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Evapotranspiration (ET) is the total amount of water lost from evaporation and transpiration via plant growing
media and plant surfaces. ET models have been widely researched for outdoor plants, forests, and wetlands.
However, studies on ET models for controlled environment agriculture (CEA) are limited. Reliable predictions of
ET in CEA are essential for quantifying the performance of CEA systems. This review focused on evaluating the

twelve existing ET models that have been used for indoor ET estimation. Also, we provided an overview of the
key parameters that affect ET in existing ET models and different calibration methods for ET models. We
summarized existing studies on crop coefficient and stomatal conductance and reviewed case studies that utilized
ET models for different CEA applications. We identified research gaps in ET modeling and highlighted research
needs for ET parameter interdependence, validation of existing models for indoor farming, and a comprehensive

crop resistance model.

1. Introduction

Vertical farming as the expansion of controlled environment agri-
culture (CEA) advances urban food production. A key advantage to CEA
is that food production can be located anywhere such as in urban or rural
areas, thereby reducing food miles, carbon emissions, and improving
food quality. Also, climatic variables in CEA can be controlled to opti-
mize yield, shorten production time, or extend cultivation over a full
cropping season. Compared to traditional open-field cultivation, it has
the potential to significantly improve crop yield and water efficiency
(Junzeng et al., 2008; Avgoustaki and Xydis, 2020).

Evapotranspiration (ET), the total amount of water lost from evap-
oration and transpiration via plant growing media and plant surfaces, is
the major avenue for plants to lose water and exchange energy with their
surroundings. ET plays a vital role in water and energy efficiency for
CEA. About 99% of the water taken up by plants is lost via transpiration,
with only 1% being used for metabolic activities (Rosenberg et al.,
1983). Plants use this process to transport nutrients from the growing
media. In hydroponic cultivation, ET estimation is crucial for water
management due to the lower water holding capacity and limited vol-
ume of substrates. Furthermore, ET significantly contributes to an en-
ergy balance through mass and heat transfer in CEA, which maintains
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favorable environmental conditions for plant growth.

Besides ET measurements in the field using various methods such as
lysimeters (Junzeng et al., 2008), substrate water balance (Cannavo
et al., 2016), eddy covariance (Tanny et al., 2006), and sap flow gauge
(Villarreal-Guerrero et al., 2012), ET models have been developed to
predict crop ET from climatic parameters or in combination with crop
physiological characteristics. ET models can be classified into reference,
physical, and data-driven ET models. Reference ET is the ET rate from a
reference surface (e.g. grass or alfalfa) and is represented by climatic
formulas that were calibrated against lysimeter measurements from
multiple locations (Wright, 1996; Allen et al., 1994). Such a reference
crop is assumed to be a full, well-watered crop canopy. Reference ET
models, relatively easy to use, require climatic parameters and a crop
coefficient to estimate the actual ET value for a specific crop. Physical ET
models are derived from energy balance equations (Allen and Hillel,
2005; Stanghellini, 1987). These models do not require crop co-
efficients. However, stomatal resistance, aerodynamic resistance, and/
or leaf area index are commonly needed in ET estimates using physical
ET models. This increases the complexity of using physical ET models.
Although ET models have been widely researched for outdoor cultivated
plants, forests, and wetlands, there are limited studies on ET models for
CEA. The data-driven method utilizes statistical regression or machine
learning methods to predict ET based on measurement data. It usually
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Nomenclature U Hourly or Daily Mean Air Velocity [m/s]
VPD Vapor Pressure Deficit [kPa]

a Albedo [-] w Leaf Width [m]

A Plant Leaf Area [cm?] WAP Weeks After Planting

ac Absorption Coefficient [-] WF Wind Function [-]

AF Adjustment Factor Equal to 0.19 for Coastal Zones [-] x Reference Measurement Height [m]

b Empirical Parameter [-] Z Wind Speed Measurement Height [m]

c Resistance Model/Coefficient Constants [-] a Priestley Taylor Coefficient [-]

C FAO Penman-Monteith Constants [-] g Bowen Ratio [-]

CAC Cultivation Area Cover [-] y Psychrometric Constant [kPa/°C]

CAI Canopy Area Index [-] A The slope of the Saturation Vapor Pressure-Temperature

Cc Canopy Resistance Coefficient [-] Curve [kPa/°C]

Cp Specific Heat of Air [MJ/kg °C] y Latent Heat of Vaporization [MJ/kg]

Cs Soil Surface Resistance Coefficient [-] AET Latent Heat Flux [W/m?]

d Zero-Plane Displacement Height [m] P Density [kg/m?]

dc Diffusion Coefficient [-] T Transmissivity [-]

E Evaporation [mm/day, mm/h, W/m?] X Vapor Concentration [g/m?]

ek Extinction Coefficient [-] AT Temperature Difference [°C]

ET Evapotranspiration [mm/day, mm/h, W/m?] )

f Jarvis Model Mathematical Functions [-] Subscripts

g Conductance [m/s] a Air/Aerodynamic (Crop)

G Soil Heat Flux [MJ/m> day] abs Effectively Absorbed

GDD Growing Degree Day [°C/day] b Boundary Layer

Gr Grashof Number [-] c Crop Evapotranspiration

h Convective Heat Transfer Coefficient of Air [W/m? °C] e Aerodynamic (leaf)

H Crop Height [m/mm] eff Eff?ctive

I Radiation [W/m?] est Estimated

J Total Available Energy [W/m?] g Ground-Level

k Thermal Conductivity [W/m °C] i Stomatal (leaf)

K Empirical Parameters [-] ini Initial Value

Kc Crop Coefficient [-] l Leaf.

Kcb Basal Crop Coefficient [-] max Maximum

Ke Soil Evaporation Coefficient [-] led In.teFmediate Value

Kr Surface Soil Evaporation Attenuation Coefficient [-] min Minimum

l Characteristic Leaf Dimension [m] n Net

L Leaf Length [m] nl Long Wave

LAI Leaf Area Index [-] ns Short Wave

Nu Nusselt Number [-] ) Reference Evapotranspiration

PPFD Photosynthetic Photon Flux Density [umol/m?/s] p Pan. .

Pr Prandtl Number [-] R Radiative

r Resistances [s/m] s Surface (Canopy)/Stomatal (Crop)/Soil

Re Reflection Coefficient [-] sc Calculated Solar Radiation

Re Reynolds Number [-] t Unit Conversion [86400 s/day, 3600 s/h]

RH Hourly or Daily Mean Air Relative Humidity [%] w Evaporative .Surface/ Wat(?r .

rl Roughness length of reference surface [m] x Extraterrestrial Solar Radiation

S Sensible Heat Flux [W/m?] 2z Wind Speed Measurement Height [m]

Sa Salinity [g/kg] Superscripts

sp Proportion of Soil between the Soil and the Evaporation of a Between Mean Canopy Flow and Reference Height

the Soil [-] c Canopy

t Time [day] s Soil

T Hourly or Daily Mean Air Temperature [°C]

Tc Crop Transpiration [mm/h]

requires a large amount of data to train the ET model.

This review focused on evaluating the twelve existing ET reference
and physical models that have been used for indoor ET estimation. Also,
we provided an overview of the key parameters that affect ET in existing
ET models and different calibration methods for ET models. We sum-
marized existing studies on crop coefficient and stomatal conductance
models and reviewed case studies that utilized ET models for different
CEA applications. In the end, we identified research gaps in ET modeling
research and highlighted research needs for ET parameter interdepen-
dence, validation of existing models for indoor farming, and a

comprehensive crop resistance model.
2. Parameters that influence ET

Evaporation and transpiration occur simultaneously and are difficult
to separate (Allen et al., 1998). At an early stage, crop ET is roughly
100% due to evaporation, while at full crop cover, ET is about 90%
transpiration (Fazlil-Ilahil, 2009; Lozano et al., 2017; Sigalingging and
Rahmansyah, 2018; Prenger et al., 2002). The parameters that influence
ET can be categorized into three groups: climatic, plant physiological,
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and cultivation practices.
2.1. Climatic parameters

Climatic factors have the most influence on crop ET as well as
growth. Such factors include net radiation, air temperature, relative
humidity, and air velocity. Desired values for these climatic parameters
were presented on common greenhouse cultivated crops (Nau, 2011;
Baudoin et al., 2017; Currey et al., 2019; Meinen et al., 2018; Carney
et al., 2016; Delavar et al., 2016; Drost, 2015; Duan et al., 2014; Peck-
enpaugh, 2004; Karlsson, 2014; Wei, 2016; Fairbanks, U.o.A. Green-
house gardening, 2013; Europe, 2020; Struik and Wiersema, 1999; Zha
and Liu et al., 2018; Incrocci et al., 2006).

Net radiation is the balance between incoming radiation to crops and
outgoing radiation from the crops (Takakura et al., 2009). An increase in
net radiation consequently could lead to an increase in the ET rate
(Zhang et al., 2010; Jolliet and Bailey, 1992; Baille et al., 1994; Kittas
et al., 1999). In considering both evaporation from the growth substrate
and transpiration from plants, Villarreal-Guerrero et al. (2012) found
radiation to account for about 60% of the estimated ET from the Stan-
ghellini (Stanghellini, 1987), Penman-Monteith (Monteith, 1965), and
Takakura (Takakura et al., 2005) models. While considering only tran-
spiration from plants, Montero et al. (2001) found the radiation term to
represent about 80% of the total crop transpiration during the early
hours after sunrise using the Penman-Monteith model (Monteith, 1965).

Another important parameter is air temperature. Each crop has an
optimal range for which temperatures must be maintained for optimal
crop production. The increase of ambient temperature in CEA could
increase crop ET rate (Zhang et al., 2010; Pamungkas et al., 2014;
Graamans et al., 2017; Gallardo et al., 1999; Liu et al., 2008). Thermal
energy transfer from warm air to crops increases evapotranspiration
rates.

Vapor pressure deficit (VPD) measures the difference between
saturated vapor pressure and actual vapor pressure. The relationship
between ET and VPD can be more complicated than the other environ-
mental parameters. Rather than considering VPD as an independent
parameter, Monteith (1995) suggested that VPD was the outcome of the
interaction between vegetation and the ambient environment. In a study
by Boulard and Jemaa (1992), for hourly ET estimation, VPD signifi-
cantly influenced ET (up to 43%). Prenger et al. (2002) also found both
VPD and radiation to have strong correlations with ET. Liu et al. (2008)
found daily banana ET to strongly depend on the mean air temperature
and VPD.

Air velocity influences aerodynamic resistance and ET. Proper air
circulation in CEA is required to prevent the spread of diseases by
avoiding wet spots. Air velocity is less than 0.2 m/s in a closed typically
CEA (Casanova et al., 2009; Fernandez et al., 2010) but could be much
higher for naturally ventilated CEAs (Libardi et al., 2019; Jaafar and
Ahmad, 2018). The increase of air velocity decreases aerodynamic
resistance and increases crop ET (Ahmed et al., 2020; Jolliet and Bailey,
1992). However, compared to other climatic parameters, the effects of
air velocity on ET are small.

2.2. Plant physiological parameters

Plant physiological parameters such as leaf area index (LAI) and
stomatal resistances (r;) have been used to predict ET rates.

LAI is the ratio of the total leaf area to the cultivation surface or
ground area and is an important parameter for physical ET models such
as the Stanghellini model (Stanghellini, 1987). In some studies, LAI was
calculated with leaf dimensions (length, width) and/or plant density
(Kage et al., 2000; Demrati et al., 2007; Kittas et al., 1999; Salcedo et al.,
2017) through measurements on a periodical basis (weekly or biweekly)
(Cannavo et al., 2016; Villarreal-Guerrero et al., 2012; Baille et al.,
1994; Pamungkas et al., 2014; Boulard and Jemaa, 1992; Toyin et al.,
2015; Acquah et al., 2018; Yang et al., 1990). Image analysis software
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such as Image J (Gao et al., 2011; Martin et al., 2013; Ahmad et al.,
2015) and Easy Leaf Area (Ahmad et al., 2015; Easlon and Bloom, 2014)
can be used in estimating leaf area. LAI can be predicted by non-linear
regression models as functions of crop thermal time (Salcedo et al.,
2017; Carmassi et al., 2013; Rouphael and Colla, 2004) or days after
sowing (DAS) (Medrano et al., 2005) as well as by crop growth models
such as TOMGRO (Battista et al., 2015; Bacci et al., 2012).

Leaf stomatal resistance also affects ET, with an inverse relationship
(Ali et al., 2016). At lower stomatal resistance, the stomata open and so
allows the exchange of gas including water vapor, hence the increased
ET rates, and vice versa. Stomatal resistance varies with the type of crop,
environmental conditions, and water availability. Leaf stomatal resis-
tance can be measured using a leaf porometer or infrared gas analyzer
(IRGA). A recent study comparing leaf stomatal conductance measured
using a leaf porometer and an IRGA suggested that calibration of the leaf
porometer using IRGA would be necessary (Toro et al., 2019). Efforts
have been made to develop stomatal resistance models which can be
used for real-time estimation based on easy-to-measure parameters such
as air temperature, VPD, and light levels. Stomatal resistance modeling
is further discussed in depth in Section 3.2.2.2.

Also, leaf temperature is another important driver of ET. Leaf tem-
perature represents the outcome of energy balance between plants and
the ambient environment (Yang et al., 1990). Leaf temperatures were
reported to be lower than air temperatures during the daytime (Montero
et al.,, 2001; Yang et al.,, 1990; Rouphael and Colla, 2004) in some
studies, while leaf temperatures were reported to be warmer than air
temperatures in other studies of crops grown in greenhouses (Demrati
et al., 2007). The relationship between leaf temperature and air tem-
perature depends on the magnitudes of terms related to net radiation
and vapor pressure deficit and the amount of evaporativing cooling
(Michaletz et al., 2016).

2.3. Cultivation practices

Various cultivation practices also influence crop ET. For example, the
types and composition of substrate or soil play a key role in regulating
ET rates. Soils with a better water holding capacity can increase the
amount of water available for ET while those with poor water-holding
capacities are prone to runoffs and cannot promote increased ET. In a
study by Ondrasek et al. (2007) comparing Rockwool, peat, and perlite,
they found the ET rate to depend on the water holding capacity of the
substrate. ET rates were lower in perlite due to its low water holding
capacity. Therefore, the characteristics of the substrate should be
considered in planning irrigation management strategies. These char-
acteristics include porosity, particle sizes, permeability, thickness, and
compactness (Cascone et al., 2018).

The salinity of the grow media also affects crop ET, decreasing lin-
early with an increase in salinity (Blanco and Folegatti, 2003). Increased
salinity reduces the leaf water content, increasing stomatal resistance,
and ultimately reducing the ET rate (Boulard and Jemaa, 1992).

Irrigation management techniques also influence crop ET. Depend-
ing on the level of irrigation deficit, water available for plant ET may be
affected. Reference ET models however apply to well-watered condi-
tions with no crop water stress. However, this is sometimes far from
reality where water conservation requires that the right amount of water
be supplied to reduce water use but also maintain a high crop yield.
Irrigation level and frequency, therefore, affect crop ET. In a study by
Chopda et al. (2018) investigating the effect of five manageable allow-
able depletion (MAD) levels: 10%, 20%, 30%, 40%, and 0% (the control
in which the farmer irrigates every 7 days), the highest ET rate and crop
yield were recorded at 10% MAD and the lowest at 40% MAD. Cannavo
et al. (2016) also found that reducing irrigation levels to 75% of the
reference, well-watered scenario, or greater had no severe effect on crop
ET. As for the frequency of irrigation, they found irrigating once a day or
more to be suitable for optimal crop ET.

The most controlled factor that defines a CEA is climatic. However,
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other factors such as irrigation practices and substrate salinity also play
very important roles. In water stress conditions, even if incoming radi-
ation, and vapor pressure deficit conditions are favorable, the ET rate
would be low and could affect crop productivity. Therefore, careful
attention should be paid to these factors to ensure that the plant ET rate
is maintained at desired levels. In highly controlled CEA, these factors
are usually continuously monitored and controlled for optimum crop
yield. Existing studies have been focused on the effects of single pa-
rameters on ET rates. further research that considers the interdependent
nature of these parameters on the ET rate should be further pursued. For
example, an increase in temperature increases ET, however, this could
be counterbalanced by an increase in resistance in the presence of
increased CO, levels (Moriondo et al., 2015; Savabi and Stockle, 2001).
The techniques of machine learning could help gain some insight into
such interdependency, as well as in engineering new features as in the
case of VPD, which could combine some of these parameters into a new
one that better describes ET rates.

3. ET models for CEA

Although ET measurements can be conducted in the field, mathe-
matical ET models are easy to implement, non-destructive, and suitable
for real-time ET estimations. In this section, we categorize existing ET
models into reference ET models, physical ET models, and data-driven
ET models.

3.1. Reference ET models

Reference evapotranspiration is the evapotranspiration from a hy-
pothetical, well-irrigated reference crop. Only climatic factors are
considered in the ET estimation from reference ET models, specific crop
physiological factors and soil factors are ignored. The accuracy of
reference ET models depends on the type of reference used, measure-
ment, and modeling as well as the accuracy of the crop coefficient used.
The following sub-section looks at five commonly used reference ET
models in CEA applications. It also discusses crop coefficients, an
important parameter in computing the actual ET from reference ET.

3.1.1. Model descriptions

3.1.1.1. Priestley Taylor. This model, introduced by Priestley and Tay-
lor (1972) ignores the aerodynamic term but uses the net radiation term
in estimating ET. The aerodynamic term is instead replaced by a
dimensionless multiplier a known as the Priestley-Taylor coefficient.
The model equation is given in Equation (1):

1 A

ET,=0a-——(,— G 1
a/IA-&-y( ) M

where:

ET, —Daily Reference Evapotranspiration [mm/day]

a —Priestley Taylor Coefficient [-]

4 —Latent Heat of Vaporization [MJ/kg]

A —Slope of the Saturation Vapor Pressure-Temperature Curve [kPa/
oC]

y —Psychrometric Constant [kPa/°C]

I, —Daily or Hourly Net Radiation [MJ/m? day]

G —Soil Heat Flux [MJ/m? day]

The coefficient a can be expressed as:

wherep is the Bowen ratio and takes a value of 0.6.
Transpiration can be calculated based on ET and LAI as follows
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(Droutsas et al., 2019):

Tc = ET,(1 — e ) 3
where:

Tc —Crop Transpiration [mm/day]

ET, —Daily Reference Evapotranspiration [mm/day]
ek —Extinction Coefficient [-]

LAI —Leaf Area Index [-]

The Priestley-Taylor model gives good estimates in low advection
conditions which prevails in some CEAs. In a study by Sharma et al.
(2017), the Priestley-Taylor model was found to underestimate the ET of
chile peppers by 17.5-37%, due to the absence of the advection term in
its equation. The experiment was performed in a greenhouse located in
New Mexico, equipped with evaporative coolers, exhaust fans, and
automatic temperature controls.

3.1.1.2. FAO-24 radiation. This model, based on solar radiation was
developed by Doorenbos and Pruitt (1977). The equation of this model is
given in Equation (4):

b A
ET,=2(1—2") 03 4
ﬂ(gA+y> Q)

where:

ET, —Daily Reference Evapotranspiration [mm/day]

4 —Latent Heat of Vaporization [MJ/kg]

A —Slope of the Saturation Vapor Pressure-Temperature Curve [kPa/
OC]

y —Psychrometric Constant [kPa/°C]

I; —Ground-Level Solar Radiation [MJ/m2 day]

b —Dimensionless Parameter [-]

The dimensionless parameter b is expressed as:

b=1.066—0.13 x 1072-RH 4+ 0.045-U — 0.20 x 1073-RH x U —0.315
x 107*.RH* —0.11 x 1072.U? 5)

where:

RH —Daily Mean Air Relative Humidity [%]
U —Daily Mean Air Velocity [m/s]

Casanova et al. (2009) found this model to have an average value of
2.8 mm/day over 9 weeks, compared to measured lysimeter ET which
was 1.5 mm/day. Thereby overestimating ET by 87% on average for ET
estimation for lettuce in a chapel-type greenhouse in central Chile. In a
study by Liu et al. (2008) on greenhouse banana ET estimation, the FAO
Radiation model underestimated ET by roughly 40%, having a correla-
tion coefficient of 0.52, and was outperformed by the FAO-Penman and
FAO-Penman Monteith models.

3.1.1.3. Hargreaves-Samani. This model was developed by Hargreaves
and Samani (1985) and is solely based on temperature and solar radi-
ation as shown in Equation (6):

1

ET, =~
A

(0.0023) (T pax — Toin) > (T + 17.8)1, (6)

where:
ET, —Daily Reference Evapotranspiration [mm/day]

4 —Latent Heat of Vaporization [MJ/kg]
Timax —Daily Maximum Air Temperature [°C]



L. Wang et al.

Tpmin —Daily Minimum Air Temperature [°C]
T —Daily Mean Air Temperature [°C]
I, —Extraterrestrial Solar Radiation [MJ/m> day]

The extraterrestrial radiation (I,) and solar radiation (I;) can be
related as shown in Equation (7):

I, = AF x I, x AT*? 2]
where:

AF —adjustment factor [-]
AT — mean maximum minus mean minimum temperature [°C]

Fernandez et al. (2010) found the original Hargreaves-Samani
equation from above to largely overestimate ET by 66% on average
for a Mediterranean greenhouse without whitening. However, it im-
proves with whitening (overestimating by 3%) and when the solar ra-
diation term is multiplied by the greenhouse cover transmissivity ©
(underestimating by 5%). Jaafar and Ahmad (2018) also tested a
modified solar radiation model in a greenhouse equipped with a suction
fan, in Beirut, Lebanon, based on estimates from the following
expression:

L. =7 x AF x I x (AT)*’ (8)
where:

I, — Calculated Solar Radiation [MJ/m> day]

7 — Transmissivity [-]

AF — adjustment factor [-]

I — Solar Radiation [MJ/m? day]

AT — mean maximum minus mean minimum temperature [°C]

3.1.1.4. FAO Penman. This model is an improvement from the original
Penman (Penman, 1948) model. It includes a wind function as shown in
Equation (9):

ET, :% Kﬁ) (R, — G) + (ﬁ) (6.43)(WF)(VPD) ©

where:

ET, —Daily Reference Evapotranspiration [mm/day]

A —Latent Heat of Vaporization [MJ/kg]

A —Slope of the Saturation Vapor Pressure-Temperature Curve [kPa/
oC]

y —Psychrometric Constant [kPa/°C]

I, —Daily or Hourly Net Radiation [MJ/m? day]

G —Soil Heat Flux [M.J/m2 day]

WF —Wind Function [-]

VPD —Vapor Pressure Deficit [kPa]

The wind function WF could be expressed as:

WF =1+40.0536-U, (10)
where:

WF —Wind Function [-]
U, —Wind Speed at Height z [m/s]

Liu et al. (2008) found the FAO Penman model to give the best
correlation (0.67) for the estimation of banana ET in a greenhouse
compared to four other ET models, however, it overestimated ET by
roughly 27% on average. The study was performed in a greenhouse in
Israel, equipped with cooling fans that operate whenever the tempera-
tures within the greenhouse exceeded 30 °C.
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3.1.1.5. FAO-56 Penman-Monteith. The FAO-56 Penman-Monteith

model (Allen et al., 1998) is the standard model for estimating reference

ET and has been employed in CEA ET estimation with some satisfactory

results. It represents ET from an extensive surface of grass crop with a

height of 0.12 m, a crop resistance of 70 s/m, and an albedo of 0.23

under non-limited soil water. The equation is given in Equation (11):
0.408A(1, — G) + y 52U, VPD

+273 11

=
where:

ET, —Daily Reference Evapotranspiration [mm/day]

A —Slope of the Saturation Vapor Pressure-Temperature Curve [kPa/
°C]

y —Psychrometric Constant [kPa/°C]

I, —Daily or Hourly Net Radiation [MJ/m? day]

G —Soil Heat Flux [MJ/m? day]

T —Hourly or Daily Mean Air Temperature [°C]

C1 and C, —FAO Penman-Monteith Constants [-]

VPD —Vapor Pressure Deficit [kPa]

U, —Wind Speed at Height (z = 2 m) [m/s]

The values of the constants C; and C, change based on the type of
reference crop. These values are presented in Pereira et al. (2015). For
wind speeds at heights other than 2 m, the following adjustments can be
applied (Stokes et al., 2016):

U, = U-zn((Zz - ) ) /ln <(Z ;’1)) (12)

where:

U, —Wind Speed at Height (z = 2 m) [m/s]

U —Wind Speed at Measurement Height z [m/s]

23 —Height = 2 m [m]

z —Measurement Height [m]

d —Zero plane displacement of reference surface = 0.07 m
rl —Roughness length of reference surface = 0.013 m

Generally, crop coefficients obtained using the alfalfa crop reference
are usually lower compared to those obtained using clipped grass.

In a low technology greenhouse in Brazil, Libardi et al. (2019) found
the FAO Penman-Monteith model to generally underestimate the ET of
pre-sprouted sugarcane plantlets between 22.9 and 24.2% across three
different cultivars, especially after the second week of planting. This was
attributed to an increase in LAI which is not captured by the FAO
Penman-Monteith model.

In many low-technology CEAs, air velocities could be approximately
zero, therefore, the aerodynamic term in the above model equation
could be neglected. Using both single and dual crop coefficients, Wang
et al. (2018) found this model to underestimate daily eggplant ET by
1.1% and 3.3% respectively in a naturally ventilated greenhouse in
China. It improves if the maximum and minimum temperatures are used
alongside the mean temperature in calculating the model parameters
(Naoum and Tsanis, 2003). Windspeed was assumed to be negligible,
hence it was given a value of zero in the model calculation. However,
Zhang et al. (2010) found such modification to give poor estimates for
cucumber ET in a solar greenhouse in North-East China, with a corre-
lation coefficient of 0.46. This was attributed to the neglect of the
aerodynamic term.

The accuracy of reference ET models depends on the crop co-
efficients. Therefore, they are usually not preferred especially for situ-
ations where crop coefficient values are lacking, or local calibration is
difficult to perform. Even for studies that compared reference ET models
with physical models, the latter has been found to provide more accurate
estimates. However, reference ET models are useful for situations in
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which some measured climatic parameters are lacking. They are also
relatively easy to implement and could give quick rough ET estimates.
Of the reference ET models used in CEA ET estimation, the recom-
mended FAO Penman-Monteith model is the most widely used. It can
also be used for both daily and hourly ET estimations, adjusting the
constants accordingly. The next sub-section further discusses the
concept of crop coefficients and how they are derived.

3.1.2. Crop coefficients

The crop coefficient concept was first introduced by Jensen (Jensen,
1968) to relate the ET of the desired crop over a chosen period to a
“potential ET”. The Food and Agriculture Organization (FAO) of the
United Nations recommends the single and dual crop coefficients
method for the estimation of ET from reference ET models. This is
because crop coefficients vary strongly with crop characteristics (Dutta
et al., 2016) and to a limited extent with climate (Gallardo et al., 1999),
therefore, it could be transferred to new locations and climates. For the
single crop coefficient method, crop transpiration and soil evaporation
effects are combined into a single value, whereas in dual crop co-
efficients, these two effects are treated separately. Single crop coefficient
can be obtained from crop ET measurements and reference ET mea-
surements as shown in Equation (13):

ET,
ET,

Kc =

(13)

where:

Kc — Crop Coefficient [-]
ET, —Daily Crop Evapotranspiration [mm/day]
ET, —Daily Reference Evapotranspiration [mm/day]

Dual crop coefficient can be expressed as shown in Equation (14):

ET,

Kcb + Ke) =
(Kcb + Ke) ET,

(14

where:

Kcb — Basal Crop Coefficient [-]
Ke — Soil Evaporation Coefficient [-]

In a study by Wang et al. (2018) on eggplant ET estimation, in a
naturally ventilated greenhouse in China, both single and dual crop
coefficients were found to give acceptable results (average mean abso-
lute error = 0.23 mm/day and 0.22 mm/day respectively). However, the
latter was closer to the measured values because the dual crop coeffi-
cient improves the accuracy of the evaporation estimate. It also predicts
crop yield better, as crop yield is determined by transpiration more than
by evapotranspiration.

Crop coefficients exist for many field-grown crops; however, these
values cannot be used for CEA-grown crops because the microclimate is
different for each case. A proper evaluation of the crop coefficient is
necessary for accurate ET estimation. Crop coefficient values depend on
the climatic conditions, type of calibration method and the type of ET
model used (Lozano et al., 2017; Liu et al., 2008). They also depend on
the irrigation management method used and apply to well-watered,
optimal conditions. In situations of water stress, or conditions
different from a relative humidity of 45% and wind speed of 2 m/s,
adjustments are required to be able to apply FAO standard crop coeffi-
cient values (Ragab, 2002). It also depends on the type of crop, growth
stage, growing season, and length, as well as the cultivation technique,
employed (Pamungkas et al., 2014; Sharma et al., 2017; Perez et al.,
2002). For example, for the same type of crop grown in the same con-
ditions, the crop coefficient value can vary between a vertically sup-
ported crop and a prostrate crop (Orgaz et al., 2005). This is because the
vertically supported crop is capable of intercepting more net radiation.
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The same applies generally between tall and short crops, with the former
having greater maximum crop coefficient values. Crop coefficients can
also be affected by frequent wetting of soil surface and could increase to
1 or 1.2 (Allen et al., 1998).

Furthermore, crop coefficient changes with the crop growth stage
therefore a constant value cannot be used for an entire cropping season
(Blanco and Folegatti, 2003). Zhang et al. (2010) found a poor corre-
lation (R® = 0.46) between ET, and ET. when a constant crop coefficient
value was used for the FAO Penman-Monteith model. Also, depending
on the period used, the variability could be regular (Orgaz et al., 2005)
or irregular (Zhang et al., 2010).

FAO provides recommended crop coefficient values for field-grown
crops. In many cases values are given for the three main growth stages
of a crop - initial, middle, and end. In the study by Wang et al, (2018),
eggplant crop coefficients were obtained using the recommended FAO
values as a basis via the following formula:

Kcey, = Kc+[0.04(U — 2) —0.004(RH,,;, — 45)](H/3)*? 15)

where:

Kces. — Estimated Crop Coefficient [-]

Kc — FAO Recommended Crop Coefficient [-]

U — Hourly or Daily Mean Air Velocity [m/s]

RH,jin — Minimum Hourly or Daily Mean Air Relative Humidity [%]
H — Average height of the crop during the growing period [m]

The above expression is used when the wind speed within the CEA is
not 2 m/s and when the daily average minimum relative humidity is not
45%. The same equation can also be used to compute the basal crop
coefficient for the dual crop coefficient, replacing the FAO recom-
mended crop coefficient value with the FAO recommended basal crop
coefficient value. While the soil evaporation coefficient can be obtained
as follows:

Ke = Kr(Kr o — Keb) < SP-Kcpax ae)

where:

Ke — Soil Evaporation Coefficient [-]

Kr — Surface Soil Evaporation Attenuation Coefficient [-]

Krmax — Maximum Surface Soil Evaporation Attenuation Coefficient
[-]

Kcb — FAO Recommended Basal Crop Coefficient [-]

SP — Proportion of Soil between the Soil and the Evaporation of the
Soil [-]

Kcmax — Maximum FAO Recommended Crop Coefficient [-]

However, the soil evaporation coefficient can be ignored if soil
evaporation is prevented by mulching.

Crop coefficient values from ET experiments have been correlated
with the growing degree day (GDD) for the estimation of crop co-
efficients. Sharma et al. (2017) developed a relationship between GDD
and experimental crop coefficient values to estimate the crop coefficient
values for chile peppers. Libardi et al. (2019) also established this
relationship and one between the Kc and LAI values for pre-sprouted
sugarcane plantlets. In this study, a strong correlation was found be-
tween crop coefficients and days after transplanting (DAT), GDD, and
LAI Therefore, a model can be created from these relationships for the
estimation of crop coefficients.

Crop coefficients can also be obtained from LAI. For partial cover
horticultural crops, that is, with LAI less than 3, the Ritchie and Johnson
(1990) approach can be used. First, the leaf area is estimated from the
cumulative thermal time (TT) or GDD and a Gompertz function as fol-
lows:

A = Apexp| — b-exp(K-GDD) | a7z
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where:

A — Plant Leaf Area [cm?]

Amax — Maximum Plant Leaf Area [cm?]
b and K — Empirical Coefficients [-]
GDD — Growing Degree Day [°C/day]

The crop coefficient can then be obtained as follows:

Kcpia — Kcii

Kc = K¢y + |: 3 :| x LAI (18)

where:

Kc — Crop Coefficient [-]
Kcini — Crop Coefficient value for initial crop development stage [-]
Kcpig — Crop Coefficient value for middle crop development stage [-]
LAI — Leaf Area Index [-]

However, for crops such as pepper that get pruned frequently, the
above approach cannot be used. Instead, a linear relationship between
the crop coefficient and cumulative thermal time using LAI must be
obtained. Orgaz et al. (2005) present a regression equation for sweet
pepper in a low technology greenhouse in southeast Spain, however,
such expression can only be used for sweet pepper cultivated under
similar management methods. It would, therefore, need calibration for
other environments, the expression is given in Equation (19):

Kc = Kciyi +0.00176 x (GDD —200) 19)

where:

Kc — Crop Coefficient [-]
Kcini — Crop Coefficient value for initial crop development stage [-]
GDD — Growing Degree Day [°C/day]

The crop coefficient also relates to the percentage of soil water
content as well as weeks after planting (WAP). A regression correlation
for the latter was presented by Toyin et al. (2015) as follows:

Kc = —0.007WAP? +0.097WAP — 0.005 (20)

where:

Kc — Crop Coefficient [-]
WAP — Weeks After Planting

Crop coefficient models have also been derived from climatic vari-
ables. Junzeng et al. (2008) derived a relation between crop coefficient
and climatic factors for tomato and cowpea. The model was based on air
temperature Ty, relative humidity RH, and ground surface temperature
T as well as some parameter coefficients. The equation for tomato (5 =
0.317,y =0.037, w = —0.357, § = —1.513) and cowpea ( = 0.406, y =
—0.236,5 = —4.141) is shown in Equations (21) and (22) respectively:

Kc = Ty +yRH + 0T + 6 21
Kc =Ty +yTs+6 (22)
where:

Kc — Crop Coefficient [-]

T — Air Temperature [°C]

RH — Relative Humidity [%]

Ty — Ground Surface Temperature [°C]
pB,v,6 and o — Empirical Constants [-]

Crop coefficients play a key role in the simple estimation of ET from
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reference ET models. They make it possible to obtain accurate ET esti-
mations while avoiding the difficulty of measuring some parameters.
Crop coefficients combine several factors such as cultivar, stage of
growth, plant density, season length, and canopy architecture into a
single value. In many cases, such values could also be transferred from
one location to another with little calibration. However, this means that
for accurate estimation, local calibration must be performed which
could sometimes be time-consuming. Also, only a limited number of CEA
cultivated crops have published crop coefficient data, with the need for
more studies to confirm the validity of such reported figures. Such
studies with published data include typical greenhouse crops such as
cucumber (Zhang et al., 2010; Blanco and Folegatti, 2003), tomato
(Junzeng et al., 2008; Pamungkas et al., 2014; Acquah et al., 2018; Gong
et al., 2019), melon (Lozano et al., 2017; Orgaz et al., 2005) and sweet
pepper (Gallardo et al., 1999; Orgaz et al., 2005) as well as other crops
such as banana (Liu et al., 2008), chile pepper (Sharma et al., 2017),
sugarcane plantlets (Libardi et al., 2019), eggplant (Wang et al., 2018),
green beans (Orgaz et al., 2005), water melon (Orgaz et al., 2005), leaf
amaranth (Toyin et al., 2015), oil palm (Sigalingging and Rahmansyah,
2018) and cowpea (Junzeng et al., 2008). The validity and reliability of
crop coefficient values also depends on the ET experiment design (Allen
et al., 2011).

3.2. Physical ET models

Most of the physical ET models in use are based on the thermal en-
ergy balance of the canopy as shown in Equation (23). They consider the
effects of net radiation I, soil/substrate heat flux G, sensible heat fluxS,
and latent heat fluxAET. They also require crop-specific parameters such
as aerodynamic and stomatal resistance. Most models are modifications
of the Penman-Monteith model (Equation (24)) to better cater to certain
conditions. Most models differ in the way they treat the net radiation
and resistances to vapor flux. A reason for such modifications could be to
avoid the constant measurement and calibration of terms such as the
stomatal and aerodynamic resistances. They consider both climatic and
crop properties, in contrast, to reference ET models.

AT =1,—-G—-S (23)
3.2.1. Model descriptions

3.2.1.1. Penman-Monteith model. The Penman-Monteith model (Allen
and Hillel, 2005; Monteith, 1965) assumes that a three-dimensional
plant canopy can be modeled as a one-dimensional “big leaf”. Over
this surface, radiation is absorbed, heat is exchanged, and latent energy
is released. The equation includes a radiation term and an aerodynamic
term. The model equation can be written as in Equation (24):

1 A(l, — G) + =2V
y R S T 24)

ET,
e=3 )
Aty(1+2

where:

ET. —Daily Crop Evapotranspiration [mm/day]
A —Latent Heat of Vaporization [MJ/kg]

A —Slope of the Saturation Vapor Pressure-Temperature Curve [kPa/
OC]

y —Psychrometric Constant [kPa/°C]

I, —Daily Net Radiation [MJ/m?> day]

G —Soil Heat Flux [MJ/m? day]

pa —Mean Air Density [kg/m°]

Cp —Specific Heat of Air [MJ/kg °C]

VPD —Vapor Pressure Deficit [kPa]

rs —(Bulk) Surface or Canopy Resistance [s/m]
rq —Aerodynamic Resistance [s/m]
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In a study by Villarreal-Guerrero et al. (2012), the Penman-Monteith
model was found to generally overestimate the evapotranspiration of
greenhouse cultivated bell pepper (summer season - natural ventilation
and fogging: ~ 21%, R = 0.95, summer season - pad and fan: ~ 15%,
R? = 0.96) and tomato (fall season — pad and fan: ~ 11%, R? = 0.51,
spring season - pad and fan: ~ 10%, R? = 0.90, spring season - natural
ventilation and fogging: ~ 13%, R? = 0.94). The authors attributed this
to the fact that the model was originally developed to estimate ET for
outdoor conditions. The study was performed in a medium technology
greenhouse in Tucson, Arizona, using two cooling strategies (pad and
fan cooling, and natural ventilation with high pressure fogging). Zhang
and Lemeur (1992) also found the model to overestimate Ficus Benja-
mina ET by roughly 27% on average, however, it had an R? value (0.97)
closer to unity. They concluded that this was because the model was
sensitive to errors in the calculation of the aerodynamic resistance which
they found to be equal to the radiation term, therefore in such cases, the
accuracy of the aerodynamic resistance model is crucial.

In another study by Lopez-Cruz et al. (2008), the model was found to
generally have a similar R? value to the Stanghellini model (0.75) but a
much larger root mean square error (17.1 to Stanghellini’s 2.4) for to-
mato ET in a medium technology greenhouse in Mexico. The model
performance also depends on the prevailing climatic conditions. In high
solar radiation and VPD conditions, the model was found to have a lower
R? value (0.62) compared to Stanghellini’s (0.72).

Zolnier et al. (2004) also found the Penman-Monteith model to have
a good correlation with R? values ranging from 0.82 to 0.93 for scenarios
with LAT greater than 0.5. This was performed for three different culti-
vars of lettuce, in a greenhouse without environmental controls, located
in Brazil. Estimated errors were less than 0.03 mm/h.

In some studies, the net radiation term is expressed as a function of
the LAI and extinction coefficient k. This is because the Penman-
Monteith equation considers a complete crop canopy which is not the
case in practice (Qiu et al., 2013). The net radiation must, therefore, be
multiplied by the radiation intercepted by the canopy given as in
Equation (25):

(I—7) =1—exp(—ek-LAI) (25)
where:

7 —Transmissivity [-]
ek —Extinction Coefficient [-]
LAI —Leaf Area Index [-]

This helps to account for the gradual development of the canopy and
improves the accuracy of the ET estimation.

3.2.1.2. Stanghellini model. This model was developed by Stanghellini
(1987) specifically for ET estimation in CEA or indoor conditions. It
simulates a multi-layer canopy, using tomato crop cultivated in a single
glass Venlo type CEA equipped with hot-water pipe heating. It has been
extensively used by researchers for CEA ET estimation. The model
equation is given as in Equation (26):

&(I, — G) + 22 (VPD)

1
ET, =~ 26
) L+o+5 (26)

where:

ET. —Daily Crop Evapotranspiration [mm/day]

A —Latent Heat of Vaporization [MJ/kg]

A —Slope of the Saturation Vapor Pressure-Temperature Curve [kPa/
°C]

y —Psychrometric Constant [kPa/°C]

I, —Daily Net Radiation [MJ/rn2 day]

G —Soil Heat Flux [MJ/m? day]
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pa —Mean Air Density [kg/m°]

Cp —Specific Heat of Air [MJ/kg °C]

VPD —Vapor Pressure Deficit [kPa]

LAI —Leaf Area Index [-]

rq —Aerodynamic Resistance [s/m]

rs —(Bulk) Surface or Canopy Resistance [s/m]
rr —Radiative Resistance [s/m]

The inclusion of the LAI accounts for energy flux between multiple
layers of leaves in a CEA canopy, while the factor of 2 includes both
surfaces of the leaf. This term has been highlighted as the main reason
for the improved performance under CEA conditions (Lopez-Cruz et al.,
2008). There is also the inclusion of the radiative resistance term with a
more detailed calculation of the incoming radiation flux. In the Stan-
ghellini model, for the aerodynamic term, conditions within the CEA are
treated as being in mixed convection. Therefore, these modifications
make it more suitable for CEA ET estimations compared to other ET
models.

Net radiation for this model is obtained as the difference between the
shortwave and longwave radiation as shown in the following equations
(Egs. (27)-(29)).

In = In: _Inl (27)

I, = 0.07-1 (28)

1= 0.16~K,-pa-Cp-(T -T,) (29)
IR

where:

I, —Daily Net Radiation [MJ/m?> day]

Is —Daily Net Short Wave Radiation [MJ/m? day]
Iy —Daily Net Long Wave Radiation [MJ/m? day]
I; —Daily Incoming Solar Radiation [MJ/m? day]
K; —Unit Conversion [86400 s/day, 3600 s/h]

P —Mean Air Density [kg/m°]

Cp —Specific Heat of Air [MJ/kg °C]

T —Air Temperature [°C]

T; —Leaf Temperature [°C]

rr —Radiative Resistance [s/m]

In that study by Villarreal-Guerrero et al. (2012), this model gave
better estimates compared to Penman-Monteith and Takakura models
(Takakura et al., 2005), with percentage errors between —5.5% to 7%,
depending on the type of crop, season, and cooling strategy employed.
Pamungkas et al. (2014) found the Stanghellini model slightly over-
estimated ET but had a strong correlation with the measured ET for
hydroponically cultivated tomatoes in a plant factory. Acquah et al.
(2018) found a high correlation (R? = 0.9) between the Stanghellini
model ET and measured ET for tomatoes grown in a low technology,
multi-span, Venlo-type greenhouse in Zhenjiang, China. Percentage
deviation (overestimation) from measured ET was between 9.91 and
14.16% from May to July.

3.2.1.3. Fynn model. The Fynn model (Fynn et al., 1993) (Equation
(30)) is derived from the Stanghellini model, using the crop canopy
energy balance. However, it does not include the detailed radiation flux
calculation of the Stanghellini model. The model assumes that the
saturated vapor pressure at leaf temperature can be approximated as the
saturated vapor pressure at air temperature as long as the temperature
difference between the leaf and air temperature is less than 4 to 5 °C.

_{2:LALp,-Cp[VPD)/r, } + AL, - G)

ET,
/1;/[1 +r+ %}

(30)
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where:

ET, —Daily or Hourly Crop Evapotranspiration [mm/day]
A —Slope of the Saturation Vapor Pressure-Temperature Curve [kPa/
OC]

y —Psychrometric Constant [kPa/°C]

I, —Daily Net Radiation [MJ/m?> day]

G —Soil Heat Flux [MJ/m? day]

pa —Mean Air Density [kg/m’]

Cp —Specific Heat of Air [MJ/kg °C]

VPD —Vapor Pressure Deficit [kPa]

LAI —Leaf Area Index [-]

A —Latent Heat of Vaporization [MJ/kg]

rq —Aerodynamic Resistance [s/m]

rs —(Bulk) Surface or Canopy Resistance [s/m]

Prenger et al. (2002) modified the Fynn model, with the inclusion of
a canopy area index (CAI) to improve the radiation flux calculation. It is
defined as the ratio of the canopy area to the CEA floor area and helps to
account for the radiation intercepted directly by the canopy. However,
this was only tested for a scenario of four evenly spaced Red Maple trees
in a greenhouse, therefore more rigorous testing is required especially
for multiple plant scenarios to study its effectiveness. The modified
equation is given as in Equation (31):

1 A /4

ET.=-[— >  _CAL(,—G)+ 2parletVPD)
A+ y(l + :—;)

A+y<1+:—;) &

=2 ]

(3D

where:

ET. —Daily Crop Evapotranspiration [mm/day]
A —Slope of the Saturation Vapor Pressure-Temperature Curve [kPa/
oC]

y —Psychrometric Constant [kPa/°C]

I, —Daily Net Radiation [M.J/m> day]

G —Soil Heat Flux [MJ/m? day]

pa —Mean Air Density [kg/m?’]

Cp —Specific Heat of Air [MJ/kg °C]

VPD —Vapor Pressure Deficit [kPa]

LAI —Leaf Area Index [-]

CAI —Canopy Area Index [-]

4 —Latent Heat of Vaporization [MJ/kg]

rqo —Aerodynamic Resistance [s/m]

rs —(Bulk) Surface or Canopy Resistance [s/m]

In the study above (Prenger et al., 2002), the Fynn model was
compared to the Stanghellini, Penman, and Penman-Monteith model.
However, it had the poorest performance with a Nash-Sutcliffe model
efficiency coefficient of —0.848, underestimating ET by roughly 45%.

3.2.1.4. Baille model. The Baille (Baille et al., 1994) model is a modified
form of the Penman-Monteith model that replaces the crop parameters
difficult to measure with regression constants. However, the overall
model equation still considers the effects of net radiation, leaf area
index, and VPD. But with a reduction in the number of required pa-
rameters, the model can be easily implemented once the model pa-
rameters K; and K, have been determined. By knowing which parameter
has the strongest effect on ET, better ET control can be obtained (Car-
massi et al., 2013). These model parameters are estimations of radiative
and advective terms appearing in the original Penman-Monteith model.
The model equation is given as in Equation (32), where K; and K, are
regression coefficients:
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1
ET. = 7 [Ki-1,-(1 — exp( — ek-LAI) ) + K,-LAI-VPD| (32)
where:

ET. —Daily Crop Evapotranspiration [mm/day]
4 —Latent Heat of Vaporization [MJ/kg]

K; —Regression Coefficient [-]

K, —Regression Coefficient [-]

I, —Daily Net Radiation [M.J/m2 day]

ek —Extinction Coefficient [-]

VPD —Vapor Pressure Deficit [kPa]

LAI —Leaf Area Index [-]

Battista et al. (2015) used the Baille equation in the estimation of
tomato ET in a glasshouse located in Italy equipped with fan-heaters,
shading, and a closed-loop hydroponic system. The ET model makes
use of coefficients that need to be adjusted based on the climate and crop
characteristics and had an estimation error of less than 5%. A similar
model was also employed by Medrano et al. (2005) for the ET estimation
of cucumber cultivated in a naturally ventilated greenhouse in Almeria,
Spain. The model used different day and night values for Coefficient K5,
overestimating ET by 2% and 9% for the spring and autumn cropping
cycle, respectively.

3.2.1.5. Takakura model. This model was developed by Takakura et al.
(2005) based on the CEA heat balance. However, it requires a crop
solarimeter for accurate ET estimation. The solarimeter is used to
accurately measure the net radiation and evaporative surface tempera-
tures. The model equation is given as in Equation (33):

ET. = % (I, —G)—h(T -T,)] (33)

where:

ET. —Daily Crop Evapotranspiration [mm/day]

4 —Latent Heat of Vaporization [MJ/kg]

G —Soil Heat Flux [MJ/m? day]

h —Convective Heat Transfer Coefficient of Air [W/m2 °C]
I, —Daily Net Radiation [MJ/m? day]

T —Daily Mean Air Temperature [°C]

T, —The temperature of the Evaporative Surface [°C]

Villarreal-Guerrero et al. (2012), found this model to be fairly ac-
curate during the early morning, but overestimates early noon ET and
underestimates ET values for the remaining hours of the day. The study
investigated greenhouse cultivated pepper (summer season - natural
ventilation and fogging: ~—7%, R? = 0.90; summer season - pad and
fan: ~—4%, R? = 0.89) and tomato (fall season — pad and fan: ~—24%,
R? = 0.66; spring season - pad and fan: ~+7%, R2 = 0.86; spring season
— natural ventilation and fogging: ~+2%, R? = 0.88). Zhang and Lemeur
(1992) performed ET estimations derived from the simple energy bal-
ance equation (Equation (23)), with all fluxes being positive if entering
the surface and negative if leaving. They found this model to predict
Ficus Benjamina ET with an R? value of 0.88, overestimating by 3 to
13% on average. The model was also found to be unaffected by errors
due to aerodynamic resistance.

3.2.1.6. Graamans model. Graamans et al. (2017) developed a modified
form of the Penman-Monteith model for lettuce grown in a plant factory.
The model iteratively solves for the leaf temperature by ensuring that
the energy balance equation is satisfied. In this model, the latent heat
flux was derived in terms of the difference between the canopy vapor
concentration y, and the air vapor concentration y, as shown in Equa-
tion (34).
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AET = LA[.AAM

rs+rg

(34
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that better accounts for the transformation from a sparse to a full canopy
(Shuttleworth and Wallace, 1985; Fisher et al., 2005). It also requires
stomatal, aerodynamic as well as surface resistance for bare soil. The

where:

JET —Latent Heat Flux [W/m?]

LAI —Leaf Area Index [-]

A —Latent Heat of Vaporization [J/kg]

s —Vapor Concentration at the canopy level [kg/m3]
X —Vapor Concentration of the air [kg/m3]

rq —Aerodynamic Resistance [s/m]

rs —(Bulk) Surface or Canopy Resistance [s/m]

model equations are given in Equations (36)—(46):

AET. = ATc + AE,

where:

(36)

AET, —Latent heat flux [W/m?]
ATc —Latent heat flux of transpiration from canopy surface [W/m?]
AEs —Latent heat flux from substrates [W/m?]

AA + ((p.CpVPD — ArA) [ (s +12) )

It also includes a sub-model for net radiation, based on the reflection ATe = Ce A+y(L+ (re/(re+19))) 37
coefficient as shown in Equation (35). e
I, = (1 _Rc)'lahx'CAC (35) IE. — CsAA+ ((PaCPVPD_A’Z(A*As))/og""r;)) (38)
’ A+y(l+(n/(i+r)))
where:
-1
C3C1
I, —Net Radiation [W/m?] ce= {1 * M] ©9)
Rc —Reflection Coefficient [-]
ILps —Effectively Absorbed Radiation [W/m?] e -1
CAC —Cultivation Area Cover [-] Cs= { + m} (40)
The sub-models for aerodynamic and stomatal resistances are pre- o= (A+y)rs 41
sented in Tables 2 and 3 respectively. However, a constant value was
used for the aerodynamic resistance with different values to represent o= (A+y)r+yr (42)
fan-on and fan-off scenarios.
3= (A+y)ri+yre 43)
3.2.1.7. Shuttleworth-Wallace model. This model is based on a one-
dimensional energy partition which leads to a combination equation J=(1,-6) (44
Table 1
Aerodynamic resistance models used in different studies.
S/ Study Resistance Model Equation ET Model Remark
N
1. (Villarreal-Guerrero et al., 2012) Equation (51), Equation (55), Equation Stanghellini The following averages were obtained for bell pepper (259 s/
(58) m) and tomato (185 s/m)
Heat transfer was taken to be via mixed convection.
2. (Villarreal-Guerrero et al., 2012) in(z — d)/z0 | Penman-Monteith ~ The following averages were obtained for bell pepper (59 s/
e ="y, m) and tomato (70 s/m)
Where K?is von Karman Constant (=0.41)
3. (Acquah et al., 2018) 02 Stanghellini Related to the characteristic leaf dimension and average
Te = 220'W interior air velocity. The average value of 145 s/m was
obtained.
4. (Jaafar and Ahmad, 2018) ro— L-ln (x - d) In (x - d) Penman-Monteith Expressions for the estimation of z, and d were provided by
K2u \H-d 20 the authors.
Where K?is von Karman Constant (=0.41)
5. (Demrati et al., 2007) i Cp Penman-Monteith Where U is the air velocity in the CEA and is obtained as a
¢ |Ty — T°%® U\ %° ratio of the ventilation flux and surface of the opening section.
1.95 T +52 <7>
6. (Graamans, 2017) 1\ Graamans However static values were used for forced (100 s/m) and free
re = 350- (ﬁ) LA (200 s/m) air circulation.
7. (Yang et al., 1990) I L Modified Where dc is the diffusion coefficient of water vapor in the air
¢ dc-Nu Penman-Monteith ~ and Nu is calculated from Equation (60)
8. (Pollet et al., 1998) F Penman-Monteith Modeled for conditions of free convection.
re = 840-
[T —T]
9. (Zhang and Lemeur, 1992) Equation (50), Equation (58), Equation Penman-Monteith ~ Mixed and forced gave stable values, while leaf temperature

(59), Equation (64).

10. (Bailey, 1993)
(58) and Equation (59)

11.  (Baille et al., 1996) 1174-1°°
(U - | + 207-0%)*%
12. Willits, 2003; Stanghellini and de Jong, 1174-1°5

0.25

= AT
1995) © (LT =T +207.02)

13. (Montero, 2001; Carmassi et al., 2013;
Rouphael and Colla, 2004; Qiu et al.,
2013)

(58) and Equation (59)

Equation (51), Equation (57), Equation

Equation (51), Equation (57), Equation

Penman-Monteith

Penman-Monteith

Penman-Monteith

cooler than air gave values closer to that obtained from an
energy balance.

ET predictions made using forced and mixed convection gave
better results

The model was based on Stanghellini’s (Stanghellini, 1987)
formulation.

The model was based on Stanghellini’s (Stanghellini, 1987)
formulation.

Free, forced, and mixed heat transfer equations were used and
compared.
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where:

Tc —Plant Transpiration [W/mz]

E; —Soil Evaporation [W/m?]

Cc —Canopy Resistance Coefficient [-]

Cs —Soil Surface Resistance Coefficient [-]

J —Total Available Energy [W/m?]

pa —Air Density [kg/m>]

Cp —Specific Heat of Air [J/kg °C]

VPD —Water Vapor Pressure Deficit [kPa]

r¢ —Bulk Boundary Layer Resistance of the vegetative elements in the
canopy [s/m]

J; —Available Energy to Soil Surface [W/m?]

r% —Aerodynamic Resistance Between Mean Canopy Flow and
Reference Height [s/m]
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Table 2
Stomatal resistance models used in different studies.
S/ Study Resistance Model Equation ET Model Remark
N
1. (Villarreal-Guerrero (In/(2-LAI) ) + c2 5 Stanghellini The model had an R? of 0.93 and r; values ranged from
etal., 2012) = {(In/(2<LAI) )+c3 } (e VPD?) 40 s/m during the day to 8000 s/m at night.
2. (Villarreal-Guerrero I, +ca 5 Penman- The model had an R? of 0.93 and r, values ranged from
= 1[ ](1-%—c4~VPD) . ; -
etal., 2012) I +c3 Monteith 40 s/m during the day to 8000 s/m at night
3. (Montero et al., 2001) _— 1 Penman- The model was found to be a function of Incident PAR
" Gmin + (8max — &min)+(2.27-1/(I + 1888)) Monteith radiation only.
The model had an R? of 0.98
4, (Acquah et al., 2018) = 200 {1 4 1 ] Stanghellini Model is a function of radiation and is derived from
! exp(0.05(7 x I; — 50) ) Boulard and Wang (Boulard and Jemaa, 1992).
5. (Kittas et al., 1999) "= o gl;; 1E (1 +explc(VPD — 2.5)]) Baille The model was based on the radiation and the VPD.
6. (Lépez-Cruz et al., - [ In/(2-LAI) ) + 4430] '(1 £0.023(T— 24'5>2) Stanghellini T.he model was found to be a function of radiation and
2008) (In/(2-LAI) ) 4+ 0.54 air temperature.
7. (Jaafar and Ahmad, i 1 Penman- byand b, are empirical coefficients taken to be 1.52 and
2018) " biLAI by Monteith 0.05 respectively.
8. (Demrati et al., 2007)  r, = rmi:.g[l + €J1<‘§10.0033(I,l —516.505)] Penman- The model uses the radiation intensity at the crop level.
Monteith The fit slightly improves with the addition of the VPD or
leaf temperature.
9. (Graamans, 2017) r—6 0.1500 + PPFD Graamans The model was based on PPFD, considering other
! 200 + PPFD climatic parameters negligible.
10. (Yang et al., 1990) r; = 142.7 + 953.9exp( —0.0081-I) Modified The model had an R? of 0.647. However, since r; is a
Penman- function of radiation only, it cannot account for
Monteith nighttime variations.
11. (Pollet et al., 1998) = Penman- The addition of successive parameters improved the
164_361A7(11209 + Is_ (1 +0.011(VPD — 3)2 ) (1 +0.016(T — 16.4)2 ) Monteith correlation with solar radiation and VPD having the
. + I greatest effects.
12.  (Rouphael and Colla, r; = 87.30 4 647.24 x exp( —0.0022-I5) Penman- Fitted for CEA cultivated zucchini.
2004) Monteith
13. (Qiu, 2013) _— 1 Penman- A significant correlation (R? = 0.95) was found between
' 70.001 +0.169(0.169I;/(I; + 1169) ) Monteith solar radiation and stomatal resistance for hot pepper.
14. (Ondrasek, 2007) = 200 { 14 1 ] Penman- The model was based on the external incoming radiation
! exp(0.05(7 x I; — 50) ) Monteith and the transmissivity of the CEA cover.
15.  (Zhang and Lemeur, r;i = 507exp( —0.00235-1) Penman- The model had an R? of 0.78.
1992) Monteith The model was also found to be a function of solar
radiation only, with the effect of leaf temperature and
VPD unclear.
16. (Bailey, 1993) r— 46 54500 Penman- The model was found to be a function of Incident PAR
! 55+1 Monteith radiation only.
The model accounted for 92% of the observed variation.
17. (Cannavo et al., 2016; ri = —115I; —139RH + 139I;-RH + 661I,> —368RH? Penman- The first equation represents the FFD model for pot
Cannavo et al., 2016) (316.67 + 1) ) Monteith planted New Guinea Impatiens
r; =481 887415 (1 —0.15(VPD — 2.84) ) While the second represents the Jarvis model for the
same crop.
18. (Willits, 2003; r Penman- The model was found to be a function of radiation,
Stanghellini and de r =82 [HC'I‘ + 4'30] . [Eo >4 258} . Monteith canopy temperature, and VPD. Where ac is the
Jong, 1995) acl; +0.54] | €371 427 absorption coefficient based on the canopy
=073 Cp.ypp ~0.25 transmissivity.
{0.004 +e 7
J, = (Iy — G) (45) A —The slope of the Saturation Vapor Pressure-Temperature Curve
) ) [kPa/°C]
Ls = Liexp( — ek-LAI) (46) y —Psychrometric Constant [kPa/°C]

ré —Canopy Resistance [s/m]

r; —Soil Surface Resistance [s/m]

r; —Aerodynamic Resistance Between Soil Surface and Mean Canopy
Flow [s/m]

G —Soil Heat Flux [W/m?]

I, —Net Radiation [W/m?]

Ins —Net Radiation Absorbed by Substrate [W/m?]

ek —Extinction Coefficient [-]

LAI —Leaf Area Index [-]

Huang et al. (2020) employed this model for the estimation of cu-
cumber ET in a Venlo-type greenhouse with an index of agreement of
0.93. On average, it overestimated ET by 8.4% in the Spring season and
by 27.6% during the autumn. An advantage of this model is that crop
evapotranspiration can be easily separated into crop transpiration and
soil evaporation. However, in a study by Gong et al. (2019) on solar
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Table 3
Models, input parameters, advantages and disadvantages of indoor ET models.
S/ ET Model Input Advantages Disadvantages Reference
N Parameters
1. Priestley-Taylor T, L. Useful in situations where complete climatic Based on radiation and thus is unsuitable for high (Liu et al., 2008;
data is lacking advection conditions Sharma et al., 2017)
2. FAO-24 Radiation T, I Accurate prediction for locations with humid Based on radiation and thus is unsuitable for high (Liu et al., 2008)
climates in naturally ventilated greenhouses. advection conditions
3. Hargreaves- T, I Easy to use and requires few climatic parameters. ~ Largely overestimates ET. (Fernandez et al.,
Samani 2010)
4. FAO Penman T, I, RH, U. Takes advection term into account which Wind function is difficult to obtain. (Liu et al., 2008)
improves its accuracy.
5. FAO-56 Penman- T, I, RH, U. Takes advection term into account which It underestimates reference evapotranspiration (Liu et al., 2008)
Monteith improves its accuracy. conditions with high evaporative demand.
Standard Reference ET model.
6. Penman-Monteith T, I, RH, U. It is the standard physical model and gives The need for stomatal and aerodynamic resistances (Villarreal-Guerrero
acceptable results in many applications. poses a difficulty et al., 2012)
7. Stanghellini T, I, RH, U, A suitable model for CEA applications. The need for stomatal and aerodynamic resistances as (Villarreal-Guerrero
Model LAIL T). well as the measurement of LAI poses a difficulty et al., 2012)
8. Takakura Model T, I, U, Ty. Easier to implement As the crop matures, careful adjustments of the (Villarreal-Guerrero
solarimeter are required et al., 2012)
9. Fynn Model T, I, RH, U, Easier to implement and cost-effective compared ~ The assumption of equal air and leaf temperatures (Prenger et al., 2002)
LAL to the Stanghellini model affects accuracy.
Not well tested in multiple plant scenarios.
10. Baille Model T, I, RH, LAL Easy to implement with few climatic parameters. ~ Cannot be applied to multiple scenarios without (Montero, 2001;
recalibration. Battista, 2015)
11. Graamans Model T, I, RH, U, Most applicable to emerging areas of CEA e.g. The need for stomatal and aerodynamic resistances as (Graamans, 2017)
LAIL T. plant factories, shipping container farms, etc. well as the measurement of LAI poses a difficulty
12. Shuttleworth and T, I, RH, U. Separates evapotranspiration calculation into The need for stomatal and aerodynamic resistances (Gong et al., 2019;

Wallace

crop transpiration and soil evaporation.

poses a difficulty

Huang et al., 2020)

greenhouse tomato ET, this model was found to slightly overestimate ET
at the initial growth stage, and underestimate ET at the mid-stage. It had
an overall absolute relative error of 50.2%. On the other hand, for LAI
values between 0.5 and 2.7, it estimated crop ET with an R? value of 0.91
and 0.94 in 2015 and 2016, respectively.

3.2.1.8. Other modified Penman-Monteith models. Bailey et al. (1993)
developed a modified form of the Penman-Monteith model for ficus
Benjamina cultivated in a naturally ventilated glasshouse and plastic-
covered greenhouse in the UK and Spain respectively. The model as-
sumes that terms with a strong temperature dependence be expressed as
exponential functions of temperature while others are evaluated at a
temperature of 25 °C. An extinction coefficient of 0.625 was also
assumed while the net radiation was replaced with global solar radia-
tion. The model estimates ET with an error of + 5%, its equation is
shown in Equation (47):

1 [1-exp(0.052-T)[1 — exp( — 0.625-LAI) | + 49.4-LAI-VPD /195

ET. ==
2 2-exp(0.038-T) + 0.00274-r, /105

(47)

where:

ET. —Daily Crop Evapotranspiration [mm/day]
I; —Daily Surface Radiation [MJ/m? day]

A —LatentHeatof Vaporization[MJ /kg]

T —Air Temperature [°C]

VPD —Vapor Pressure Deficit [kPa]

LAI —Leaf Area Index [-]

[ —Characteristic Leaf Dimension [m]

rs —Surface Resistance [s/m]

Boulard and Jemaa (Boulard and Jemaa, 1992) developed a modified
form of the Penman-Monteith model for soilless cultivated tomato, in an
environment controlled plastic greenhouse, in which terms of the right
and left-hand side are replaced by two constants (K; and K3), leaving
only the absorbed radiation and the VPD term. K; and K> can either be
obtained via calculation, using measured parameters, or estimated via
multiple regression:

12

1
ET. =~ KL+ Ky VPD] (48)

where:

ET. —Daily Crop Evapotranspiration [mm/day]

I, —Daily or Hourly Surface Radiation [MJ/m? day]
A —LatentHeatof Vaporization[MJ /kg]

K1 —Model Constant [-]

K> —Model Constant [-]

VPD —Vapor Pressure Deficit [kPa]

Airman and Houter (1990) estimated the ET of a Nutrient Film
Technique (NFT) cultivated tomato in a glasshouse with a modified form
of the Penman-Monteith model. Their model equation required the
measurements of net radiation absorbed by the crop per unit leaf area A
and the VPD as well as the estimation of two model parameters that
depend on the properties of water vapor. The model equation can be
seen in Equation (49):

ET. = K,(A+K,-VPD) (49)

where:

ET. —Daily Crop Evapotranspiration [mm/day]
A —Leaf Area [m?]

K1 —Model Parameters [-]

K> —Model Parameters [-]

VPD —Vapor Pressure Deficit [kPa]

In addition to the properties of water vapor, these model parameters
also depend on the stomatal, cuticular, and aerodynamic conductance.
However, Jolliet and Bailey (Jolliet and Bailey, 1992) found this model
to overestimate ET by 62% with an R? value of 0.59 due to its over-
estimation of the effect of VPD. It was concluded that the use of constant
values for the stomatal conductance was the main reason for such
overestimation. This study was performed for NFT cultivated tomatoes
in an environment-controlled greenhouse. Massa et al. (2011) also found
a modified form of the Penman-Monteith model to underestimate water
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uptake by between 0.4 and 6.3% on average for soilless cultivated
greenhouse tomatoes.

Physical models offer a direct estimation of crop ET; however, they
require a complete set of climatic data in addition to crop physiological
parameters. The Penman-Monteith and Stanghellini models have been
mostly used, however, accuracy varies from experiment to experiment.
Simpler physical models like the Baille model offer an easier method for
ET estimation, however, the constants K; and K, must be calibrated
accordingly and as models include more constants for calibration, they
become less physical based.

Although the Stanghellini and Graamans model has been applied to
high technology CEA such as plant factories, there is the need to further
validate them for different crop types and cultivation practices. A key
area for modification is the net radiation term, to accurately account for
the proportion of artificial light (LED Lights) absorbed by the crop
canopy. Conversion factors for the calculation of net radiation from LED-
based lighting are lacking, compared to other artificial light sources such
as HPS and Metal Halides.

Furthermore, Environmental control through mechanical air condi-
tioning systems helps provide optimal growth conditions. However,
such systems are sometimes beset by control issues that hinder the tight
control of conditions according to desired setpoints. These models also
require the measurement of additional parameters such as LAI, leaf
temperature, and stomatal resistance. Unlike air temperature, relative
humidity, and light levels, these additional parameters are difficult to
continuously measure. Therefore, spot measurements are usually taken,
which in turn affects the accuracy of the model.

With advancements in software technology, there is the possibility of
having an all-in-one package that includes all ET models relevant for
indoor ET estimation. Guo et al. (2016) developed an R package for 17
commonly used outdoor ET models. Future studies could pursue a
similar path in creating a unified package for CEA ET estimation. This
would improve model consistency, implementation, comparison, and
ease of selection.

3.2.2. Aerodynamic and stomatal resistance

Aerodynamic and stomatal resistance are important terms for most
physical models. This sub-section discusses the different models and
methods used in quantifying these terms. The stomatal resistance is the
most difficult to model, however, most models are derived from two
main models — the Jarvis (Jarvis, 1976) and the Ball (Ball et al., 1987;
Ball, 1988) model. Some studies also try to use constant values for both
resistances. While this might be acceptable for aerodynamic resistance,
it could result in large errors if used for the stomatal resistance. There-
fore, an accurate and dynamic model is required to obtain accurate ET
estimates. For the sake of uniformity, leaf aerodynamic and stomatal
resistances would be denoted by r, and r;. While crop or canopy aero-
dynamic and stomatal resistances would be denoted by r, and r;. In some
studies, they are also treated as conductance which is simply the
reciprocal of the resistance terms. Stomatal conductance is denoted by g
while the boundary layer conductance is denoted by g.

3.2.2.1. Aerodynamic resistance models. It represents the resistance to
the flow of water vapor and sensible heat from the surface of the leaf to
the surrounding air (Graamans et al., 2017). Aerodynamic resistance
depends on the type of convection and the leaf-to-air temperature dif-
ference (Zhang and Lemeur, 1992). One way to obtain the aerodynamic
resistance is through the energy balance equation (Equation (23)) if the
evapotranspiration is known. From here, the sensible heat can be ob-
tained which then leads to the direct calculation of the aerodynamic
resistance as shown in Equation (50).

PaCp (T —T))

te

S = (50)

where:
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S —Sensible Heat Flux [W/m?]

pq —Air Density [kg/m?]

Cp —Specific Heat of Air [MJ/kg °C]

T —Air Temperature [°C]

T; — Leaf Temperature [°C]

r. —Leaf Aerodynamic Resistance [s/m]

Alternatively, the aerodynamic resistance can also be obtained from
the heat transfer coefficient h as shown in Equation (51):
PaCp

r, =—""

W (51)

where:

r. —Leaf Aerodynamic Resistance [s/m]

pq —Air Density [kg/m?]

Cp —Specific Heat of Air [MJ/kg °C]

h —Convective Heat Transfer Coefficient of Air [W/m? °C]

The convective heat transfer coefficient depends on the Nusselt
number which in turn depends on the mode of heat transfer (free, forced,
or mixed) and nature of airflow (laminar or turbulent) within the CEA.
For free convection, heat transfer is mainly due to the temperature dif-
ference between the leaves and the surrounding air (McAdams, 1954).
For forced convection, heat transfer is by air movement (Grober and Erk,
1961), while for mixed, both scenarios occur simultaneously (Stan-
ghellini, 1987). There is no consensus in the literature on whether the
heat transfer in the CEA is via free, forced, or mixed convection. Also, all
modes and types of flow may occur simultaneously within a crop canopy
(Yang et al., 1990; Kays and London, 1984). There is also a lack of
consensus as to whether the flow over the crop canopy is considered
laminar or turbulent. Yan et al. (2018) summarized the equations for
computing the Nusselt number for the aerodynamic resistance term
based on the type of flow (laminar or turbulent) and the prevailing mode
of heat transfer (free, forced, or mixed). The convective heat transfer
coefficient can also be obtained from the energy balance equation if the
net solar radiation, ET, leaf, and air temperatures are known (Bailey
et al., 1993). Zhang and Lemeur (1992) found the aerodynamic resis-
tance values obtained from the Nusselt number method, especially the
mixed convection approach to be more stable compared to that obtained
from the energy balance approach

Despite the lack of consensus over the prevalent heat transfer and
airflow mode in CEA, in a few studies, a constant value has been used for
the aerodynamic resistance (Prenger et al., 2002; Boulard and Jemaa,
1992; Kittas et al., 1999; Ondrasek et al., 2007; Lopez-Cruz et al., 2008).
This could be attributed to the fact that it has little impact on the ac-
curacy of the ET model and thus the ET estimate could be said to be un-
sensitive to the aerodynamic resistance (Villarreal-Guerrero et al., 2012;
Acquah et al., 2018). Furthermore, this makes sense in CEA with very
little air movement due to its enclosure, also in combination with rela-
tively large leaf areas (Ondrasek et al., 2007). Also, from experiments,
the aerodynamic resistance is relatively stable for 24 h (Villarreal-
Guerrero et al., 2012). In cases where wind speed measurements are
lacking, aerodynamic resistance can be taken to be an empirical
parameter (Kage et al., 2000). Table 1 summarizes several aerodynamic
resistance models that have been used in CEA ET estimation studies.

3.2.2.2. Stomatal resistance models. Stomatal resistance represents the
resistance to the flow of vapor through the crop to the leaf surface.
Different crops have different stomatal resistances; climatic, biological,
and agronomical parameters also drive changes in stomatal resistance as
well as water availability. However, empirical stomatal resistance
models can be derived as a function of key climatic parameters, using the
popular Jarvis multiplicative model (J model) (Jarvis, 1976). A general
form of this model, looking at three common climatic parameters is
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given in Equation (52), where 1y, the minimum internal resistance in s/
m, is usually taken from porometer measurements and used as a constant
value in the model. The mathematical functions fi, f» and f3 characterize
the relationship between r; and the chosen climatic variables:

ri(l.\v T;, VPD) = rminfl(l.\)fZ(Tl)'fS(VPD) (52)

where:

r; —Leaf Stomatal Resistance [s/m]

I; —Incoming Solar Radiation [W/rnz]

VPD — Vapor Pressure Deficit [kPa]

I'min —Minimum Leaf Stomatal Resistance [s/m]
T; — Leaf Temperature [°C]

f1,f2andfs — Mathematical Functions [-]

Stanghellini (Stanghellini, 1987) presented a detailed model based
on incoming radiation, VPD, leaf temperature, and CO, concentration.
The leaf stomatal resistance can be measured using a porometer, after
which a relationship is established between the measured values and
climatic parameters such as solar radiation, VPD, and air temperature to
obtain a stomatal resistance model. A brief explanation of how such
measurements are performed can be found in (Demrati et al., 2007).
Examples of such stomatal resistance models as developed in literature
are shown in Table 3 below. Hence, the canopy resistance r; can be
obtained from the leaf stomatal resistance r; and effective LAI as shown
in Equation (53):

i

" LAl

(53

Ts

where:

rs —Canopy Stomatal Resistance [s/m]
LAl — Effective Leaf Area7 Index [-]
r; —Leaf Stomatal Resistance [s/m]

The actual LAI can be used in place of the effective LAI for LAI < 2.
While the effective LAI takes a value of 2 for 2 < LAI < 4 and 0.5 LAI for
LAI > 4 (Qiu et al., 2013).

Alternatively, the canopy resistance can be calculated if the tran-
spiration rate is known (Yang et al., 1990; Baille et al., 1996). This
approach is preferable to measurements by porometer as it gives more
canopy resistance values for varying environmental conditions
(Montero et al., 2001). Also, at low radiation levels, it is difficult to
obtain stomatal resistance estimates from porometer measurements.
Montero et al. (2001) found this low radiation boundary to be 25 W/mz;
and low VPD levels cause additional errors (Ewers and Oren, 2000).
Porometer measurements may also affect the microclimate around the
measured leaf, thereby affecting the measured transpiration (Bailey
et al., 1993). It is also prone to biases and errors (Ali et al., 2016).

Other studies have also employed the Ball-Berry model by Ball,
Woodrow, and Berry (Ball et al., 1987; Ball, 1988). This model is based
on the net assimilation of COy and environmental parameters at the
canopy surface. It better describes the stomatal response to climatic and
crop physiological characteristics. Compared with the Jarvis model, the
Ball-Berry model gave better estimates, with the J model under-
estimating in low PPFD and VPD conditions, especially for young plants
(Baille et al., 1996). Whereas the B model partially accounts for varia-
tion in plant age and varying climatic conditions. The use of constant
values for maximum conductance or minimum resistance in the J model
also affects its accuracy as well as its use of successive regression.

Several steps have been taken to improve the accuracy of the J
model. One is to calibrate the model using a large data set. Another
method is to apply multiple regression in place of successive regression.
This way, the effect of each parameter is considered simultaneously
which improves its estimation. Other approaches have improved the
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Jarvis model by incorporating the phenomenological feedback of VPD
on stomatal resistance (Oren et al., 1999) and including plant hydraulic
and photosynthetic mechanisms that lead to stomatal resistance changes
with water, nutrient, and light availability (Sperry et al., 2017; Mackay
et al., 2015; Mackay et al., 2020; Ewers et al., 2000). Yet again, some
experiments try to use the direct method by measuring the leaf stomatal
resistance rather than the indirect method of estimating it from the
measured evapotranspiration. Other models also exist that could be
applied for stomatal resistance modeling in water-stressed conditions.
Damour et al. (2010) gave an overview of models applicable for esti-
mating leaf stomatal conductance. It included models based on atmo-
spheric factors such as the J and B model common to CEA applications as
well as others based on water availability.

Stomatal resistance has also been modeled using the Full Factorial
Design (FFD) technique (Ali et al., 2016). It is based on an optimized
polynomial regression between the three key climatic parameters (ra-
diation, relative humidity, and air temperature). Compared to the Jarvis
model, it requires less data for calibration. This technique was able to
estimate the stomatal resistance of pot-planted New Guinea Impatiens
with an R2 value of 0.69 and slope of 0.89, compared to the J model (R?
= 0.65, slope of 0.45). From experiments it was found that the effect of
temperature was negligible, therefore the model equation depends on
only radiation and humidity measurements as shown in Table 2. A
drawback of this technique however is that it is limited to the few pa-
rameters that can be replicated and controlled in a growth chamber.

Some studies make use of two climatic parameters and deem them
sufficient, in fact, in a study by Demrati et al. (2007) radiation and VPD
is said to account for roughly 90% of the variations of leaf stomatal
resistance, therefore others such as the air temperature and CO, con-
centration can be considered negligible (Jolliet and Bailey, 1992),
although any such claims should be investigated using rigorous tests of
parsimony based on both uncertainty in the data and the model struc-
ture (Samanta et al., 2008). Villarreal-Guerrero et al. (2012) developed
stomatal resistance models based on radiation and VPD for bell pepper
and tomato. The constants for the models were obtained by taking
measurements of the crop transpiration and obtaining the corresponding
internal resistance values to fit the model equation. The model equation
thus obtained is shown in Table 2, while the values of the constants
within the equation for bell pepper and tomato are presented by the
authors in their paper.

Conversely, compared to the aerodynamic resistance, using constant
values for the stomatal resistance could affect the accuracy of the ET
estimation. Although some studies (Willits, 2003) have supposedly
gotten acceptable results (in certain conditions) with the use of constant
values, generally, its use leads to errors. Villarreal-Guerrero et al. (2012)
found it to produce accurate results under specific climatic conditions,
but under transient radiation and humidity conditions, it gave erroneous
results. Therefore, in practical CEA applications, a resistance model is
required, one that considers the changing climatic and plant growth
status conditions within the CEA.

The crop resistance generally fluctuates, taking up high values at
night, early mornings, and late afternoons, this is because of the closure
of the stomatal during this period. Whereas, during the day, the values
are quite low as the presence of irradiance ensures the stomata remain
opened for photosynthesis. In the case of plant factories with artificial
lighting, the period for stomata opening and closure is determined by
the photoperiod. Comparing the crop resistance for the Penman-
Monteith and Stanghellini model from the study by Villarreal-Guer-
rero et al. (2012), it can be seen from the model equations that the values
obtained from the latter are relatively higher due to the factor of 2LAI

Determining what climatic parameters are to be considered in the
stomatal resistance model is another area of discussion. Stomatal resis-
tance has been found in multiple studies to depend on radiation levels
(Demrati et al., 2007). Montero et al. (2001)) found the stomatal resis-
tance of geranium leaf to decrease very slowly above a radiation value of
500 pmol/m? s and up to 1100 pmol/m? s. However, other studies have
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suggested the inclusion of additional parameters to increase the model
accuracy.

Aerodynamic and Stomatal resistance models help improve the ac-
curacy of ET models. However, they can be difficult to obtain, especially
stomatal resistance. Air velocities in CEAs are usually low, so the effect
of the aerodynamic term on ET estimation may sometimes be negligible.
This has seen the use of constant aerodynamic resistance values in some
studies with acceptable ET estimates. However, the same does not apply
for stomatal resistance as it plays a very important role in ET estimation
and varies with the type of crop and prevailing environmental condi-
tions. Therefore, accurate modeling of stomatal resistance is important.
The J and B models have been used in CEA applications, with the J
model being the most popular. However, both methods have their ad-
vantages and shortcomings. There is a need for a comprehensive
mechanistic crop resistance model that can better explain the in-
teractions between the leaf characteristics, climatic variables, and
fluxes. Regressive models such as the Jarvis model require local cali-
bration on a crop by crop and sometimes season by season basis, this
would not be suitable for real-time estimations due to the complexities
required in generating such models. Advanced modeling techniques
continue to explore the role of ABA and its effect on guard cell move-
ments, as well as molecular level modeling of stomatal regulation.
However, the goal should be the creation of a real-time, accurate, and
easy-to-implement stomatal resistance model. Table 2 below summa-
rizes the stomatal resistance models used in some studies.

The choice of the ET model also depends on the estimation time step.
ET Models suitable for daily estimation include the Priestly-Taylor,
Penman, FAO Penman-Monteith, and Hargreaves-Samani models.
Such models are easy to utilize due to data availability and could pro-
vide quick ET estimates. ET models suitable for smaller timesteps
include the Penman-Monteith, FAO Penman-Monteith, Baille, Graa-
mans, and Stanghellini model (Acquah et al., 2018). Modified forms of
the Penman-Monteith model such as the Baille (Baille et al., 1994) and
Graamans (Graamans et al., 2017) have also been successfully employed
for hourly ET estimation. Furthermore, hourly ET estimations can be
accumulated into daily estimates. Therefore, models used for shorter
timesteps such as FAO Penman-Monteith and Penman-Monteith model
can also be used for daily ET estimations (Donatelli et al., 2006).

Table 3 summarizes the different ET models discussed in the sub-
sections above. It gives information on the required input parameters,
advantages, and disadvantages of each model.

3.3. Data-driven ET methods

With the advance of machine learning algorithms, data-driven
models have been increasingly used for predicting real-time ET. Most
of the existing studies for data-driven ET models have been used for
outdoor ET estimation. Hu et al. (2021) found three machine learning
techniques - deep neural network (DNN), random forest (RF), and
symbolic regression (SR) to outperform surface energy balance system
(SEBS), a physical-based approach for estimating field ET. Kisi et al.
(2015) tested multilayer perceptron artificial neural networks (ANN),
adaptive neuro-fuzzy inference system (ANFIS) with grid partition (GP),
ANFIS with subtractive clustering (SC), and gene expression program-
ming (GEP). They found these models to be successful at predicting ET
even without climatic measurements, with an R? value greater than 0.9
in almost all cases. Zhu et al. (2020) proposed a hybrid particle swarm
optimization (PSO) - extreme learning machine (ELM) model (PSO-ELM
model) which outperformed the original ELM, ANN, RF, and Penman-
Monteith models as well as six empirical models (Hargreaves and
Samani, Priestley-Taylor, Makkink, Irmak, Dalton and Trabert models).
Granata (2019) evaluated the performance of M5P Regression Tree,
Bagging, RF, and Support Vector Regression (SVM) and found model
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performance are related to the size and structure of available data, with
no single technique being the best for all problems.

In addition, several comparison studies exist for outdoor applications
(Huetal., 2021; Chen et al., 2020). Han et al. (2021) compared the back-
propagation neural network with the multiple linear regression method,
with the former having a higher accuracy (91.44% vs. 82.96%) and
coefficient of determination (0.87 vs. 0.79). However, compared to
Support Vector Regression (SVR) and Extreme Learning Machine (ELM),
Yu et al. (2020) found both to be a better choice over ANN due to lower
uncertainty in both cases of complete or incomplete input data. Hybrid
models that combine the best attributes of individual data-driven
models have been found to improve model accuracy. Maroufpoor
et al. (2020) compared a hybrid artificial neural network-Gray Wolf
Optimization (ANN-GWO) model with a least square support vector
regression and a standalone ANN, with the hybrid model having the best
Global Performance Indicator (GPI).

Only limited studies on data-driven-based ET estimation were con-
ducted for CEAs. Artificial Neural Network (ANN) model was used for
the estimation of a greenhouse cultivated sweet pepper ET (Pandorfi
et al., 2016). The study was carried out in a low technology greenhouse
in Sao Paulo, Brazil. The model used temperature, relative humidity, air
velocity, radiation, and weighing lysimeter ET measurements collected
over four months for the training and testing. Parasuraman et al. (2007)
found the performance of the Genetic Algorithm (GA) to be comparable
to ANN. They found both outperformed the Penman-Monteith model,
thereby showing the great potential of data-driven models for ET esti-
mation. Jolliet and Bailey created regression-based ET models for three
different CEA settings for the ET estimation of NFT cultivated tomato in
a greenhouse (Jolliet and Bailey, 1992). The model was based solely on
incoming radiation and VPD, with other influences such as air temper-
ature, CO5 levels, cooling, and heating parameters considered negli-
gible. Amiri et al. (2019) used a fuzzy regression method to estimate ET
for grass reference crops based on five input parameters: maximum and
minimum temperatures, average relative humidity, wind velocity, and
incoming solar radiation. Compared to lysimeter measurements, the
model performed well with an RMSE of 0.68 mm/day and an R? value of
0.98 (Amiri et al., 2019).

Data-driven models also offer a better alternative as a non-contact
method for monitoring plant water status in real-time. One approach
by which data-driven models predict plant water status in real-time is
via model residuals between the measured transpiration and the model
predicted transpiration. Adeyemi et al. (2018) used a 2nd order discrete-
time transfer function based on solar radiation, VPD, and LAI to predict
lettuce ET in a climate-controlled greenhouse. The model prediction
closely matched the measured ET with an average coefficient of deter-
mination of 0.93 + 0.04. Data-driven models have also been applied in
the creation of virtual sensors based on transpiration which is cheaper
and easier to operate and maintain compared to lysimeters. They usually
make use of data from other sensors that are typically found in the
greenhouse, therefore, eliminating additional installation costs. Sanchez
et al. (2012) used a system identification approach to test several
nonlinear dynamic virtual sensors based on solar radiation, VPD, and
LAI for estimating tomato ET in a medium technology greenhouse in
Spain. The final selection was a nonlinear ARX, with an average error of
5%. It was based on the first two parameters alone.

Data-driven methods of ET estimation could play a vital role in real-
time ET estimation, especially for high technology CEAs. However, they
require a large volume of data to train and test the model. The developed
data-driven models may also be limited to specific CEAs and scenarios
where data were collected and would need local calibration if applied to
different conditions. Data-driven models have seen a wider application
for outdoor scenarios compared to indoor and CEA applications. This
creates the need for further testing and validation for CEA application. A
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variety of data-driven (including adaptive-learning-based) methods for
ET estimations of modern CEAs should be further explored.

4. Application of ET models for CEA

Based on the level of technology employed for climate control, CEAs
can be grouped into three: low, medium, and high technology CEAs.
Accordingly, this also affects the type of ET models that can be accu-
rately applied to each type. This section discusses the different types of
CEAs and identifies ET models successfully employed for each type from
existing literature.

4.1. Low Technology CEA

In a low technology CEA, climate control is mainly by material
insulation and natural ventilation via the opening of vents. Low tech-
nology CEAs do not use mechanical cooling or heating systems. A typical
example is solar greenhouses, which primarily rely on solar energy from
the sun as the main source of heating (Devabhaktuni et al., 2013). In
parts of Europe, Mediterranean greenhouses are a popular kind of low
technology CEA (Ferndndez et al., 2010). They are typically unheated
and made from low-cost, plastic-covered structures. Since control is
limited, they heavily rely on external climate conditions. Control over
pests and diseases is also low, therefore crop yield is limited.

This limited climate control affects the accuracy of different types of
ET models that can be applied to this CEA type. Radiation-based ET
models, for example, could lead to significant errors, especially in
naturally ventilated CEAs. This is because of the mass and energy in-
teractions between CEA and the outside environment. This generally is
made up of the incoming solar radiation, heat storage changes, energy
used up for evapotranspiration, and the energy exchanged with the
outside environment (Liu et al., 2008). Ventilation could greatly impact
the temperature and humidity within the CEA. Therefore, the effect of
wind speed or advection cannot be ignored. Jaafar and Ahmad (2018)
found the Hargreaves-Samani model to consistently underestimate ET
for a greenhouse cultivated oregano. They, therefore, concluded that the
model should not be used for CEA ET estimation, especially for venti-
lated CEAs without local calibration.

FAO Penman-Monteith model has been employed for ET estimation in
low technology CEAs. Zhang et al. (2010) performed experiments for the
estimation of cucumber ET in a low technology greenhouse in China using
the pan evaporation (R? = 0.865) and FAO Penman-Monteith model (R?
= 0.46). Wang et al. (2018) also carried out experiments for the ET esti-
mation of eggplant in a low technology greenhouse with cold-proof
quilting for insulation and roof and side vents using the FAO Penman-
Monteith model. Lozano et al. (2017) successfully used a low technol-
ogy greenhouse covered with polyethylene film and white shade screens
for the ET estimation of melon using the FAO Penman-Monteith equation.
Orgaz et al. et al. (2005) used a class A evaporation pan for ET estimation
in a passively ventilated Mediterranean greenhouse for four common
horticultural crops (melon, green beans, sweet pepper, and watermelon)
with R% = 0.93 and a percentage error of —5.9 to 34.1%. In a study by
Fernandez et al. (2010) the FAO Penman-Monteith model also under-
estimated ET in a Mediterranean greenhouse by 17%. The greenhouse
was in Almeria, Spain with no heating system and passive ventilation via
side panels and roof vents for cooling. Moazed et al. (2014) compared
thirteen reference ET models to find out which models gave the best es-
timates in low technology greenhouse and outdoor conditions. Of these
thirteen models, from existing literature, four have been used for ET
estimation in CEA conditions with favorable results. They include the
FAO Penman-Monteith, Hargreaves-Samani, Priestley-Taylor, and the
FAO Radiation models. In this study, the FAO Penman-Monteith model
was found to give the best ET estimate (R%®=0.91 1), followed by the FAO
Radiation (R? = 0.874), Priestley-Taylor model ®R? = 0.836), and the
Hargreaves-Samani (R? = 0.561). However, the FAO Penman-Monteith
model still underestimated the crop ET by 12%.
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4.2. Medium Technology CEA

Medium technology CEAs employ the use of some level of environ-
mental control technology such as fans, heaters, shades, etc. but also use
vents for natural ventilation. They also have better envelope properties
compared to low-technology systems. They lie in between, similar to low
technology in terms of construction method but closer to high technol-
ogy systems in climate control.

In a study on ET estimation of bananas using pan evaporation and
five reference ET models, Liu et al. (2008) used a greenhouse equipped
with fans but they were programmed to only operate when the green-
house air temperature exceeded 30 °C. While temperatures were below
this, side vents were operated for natural ventilation. Amongst the ET
models used, the FAO Penman gave the best estimates (R = 0.67).
However, it overestimated ET by approximately 27% on average. In the
study by Villarreal-Guerrero et al. (2012), on ET estimation for green-
house bell pepper and tomato, for three different growing seasons under
natural ventilation and fan and pad cooling strategies, the Stanghellini
model performed best compared to the Penman-Monteith and Takakura
model. However, in considering both cooling strategies and growing
seasons, not much difference was found statistically and so any of these
models could be employed in real-time CEA cooling strategy. The only
limitation may come down to the ease of implementation of these
models. Compared to the Penman-Monteith model, the Stanghellini
model also provided better estimates (R? = 0.72, root mean square error
= 2.4, compared to R? = 0.62, root mean square error = 17.1 for PM
model) for tomato ET estimation in a greenhouse equipped with auto-
matically operated side and roof vents (L.opez-Cruz et al., 2008). Battista
et al. (2015), used a modified Penman-Monteith model, the Baille
equation, for the ET estimation of tomatoes in a greenhouse equipped
with fan heaters, and external shading, with R? = 0.8 with a percentage
error of —4.3 to 1.2%. Ondrasek et al. (2007) also successfully studied
tomato ET using the Penman-Monteith model in a greenhouse equipped
with automatic heating, ventilation, and fertigation systems. Different
types of growing media were tested. For experiments performed in 2002,
the Penman-Monteith underestimated ET by roughly 5% for Rockwool
and overestimated ET by 0.06% and 17% for peat and perlite
respectively.

Solar transmissivity comes into play as regards the effectiveness of
ET models for this type of CEA. Prenger et al. (2002) found all ET models
tested in their study using a double-polyethylene covered greenhouse
with an evaporative pad and fan ventilation system to overestimate ET,
however, the Stanghellini model was the closest to the measured ET
values while the Fynn largely overestimated ET and had a poor Nash-
Sutcliffe model efficiency coefficient of —0.848. For low solar radia-
tion conditions, the Fynn model was much closer to estimates from the
Stanghellini model. This is because their VPD terms are the same, the
only difference lies in the solar radiation term. Therefore, one of the
reasons for Stanghellini’s superior performance could be traced to its
treatment of solar irradiance which is more suited to such an environ-
ment. While for the Fynn model, the reasons for its poor performance
were the treatment of the solar irradiance as well as the assumption that
the leaf and air temperatures were the same. Comparing the Penman-
Monteith and Stanghellini model, for the same value of internal and
external resistances, their ET estimates were found to differ by 25%,
which was due to the inclusion of the LAI term and the modified solar
irradiance calculation in the Stanghellini model.

For this type of CEA, the physical ET models seem to give better
estimates, however, some reference models such as the Penman model
can also be used. The indoor growth environment for medium technol-
ogy CEA is better controlled compared to the low technology CEA,
therefore models such as the Stanghellini model which gives better es-
timates at low advection conditions can be successfully employed. For
low irradiance conditions that occur when estimating nighttime ET or if
shades have been used to block out excess solar radiation to control
inside temperatures, physical models that include the LAI term perform
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better than others. The importance of the LAI term can be highlighted
from the Prenger et al. (2002) study above. During periods of low irra-
diance, the Penman and Penman-Monteith models (without the LAI)
underestimated ET. However, because of the inclusion of the LAL the
Stanghellini and Fynn models gave better estimates.

4.3. High Technology CEA

High-technology CEAs employ more sophisticated climate control
equipment compared to medium technology CEAs. They also have more
advanced construction methods often using envelope properties that
help insulate the structure. Internal temperature, humidity, lighting, and
airflow are closely controlled in such systems. It is quite capital intensive
with high equipment costs; however, this could be offset by a reduction
in labor costs due to automation. They also employ soilless cultivation
which helps manage water and nutrient resources as well as provide
better control of crop yield and production.

One such CEA was used in a study by Sharma et al. (2017) for the ET
estimation of chile peppers. The greenhouse was clad in double-layer
polycarbonate polymer, equipped with shading, automatic climate
control, heaters, exhausts, and evaporative coolers. Both the FAO
Penman-Monteith (1.6-27.3% underestimation) and Priestley Taylor
(17.5-37% underestimation) models were tested, with the former
providing better ET estimates. Boulard and Jemaa (1992) also studied
tomato ET using a modified Penman-Monteith model in a computer-
controlled greenhouse with heating, fog, and air circulation systems.

This category of CEA also includes closed cultivation systems such as
plant factories, vertical farms, and shipping container farms. For such
closed cultivation systems, energy exchange with the exterior environ-
ment is limited. Therefore, energy flux is primarily driven by forced air
conditioning and circulation. Because of this, they also rely heavily on
artificial lighting, therefore the formulation of the net radiation term is a
bit different compared to conventional greenhouses that utilize solar
energy. Plants are also subjected to a highly stable interior climate
(Graamans et al., 2017). They mostly make use of soilless cultivation
systems that improve water use efficiency, although in some cases the
same amount of water is used compared to conventional systems,
however, it is efficiently delivered to minimize losses due to percolation
(Benis et al., 2017).

Plant factories are closed CEAs that solely make use of mechanical
heating and cooling systems and uses artificial lighting to provide the
required irradiation for crop photosynthesis. Pamungkas et al. (2014)
successfully studied the ET of tomatoes in a plant factory in Japan using
the Stanghellini model. Graamans et al. (2017) also studied the ET of
lettuce in a plant factory with a modified Penman-Monteith model.
However, due to the need for artificial lighting and properly controlled
climatization, an accurate estimate of all energy fluxes is vital in man-
aging energy use and costs. Therefore, ET estimation in such facilities is
crucial, however, very few studies exist on ET estimation in closed CEAs.
Vertical farms are simply multi-story plant factories, and like plant
factories, rely on mechanical air conditioning systems as well as artifi-
cial lighting.

It can be concluded that based on the type of CEA used, ET models
should be carefully chosen to provide the best estimates for the pre-
vailing conditions within the CEA. Several studies have performed ET
experiments on low and medium technology CEAs, but few studies exist
for high technology CEAs. Especially for those that rely heavily on
artificial lighting and mechanical air conditioning, modified forms of
existing ET models to cater to its unique characteristics are required.
Existing modifications must be thoroughly tested by multiple studies to
validate their effectiveness. With the high level of climate control in
these advanced systems, proper ET estimation has become more
important than ever to properly quantify energy use and monitor the
efficient use of resources as well as crop yield. Table 4 below gives a
summary of CEA types and the ET models that have been applied in each
type from several studies.
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5. ET calibration
5.1. Calibration methods

Actual ET measurement plays a key role in evaluating and calibrating
ET models. This section seeks to discuss different calibration methods as
well as discuss their common sources of error, advantages, and disad-
vantages. These methods are based on the measurement of climatic
factors, soil water content, and characteristics of the evaporative sur-
face. Therefore, they can be classified into three: hydrological, micro-
meteorological, and plant physiological methods (Ding et al., 2010).

Hydrological methods measure ET via the water balance of the
growing media and plant. They include the use of lysimeters and soil or
substrate water balance. Lysimeter methods are quite popular amongst
researchers as a direct method for determining crop water requirements
due to their accuracy and ease of use (Allen et al., 2011). Three types of
lysimeters are commonly used, they include non-weighing or constant
table lysimeters, drainage lysimeters, and weighing lysimeters. Soil
water balance provides an indirect method for ET estimation as the re-
sidual of soil water balance (Rana and Katerji, 2000). Soil water balance
can be difficult to perform because water movement in the soil is
multidirectional, although, it provides a cheaper alternative to the use of
lysimeters. However, the accuracy of this method depends on the quality
of the sensor used, common types include capacitance-based, neutron
thermalization, and time-domain reflectometry-based (TDR) sensors
(Allen et al., 2011). Soilless cultivation is popular in controlled envi-
ronment agriculture, therefore, calibration through substrate water
balance is another common method. This is usually done by monitoring
the amount of nutrient solution added to the system using an appro-
priate flow meter (Ondrasek et al., 2007).

Micrometeorological methods depend on the canopy energy balance
and can measure ET from the latent heat flux. Such methods include
Bowen Ratio Energy Balance, Eddy Covariance, and the use of Scintil-
lometers. Bowen ratio energy balance is an indirect approach that
measures ET by solving the energy balance equation through measured
gradients of air temperature and vapor pressure above the evaporating
surface. A drawback of this approach is difficulty in the accurate mea-
surement of net radiation and soil heat flux. However, it presents a non-
destructive, automated method for ET measurement. Eddy Covariance
method is not common in CEA applications as it requires a representa-
tive and adequate fetch. However, it can measure multiple fluxes and is
based on the statistical correlation between fluxes of vapor or sensible
heat within vertical turbulent eddies (Allen et al., 2011). A scintillom-
eter measures small fluctuations in the refractive index of air due to
changes in temperature, humidity, and pressure. They are easy to
operate and require low maintenance. However, the cost of equipment is
relatively high, they also depend on the accurate measurement of net
radiation and soil heat flux, and may require post-processing corrections
(Allen et al., 2011).

Plant physiological methods measure transpiration directly from
plants. Sap flow gauges have been used for the measurement of actual ET
in CEA crops. In this method, low-grade heat is used to measure the flow
of water through the stem via the velocity of heat pulse (heat pulse
technique) or the dissipation of heat due to convection (heat balance
technique) (Rana and Katerji, 2000).

In summary, care must be taken in direct ET measurement using the
techniques discussed above to avoid errors. Allen et al. (2011) gave a
detailed enumeration of common types of errors that could be encoun-
tered in ET measurement. Furthermore, only a handful of methods can
be successfully applied to modern CEA applications like vertical soilless
cultivation. For such systems, it could be possible to monitor supply and
return flow rates or continuously weigh supply reservoir tanks. How-
ever, more studies are required to validate this and other potential
calibration methods for such systems. Table 5 also shows the different
types of calibration methods that have been used in ET estimation in
CEA studies. The selection of the type of ET calibration technique to use
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Table 4
Summary of relevant indoor ET model studies.

S/ Study Type of CEA ET Model Experiment Period Remark

N

1. (Liu et al,, 2008)  Medium Priestley Taylor, FAO Radiation, 35 Days FAO-Penman gave the best estimation followed by the

Technology Hargreaves, FAO Penman, FAO FAO Penman-Monteith, FAO Radiation, Hargreaves,
Penman-Monteith, Pan and lastly the Priestley-Taylor model.
Evaporation
2. (Sharma et al., High Technology =~ Penman-Monteith, Priestley Three Growing Seasons (2011 -140  Both models underestimated ET. The authors
2017) Taylor Days, 2013 — 168 Days, 2014 — 153 attributed this to the partial canopy cover and
Days) variations of humidity in the CEA.
3. (Libardi et al., Medium FAO Penman-Monteith 46 Days Compared to the crop coefficient value for three
2019) Technology cultivars of sugarcane.
4. (Villarreal- Medium Stanghellini, Penman-Monteith, Three Growing Seasons (Spring, The Stanghellini model performed best, however, no
Guerrero et al., Technology Takakura Summer, Fall) significant difference was found between the three
2012) 3 Months - Bell Pepper, 7 Months -  models.
Tomato.
Test Period — 4 to 10 Days.
5. (Wang et al., Low Technology FAO Penman-Monteith 9 Months Compared single and dual crop coefficients in the
2018) estimation of ET using the FAO Penman-Monteith
model

6. (Zhang, 2010) Low Technology FAO Penman-Monteith, Pan 31 Days Pan Evaporation gave better estimates. However, the

Evaporation aerodynamic term of the FAO Penman-Monteith was
neglected which may explain poor performance.

7. (Pamungkas High Technology  Stanghellini 13 Days The Stanghellini model was used to estimate ET for

et al., 2014) (Plant Factory) plant factory cultivated tomatoes.

8. (Lozano et al., Low Technology FAO Penman-Monteith 100 Days Crop coefficients obtained were higher than those

2017) recommended by FAO which highlights the
importance of conducting situation-specific crop
coefficients experiments.

9. (Orgaz et al., Low Technology Class A Evaporation Pan Melon - 119, 135, 90 Days. Crop coefficients were correlated with cumulative

2005) Green Beans — 114 Days. thermal time (TT) and LAI for initial and mid-crop
Sweet Pepper — 258, 248 Days; growth stages.
Watermelon — 90 Days.

10. (Montero, 2001) Low Technology Penman-Monteith 42 Days Stomatal resistance was found to depend strongly on
solar radiation. The Penman-Monteith model also gave
good estimates for geranium ET.

11. (Lopez-Cruz Medium Penman-Monteith, Stanghellini Several Days in 3rd week of June The Stanghellini model gave better estimates

et al., 2008) Technology 2008 compared to the Penman-Monteith model especially in
high solar radiation and high VPD conditions.

12. (Moazed et al., Low Technology FAO Penman-Monteith, 110 Days FAO Penman-Monteith, FAO Radiation, and Priestley-

2014) Hargreaves-Samani, FAO-24 Taylor were the best performers for CEA ET estimation
Radiation, Priestley-Taylor, Pan
Evaporation
13. (Battista, 2015) Medium Modified Penman-Monteith 4 Months A modified form of the Penman-Monteith model called
Technology the Baille equation was used for tomato ET estimation,
with LAI estimates obtained from a TOMGRO crop
growth model.
14. (Medrano et al., Low Technology Modified Penman-Monteith Autumn (Low Radiation Including VPD and LAI terms in the estimation of ET
2005) Conditions) Cycle — 117 Days; using a modified Penman-Monteith model gave better
Spring (High Radiation Conditions) estimates than using one with Solar Radiation alone.
Cycle - 111 Days.
15.  (Bailey, 1993) Low Technology Penman-Monteith, Modified 2 Days The Penman-Monteith model gave acceptable results
Penman-Monteith with an estimation error of less than 3%
16. (Ondrasek, Medium Penman-Monteith 2 Years (230 Days — 2001; 246 Days  Found ET rates to also depend on the type of substrate
2007) Technology -2002) used and tested the effect of three types (rock wool,
peat, and perlite) on ET rate
17.  (Yangetal, Medium *Stanghellini 73 Days The focus was on the effect of leaf temperature on ET
1990) Technology rate
and estimation of stomatal resistance. With the latter
being a function of solar radiation only.

18.  (Boulard and High Technology =~ Modified Penman-Monteith 6 Months; Experiment for 12 Days. A modified form of the Penman-Monteith model was

Jemaa, 1992) proposed. Two methods were also proposed for
deriving the needed constant. The first, being from
measured parameters gave more accurate estimates
than the second which was based on multiple
regression.

19.  (Zhang and Low Technology Penman-Monteith, Energy 59 Days Models for aerodynamic resistance were tested for

Lemeur, 1992) Balance conditions in which the canopy temperature was less
than the air temperature, as well as vice versa for
mixed and forced convection.

20.  (Prenger et al., Medium Penman, Penman-Monteith, 14 Days The Stanghellini model gave the best estimate, this was

2002) Technology Stanghellini, Fynn. attributed to its modified solar irradiance model and
LAL

21.  (Jaafar and Medium Penman-Monteith, Hargreaves- 306 Days -With Ventilation The performance of the Atmometer was compared to

Ahmad, 2018) Technology Samani, Atmometer 163 Days — Without Ventilation the Penman-Monteith and Hargreaves-Samani models.

18

A calibrated model for atmometer ET was developed

(continued on next page)



L. Wang et al.

Table 4 (continued)
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S/ Study Type of CEA ET Model Experiment Period Remark
N
from the Penman-Monteith model using mean
temperature and relative humidity values.
22. (Toyin et al., Low Technology FAO Penman-Monteith 10 Weeks The relationship was found between the crop
2015) coefficient and weeks after planting, as well as crop
coefficient and percentage of soil moisture content.
23. (Acquah et al., Low Technology Stanghellini ET Measurement — 62 Days The Stanghellini model estimates had a strong
2018) Calibration - 24 Days correlation to the measure ET.
Validation — 24 Days
24. (Willits, 2003) Medium Penman-Monteith 3 Years Using constant values for stomatal resistance gave
Technology better estimates than resistance models derived from
Stanghellini (1987).
25. (Gallardo et al., Low Technology Class A Evaporation Pan 258 Days ET rate was found to vary with the season due to the
1999) evaporative demand. Taller crops were also found to
intercept more net radiation compared to shorter ones.
26. (Demrati et al., Low Technology Penman-Monteith Spring and Autumn — 6 Days Leaf temperature, as well as the humidity, was found to
2007) Summer - 21 Days vary along with the height of the crop.
27. (Blanco and Low Technology Reduced Evaporation Pan 115 Days ET was found to vary with substrate salinity, reducing
Folegatti, 2003) linearly with an increase in salinity.
28. (Jolliet and Medium Penman, Stanghellini, Jolliet, 11 Days ET models with constant values for stomatal resistance
Bailey, 1992) Technology Chalabi, and Aikman performed poorly compared to those which account for
its variability.
29. (Junzeng et al., Low Technology 20 cm Evaporation Pan Tomato — 123 Days ET increases with crop development and is highest
2008) Cowpea — 70 Days when the plant growth is most active.
30. (Graamans, Plant Factory Modified Penman-Monteith Lettuce — 3 Days, 28 Days, 8 Days. Found latent heat flux to exceed input energy
2017) especially at lower PPFD values.
31. (Cannavo et al., Medium Penman-Monteith 1 week Used the FFD technique for the stomatal resistance
2016) Technology model.
Tested effect of deficit irrigation and irrigation
frequency on crop ET, concluding a deficit of 75% or
greater and a frequency of once per day or more has no
severe effect on ET.
32. (Nikolaou, Medium Baille Model 4 Months (Spring) Baille Model was used with a modified form developed
2017) Technology 3 Months (Autumn-Winter) to replace the VPD with Leaf temperature.
33. (Carmassi et al., Medium Penman-Monteith Autumn (110 Days) The effect of salinity on ET was studied, with ET
2013) Technology Spring (83 Days) decreasing with increasing salinity.

Winter (42 Days)

should depend on the type of experiment, level of expertise, costs, sensor
specifications, as well as allowable errors.

5.2. Calibration equipment

An important part of ET experiments or model validation is the
proper selection of equipment and sensors. However, this can only be
possible through prior knowledge of the range of applicable equipment
and sensors. Therefore, Table 6 presents a summary of this information,
for different sensors and equipment that monitor key parameters in a
CEA ET experiment. References are also provided from existing studies
to serve as a preliminary guide for equipment selection.

6. Current challenges

Although existing studies have been conducted on ET estimation in
CEAs, a pressing issue that has been frequently highlighted is the diffi-
culty in modeling crop stomatal resistance. This is a concern on the
measurement/calibration as well as the modeling front. On the mea-
surement front, obtaining reliable real-time direct measurements using
porometers could still be challenging (Villarreal-Guerrero et al., 2012;
Montero et al., 2001). Such issues include altering leaf functioning due
to contact with leaf surface (Irmak and Mutiibwa, 2009; Craparo et al.,
2017), and the inability to capture spatial and temporal variations at
canopy level (Craparo et al., 2017). Therefore, direct, non-contact
methods using thermal imaging provide a remote, rapid, continuous,
and effective method for crop resistance measurement (Craparo et al.,
2017; Blonquist et al., 2009). However, this technique requires further
testing and validation for CEA.

From the modeling point of view, the major challenge for modeling
crop resistance is that the physiological mechanisms controlling the
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stomatal response to environmental conditions are complex and not
fully understood yet (Liu et al., 2008; Li et al., 2012; Misson et al., 2004;
Tuzet et al., 2003). Two popular models have been widely used in
modeling crop resistance — the Jarvis model and the Ball model (Li et al.,
2012). There appears to be no clear outperformer, with both models
having their limitations. The Jarvis model requires a lot of parameteri-
zation, tuning, and re-calibration for different environmental conditions
(Damour et al., 2010; Li et al., 2012). While the Ball model is inadequate
in modeling for plants with some degree of water stress without modi-
fications (Misson et al., 2004; Tuzet et al., 2003). Furthermore, since it is
a photosynthesis-based model, errors associated with calculating
photosynthesis can become associated with estimating crop resistance
(Li et al., 2012; Misson et al., 2004).

Therefore, a few modifications to these models as well as new ap-
proaches to modeling crop resistance has been pursued. Modified forms
of the Jarvis model include the NOE and Giersch model (NOE and
Giersch, 2004) and the GM-model (Green and McNaughton, 1997)
which uses fewer parameters, the Mission model (Misson et al., 2004)
which has a water stress response component, and the NMJ model
(Irmak and Mutiibwa, 2009) which accounts for the effect of LAI on crop
resistance. For the Ball model, modified forms include the BWB-Leuning
model (Leuning, 1995) which used a hyperbolic function of VPD in place
of a linear function of relative humidity and the BWB-Leuning-Yin model
(Yin and Struik, 2009) which includes the mitochondrial respiration rate
in the light to avoid negative values when PAR drops below the light
compensation point.

In terms of new approaches, estimation of crop resistance using
statistical modeling methods is increasingly gaining more attention (Liu
etal., 2008). An example has been the use of Full Factorial Design (FFD).
This method has the advantage of requiring less amount of calibration
data and model parameters, however, it requires further validation and
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Table 5
Calibration methods and ET ranges from literature for different crops.
S/ Study Calibration Method Crop ET Range CEA Type
N
1. (Liu et al., 2008) Weighing Lysimeter Banana 0.22 to 1.89 kg/day Medium Technology
(Greenhouse)
2. (Sharma et al., 2017) Soil Water Balance Chile Pepper Year 2011: — 55.85 to 59.73 cm. High Technology
Year 2013: — 66.5 to 72.58 cm. (Greenhouse)
Year 2014: — 50.31 to 73.92 cm
3. (Libardi et al., 2019) Weighing Lysimeter Pre-sprouted sugarcane plantlets 3.6 to 6.6 mm/day Medium Technology
(Greenhouse)
4. (Villarreal-Guerrero et al., Sap Flow Gauges, Lysimeter Bell Pepper, Tomato. Bell Pepper Medium Technology
2012) Natural Ventilation — 0 to 310 W/ (Greenhouse)
m2
Pad and Fan - 0 to 260 W/m?
Tomato
Natural Ventilation — 0 to 480 W/
m2
Pad and Fan - 0 to 300 W/m?
5. (Wang et al., 2018) Micro Lysimeter, Soil Water Eggplant 2 to 4 mm/day Low Technology
Balance (Greenhouse)
6. (Zhang, 2010) Weighing Lysimeter Cucumber 0.81 to 4.46 mm/day Low Technology
(Greenhouse)
7. (Pamungkas et al., 2014) Weighing Lysimeter, Substrate Tomato ETmax = 0.24 mm/h High Technology (Plant
Water Balance Factory)
8. (Lozano et al., 2017) Constant Water Table Lysimeter Melon ETmax = 5.16 mm/day Low Technology
(Greenhouse)
9. (Orgaz et al., 2005) Drainage Lysimeter, Soil Water Melon; Green Beans; Sweet Melon — ET,yg = 4.5 mm/day Low Technology
Balance Pepper; Watermelon Green Beans — ET,yg = 1.53 mm/ (Greenhouse)
day
Sweet Pepper— ETayg = 0.3 mm/
day
Watermelon — ET,yg = 1.89 mm/
day
10. (Moazed et al., 2014) Microlysimeter Grass (Luliom Cultivar) ET,yg = 6.63 mm/day Low Technology
(Greenhouse)
11. (Battista, 2015) Water Balance Tomato ET = 300.2 to 382 L/m? Medium Technology
(Greenhouse)
12. (Medrano et al., 2005) Weighing Lysimeter Cucumber ET = 128 to 4332 g/ m? day Low Technology
(Greenhouse)
13. (Yang et al., 1990) Weighing Lysimeter Cucumber ET = 0.99 to 1.69 L/day Medium Technology
(Greenhouse)
14. (Fernandez et al., 2010) Free Drainage Lysimeter, Soil Perennial Grass ET =1 to 4 mm/day Low Technology
Water Balance (Greenhouse)
15. (Toyin et al., 2015) Weighing Lysimeter Leafy Amaranth ET = 0.6 to 2.0 mm/day Low Technology
(Greenhouse)
16. (Acquah et al., 2018) Sap Flow Tomato Initial Stage ET = 0.165 mm/h Low Technology
Development Stage ET = 0.148 (Greenhouse)
mm/h
Mid Stage ET = 0.192 mm/h
Late Stage ET = 0.154 mm/h
17. (Chopda et al., 2018) Soil Water Balance Green Chilli Initial Stage ETayg (10% MAD) = Low Technology
1.52 mm/day (Greenhouse)
Mid Stage ETqyg (10% MAD) =
2.98 mm/day
Late Stage ET,yg (10% MAD) =
4.01 mm/day
18. (Sigalingging and Volumetric Soil Moisture Content  Oil Palm ET = 1.85 to 2.00 mm/day Low Technology
Rahmansyah, 2018) (Greenhouse)
19. (Jolliet and Bailey, 1992) Weighing Lysimeter Tomato ET = 3.19 to 3.5 mm/day Medium Technology
(Greenhouse)
20. (Junzeng et al., 2008) Weighing Lysimeter Tomato, Cowpea Tomato — ET,yg = 1.00 mm/day Low Technology
Cowpea - ET,yg = 2.41 mm/day (Greenhouse)
21. (Graamans, 2017) Weighing Lysimeter Lettuce ETavg = 115 g/m2 h High Technology (Plant
Factory)
22. (Salcedo et al., 2017) Water Balance Cucumber ETag = 1.63 mm/day Low Technology
(Greenhouse)

*Conversion between different units can be found in Cascone et al. (2018).

testing (Ali et al., 2016). Other methods such as Partial Least Square
(PLS) and Neural Net Analysis (NNA), and Radial Basis Function
Network (RBF) have been used to successfully predict crop resistance
(Liu et al., 2008; Vitale et al., 2007).

These modified models and new approaches have been found to give
better estimates of crop resistance. However, they require further in-
vestigations and validation in other climatic settings. Future studies
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should also further explore modern statistical modeling and machine
learning methods.

Furthermore, few studies focus on high technology CEA that utilizes
artificial lighting, mechanical cooling/heating, hydroponic cultivation,
and continuous irrigation. Two main research gaps exist for these high
technology CEAs. The first is with model implementation and validation.
Only a couple of models (Stanghellini and Graamans’s models) have
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Table 6
Key equipment used in ET parameter measurements.
S/ Measured Parameter Equipment Reference
N
1. Plant Weight Load Cells, Electronic Balance (Junzeng et al., 2008; Cannavo et al., 2016; Prenger et al., 2002; Zhang, 2010; Montero, 2001;
Pamungkas et al., 2014; Liu et al., 2008; Libardi et al., 2019; Yang et al., 1990; Rouphael and
Colla, 2004; Medrano et al., 2005; Wang et al., 2018; Zhang and Lemeur, 1992; Lopez-Cruz
et al., 2008; Bailey, 1993; Willits, 2003; Nikolaou, 2017)
2. Soil Water Content Soil Moisture Sensors (Gallardo et al., 1999; Fernandez et al., 2010; Chopda et al., 2018; Sharma et al., 2017; Wang
et al., 2018; Orgaz et al., 2005; Qiu, 2013)
3. Substrate Water Content Water Content Sensor (Cannavo et al., 2016; Pamungkas et al., 2014)
4. Crop Transpiration Sap Flow Gauges (Villarreal-Guerrero et al., 2012; Acquah, 2018; Qiu, 2013)
5. Pan Evaporation 20 cm Diameter Evaporation Pan, Class A (Zhang, 2010; Liu et al., 2008; Fernandez et al., 2010; Orgaz et al., 2005)
Evaporation Pan
6. Air Temperature Temperature Sensors, Thermocouple (Cannavo et al., 2016; Villarreal-Guerrero et al., 2012; Prenger et al., 2002; Zhang, 2010;
Montero, 2001; Pamungkas et al., 2014; Liu et al., 2008; Fernandez et al., 2010; Libardi et al.,
2019; Jolliet and Bailey, 1992; Demrati et al., 2007; Acquah et al., 2018; Yang et al., 1990;
Medrano et al., 2005; Ali, 2016; Sharma et al., 2017; Wang et al., 2018; Bailey, 1993; Zhang
and Lemeur, 1992; Lopez-Cruz et al., 2008; Zolnier et al., 2004)
7. Leaf Temperature Thermocouple, Infrared Thermometer (Prenger et al., 2002; Montero, 2001; Jolliet and Bailey, 1992; Demrati et al., 2007; Yang et al.,
1990; Zhang and Lemeur, 1992; L6opez-Cruz et al., 2008; Qiu, 2013; Bailey, 1993; Willits,
2003; Nikolaou, 2017)
8. Relative Humidity Relative Humidity Sensors (Cannavo et al., 2016; Villarreal-Guerrero et al., 2012; Pamungkas et al., 2014; Liu et al., 2008;
Fernandez et al., 2010; Libardi et al., 2019; Demrati et al., 2007; Acquah et al., 2018; Ali, 2016;
Sharma et al., 2017; Wang et al., 2018; Willits, 2003; Zhang and Lemeur, 1992; Lopez-Cruz
et al., 2008; Zolnier et al., 2004; Qiu, 2013)
9. Solar Radiation Pyranometers, Solarimeter (Villarreal-Guerrero et al., 2012; Prenger et al., 2002; Zhang, 2010; Montero, 2001; Liu et al.,
2008; Fernandez et al., 2010; Jaafar and Ahmad, 2018; Demrati et al., 2007; Acquah et al.,
2018; Yang et al., 1990; Rouphael and Colla, 2004; Medrano et al., 2005; Bailey, 1993; Willits,
2003; Zhang and Lemeur, 1992; Lopez-Cruz et al., 2008; Zolnier et al., 2004)
10. Net Radiation Net Radiometer, Crop Solarimeter (Villarreal-Guerrero et al., 2012; Zhang, 2010; Montero, 2001; Libardi et al., 2019; Demrati
(Takakura model), Ceptometer, et al., 2007; Acquah et al., 2018; Rouphael and Colla, 2004; Medrano et al., 2005; Sharma
et al., 2017; Wang et al., 2018; Zhang and Lemeur, 1992; Qiu, 2013; Bailey, 1993)
11. Photosynthetically Active Quantum Sensor (Pamungkas et al., 2014; Gallardo et al., 1999; Rouphael and Colla, 2004; Medrano et al.,
Radiation (PAR) 2005)
12. Air Velocity Air Velocity Sensor, Ultrasonic (Villarreal-Guerrero et al., 2012; Pamungkas et al., 2014; Fernandez et al., 2010; Libardi et al.,
Anemometer 2019; Demrati et al., 2007; Yang et al., 1990; Rouphael and Colla, 2004; Bailey, 1993; Willits,
2003; Zhang and Lemeur, 1992; Lopez-Cruz et al., 2008; Zolnier et al., 2004; Qiu, 2013)
13. Leaf Stomatal Resistance Porometer (Cannavo et al., 2016; Montero, 2001; Demrati et al., 2007; Rouphael and Colla, 2004; Ali,
2016; Zhang and Lemeur, 1992; Qiu, 2013)
14. Leaf Area Digital Leaf Area Meter, Electronic (Villarreal-Guerrero et al., 2012; Kage et al., 2000; Rouphael and Colla, 2004; Medrano et al.,
Planimeter, Plant Canopy Analyzer 2005; Orgaz et al., 2005; Zhang and Lemeur, 1992; Lopez-Cruz et al., 2008; Qiu, 2013; Willits,
2003; Nikolaou, 2017)
15. Canopy Surface Temperature Crop Solarimeter, Infrared Pyrometer (Villarreal-Guerrero et al., 2012; Qiu, 2013)
16. Soil Heat Flux Heat Flux Plates (Demrati et al., 2007; Wang et al., 2018; Zhang and Lemeur, 1992)
17. Soil Temperature Thermistors (Demrati et al., 2007)
18. Data Sampling and Storage Data Logger (Cannavo et al., 2016; Villarreal-Guerrero et al., 2012; Prenger et al., 2002; Montero, 2001; Liu

et al., 2008; Fernandez et al., 2010; Libardi et al., 2019; Demrati et al., 2007; Acquah et al.,
2018; Yang et al., 1990; Rouphael and Colla, 2004; Ali, 2016; Wang et al., 2018; Lopez-Cruz
et al., 2008; Qiu, 2013; Bailey, 1993)

been successfully used for ET estimation in such systems. Therefore,
validation of these models from a wide range of studies and possible
model enhancement is important to ensure the reliability and our con-
fidence in these ET models. Furthermore, for key elements of ET models
such as net radiation, experiments need to be conducted to estimate the
net radiation of crops for indoor farming facilities relying on grow lights.
Ideally, the methods for calculation or estimation of net radiation should
be generalized based on different configurations and grow light
capacity.

As can be seen in many of the studies summarized, existing ET
studies in CEA, center on a few common crops such as lettuce, tomato,
cucumber, and melon. On the other hand, current CEA crops such as
microgreens and strawberries have been scarcely dealt with. This same
deficiency occurs in the publication of crop coefficients for reference ET
models. The majority of the recommended FAO-published crop co-
efficients are for field-grown crops. This highlights the need for more
studies in this area. Several existing studies also limit ET estimation to
short periods, which does not capture the variations of ET over a full
cropping season. Therefore, studies spanning a longer period should be
encouraged as such a complete picture would be important for proper
irrigation management over a full season. It would also provide
important data for energy use and conservation studies as well as life

cycle assessment studies.

Finally, research that considers the interdependent nature of
important parameters on the ET rate should be further pursued. Such
interdependence makes it difficult to isolate the effect of each parameter
on ET. This has created a lack of consensus when highlighting such ef-
fects since several studies consider the effect of each parameter inde-
pendently. Whereas a more robust approach that considers them
simultaneously may help paint a better picture. The area of machine
learning could help in this case. With the combination of domain
knowledge, new features that combine existing parameters could give a
better insight to improve ET estimations.

7. Conclusion

Advances in agriculture have seen the emergence of vertical farms
and plant factories. These high technology farms are energy-intensive
and rely on artificial lighting and closed environmental controls. How-
ever, they shorten production time and improve crop production per
unit hectare. Current and future research seek to quantify and evaluate
the energy efficiency of such systems. To do this, comprehensive
knowledge of the energy exchange between key elements such as the
plant canopy, surrounding air, CEA envelope, and external boundary
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conditions is important. A key component of such an energy exchange in
CEA is crop ET. However, only a handful of studies exist on crop ET for
such systems.

ET models exist to estimate ET based on easily measurable parame-
ters. Such models have seen extensive use in open field cultivation and to
a lesser extent, greenhouse crop production. It, therefore, serves as a
natural starting point. Existing ET models were reviewed, of these,
twelve models most suitable for indoor ET estimation were selected. The
accuracy of these models based on the type of ET model, type of CEA,
and implementation timestep was investigated.

Penman-Monteith model appears to be the most popular model used
in both its original and modified forms. It has been successfully used for
the ET estimation of a variety of greenhouse cultivated crops such as
lettuce (Zolnier et al., 2004) (R2 = 0.73-0.93 depending on cultivar
type), bell-pepper (Villarreal-Guerrero et al., 2012) (R? = 0.95-0.96
depending on greenhouse cooling strategy), geraniums (Montero et al.,
2001) (R? = 0.96), tomato (Lopez-Cruz et al., 2008) (R? = 0.75), cu-
cumber (Medrano et al., 2005) (R2 = 0.97), Ficus benjamina (Zhang and
Lemeur, 1992) (R = 0.97-0.98 depending on the prevalent type of
surface geometry and convection), banana (Demrati et al., 2007) (R? =
0.91) and gerbera (Carmassi et al., 2013) (R% = 0.90-0.95 depending on
season). However, it has been found to be outperformed by the Stan-
ghellini (Villarreal-Guerrero et al., 2012; Prenger et al., 2002; Lopez-
Cruz et al., 2008) and data-driven models (Parasuraman et al., 2007).

A few studies have reported that the Stanghellini model (Villarreal-
Guerrero et al., 2012; Prenger et al., 2002; Lopez-Cruz et al., 2008)
outperformed the Penman-Monteith model in several greenhouse ap-
plications. Lopez-Cruz et al. (2008) compared Stanghellini model to
Penman-Monteith model for greenhouse tomato crop (R? = 0.72 vs. R2
= 0.62). Guerrero et al. (2010) found that the Stanghellini model out-
performed the Penman-Monteith model and Takakura model for
greenhouse bell pepper and tomato crops. Prenger et al. (2002) found
Stanghellini model outperformed the Penman, Penman-Monteith, and
Fynn model for greenhouse red maple tree (Nash-Sutcliffe Correlation
Coefficient = 0.872 vs. 0.214, 0.481, —0.848 respectively). It out-
performed the Penman, Chalabi, and Aikman models (R?=0.77 vs. R?
= 0.59, 0.57, 0.73) in a study by Jolliet and Bailey (1992) for green-
house tomato crop. In the same study, although the Jolliet model had a
better R? value of 0.81, it underestimated ET by 8% on average
compared to the Stanghellini model which overestimated ET by 3% on
average. This could be attributed to the fact that the Stanghellini model
was purposely created for the greenhouse environment (Pamungkas
et al.,, 2014; Acquah et al., 2018). Furthermore, in the Stanghellini
model, the LAI term accounts for energy flux between multiple leaf
layers, and the radiative resistance term improves the modeling of the
incoming radiation flux, as well as treating the airflow as mixed con-
vection (Villarreal-Guerrero et al., 2012; Lopez-Cruz et al., 2008).
However, there are very limited number of case studies and comparison
studies for high technology CEAs using the Stanghellini model and most
studies have either been low technology CEAs or CEAs with limited in-
door environment controls. Also, only limited crop types have been
focused on in existing ET studies. Would the model perform consistently
well for other types of CEA crops such as microgreens? Furthermore, not
all the twelve models are evenly studied and compared. Some of the
models such as the Graamans model are relatively new and have not
been compared with other models yet. Comparison studies are essential
for the selection of ET models in different CEA applications, especially
high technology CEAs (Iddio et al., 2020).

Amongst the mass transfer-based models, only the Penman model
has seen extensive use in CEA applications. In larger studies on mass
transfer-based models (mostly outdoor applications), the Penman model
and several other mass transfer-based models such as Trabert, Jensen-
Haise, and Mahringer models have been found to give acceptable re-
sults (Djaman et al., 2017; Valipour, 2014; Islam and Alam, 2021).
Although we can assume that these models could be successfully vali-
dated for CEA, these models would require further testing and

22

Computers and Electronics in Agriculture 190 (2021) 106447

calibration to demonstrate their ability in successfully predicting ET in
modern CEA facilities.

A major challenge in ET modeling is the difficulty in the modeling of
crop stomatal resistance. This creates the need for improved sensor
technology on the measurement side and a comprehensive mechanistic
approach on the modeling side. A second challenge is the limited
number of studies on emerging types of high technology CEAs such as
vertical farms and plant factories. An increase in the volume of studies
would help with widespread model implementation and validation, and
appropriate ET calibration methods. Also, it would ensure heteroge-
neous studies that cover a variety of indoor cultivated crops instead of
the narrow range of crops currently studied. An added benefit would be
the provision of reliable data to create a crop coefficient database rele-
vant to indoor crop production.

Future ET modeling efforts would profit from advancements in
computer technology and machine learning techniques that can poten-
tially be integrated with the first principles of mass and energy budgets
so that ET predictions can be extended beyond training data. Especially
for high technology CEAs for which data collection is crucial, such data
could be used to create high fidelity ET models. Plant water use would be
better managed by regulating irrigation based on predicted plant ET in
real-time. This would have major implications on water use efficiency,
crop growth, and overall energy efficiency for such systems.

Besides centralized vertical farming facilities, indoor crop growth
can be integrated with building systems (facade, interior, and mechan-
ical systems) as part of urban food production. In this case, crops, peo-
ple, and building systems will interact with each other. On one hand, ET
from indoor crops affects human comfort and potentially reduces
building cooling demands. On the other hand, human behaviors and
building system operations influence crop performance. Therefore, the
enhancement of our knowledge of ET rates for indoor growing crops is
essential for quantifying the performance of indoor crops and contrib-
utes to our understanding of the interaction between indoor crops and
the built environment.
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