimations can be 
accumulated into daily estimates. Therefore, models used for shorter 
timesteps such as FAO Penman-Monteith and Penman-Monteith model 
can also be used for daily ET estimations (Donatelli et al., 2006). 

Table 3 summarizes the different ET models discussed in the sub
sections above. It gives information on the required input parameters, 
advantages, and disadvantages of each model. 

3.3. Data-driven ET methods 

With the advance of machine learning algorithms, data-driven 
models have been increasingly used for predicting real-time ET. Most 
of the existing studies for data-driven ET models have been used for 
outdoor ET estimation. Hu et al. (2021) found three machine learning 
techniques - deep neural network (DNN), random forest (RF), and 
symbolic regression (SR) to outperform surface energy balance system 
(SEBS), a physical-based approach for estimating field ET. Kisi et al. 
(2015) tested multilayer perceptron artificial neural networks (ANN), 
adaptive neuro-fuzzy inference system (ANFIS) with grid partition (GP), 
ANFIS with subtractive clustering (SC), and gene expression program
ming (GEP). They found these models to be successful at predicting ET 
even without climatic measurements, with an R2 value greater than 0.9 
in almost all cases. Zhu et al. (2020) proposed a hybrid particle swarm 
optimization (PSO) - extreme learning machine (ELM) model (PSO-ELM 
model) which outperformed the original ELM, ANN, RF, and Penman- 
Monteith models as well as six empirical models (Hargreaves and 
Samani, Priestley-Taylor, Makkink, Irmak, Dalton and Trabert models). 
Granata (2019) evaluated the performance of M5P Regression Tree, 
Bagging, RF, and Support Vector Regression (SVM) and found model 

performance are related to the size and structure of available data, with 
no single technique being the best for all problems. 

In addition, several comparison studies exist for outdoor applications 
(Hu et al., 2021; Chen et al., 2020). Han et al. (2021) compared the back- 
propagation neural network with the multiple linear regression method, 
with the former having a higher accuracy (91.44% vs. 82.96%) and 
coefficient of determination (0.87 vs. 0.79). However, compared to 
Support Vector Regression (SVR) and Extreme Learning Machine (ELM), 
Yu et al. (2020) found both to be a better choice over ANN due to lower 
uncertainty in both cases of complete or incomplete input data. Hybrid 
models that combine the best attributes of individual data-driven 
models have been found to improve model accuracy. Maroufpoor 
et al. (2020) compared a hybrid artificial neural network-Gray Wolf 
Optimization (ANN-GWO) model with a least square support vector 
regression and a standalone ANN, with the hybrid model having the best 
Global Performance Indicator (GPI). 

Only limited studies on data-driven-based ET estimation were con
ducted for CEAs. Artificial Neural Network (ANN) model was used for 
the estimation of a greenhouse cultivated sweet pepper ET (Pandorfi 
et al., 2016). The study was carried out in a low technology greenhouse 
in Sao Paulo, Brazil. The model used temperature, relative humidity, air 
velocity, radiation, and weighing lysimeter ET measurements collected 
over four months for the training and testing. Parasuraman et al. (2007) 
found the performance of the Genetic Algorithm (GA) to be comparable 
to ANN. They found both outperformed the Penman-Monteith model, 
thereby showing the great potential of data-driven models for ET esti
mation. Jolliet and Bailey created regression-based ET models for three 
different CEA settings for the ET estimation of NFT cultivated tomato in 
a greenhouse (Jolliet and Bailey, 1992). The model was based solely on 
incoming radiation and VPD, with other influences such as air temper
ature, CO2 levels, cooling, and heating parameters considered negli
gible. Amiri et al. (2019) used a fuzzy regression method to estimate ET 
for grass reference crops based on five input parameters: maximum and 
minimum temperatures, average relative humidity, wind velocity, and 
incoming solar radiation. Compared to lysimeter measurements, the 
model performed well with an RMSE of 0.68 mm/day and an R2 value of 
0.98 (Amiri et al., 2019). 

Data-driven models also offer a better alternative as a non-contact 
method for monitoring plant water status in real-time. One approach 
by which data-driven models predict plant water status in real-time is 
via model residuals between the measured transpiration and the model 
predicted transpiration. Adeyemi et al. (2018) used a 2nd order discrete- 
time transfer function based on solar radiation, VPD, and LAI to predict 
lettuce ET in a climate-controlled greenhouse. The model prediction 
closely matched the measured ET with an average coefficient of deter
mination of 0.93 ± 0.04. Data-driven models have also been applied in 
the creation of virtual sensors based on transpiration which is cheaper 
and easier to operate and maintain compared to lysimeters. They usually 
make use of data from other sensors that are typically found in the 
greenhouse, therefore, eliminating additional installation costs. Sánchez 
et al. (2012) used a system identification approach to test several 
nonlinear dynamic virtual sensors based on solar radiation, VPD, and 
LAI for estimating tomato ET in a medium technology greenhouse in 
Spain. The final selection was a nonlinear ARX, with an average error of 
5%. It was based on the first two parameters alone. 

Data-driven methods of ET estimation could play a vital role in real- 
time ET estimation, especially for high technology CEAs. However, they 
require a large volume of data to train and test the model. The developed 
data-driven models may also be limited to specific CEAs and scenarios 
where data were collected and would need local calibration if applied to 
different conditions. Data-driven models have seen a wider application 
for outdoor scenarios compared to indoor and CEA applications. This 
creates the need for further testing and validation for CEA application. A 
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variety of data-driven (including adaptive-learning-based) methods for 
ET estimations of modern CEAs should be further explored. 

4. Application of ET models for CEA 

Based on the level of technology employed for climate control, CEAs 
can be grouped into three: low, medium, and high technology CEAs. 
Accordingly, this also affects the type of ET models that can be accu
rately applied to each type. This section discusses the different types of 
CEAs and identifies ET models successfully employed for each type from 
existing literature. 

4.1. Low Technology CEA 

In a low technology CEA, climate control is mainly by material 
insulation and natural ventilation via the opening of vents. Low tech
nology CEAs do not use mechanical cooling or heating systems. A typical 
example is solar greenhouses, which primarily rely on solar energy from 
the sun as the main source of heating (Devabhaktuni et al., 2013). In 
parts of Europe, Mediterranean greenhouses are a popular kind of low 
technology CEA (Fernández et al., 2010). They are typically unheated 
and made from low-cost, plastic-covered structures. Since control is 
limited, they heavily rely on external climate conditions. Control over 
pests and diseases is also low, therefore crop yield is limited. 

This limited climate control affects the accuracy of different types of 
ET models that can be applied to this CEA type. Radiation-based ET 
models, for example, could lead to significant errors, especially in 
naturally ventilated CEAs. This is because of the mass and energy in
teractions between CEA and the outside environment. This generally is 
made up of the incoming solar radiation, heat storage changes, energy 
used up for evapotranspiration, and the energy exchanged with the 
outside environment (Liu et al., 2008). Ventilation could greatly impact 
the temperature and humidity within the CEA. Therefore, the effect of 
wind speed or advection cannot be ignored. Jaafar and Ahmad (2018) 
found the Hargreaves-Samani model to consistently underestimate ET 
for a greenhouse cultivated oregano. They, therefore, concluded that the 
model should not be used for CEA ET estimation, especially for venti
lated CEAs without local calibration. 

FAO Penman-Monteith model has been employed for ET estimation in 
low technology CEAs. Zhang et al. (2010) performed experiments for the 
estimation of cucumber ET in a low technology greenhouse in China using 
the pan evaporation (R2 = 0.865) and FAO Penman-Monteith model (R2 

= 0.46). Wang et al. (2018) also carried out experiments for the ET esti
mation of eggplant in a low technology greenhouse with cold-proof 
quilting for insulation and roof and side vents using the FAO Penman- 
Monteith model. Lozano et al. (2017) successfully used a low technol
ogy greenhouse covered with polyethylene film and white shade screens 
for the ET estimation of melon using the FAO Penman-Monteith equation. 
Orgaz et al. et al. (2005) used a class A evaporation pan for ET estimation 
in a passively ventilated Mediterranean greenhouse for four common 
horticultural crops (melon, green beans, sweet pepper, and watermelon) 
with R2 = 0.93 and a percentage error of −5.9 to 34.1%. In a study by 
Fernández et al. (2010) the FAO Penman-Monteith model also under
estimated ET in a Mediterranean greenhouse by 17%. The greenhouse 
was in Almeria, Spain with no heating system and passive ventilation via 
side panels and roof vents for cooling. Moazed et al. (2014) compared 
thirteen reference ET models to find out which models gave the best es
timates in low technology greenhouse and outdoor conditions. Of these 
thirteen models, from existing literature, four have been used for ET 
estimation in CEA conditions with favorable results. They include the 
FAO Penman-Monteith, Hargreaves-Samani, Priestley-Taylor, and the 
FAO Radiation models. In this study, the FAO Penman-Monteith model 
was found to give the best ET estimate (R2 = 0.911), followed by the FAO 
Radiation (R2 = 0.874), Priestley-Taylor model (R2 = 0.836), and the 
Hargreaves-Samani (R2 = 0.561). However, the FAO Penman-Monteith 
model still underestimated the crop ET by 12%. 

4.2. Medium Technology CEA 

Medium technology CEAs employ the use of some level of environ
mental control technology such as fans, heaters, shades, etc. but also use 
vents for natural ventilation. They also have better envelope properties 
compared to low-technology systems. They lie in between, similar to low 
technology in terms of construction method but closer to high technol
ogy systems in climate control. 

In a study on ET estimation of bananas using pan evaporation and 
five reference ET models, Liu et al. (2008) used a greenhouse equipped 
with fans but they were programmed to only operate when the green
house air temperature exceeded 30 ◦C. While temperatures were below 
this, side vents were operated for natural ventilation. Amongst the ET 
models used, the FAO Penman gave the best estimates (R2 = 0.67). 
However, it overestimated ET by approximately 27% on average. In the 
study by Villarreal-Guerrero et al. (2012), on ET estimation for green
house bell pepper and tomato, for three different growing seasons under 
natural ventilation and fan and pad cooling strategies, the Stanghellini 
model performed best compared to the Penman-Monteith and Takakura 
model. However, in considering both cooling strategies and growing 
seasons, not much difference was found statistically and so any of these 
models could be employed in real-time CEA cooling strategy. The only 
limitation may come down to the ease of implementation of these 
models. Compared to the Penman-Monteith model, the Stanghellini 
model also provided better estimates (R2 = 0.72, root mean square error 
= 2.4, compared to R2 = 0.62, root mean square error = 17.1 for PM 
model) for tomato ET estimation in a greenhouse equipped with auto
matically operated side and roof vents (López-Cruz et al., 2008). Battista 
et al. (2015), used a modified Penman-Monteith model, the Baille 
equation, for the ET estimation of tomatoes in a greenhouse equipped 
with fan heaters, and external shading, with R2 = 0.8 with a percentage 
error of −4.3 to 1.2%. Ondrašek et al. (2007) also successfully studied 
tomato ET using the Penman-Monteith model in a greenhouse equipped 
with automatic heating, ventilation, and fertigation systems. Different 
types of growing media were tested. For experiments performed in 2002, 
the Penman-Monteith underestimated ET by roughly 5% for Rockwool 
and overestimated ET by 0.06% and 17% for peat and perlite 
respectively. 

Solar transmissivity comes into play as regards the effectiveness of 
ET models for this type of CEA. Prenger et al. (2002) found all ET models 
tested in their study using a double-polyethylene covered greenhouse 
with an evaporative pad and fan ventilation system to overestimate ET, 
however, the Stanghellini model was the closest to the measured ET 
values while the Fynn largely overestimated ET and had a poor Nash- 
Sutcliffe model efficiency coefficient of −0.848. For low solar radia
tion conditions, the Fynn model was much closer to estimates from the 
Stanghellini model. This is because their VPD terms are the same, the 
only difference lies in the solar radiation term. Therefore, one of the 
reasons for Stanghellini’s superior performance could be traced to its 
treatment of solar irradiance which is more suited to such an environ
ment. While for the Fynn model, the reasons for its poor performance 
were the treatment of the solar irradiance as well as the assumption that 
the leaf and air temperatures were the same. Comparing the Penman- 
Monteith and Stanghellini model, for the same value of internal and 
external resistances, their ET estimates were found to differ by 25%, 
which was due to the inclusion of the LAI term and the modified solar 
irradiance calculation in the Stanghellini model. 

For this type of CEA, the physical ET models seem to give better 
estimates, however, some reference models such as the Penman model 
can also be used. The indoor growth environment for medium technol
ogy CEA is better controlled compared to the low technology CEA, 
therefore models such as the Stanghellini model which gives better es
timates at low advection conditions can be successfully employed. For 
low irradiance conditions that occur when estimating nighttime ET or if 
shades have been used to block out excess solar radiation to control 
inside temperatures, physical models that include the LAI term perform 
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better than others. The importance of the LAI term can be highlighted 
from the Prenger et al. (2002) study above. During periods of low irra
diance, the Penman and Penman-Monteith models (without the LAI) 
underestimated ET. However, because of the inclusion of the LAI, the 
Stanghellini and Fynn models gave better estimates. 

4.3. High Technology CEA 

High-technology CEAs employ more sophisticated climate control 
equipment compared to medium technology CEAs. They also have more 
advanced construction methods often using envelope properties that 
help insulate the structure. Internal temperature, humidity, lighting, and 
airflow are closely controlled in such systems. It is quite capital intensive 
with high equipment costs; however, this could be offset by a reduction 
in labor costs due to automation. They also employ soilless cultivation 
which helps manage water and nutrient resources as well as provide 
better control of crop yield and production. 

One such CEA was used in a study by Sharma et al. (2017) for the ET 
estimation of chile peppers. The greenhouse was clad in double-layer 
polycarbonate polymer, equipped with shading, automatic climate 
control, heaters, exhausts, and evaporative coolers. Both the FAO 
Penman-Monteith (1.6–27.3% underestimation) and Priestley Taylor 
(17.5–37% underestimation) models were tested, with the former 
providing better ET estimates. Boulard and Jemaa (1992) also studied 
tomato ET using a modified Penman-Monteith model in a computer- 
controlled greenhouse with heating, fog, and air circulation systems. 

This category of CEA also includes closed cultivation systems such as 
plant factories, vertical farms, and shipping container farms. For such 
closed cultivation systems, energy exchange with the exterior environ
ment is limited. Therefore, energy flux is primarily driven by forced air 
conditioning and circulation. Because of this, they also rely heavily on 
artificial lighting, therefore the formulation of the net radiation term is a 
bit different compared to conventional greenhouses that utilize solar 
energy. Plants are also subjected to a highly stable interior climate 
(Graamans et al., 2017). They mostly make use of soilless cultivation 
systems that improve water use efficiency, although in some cases the 
same amount of water is used compared to conventional systems, 
however, it is efficiently delivered to minimize losses due to percolation 
(Benis et al., 2017). 

Plant factories are closed CEAs that solely make use of mechanical 
heating and cooling systems and uses artificial lighting to provide the 
required irradiation for crop photosynthesis. Pamungkas et al. (2014) 
successfully studied the ET of tomatoes in a plant factory in Japan using 
the Stanghellini model. Graamans et al. (2017) also studied the ET of 
lettuce in a plant factory with a modified Penman-Monteith model. 
However, due to the need for artificial lighting and properly controlled 
climatization, an accurate estimate of all energy fluxes is vital in man
aging energy use and costs. Therefore, ET estimation in such facilities is 
crucial, however, very few studies exist on ET estimation in closed CEAs. 
Vertical farms are simply multi-story plant factories, and like plant 
factories, rely on mechanical air conditioning systems as well as artifi
cial lighting. 

It can be concluded that based on the type of CEA used, ET models 
should be carefully chosen to provide the best estimates for the pre
vailing conditions within the CEA. Several studies have performed ET 
experiments on low and medium technology CEAs, but few studies exist 
for high technology CEAs. Especially for those that rely heavily on 
artificial lighting and mechanical air conditioning, modified forms of 
existing ET models to cater to its unique characteristics are required. 
Existing modifications must be thoroughly tested by multiple studies to 
validate their effectiveness. With the high level of climate control in 
these advanced systems, proper ET estimation has become more 
important than ever to properly quantify energy use and monitor the 
efficient use of resources as well as crop yield. Table 4 below gives a 
summary of CEA types and the ET models that have been applied in each 
type from several studies. 

5. ET calibration 

5.1. Calibration methods 

Actual ET measurement plays a key role in evaluating and calibrating 
ET models. This section seeks to discuss different calibration methods as 
well as discuss their common sources of error, advantages, and disad
vantages. These methods are based on the measurement of climatic 
factors, soil water content, and characteristics of the evaporative sur
face. Therefore, they can be classified into three: hydrological, micro
meteorological, and plant physiological methods (Ding et al., 2010). 

Hydrological methods measure ET via the water balance of the 
growing media and plant. They include the use of lysimeters and soil or 
substrate water balance. Lysimeter methods are quite popular amongst 
researchers as a direct method for determining crop water requirements 
due to their accuracy and ease of use (Allen et al., 2011). Three types of 
lysimeters are commonly used, they include non-weighing or constant 
table lysimeters, drainage lysimeters, and weighing lysimeters. Soil 
water balance provides an indirect method for ET estimation as the re
sidual of soil water balance (Rana and Katerji, 2000). Soil water balance 
can be difficult to perform because water movement in the soil is 
multidirectional, although, it provides a cheaper alternative to the use of 
lysimeters. However, the accuracy of this method depends on the quality 
of the sensor used, common types include capacitance-based, neutron 
thermalization, and time-domain reflectometry-based (TDR) sensors 
(Allen et al., 2011). Soilless cultivation is popular in controlled envi
ronment agriculture, therefore, calibration through substrate water 
balance is another common method. This is usually done by monitoring 
the amount of nutrient solution added to the system using an appro
priate flow meter (Ondrašek et al., 2007). 

Micrometeorological methods depend on the canopy energy balance 
and can measure ET from the latent heat flux. Such methods include 
Bowen Ratio Energy Balance, Eddy Covariance, and the use of Scintil
lometers. Bowen ratio energy balance is an indirect approach that 
measures ET by solving the energy balance equation through measured 
gradients of air temperature and vapor pressure above the evaporating 
surface. A drawback of this approach is difficulty in the accurate mea
surement of net radiation and soil heat flux. However, it presents a non- 
destructive, automated method for ET measurement. Eddy Covariance 
method is not common in CEA applications as it requires a representa
tive and adequate fetch. However, it can measure multiple fluxes and is 
based on the statistical correlation between fluxes of vapor or sensible 
heat within vertical turbulent eddies (Allen et al., 2011). A scintillom
eter measures small fluctuations in the refractive index of air due to 
changes in temperature, humidity, and pressure. They are easy to 
operate and require low maintenance. However, the cost of equipment is 
relatively high, they also depend on the accurate measurement of net 
radiation and soil heat flux, and may require post-processing corrections 
(Allen et al., 2011). 

Plant physiological methods measure transpiration directly from 
plants. Sap flow gauges have been used for the measurement of actual ET 
in CEA crops. In this method, low-grade heat is used to measure the flow 
of water through the stem via the velocity of heat pulse (heat pulse 
technique) or the dissipation of heat due to convection (heat balance 
technique) (Rana and Katerji, 2000). 

In summary, care must be taken in direct ET measurement using the 
techniques discussed above to avoid errors. Allen et al. (2011) gave a 
detailed enumeration of common types of errors that could be encoun
tered in ET measurement. Furthermore, only a handful of methods can 
be successfully applied to modern CEA applications like vertical soilless 
cultivation. For such systems, it could be possible to monitor supply and 
return flow rates or continuously weigh supply reservoir tanks. How
ever, more studies are required to validate this and other potential 
calibration methods for such systems. Table 5 also shows the different 
types of calibration methods that have been used in ET estimation in 
CEA studies. The selection of the type of ET calibration technique to use 
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Table 4 
Summary of relevant indoor ET model studies.  

S/ 
N 

Study Type of CEA ET Model Experiment Period Remark 

1. (Liu et al., 2008) Medium 
Technology 

Priestley Taylor, FAO Radiation, 
Hargreaves, FAO Penman, FAO 
Penman-Monteith, Pan 
Evaporation 

35 Days FAO-Penman gave the best estimation followed by the 
FAO Penman-Monteith, FAO Radiation, Hargreaves, 
and lastly the Priestley-Taylor model. 

2.‘ (Sharma et al., 
2017) 

High Technology Penman-Monteith, Priestley 
Taylor 

Three Growing Seasons (2011 – 140 
Days, 2013 – 168 Days, 2014 – 153 
Days) 

Both models underestimated ET. The authors 
attributed this to the partial canopy cover and 
variations of humidity in the CEA. 

3. (Libardi et al., 
2019) 

Medium 
Technology 

FAO Penman-Monteith 46 Days Compared to the crop coefficient value for three 
cultivars of sugarcane. 

4. (Villarreal- 
Guerrero et al., 
2012) 

Medium 
Technology 

Stanghellini, Penman-Monteith, 
Takakura 

Three Growing Seasons (Spring, 
Summer, Fall) 
3 Months – Bell Pepper, 7 Months – 
Tomato. 
Test Period – 4 to 10 Days. 

The Stanghellini model performed best, however, no 
significant difference was found between the three 
models. 

5. (Wang et al., 
2018) 

Low Technology FAO Penman-Monteith 9 Months Compared single and dual crop coefficients in the 
estimation of ET using the FAO Penman-Monteith 
model 

6. (Zhang, 2010) Low Technology FAO Penman-Monteith, Pan 
Evaporation 

31 Days Pan Evaporation gave better estimates. However, the 
aerodynamic term of the FAO Penman-Monteith was 
neglected which may explain poor performance. 

7. (Pamungkas 
et al., 2014) 

High Technology 
(Plant Factory) 

Stanghellini 13 Days The Stanghellini model was used to estimate ET for 
plant factory cultivated tomatoes. 

8. (Lozano et al., 
2017) 

Low Technology FAO Penman-Monteith 100 Days Crop coefficients obtained were higher than those 
recommended by FAO which highlights the 
importance of conducting situation-specific crop 
coefficients experiments. 

9. (Orgaz et al., 
2005) 

Low Technology Class A Evaporation Pan Melon – 119, 135, 90 Days. 
Green Beans – 114 Days. 
Sweet Pepper – 258, 248 Days; 
Watermelon – 90 Days. 

Crop coefficients were correlated with cumulative 
thermal time (TT) and LAI for initial and mid-crop 
growth stages. 

10. (Montero, 2001) Low Technology Penman-Monteith 42 Days Stomatal resistance was found to depend strongly on 
solar radiation. The Penman-Monteith model also gave 
good estimates for geranium ET. 

11. (López-Cruz 
et al., 2008) 

Medium 
Technology 

Penman-Monteith, Stanghellini Several Days in 3rd week of June 
2008 

The Stanghellini model gave better estimates 
compared to the Penman-Monteith model especially in 
high solar radiation and high VPD conditions. 

12. (Moazed et al., 
2014) 

Low Technology FAO Penman-Monteith, 
Hargreaves-Samani, FAO-24 
Radiation, Priestley-Taylor, Pan 
Evaporation 

110 Days FAO Penman-Monteith, FAO Radiation, and Priestley- 
Taylor were the best performers for CEA ET estimation 

13. (Battista, 2015) Medium 
Technology 

Modified Penman-Monteith 4 Months A modified form of the Penman-Monteith model called 
the Baille equation was used for tomato ET estimation, 
with LAI estimates obtained from a TOMGRO crop 
growth model. 

14. (Medrano et al., 
2005) 

Low Technology Modified Penman-Monteith Autumn (Low Radiation 
Conditions) Cycle – 117 Days; 
Spring (High Radiation Conditions) 
Cycle – 111 Days. 

Including VPD and LAI terms in the estimation of ET 
using a modified Penman-Monteith model gave better 
estimates than using one with Solar Radiation alone. 

15. (Bailey, 1993) Low Technology Penman-Monteith, Modified 
Penman-Monteith 

2 Days The Penman-Monteith model gave acceptable results 
with an estimation error of less than 3% 

16. (Ondrašek, 
2007) 

Medium 
Technology 

Penman-Monteith 2 Years (230 Days – 2001; 246 Days 
– 2002) 

Found ET rates to also depend on the type of substrate 
used and tested the effect of three types (rock wool, 
peat, and perlite) on ET rate 

17. (Yang et al., 
1990) 

Medium 
Technology 

*Stanghellini 73 Days The focus was on the effect of leaf temperature on ET 
rate 
and estimation of stomatal resistance. With the latter 
being a function of solar radiation only. 

18. (Boulard and 
Jemaa, 1992) 

High Technology Modified Penman-Monteith 6 Months; Experiment for 12 Days. A modified form of the Penman-Monteith model was 
proposed. Two methods were also proposed for 
deriving the needed constant. The first, being from 
measured parameters gave more accurate estimates 
than the second which was based on multiple 
regression. 

19. (Zhang and 
Lemeur, 1992) 

Low Technology Penman-Monteith, Energy 
Balance 

59 Days Models for aerodynamic resistance were tested for 
conditions in which the canopy temperature was less 
than the air temperature, as well as vice versa for 
mixed and forced convection. 

20. (Prenger et al., 
2002) 

Medium 
Technology 

Penman, Penman-Monteith, 
Stanghellini, Fynn. 

14 Days The Stanghellini model gave the best estimate, this was 
attributed to its modified solar irradiance model and 
LAI. 

21. (Jaafar and 
Ahmad, 2018) 

Medium 
Technology 

Penman-Monteith, Hargreaves- 
Samani, Atmometer 

306 Days -With Ventilation 
163 Days – Without Ventilation 

The performance of the Atmometer was compared to 
the Penman-Monteith and Hargreaves-Samani models. 
A calibrated model for atmometer ET was developed 

(continued on next page) 
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should depend on the type of experiment, level of expertise, costs, sensor 
specifications, as well as allowable errors. 

5.2. Calibration equipment 

An important part of ET experiments or model validation is the 
proper selection of equipment and sensors. However, this can only be 
possible through prior knowledge of the range of applicable equipment 
and sensors. Therefore, Table 6 presents a summary of this information, 
for different sensors and equipment that monitor key parameters in a 
CEA ET experiment. References are also provided from existing studies 
to serve as a preliminary guide for equipment selection. 

6. Current challenges 

Although existing studies have been conducted on ET estimation in 
CEAs, a pressing issue that has been frequently highlighted is the diffi
culty in modeling crop stomatal resistance. This is a concern on the 
measurement/calibration as well as the modeling front. On the mea
surement front, obtaining reliable real-time direct measurements using 
porometers could still be challenging (Villarreal-Guerrero et al., 2012; 
Montero et al., 2001). Such issues include altering leaf functioning due 
to contact with leaf surface (Irmak and Mutiibwa, 2009; Craparo et al., 
2017), and the inability to capture spatial and temporal variations at 
canopy level (Craparo et al., 2017). Therefore, direct, non-contact 
methods using thermal imaging provide a remote, rapid, continuous, 
and effective method for crop resistance measurement (Craparo et al., 
2017; Blonquist et al., 2009). However, this technique requires further 
testing and validation for CEA. 

From the modeling point of view, the major challenge for modeling 
crop resistance is that the physiological mechanisms controlling the 

stomatal response to environmental conditions are complex and not 
fully understood yet (Liu et al., 2008; Li et al., 2012; Misson et al., 2004; 
Tuzet et al., 2003). Two popular models have been widely used in 
modeling crop resistance – the Jarvis model and the Ball model (Li et al., 
2012). There appears to be no clear outperformer, with both models 
having their limitations. The Jarvis model requires a lot of parameteri
zation, tuning, and re-calibration for different environmental conditions 
(Damour et al., 2010; Li et al., 2012). While the Ball model is inadequate 
in modeling for plants with some degree of water stress without modi
fications (Misson et al., 2004; Tuzet et al., 2003). Furthermore, since it is 
a photosynthesis-based model, errors associated with calculating 
photosynthesis can become associated with estimating crop resistance 
(Li et al., 2012; Misson et al., 2004). 

Therefore, a few modifications to these models as well as new ap
proaches to modeling crop resistance has been pursued. Modified forms 
of the Jarvis model include the NOE and Giersch model (NOE and 
Giersch, 2004) and the GM-model (Green and McNaughton, 1997) 
which uses fewer parameters, the Mission model (Misson et al., 2004) 
which has a water stress response component, and the NMJ model 
(Irmak and Mutiibwa, 2009) which accounts for the effect of LAI on crop 
resistance. For the Ball model, modified forms include the BWB-Leuning 
model (Leuning, 1995) which used a hyperbolic function of VPD in place 
of a linear function of relative humidity and the BWB-Leuning-Yin model 
(Yin and Struik, 2009) which includes the mitochondrial respiration rate 
in the light to avoid negative values when PAR drops below the light 
compensation point. 

In terms of new approaches, estimation of crop resistance using 
statistical modeling methods is increasingly gaining more attention (Liu 
et al., 2008). An example has been the use of Full Factorial Design (FFD). 
This method has the advantage of requiring less amount of calibration 
data and model parameters, however, it requires further validation and 

Table 4 (continued ) 

S/ 
N 

Study Type of CEA ET Model Experiment Period Remark 

from the Penman-Monteith model using mean 
temperature and relative humidity values. 

22. (Toyin et al., 
2015) 

Low Technology FAO Penman-Monteith 10 Weeks The relationship was found between the crop 
coefficient and weeks after planting, as well as crop 
coefficient and percentage of soil moisture content. 

23. (Acquah et al., 
2018) 

Low Technology Stanghellini ET Measurement – 62 Days 
Calibration – 24 Days 
Validation – 24 Days 

The Stanghellini model estimates had a strong 
correlation to the measure ET. 

24. (Willits, 2003) Medium 
Technology 

Penman-Monteith 3 Years Using constant values for stomatal resistance gave 
better estimates than resistance models derived from 
Stanghellini (1987). 

25. (Gallardo et al., 
1999) 

Low Technology Class A Evaporation Pan 258 Days ET rate was found to vary with the season due to the 
evaporative demand. Taller crops were also found to 
intercept more net radiation compared to shorter ones. 

26. (Demrati et al., 
2007) 

Low Technology Penman-Monteith Spring and Autumn – 6 Days 
Summer – 21 Days 

Leaf temperature, as well as the humidity, was found to 
vary along with the height of the crop. 

27. (Blanco and 
Folegatti, 2003) 

Low Technology Reduced Evaporation Pan 115 Days ET was found to vary with substrate salinity, reducing 
linearly with an increase in salinity. 

28. (Jolliet and 
Bailey, 1992) 

Medium 
Technology 

Penman, Stanghellini, Jolliet, 
Chalabi, and Aikman 

11 Days ET models with constant values for stomatal resistance 
performed poorly compared to those which account for 
its variability. 

29. (Junzeng et al., 
2008) 

Low Technology 20 cm Evaporation Pan Tomato – 123 Days 
Cowpea – 70 Days 

ET increases with crop development and is highest 
when the plant growth is most active. 

30. (Graamans, 
2017) 

Plant Factory Modified Penman-Monteith Lettuce – 3 Days, 28 Days, 8 Days. Found latent heat flux to exceed input energy 
especially at lower PPFD values. 

31. (Cannavo et al., 
2016) 

Medium 
Technology 

Penman-Monteith 1 week Used the FFD technique for the stomatal resistance 
model. 
Tested effect of deficit irrigation and irrigation 
frequency on crop ET, concluding a deficit of 75% or 
greater and a frequency of once per day or more has no 
severe effect on ET. 

32. (Nikolaou, 
2017) 

Medium 
Technology 

Baille Model 4 Months (Spring) 
3 Months (Autumn-Winter) 

Baille Model was used with a modified form developed 
to replace the VPD with Leaf temperature. 

33. (Carmassi et al., 
2013) 

Medium 
Technology 

Penman-Monteith Autumn (110 Days) 
Spring (83 Days) 
Winter (42 Days) 

The effect of salinity on ET was studied, with ET 
decreasing with increasing salinity.  
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testing (Ali et al., 2016). Other methods such as Partial Least Square 
(PLS) and Neural Net Analysis (NNA), and Radial Basis Function 
Network (RBF) have been used to successfully predict crop resistance 
(Liu et al., 2008; Vitale et al., 2007). 

These modified models and new approaches have been found to give 
better estimates of crop resistance. However, they require further in
vestigations and validation in other climatic settings. Future studies 

should also further explore modern statistical modeling and machine 
learning methods. 

Furthermore, few studies focus on high technology CEA that utilizes 
artificial lighting, mechanical cooling/heating, hydroponic cultivation, 
and continuous irrigation. Two main research gaps exist for these high 
technology CEAs. The first is with model implementation and validation. 
Only a couple of models (Stanghellini and Graamans’s models) have 

Table 5 
Calibration methods and ET ranges from literature for different crops.  

S/ 
N 

Study Calibration Method Crop ET Range CEA Type 

1. (Liu et al., 2008) Weighing Lysimeter Banana 0.22 to 1.89 kg/day Medium Technology 
(Greenhouse) 

2. (Sharma et al., 2017) Soil Water Balance Chile Pepper Year 2011: − 55.85 to 59.73 cm. 
Year 2013: − 66.5 to 72.58 cm. 
Year 2014: − 50.31 to 73.92 cm 

High Technology 
(Greenhouse) 

3. (Libardi et al., 2019) Weighing Lysimeter Pre-sprouted sugarcane plantlets 3.6 to 6.6 mm/day Medium Technology 
(Greenhouse) 

4. (Villarreal-Guerrero et al., 
2012) 

Sap Flow Gauges, Lysimeter Bell Pepper, Tomato. Bell Pepper 
Natural Ventilation – 0 to 310 W/ 
m2 

Pad and Fan – 0 to 260 W/m2 

Tomato 
Natural Ventilation – 0 to 480 W/ 
m2 

Pad and Fan – 0 to 300 W/m2 

Medium Technology 
(Greenhouse) 

5. (Wang et al., 2018) Micro Lysimeter, Soil Water 
Balance 

Eggplant 2 to 4 mm/day Low Technology 
(Greenhouse) 

6. (Zhang, 2010) Weighing Lysimeter Cucumber 0.81 to 4.46 mm/day Low Technology 
(Greenhouse) 

7. (Pamungkas et al., 2014) Weighing Lysimeter, Substrate 
Water Balance 

Tomato ETmax = 0.24 mm/h High Technology (Plant 
Factory) 

8. (Lozano et al., 2017) Constant Water Table Lysimeter Melon ETmax = 5.16 mm/day Low Technology 
(Greenhouse) 

9. (Orgaz et al., 2005) Drainage Lysimeter, Soil Water 
Balance 

Melon; Green Beans; Sweet 
Pepper; Watermelon 

Melon – ETavg = 4.5 mm/day 
Green Beans – ETavg = 1.53 mm/ 
day 
Sweet Pepper– ETavg = 0.3 mm/ 
day 
Watermelon – ETavg = 1.89 mm/ 
day 

Low Technology 
(Greenhouse) 

10. (Moazed et al., 2014) Microlysimeter Grass (Luliom Cultivar) ETavg = 6.63 mm/day Low Technology 
(Greenhouse) 

11. (Battista, 2015) Water Balance Tomato ET = 300.2 to 382 L/m2 Medium Technology 
(Greenhouse) 

12. (Medrano et al., 2005) Weighing Lysimeter Cucumber ET = 128 to 4332 g/ m2 day Low Technology 
(Greenhouse) 

13. (Yang et al., 1990) Weighing Lysimeter Cucumber ET = 0.99 to 1.69 L/day Medium Technology 
(Greenhouse) 

14. (Fernández et al., 2010) Free Drainage Lysimeter, Soil 
Water Balance 

Perennial Grass ET = 1 to 4 mm/day Low Technology 
(Greenhouse) 

15. (Toyin et al., 2015) Weighing Lysimeter Leafy Amaranth ET = 0.6 to 2.0 mm/day Low Technology 
(Greenhouse) 

16. (Acquah et al., 2018) Sap Flow Tomato Initial Stage ET = 0.165 mm/h 
Development Stage ET = 0.148 
mm/h 
Mid Stage ET = 0.192 mm/h 
Late Stage ET = 0.154 mm/h 

Low Technology 
(Greenhouse) 

17. (Chopda et al., 2018) Soil Water Balance Green Chilli Initial Stage ETavg (10% MAD) =
1.52 mm/day 
Mid Stage ETavg (10% MAD) =
2.98 mm/day 
Late Stage ETavg (10% MAD) =
4.01 mm/day 

Low Technology 
(Greenhouse) 

18. (Sigalingging and 
Rahmansyah, 2018) 

Volumetric Soil Moisture Content Oil Palm ET = 1.85 to 2.00 mm/day Low Technology 
(Greenhouse) 

19. (Jolliet and Bailey, 1992) Weighing Lysimeter Tomato ET = 3.19 to 3.5 mm/day Medium Technology 
(Greenhouse) 

20. (Junzeng et al., 2008) Weighing Lysimeter Tomato, Cowpea Tomato – ETavg = 1.00 mm/day 
Cowpea - ETavg = 2.41 mm/day 

Low Technology 
(Greenhouse) 

21. (Graamans, 2017) Weighing Lysimeter Lettuce ETavg = 115 g/m2 h High Technology (Plant 
Factory) 

22. (Salcedo et al., 2017) Water Balance Cucumber ETavg = 1.63 mm/day Low Technology 
(Greenhouse) 

*Conversion between different units can be found in Cascone et al. (2018). 
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been successfully used for ET estimation in such systems. Therefore, 
validation of these models from a wide range of studies and possible 
model enhancement is important to ensure the reliability and our con
fidence in these ET models. Furthermore, for key elements of ET models 
such as net radiation, experiments need to be conducted to estimate the 
net radiation of crops for indoor farming facilities relying on grow lights. 
Ideally, the methods for calculation or estimation of net radiation should 
be generalized based on different configurations and grow light 
capacity. 

As can be seen in many of the studies summarized, existing ET 
studies in CEA, center on a few common crops such as lettuce, tomato, 
cucumber, and melon. On the other hand, current CEA crops such as 
microgreens and strawberries have been scarcely dealt with. This same 
deficiency occurs in the publication of crop coefficients for reference ET 
models. The majority of the recommended FAO-published crop co
efficients are for field-grown crops. This highlights the need for more 
studies in this area. Several existing studies also limit ET estimation to 
short periods, which does not capture the variations of ET over a full 
cropping season. Therefore, studies spanning a longer period should be 
encouraged as such a complete picture would be important for proper 
irrigation management over a full season. It would also provide 
important data for energy use and conservation studies as well as life 

cycle assessment studies. 
Finally, research that considers the interdependent nature of 

important parameters on the ET rate should be further pursued. Such 
interdependence makes it difficult to isolate the effect of each parameter 
on ET. This has created a lack of consensus when highlighting such ef
fects since several studies consider the effect of each parameter inde
pendently. Whereas a more robust approach that considers them 
simultaneously may help paint a better picture. The area of machine 
learning could help in this case. With the combination of domain 
knowledge, new features that combine existing parameters could give a 
better insight to improve ET estimations. 

7. Conclusion 

Advances in agriculture have seen the emergence of vertical farms 
and plant factories. These high technology farms are energy-intensive 
and rely on artificial lighting and closed environmental controls. How
ever, they shorten production time and improve crop production per 
unit hectare. Current and future research seek to quantify and evaluate 
the energy efficiency of such systems. To do this, comprehensive 
knowledge of the energy exchange between key elements such as the 
plant canopy, surrounding air, CEA envelope, and external boundary 

Table 6 
Key equipment used in ET parameter measurements.  

S/ 
N 

Measured Parameter Equipment Reference 

1. Plant Weight Load Cells, Electronic Balance (Junzeng et al., 2008; Cannavo et al., 2016; Prenger et al., 2002; Zhang, 2010; Montero, 2001; 
Pamungkas et al., 2014; Liu et al., 2008; Libardi et al., 2019; Yang et al., 1990; Rouphael and 
Colla, 2004; Medrano et al., 2005; Wang et al., 2018; Zhang and Lemeur, 1992; López-Cruz 
et al., 2008; Bailey, 1993; Willits, 2003; Nikolaou, 2017) 

2. Soil Water Content Soil Moisture Sensors (Gallardo et al., 1999; Fernández et al., 2010; Chopda et al., 2018; Sharma et al., 2017; Wang 
et al., 2018; Orgaz et al., 2005; Qiu, 2013) 

3. Substrate Water Content Water Content Sensor (Cannavo et al., 2016; Pamungkas et al., 2014) 
4. Crop Transpiration Sap Flow Gauges (Villarreal-Guerrero et al., 2012; Acquah, 2018; Qiu, 2013) 
5. Pan Evaporation 20 cm Diameter Evaporation Pan, Class A 

Evaporation Pan 
(Zhang, 2010; Liu et al., 2008; Fernández et al., 2010; Orgaz et al., 2005) 

6. Air Temperature Temperature Sensors, Thermocouple (Cannavo et al., 2016; Villarreal-Guerrero et al., 2012; Prenger et al., 2002; Zhang, 2010; 
Montero, 2001; Pamungkas et al., 2014; Liu et al., 2008; Fernández et al., 2010; Libardi et al., 
2019; Jolliet and Bailey, 1992; Demrati et al., 2007; Acquah et al., 2018; Yang et al., 1990; 
Medrano et al., 2005; Ali, 2016; Sharma et al., 2017; Wang et al., 2018; Bailey, 1993; Zhang 
and Lemeur, 1992; López-Cruz et al., 2008; Zolnier et al., 2004) 

7. Leaf Temperature Thermocouple, Infrared Thermometer (Prenger et al., 2002; Montero, 2001; Jolliet and Bailey, 1992; Demrati et al., 2007; Yang et al., 
1990; Zhang and Lemeur, 1992; López-Cruz et al., 2008; Qiu, 2013; Bailey, 1993; Willits, 
2003; Nikolaou, 2017) 

8. Relative Humidity Relative Humidity Sensors (Cannavo et al., 2016; Villarreal-Guerrero et al., 2012; Pamungkas et al., 2014; Liu et al., 2008; 
Fernández et al., 2010; Libardi et al., 2019; Demrati et al., 2007; Acquah et al., 2018; Ali, 2016; 
Sharma et al., 2017; Wang et al., 2018; Willits, 2003; Zhang and Lemeur, 1992; López-Cruz 
et al., 2008; Zolnier et al., 2004; Qiu, 2013) 

9. Solar Radiation Pyranometers, Solarimeter (Villarreal-Guerrero et al., 2012; Prenger et al., 2002; Zhang, 2010; Montero, 2001; Liu et al., 
2008; Fernández et al., 2010; Jaafar and Ahmad, 2018; Demrati et al., 2007; Acquah et al., 
2018; Yang et al., 1990; Rouphael and Colla, 2004; Medrano et al., 2005; Bailey, 1993; Willits, 
2003; Zhang and Lemeur, 1992; López-Cruz et al., 2008; Zolnier et al., 2004) 

10. Net Radiation Net Radiometer, Crop Solarimeter 
(Takakura model), Ceptometer, 

(Villarreal-Guerrero et al., 2012; Zhang, 2010; Montero, 2001; Libardi et al., 2019; Demrati 
et al., 2007; Acquah et al., 2018; Rouphael and Colla, 2004; Medrano et al., 2005; Sharma 
et al., 2017; Wang et al., 2018; Zhang and Lemeur, 1992; Qiu, 2013; Bailey, 1993) 

11. Photosynthetically Active 
Radiation (PAR) 

Quantum Sensor (Pamungkas et al., 2014; Gallardo et al., 1999; Rouphael and Colla, 2004; Medrano et al., 
2005) 

12. Air Velocity Air Velocity Sensor, Ultrasonic 
Anemometer 

(Villarreal-Guerrero et al., 2012; Pamungkas et al., 2014; Fernández et al., 2010; Libardi et al., 
2019; Demrati et al., 2007; Yang et al., 1990; Rouphael and Colla, 2004; Bailey, 1993; Willits, 
2003; Zhang and Lemeur, 1992; López-Cruz et al., 2008; Zolnier et al., 2004; Qiu, 2013) 

13. Leaf Stomatal Resistance Porometer (Cannavo et al., 2016; Montero, 2001; Demrati et al., 2007; Rouphael and Colla, 2004; Ali, 
2016; Zhang and Lemeur, 1992; Qiu, 2013) 

14. Leaf Area Digital Leaf Area Meter, Electronic 
Planimeter, Plant Canopy Analyzer 

(Villarreal-Guerrero et al., 2012; Kage et al., 2000; Rouphael and Colla, 2004; Medrano et al., 
2005; Orgaz et al., 2005; Zhang and Lemeur, 1992; López-Cruz et al., 2008; Qiu, 2013; Willits, 
2003; Nikolaou, 2017) 

15. Canopy Surface Temperature Crop Solarimeter, Infrared Pyrometer (Villarreal-Guerrero et al., 2012; Qiu, 2013) 
16. Soil Heat Flux Heat Flux Plates (Demrati et al., 2007; Wang et al., 2018; Zhang and Lemeur, 1992) 
17. Soil Temperature Thermistors (Demrati et al., 2007) 
18. Data Sampling and Storage Data Logger (Cannavo et al., 2016; Villarreal-Guerrero et al., 2012; Prenger et al., 2002; Montero, 2001; Liu 

et al., 2008; Fernández et al., 2010; Libardi et al., 2019; Demrati et al., 2007; Acquah et al., 
2018; Yang et al., 1990; Rouphael and Colla, 2004; Ali, 2016; Wang et al., 2018; López-Cruz 
et al., 2008; Qiu, 2013; Bailey, 1993)  

L. Wang et al.                                                                                                                                                                                                                                   



Computers and Electronics in Agriculture 190 (2021) 106447

22

conditions is important. A key component of such an energy exchange in 
CEA is crop ET. However, only a handful of studies exist on crop ET for 
such systems. 

ET models exist to estimate ET based on easily measurable parame
ters. Such models have seen extensive use in open field cultivation and to 
a lesser extent, greenhouse crop production. It, therefore, serves as a 
natural starting point. Existing ET models were reviewed, of these, 
twelve models most suitable for indoor ET estimation were selected. The 
accuracy of these models based on the type of ET model, type of CEA, 
and implementation timestep was investigated. 

Penman-Monteith model appears to be the most popular model used 
in both its original and modified forms. It has been successfully used for 
the ET estimation of a variety of greenhouse cultivated crops such as 
lettuce (Zolnier et al., 2004) (R2 = 0.73–0.93 depending on cultivar 
type), bell-pepper (Villarreal-Guerrero et al., 2012) (R2 = 0.95–0.96 
depending on greenhouse cooling strategy), geraniums (Montero et al., 
2001) (R2 = 0.96), tomato (López-Cruz et al., 2008) (R2 = 0.75), cu
cumber (Medrano et al., 2005) (R2 = 0.97), Ficus benjamina (Zhang and 
Lemeur, 1992) (R2 = 0.97–0.98 depending on the prevalent type of 
surface geometry and convection), banana (Demrati et al., 2007) (R2 =

0.91) and gerbera (Carmassi et al., 2013) (R2 = 0.90–0.95 depending on 
season). However, it has been found to be outperformed by the Stan
ghellini (Villarreal-Guerrero et al., 2012; Prenger et al., 2002; López- 
Cruz et al., 2008) and data-driven models (Parasuraman et al., 2007). 

A few studies have reported that the Stanghellini model (Villarreal- 
Guerrero et al., 2012; Prenger et al., 2002; López-Cruz et al., 2008) 
outperformed the Penman-Monteith model in several greenhouse ap
plications. López-Cruz et al. (2008) compared Stanghellini model to 
Penman-Monteith model for greenhouse tomato crop (R2 = 0.72 vs. R2 

= 0.62). Guerrero et al. (2010) found that the Stanghellini model out
performed the Penman-Monteith model and Takakura model for 
greenhouse bell pepper and tomato crops. Prenger et al. (2002) found 
Stanghellini model outperformed the Penman, Penman-Monteith, and 
Fynn model for greenhouse red maple tree (Nash-Sutcliffe Correlation 
Coefficient = 0.872 vs. 0.214, 0.481, −0.848 respectively). It out
performed the Penman, Chalabi, and Aikman models (R2 = 0.77 vs. R2 

= 0.59, 0.57, 0.73) in a study by Jolliet and Bailey (1992) for green
house tomato crop. In the same study, although the Jolliet model had a 
better R2 value of 0.81, it underestimated ET by 8% on average 
compared to the Stanghellini model which overestimated ET by 3% on 
average. This could be attributed to the fact that the Stanghellini model 
was purposely created for the greenhouse environment (Pamungkas 
et al., 2014; Acquah et al., 2018). Furthermore, in the Stanghellini 
model, the LAI term accounts for energy flux between multiple leaf 
layers, and the radiative resistance term improves the modeling of the 
incoming radiation flux, as well as treating the airflow as mixed con
vection (Villarreal-Guerrero et al., 2012; López-Cruz et al., 2008). 
However, there are very limited number of case studies and comparison 
studies for high technology CEAs using the Stanghellini model and most 
studies have either been low technology CEAs or CEAs with limited in
door environment controls. Also, only limited crop types have been 
focused on in existing ET studies. Would the model perform consistently 
well for other types of CEA crops such as microgreens? Furthermore, not 
all the twelve models are evenly studied and compared. Some of the 
models such as the Graamans model are relatively new and have not 
been compared with other models yet. Comparison studies are essential 
for the selection of ET models in different CEA applications, especially 
high technology CEAs (Iddio et al., 2020). 

Amongst the mass transfer-based models, only the Penman model 
has seen extensive use in CEA applications. In larger studies on mass 
transfer-based models (mostly outdoor applications), the Penman model 
and several other mass transfer-based models such as Trabert, Jensen- 
Haise, and Mahringer models have been found to give acceptable re
sults (Djaman et al., 2017; Valipour, 2014; Islam and Alam, 2021). 
Although we can assume that these models could be successfully vali
dated for CEA, these models would require further testing and 

calibration to demonstrate their ability in successfully predicting ET in 
modern CEA facilities. 

A major challenge in ET modeling is the difficulty in the modeling of 
crop stomatal resistance. This creates the need for improved sensor 
technology on the measurement side and a comprehensive mechanistic 
approach on the modeling side. A second challenge is the limited 
number of studies on emerging types of high technology CEAs such as 
vertical farms and plant factories. An increase in the volume of studies 
would help with widespread model implementation and validation, and 
appropriate ET calibration methods. Also, it would ensure heteroge
neous studies that cover a variety of indoor cultivated crops instead of 
the narrow range of crops currently studied. An added benefit would be 
the provision of reliable data to create a crop coefficient database rele
vant to indoor crop production. 

Future ET modeling efforts would profit from advancements in 
computer technology and machine learning techniques that can poten
tially be integrated with the first principles of mass and energy budgets 
so that ET predictions can be extended beyond training data. Especially 
for high technology CEAs for which data collection is crucial, such data 
could be used to create high fidelity ET models. Plant water use would be 
better managed by regulating irrigation based on predicted plant ET in 
real-time. This would have major implications on water use efficiency, 
crop growth, and overall energy efficiency for such systems. 

Besides centralized vertical farming facilities, indoor crop growth 
can be integrated with building systems (façade, interior, and mechan
ical systems) as part of urban food production. In this case, crops, peo
ple, and building systems will interact with each other. On one hand, ET 
from indoor crops affects human comfort and potentially reduces 
building cooling demands. On the other hand, human behaviors and 
building system operations influence crop performance. Therefore, the 
enhancement of our knowledge of ET rates for indoor growing crops is 
essential for quantifying the performance of indoor crops and contrib
utes to our understanding of the interaction between indoor crops and 
the built environment. 
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