PHYSICAL REVIEW B 103, 245303 (2021)

Protecting quantum information in quantum dot spin chains by driving exchange
interactions periodically
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Recent work has demonstrated a new route to discrete time crystal physics in quantum spin chains by
periodically driving nearest-neighbor exchange interactions in gate-defined quantum dot arrays [H. Qiao er al.,
Nat. Commun. 12, 2142 (2021)]. Here, we present a detailed analysis of exchange-driven Floquet physics in
small arrays of GaAs quantum dots, including phase diagrams and additional diagnostics. We also show that
emergent time-crystalline behavior can benefit the protection and manipulation of multispin states. For typical
levels of nuclear spin noise in GaAs, the combination of driving and interactions increases the coherence times
of entangled states by orders of magnitude. Similar results can be obtained for other quantum dot systems such
as in Si. We further show how to construct a time-crystal-inspired CZ gate between singlet-triplet qubits with
high fidelity. These results show that periodically driving exchange couplings can enhance the performance of
quantum dot spin systems for quantum information applications.
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I. INTRODUCTION

Rapid theoretical and experimental development of quan-
tum computers has led to a productive crossover of ideas
between the fields of many-body condensed matter physics
and of quantum information and computation [1,2]. On the
one hand, a principal application of quantum devices is
the simulation of quantum many-body systems that are not
amenable to classical computational methods [3-5]. How-
ever, the relationship is not merely one-way: concepts from
many-body physics can also be useful in designing new
quantum devices with improved information processing ca-
pabilities. This direction is exemplified by recent work on
many-body localization, time crystals, and fractons [6—11].
These concepts, along with others from many-body physics,
have been variously proposed for robust storage of quantum
information [11-13].

Studies of discrete time crystals (DTCs) in spin systems
have largely employed single-spin rotations as the driving
terms that are needed to realize the DTC phase [6,7,14,15].
Such driving can be achieved in quantum dots (QDs), for
instance, by electric dipole spin resonance (EDSR) via an
embedded micromagnet [16—19]. But gate-defined QDs also
afford exquisite control over spin interactions, whether by
detuning or symmetric barrier gates [20-22]. This motivates
the exploration of novel driving protocols in which the spin
interactions are periodically modulated. Driving the interac-
tions also allows one to implement important operations, such
as a SWAP between the states of neighboring QD spins, which
is useful for measuring states in the middle of an array by
shuttling the desired state to the edge for readout. A recent
paper has developed a SWAP DTC driving protocol in which
exchange driving of spin pairs by SWAP operations, followed
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by periods of weak interaction, produces time-crystal-like
signatures in a four-spin QD array [23].

In this paper, we explore the preservation and manipulation
of entanglement in QD spin chains via the SWAP DTC proto-
col. We show that arbitrary states in the S, = O subspace of
two neighboring spins can be preserved for long times, with
marked improvement over the undriven interacting system. In
fact, we find that the coherence times of entangled states can
be extended by orders of magnitude in this way. This result,
obtained for finite chains, is reminiscent of DTC physics in
the thermodynamic limit, due to the crucial role played by
interactions in stabilizing the state. It also suggests the ap-
plication of the SWAP DTC protocol as a form of dynamic
quantum memory, protecting the state of the two entangled
spins. One may further consider such pairs of neighboring
spins as forming singlet-triplet (ST) qubits [20,24]. For this
case, we design a universal gate set, which includes a high-
fidelity cz gate through the modification of the Swap DTC
protocol. Taken together, these results show that DTC-based
physics offers a promising route for developing quantum in-
formation processing systems in solid-state spin arrays.

The paper is structured as follows. Section II introduces the
model and the driving protocol for the SWAP DTC. Section III
presents phase diagrams that demonstrate the robustness of
the DTC phase to the presence of driving errors, a key re-
quirement for the SWAP DTC to constitute a genuine phase of
matter and to be of practical use. In Sec. IV, we investigate the
time dependence of the return probability, and we uncover the
existence of 47 periodic oscillations for initial entangled spin
states, in contrast with the usual 27 time translation symmetry
breaking found in earlier studies. Section V compares the
return probabilities for different driving protocols and for the
undriven Heisenberg spin chain, illustrating the importance of
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FIG. 1. Schematic of an L = 4 Heisenberg spin chain with vari-
able exchange interactions Jy,, J»3, and J34. One can think of this
system as a pair of coupled ST qubits (with leakage), as indicated by
the purple ovals. Jj; and J34 are used to execute SWAP operations
on the spins defining these qubits, while J,; yields an interaction
between them. The ST qubit Bloch sphere is also shown.

driving for preserving entangled states of the two spins in an
ST qubit. Section VI demonstrates the single-qubit gate allow-
ing for coherent switching of the preserved state. Section VII
describes the CZ gate inspired by the SWAP DTC protocol, and
it presents numerical calculations of its fidelity. Finally, the
results are summarized in Sec. VIIL

II. MODEL OF A swap TIME CRYSTAL

We consider a one-dimensional chain of spin-1/2 degrees
of freedom consisting of L = 2N, sites. The Hamiltonian for
this system is given by

H = Z

where o = {x, y, z} and (ij) indicates nearest neighbors. J;; is
the exchange interaction, By is an externally applied uniform
magnetic field, and 6 B; is a random Gaussian-distributed con-
tribution to the total field with variance o due to nuclear spin
noise (as in GaAs, for instance).

Although the principles we discuss apply to generic spin-
1/2 Heisenberg chains, we find it helpful to think of the
system as an array of coupled ST qubits [24]. An ST qubit
consists of a pair of electron spins on neighboring QDs subject
to a large magnetic field that separates out the polarized states,
|Ty) = 11) and |T-) = |{]), leaving behind the computa-
tional subspace {|S), |7o)} of the singlet [|S) = (|1)) — 41
))/~V2)land S. = 0 triplet [|To) = (1)) + [11))/+/2)] states.
The resulting two-level system admits a Bloch sphere repre-
sentation, as shown in Fig. 1, where the basis {| 1), | | 1)}
is chosen for the Z direction. ST qubits are actively being
studied as an encoding for qubits that are naturally insensi-
tive to uniform magnetic field fluctuations [20,25-31]. They
can be coupled both capacitively [25] and through highly
tunable control of nearest-neighbor exchange interactions
[32,33]. In the following, N, is the number of ST qubits in
the chain, which are comprised of pairs of neighboring sites
(2qg — 1,2q),withg=1,2,... (Fig. 1).

of “+Z (Bo + 8Bi)o;, ()

Discrete time crystals are a nonequilibrium phase of matter
characterized by spontaneous breaking of the time translation
symmetry of a system from the 7 periodicity of the drive
down to nT, for integer n > 1. To eliminate trivial cases, such
as a single spin undergoing periodic 7 rotations (e.g., spin
echo sequences), it is further required that many-body interac-
tions play a role in stabilizing the phase against perturbations,
such as errors in the driving [9,10]. As a phase of matter, the
time crystal is strictly defined in the thermodynamic limit.
Though our numerical calculations are performed for finite-
sized systems, the behavior of the system with respect to
interactions and perturbations suggests that our results hold
beyond the sizes accessible by exact diagonalization.

Time crystalline phases were previously discovered in
driven Heisenberg chains by applying tailored “H2I” pulse
sequences or magnetic field gradients that convert the
Heisenberg interactions into effective Ising ones [34,35]. In
both approaches, the periodic driving consisted of single-
particle terms that rotate the spins by &, whether by idealized
8-function pulses or realistic EDSR methods. Notably, it was
found to be necessary to apply H2I pulses or field gradients
in order to stabilize a DTC for the levels of magnetic field
noise present in experiment (e.g., 18 MHz in GaAs, such that
T ~ 10 ns).

Here, we consider a driving protocol based on varying
the exchange interactions in a QD array, instead of single-
spin manipulations. This approach has several advantages.
For one, it can be performed in systems that lack the micro-
magnet needed for EDSR. More importantly, the timescales
for modifying the nearest-neighbor exchange are very fast
(a few nanoseconds), whereas EDSR is slower for the weak
to moderate field gradients typically used in experiment [16].
The fundamental idea of our approach is to drive the system
periodically by fast SWAP operations within each ST qubit,
followed by long evolution times during which neighboring
ST qubits interact [23]. Both of these operations are imple-
mented by the same underlying physical mechanism, namely
the nearest-neighbor exchange coupling between QD spins.
More specifically, we consider the following unitary evolution
over one drive period:

U = Uswap(T5)Uevo(T2). ()

The two parts of this protocol are piecewise constant, with the
SWAP piece given by Uswap(Ts) = e~ 575 where

L2

=—(1—e)202, 102,+Z —(By +8B)a?  (3)

i=1l,a

is applied for time Ty such that JsTs = m, thus interchanging
the spin states of sites 2i — 1 and 2i. € introduces a fractional
error in the SWAP pulse, corresponding to an underrotation
for € > 0. For the L =4 chain, the SWAP interactions are
illustrated by the light blue dashed lines in Fig. 1, such
that Ji, = J3; = Js. The evolution piece Ueyo(T,) = € —iHT, is

generated by the Hamiltonian

L/2-1

Z ofod. + Z —(Bo+8Bi)oi. ()

i=1l,a

J

245303-2



PROTECTING QUANTUM INFORMATION IN QUANTUM DOT ..

PHYSICAL REVIEW B 103, 245303 (2021)

(@) 1.0 1.0
>
s
0.8 0.83
3

0.6 0.6
w £
0.4 0.4 c
o
0.2 2
' (0]
0.2 2

00 T T T T
0 4 8 127

(b) 1.0

0.8
0.6
w
0.4
0.2
0.0
0 47 8w 127

J T,

o o o =
A o o o
Return Probability

.
[N}

FIG. 2. (a) Phase diagram of the return probability for an initial
| 1) state on qubit 1 as a function of interqubit coupling J, and pulse
error €. (b) Phase diagram of the return probability for an initial
singlet state of qubit 1. Parameters are L =4, By, = 3075 MHz,
op =18MHz, T, = 1.4 us, Ts = 2 ns, Jg = 7w /Ts, and ny = 4. Here
we have chosen parameters similar to those of Ref. [23]. The initial
state of qubit 2 is the product state that minimizes the field gradient
energy for a given disorder realization. Results are averaged over 192
disorder realizations.

These interactions are indicated by the light green dashed line
in Fig. 1, with J,3 = J,. In the following sections, we explore
the consequences of this driving protocol for the stabilization
of quantum information. Unless otherwise stated, we assume
an L = 4 chain in our numerical calculations. The calculations
were performed using the QUSPIN PYTHON package for exact
diagonalization of quantum many-body systems [36].

III. PHASE DIAGRAMS

One of the defining features of a time crystal is its stability
to perturbations due to the presence of nonzero interac-
tions in the system. Earlier work on both Ising model and
Heisenberg model DTCs has shown that sufficiently weak
driving pulse errors (i.e., over- or underrotation of the spins
relative to 7 radians) do not destroy the phase. Here we ex-
amine the corresponding errors in performing an incomplete
SWAP operation. Figure 2(a) shows the subsystem return prob-
ability for qubit 1 (sites 1 and 2) of an L = 4 spin chain after
four periods of the protocol (ny = 4). The system is initialized
in the product state in which each ST qubit is in its individual
noninteracting ground state, the latter being determined by
the local magnetic field gradient across the double QD. Thus,
the initial state chosen varies over the field noise disorder
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FIG. 3. Return probability for qubit 1 as a function of J, T, for the
initial states | 1) (blue line) and the singlet (orange line). Parameters
are L = 4, By = 3075 MHz, oy = 18 MHz, Jg = 250 MHz, T, = 1.4
us, Ts = 2 ns, ny = 4, and € = 0. The initial state of qubit 2 is [ 1] ).
Results are averaged over 960 disorder realizations.

realizations. This scenario is naturally realized in experiments
with gate-defined QD arrays. In our calculations, we fix the
evolution time to 7T, = 1.4 us, and we vary the interaction
strength J, and the fractional error in performing a SWAP,
i.e., an error of € = (0.5 corresponds to a 4/SWAP, while for
€ = 1 no operation is performed at all. We find that typical
levels of charge noise, incorporated as random shifts in the
nearest-neighbor exchange interactions by about 1% of their
nominal values [23], have little effect on the results, so we
safely neglect this here. The wedge-shaped regions of high
return probability for small € and increasing J, illustrate that
interactions are crucial for preserving the quantum state of
qubit 1 in the presence of driving errors. We note that not
driving the system at all (¢ = 1) is also very effective for
preserving the state of qubit 1 (though of course in this case
there is no time translation symmetry breaking). We examine
this further in Sec. V. However, we note here that the benefits
for preserving entangled spin states, discussed below, indicate
that driving should always be applied if one wishes to preserve
an unknown quantum state.

In contrast, Fig. 2(b) reveals that when qubit 1 is initialized
in a singlet state, SWAP driving is required to produce a high
return probability after four periods of evolution. Here, the
initial state of qubit 2 is still the product state determined by
the local field gradient. While J, = 0 yields a high singlet
return probability for a perfect SWAP, the presence of finite
interactions does increase the value of the return probability,
as seen in Fig. 3. The singlet return probability peaks when
J. T, = wn (for J, measured in rad/us). In weak magnetic
field gradients, these values correspond to performing n SWAP
operations on sites belonging to different neighboring qubits
(e.g., sites 2 and 3 in the L = 4 chain). An even n yields a
net trivial operation (for perfect SWAPs), while odd n causes
the initial singlet on sites 1 and 2, S}, to be transferred to
sites 1 and 3 during the evolution piece of the protocol, which
is then undone after three additional periods in the L =4
case. The low values of Si; in between the peaks can be
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FIG. 4. Time dependence of the return probabilities for qubit 1,
given an initial state of | 1) for qubit 2. The blue line shows the
return probability for | 1), given the initial product state | 1] )| 1 ).
The orange shows the return probability for the singlet state |S),
given the initial product state |S)| 1) (orange line). Parameters are
L =4, By =3075 MHz, o3 =18 MHz, T, = 1.4 us, J, ==x/T,,
Ts =2 ns, Jy = /Ts, and € = 0. Results are averaged over 6000
disorder realizations.

understood as arising from the monogamy of entanglement,
since an incomplete SWAP leads to site 1 remaining partially
entangled with the rest of the chain after four periods, and thus
less entangled with site 2. When the initial state is the product
state | 14)| 1] ), the SWAP on 2 and 3 produces a spin-echo-like
effect that accounts for the maxima when » is odd.

IV. RETURN PROBABILITY DYNAMICS

The dynamics are also different depending on whether
the initial state is a product or singlet state. Figure 4 illus-
trates the 27 periodicity of the return probability for qubit 1
when the system is initialized in | 1])| 1] ) and J, T, = 7. The
results agree with those for a chain driven by single-spin &
rotations, as the Uswap operation has the same effect on the
given initial state: |1])|1{) = [{1)]171). Note, however,
that this transformation is only approximate in the presence of
finite magnetic field gradients, though the error vanishes in the
limit Jg > AB.

On the other hand, the L = 4 chain shows a 4T period-
icity for the singlet return probability of qubit 1. This is in
striking contrast with previous work on discrete time crystals,
which generally found a 2T periodicity for spin-1/2 degrees
of freedom [6,7,14,15], although systems with long-range in-
teractions have been seen to yield other values [37]. In fact,
for op < J, we find that an L site chain has a singlet return
probability with LT periodicity. This can be easily understood
as arising from successive applications of SWAPS, coming from
both the explicit driving part of the protocol and the evolution
part tuned to J, T, = . For instance, when L = 6 we have the
following steps that transfer the singlet state down the chain,
where it is “reflected” off the right edge and returns back to

its initial position:

SWAP evo evo
Sip =% 81 25 813 % §hy 23 S5

SWAP evo evo
e S46 —> SSG —) S56 —> S46

T S35 23 Sou 25 813 23 Sy Q)

However, the experimentally relevant interaction strength
needed to perform a single SWAP over 1.4 us is ~350 kHz,
which is much smaller than the magnetic field noise ~18 MHz
in GaAs QDs. For realistic levels of field noise, the singlet
return probability displays a 47 periodicity regardless of
chain length. Moreover, we find that when the disorder starts
at small values and increases toward 18 MHz, the transition
between 67 and 4T periodicity is smooth, with the return
probability at 67 gradually decreasing while that at 47 in-
creases (as opposed to a shift in the peak from 67 to 4T
through intermediate values).

The 4T periodicity observed at sufficiently strong disorder
can be explained as follows. First, note that each part of
the protocol involves interactions only between disjoint pairs
of spins. Thus, we may consider the Hamiltonian, Eq. (1),
restricted to two sites a and b,

— J X X y Y Z.2 1 b4 z

H,, = Z(aa o, + 0,0, +0,0,)+ E(Ba% + Byo,), (6)
where B, is the total field at site a, b. In general, the two
spins coupled in a given part of the protocol can have parallel
or antiparallel orientations. Within the {| 1), | | 1)} subspace,

the evolution operator U = e~ "Ha ig
4 iA i ot
U, = zh/z<cos(°‘ )+ 2 sin(rar/2) :’; s1&(%) B )
cos(7) — £ sin(5)
)

g sm("" )
with o = +/J2+ A2 and A =B, — B, the field gradient
across the pair. We have multiplied U (and hence U;) by a
global phase, ¢¥'/4, to simplify the following analysis. The
SWAP part of the protocol is performed in 2 ns, so that Jg > A

L.

and we may neglect errors in the transition | 1)) —
For the evolution part of the protocol, we use perturbation
theory in (J,/A) to obtain the approximate evolution

; eiAt/Z 0
Ul =e mn( o i) 8)
On the other hand, the evolution in the {| 11), | | |)} subspace
is given by
e—iBm([/z 0
U, = ( 0 Bt /2 | ©

where By = B, + Bp. Now starting from the initial state

[Yo) = (I1M) — 1411 1)) (suppressing the normalization of
the state) and successively applying the evolutions in Egs. (8)

and (9) (between spins 2 and 3) and SWAPs [on the spins within
the pairs (1,2) and (3,4)], we find

[Wo) = Iyn) = ie T2 1) -

after the first period, where we used that e =1, and we
ignored accumulated phases coming from spins other than the

e Bel2 4L 11 (10)

iJo T, /2
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FIG. 5. Singlet return probability for the cases in which the
total phase accumulation of the evolution part of the protocol is
J.T, = 21 /3 (blue line) and in which the initial state is |S)| 1))
(orange line). In the first case, the initial state is the singlet state
for qubit 1 and the product states minimizing the field gradient
energies for the other qubits. In the second case, J,T, = m. Other
parameters are L = 6, By = 3075 MHz, o3 = 18 MHz, T, = 1.4 us,
Ts =2 ns, Jg = /Ts, and € = 0. Results are averaged over 6000
disorder realizations.

first three. The second period of the protocol yields

1Y) = [¥2) = =(114) + LADIT, )

so that the first qubit is in the state |7p). Two further periods
then recover the initial state on sites 1 and 2, explaining the
4T periodicity of the singlet return probability.

To provide further support for this simple physical picture,
we consider two extensions of the idea. We note that the 4T
periodicity fundamentally arises from the phase factor ¢*/'/?
in Eq. (8) becoming trivial after four periods, when J,T, = &
(here J is given in radians and % = 1). Thus, one should
obtain a different periodicity when J, 7, is chosen such that
the relative phase winding occurs at another rate. That this is
indeed the case is shown in Fig. 5, where J,T, = 27 /3 and the
resulting periodicity of the singlet return probability maxima
is 67. Alternatively, one may consider initializing the second
qubit in the state |11) (with the first qubit still initialized in
[S)). A similar argument to that given above shows that the
first qubit returns to the singlet state after 27", in agreement
with the orange curve in Fig. 5. In longer chains, a singlet
state prepared in the bulk experiences 47 periodicity of the
return probability at an interaction strength J,T, = 7 /2, half
the value for a ST qubit on the edge. This is essentially due
to the increased number of neighbors, and it mirrors the case
of the single spin return probability, for which the phase
diagram of a bulk spin has half the period compared to that for
an edge spin [35]. Since an arbitrary state on the singlet-triplet
Bloch sphere is a superposition of |S) and |7p), any initial
state will be restored stroboscopically after four periods, and
so if the qubits are to be measured, this should be timed with
the 4T periodicity of the return probability, rather than the T
periodicity of the drive.
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FIG. 6. (a) Comparison between the undriven system and driving
protocols, for an initial product state that minimizes the field gradient
energy of qubit 1. (b) Comparison between the undriven system
and driving protocols, for an initial singlet state of qubit 1. Other
parameters are L = 4, By = 3075 MHz, o = 18 MHz, T, = 1.4 us,
and J, = /T,. For the SWAP driving case Tg = 2 ns, Jg = 7 /Ts, and
for both driven cases € = 0. The initial state of qubit 2 is the one
minimizing the field gradient energy. Results are plotted stroboscop-
ically for every 2T and averaged over 6000 disorder realizations.

V. COMPARISON WITH THE UNDRIVEN SYSTEM

As noted in Sec. III, the product state | 1)) on qubit 1
is well-preserved even in the absence of SWAP driving. In
Fig. 6(a) we study the return probability as a function of time
for several different driving protocols. Two different undriven
cases are presented. In the first, the Heisenberg interactions
are equal throughout the chain and set to the same value as
used for the SWAP driving evolution: Ji, = Jo3 = J34 = 7 /T,.
However, since the SWAP DTC evolution piece only involves
interqubit J,, the second undriven case mirrors this by set-
ting Jo3 = /T, and Jjp, = J34 = 0. In either case, while the
undriven and SWAP-driven cases perform similarly up to ten
periods, in the long-time limit the undriven cases are clearly
superior. The saturation value of the return probability for
the undriven cases tends to grow with increasing field noise
strength [38]. We note, however, that it does not ultimately
approach 1 in the large noise limit. This is due to the fact that
disorder averaging mixes in unfavorable field configurations,
which limits the overall return probability. On the other hand,
applying a uniform linear field gradient (not shown) does tend
to increase the return probability toward 1, as the gradient
strength increases.

We also compare the SWAP protocol to more tradi-
tional single-spin driving. Thus, we consider an idealized
instantaneous 7 rotation of all the spins (i.e., a §-pulse in
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time):
T 00 L
Vs(t) = EZS(r—sT)ZU;‘. (12)
s=1 Jj=1

In this case, all nearest-neighbor exchange interactions are
turned on, as in the first undriven case. The period of the
8-pulses is adjusted to coincide with the total period of SWAP
driving cases, Ty = T, + Ts. Figure 6(a) shows that for an
initial product state, the SWAP driving is preferable to the
single-spin rotations of the §-pulse case for experimentally
relevant levels of magnetic field noise.

Turning to the case in which qubit 1 is initially in an
entangled state, it is apparent from Fig. 6(b) that an initial
singlet state is not at all preserved for the undriven protocols,
whereas the SWAP case leads to a high return probability every
four periods, in accordance with the results above. In the
given parameter regime, we again see that §-pulse single-
spin rotations are inferior to SWAP pulses for preserving the
initial state.

Our results indicate that conventional dynamical
decoupling schemes, which are not robust against control
errors, are not as useful as the SwWAP DTC approach.
Moreover, our approach is not much more complicated
than dynamical decoupling since it merely involves periodic
modulations of J,, which is easily controlled in experiments.
Furthermore, a significant benefit to the coherence times is
obtained with only the modest overhead of adding a few
additional spins to the system. This can be compared to
previous efforts to encode qubits in multiple spins to reduce
susceptibility to noise and speed up control times (e.g.,
three-spin exchange-only qubits [39,40] and hybrid qubits
[41]). Our control scheme is no more complicated than those
needed to operate these alternative types of qubits, yet our
approach has the added benefit of robustness against both
noise and driving imperfections.

We have seen that the product states | 1|,) and | | 1) survive
longer in the absence of SWAP driving, whereas |S) and |7p) are
preserved better when the system is driven. This suggests that
if we consider “unbalanced” superpositions cos(6/2)| 1) —
sin(6/2)| 1), where 0 < 6 < /2, there should exist some
value 0, such that for 6 > 6,, driving is beneficial for state
preservation. The value of 6, in fact depends on how long
one wishes to preserve the state, as is shown in Fig. 7. The
undriven system return probabilities depend strongly on 6,
but they are essentially time-independent after an initial decay.
Here we have considered the first type of undriven system, in
which all nearest-neighbor exchange interactions are nonzero
and equal. In contrast, SWAP driving leads to a steady decay
of the return probability as the number of driving periods is
increased; this decay is relatively insensitive to 8. The inter-
section of the return probability curves for the undriven and
SWAP-driven cases yields the time below which SWAP driving
enhances the attainable return probability for a given initial
state parametrized by 6. Conversely, we may fix the timescale
at a desired value and then read off the value of 6, by adjusting
6 until the undriven return probability curve intersects the
SWAP-driving curve at that time. Similar results are obtained
for states with complex coefficients (not shown). Averaging
over 88 states approximately distributed equally across the
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1.001 - SWAP driving, 0 = 0
Undriven, § = 7/16
SWAP driving, § = /16
0.981 Undriven, § = 7/8
2 - SWAP driving, 0 = 7/8
=
3 .
° 0.96 1
[a
c
5
% 0.941 ‘\\
o SES
AN N
“m ‘\\\
N S S
0.921 \\ S
N
0.90 : : : : : : :
5 10 15 20 25 30 35 40

Period Number

FIG. 7. Comparison between the undriven (first case; all nearest-
neighbor interactions on) (solid lines) and SWAP-driven (dashed lines)
systems when qubit 1 is initialized in cos(6/2)| 1] ) — sin(8/2)| L 1).
Results are shown for 6 = 0, 7 /16, 7 /8. Results are plotted strobo-
scopically every 4T. Other parameters are L = 4, By = 3075 MHz,
op = 18 MHz, T, = 1.4 us, and J, = 7 /T,. For the driven case,
Ts =2ns,Js = /Ts, and € = 0. The initial state of qubit 2 is | 1,).
Results are averaged over 6000 disorder realizations.

Bloch sphere, the undriven system yields a return probability
of 0.65 after 40 periods, compared to 0.90 for the SWAP driven
case—a nearly 40% improvement.

These results indicate that a generic state is much better
preserved by driving the system with the SWAP DTC protocol.
Since the goal of any preservation method is to ultimately
protect arbitrary, unknown quantum states, one must apply
the driving indiscriminately, even for near-product states that
will be harmed by doing so. However, the reduction in return
probability for the latter states is vastly outweighed by the
benefit to preserving entangled ones.

The long-term decay of the return probability can occur
for two different reasons: the state may evolve to a different
one within the S, Ty subspace, or alternatively it may leak out
of the computational subspace and into the 7', (|11)) and
T_ (|| {)) triplet states. To assess the relative importance of
these contributions, we calculated the time-dependent leakage
for the driven and undriven systems, as shown in Fig. 8.
For single-spin é-pulse driving, the leakage to the {7}, 7_}
subspace grows linearly in time. On the other hand, the SWAP
DTC protocol leads to a strong suppression of the leakage,
almost to the levels obtained when J, = 0. Taken together
with the results of Fig. 6, this shows that the errors in the SWAP
DTC method are largely due to transitions within the S, Tj
subspace (i.e., the computational subspace of the ST qubits),
as opposed to leakage outside of it. Note that this behavior is
consistent with earlier examples of DTCs based on §-function
pulses (see, e.g., Ref. [7]), where it was found that the inter-
actions in the DTC phase act to restore the noise-canceling
properties of the pulses despite pulse errors.

While the preceding analysis considered the simple setting
of static magnetic field noise, in actual experiments both mag-
netic field and charge noise are time-dependent. We examine
these effects in the Appendix, and we find that the SWAP
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FIG. 8. Leakage to {T, T_} subspace for the undriven system
and driving protocols, for (a) an initial product state that minimizes
the field gradient energy of qubit 1, and (b) an initial singlet state
of qubit 1. Other parameters are L =4, By = 3075 MHz, o =
18 MHz, T, = 1.4 us, and J, = 7w /T,. For the SWAP driving case
Ts =2 ns, Jg = 7 /Ts, and for both driven cases € = 0. The initial
state of qubit 2 is the one minimizing the field gradient energy.
Results are plotted stroboscopically for every 27 and averaged over
6000 disorder realizations.

DTC protocol still affords an advantage for the preservation
of entangled states.

VI. SWITCHING PRESERVED STATES

In the course of an information processing task, it is neces-
sary to be able to change what state is stored in the memory.
In Fig. 9(a) we show that an initial |S) state, preserved for
20 periods, can be switched to |7p), and subsequently pre-
served to a similar degree. The switching operation is
performed simply by inserting an additional two periods with
J. = 0, halfway through the experimental run.

More generally, one can switch from |S) to an arbitrary
state of the form | 1) 4+ €®| | 1) by adjusting the value of J,
during the two extra periods, such that J,T, = «. Figure 9(b)
shows that the return probability for the new state after ~40
total periods of evolution remains large, regardless of the
choice of «.

VII. IMPLEMENTING TWO-QUBIT GATES

While the preservation of quantum states is an important
task for quantum computing, it is also necessary to manipulate
states and execute various logical gates. Here we explore the
possibility of using the SWAP driving protocol to realize two-
qubit gates in a chain of ST qubits. We first note that when
qubit 1 is initialized in a singlet state, the return probability
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FIG. 9. (a) Return probabilities for qubit 1 for the singlet (blue
line) and triplet (orange line) states, for a system initialized in the
singlet state for qubit 1 and subject to the switching protocol halfway
through the total evolution. (b) End time return probability for the
state [) = [ 1)) 4+ e~™®| | 1) for qubit 1, when it is initialized in the
singlet state and subject to the switching protocol halfway through
the evolution. Other parameters are L = 4, By = 3075 MHz, o =
18 MHz, T, = 1.4 us, and J, = 7 /T,. The initial state of qubit 2 is
[11). Results are averaged over 6000 disorder realizations.

oscillates with period 47 (27) if qubit 2 is in state |1])
(| 11)). This implies that the evolution after two periods is
equivalent (up to single-qubit rotations) to a CNOT gate, where
qubit 1 is the target, and qubit 2 is the control, since qubit 1
flips from |S) to |7p) depending on whether the spins in qubit
2 are parallel or antiparallel. However, this approach suffers
from the disadvantage that parallel spin states are not part of
the computational subspace of ST qubits. Conditional con-
trol of individual spins using ESR or EDSR would alleviate
this issue by allowing one to temporarily map || 1) — |{])
to execute the CNOT, before restoring the || 1) state of the
control bit.

Another approach is based on the effective Ising
Hamiltonian between exchange-coupled ST qubits in a linear
array [42]. An Ising interaction of the appropriate duration can
be converted to a CZ gate by applying additional single-qubit
rotations [43]:

CZ = eirr/4e—inaf/4e—iﬂa§/4einaf05/4. (13)

This suggests viewing the protocol for the SWAP time crys-
tal not only as a means of state preservation, but also as a
way to generate two-qubit gates. Indeed, whereas two periods
of the protocol U of Eq. (2) yield the best state preservation
when J, T, = m (for product states of a single qubit), setting
J.T, = 7 /2 produces a CZ gate when followed by single-qubit
rotations on each ST qubit, due to the effective Ising interac-
tion between the ST qubits. Later, we compare this two-period
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gate to one that uses a single period of SWAP DTC evolution.
We numerically study the CZ protocol in the L = 4 spin chain,
configured as two ST qubits. The accuracy of the proposed
gate can be assessed by looking at the probability of finding
the evolved spins in the state that would be obtained from an
ideal CzZ gate: Pcz = I(CZideal,i|CZactual,i)|2- Here, |CZactual,i) =
Ucz|¥i) and |CZigear;) = CZ|V;), where truncation of the state
to the logical subspace is implicit. The physically imple-
mented gate is given by

Uz = R, Vs (T Uewo (TP, (14)

where the exchange coupling J, in U, is such that J,T, =
7 /2, while Jg in Uswap(Ts) remains the value required for a
SWAP operation: JgTy = w. The operation Rgf/)z implements
a simultaneous rotation on each qubit by /2.

The fact that U, approximates a CZ gate can be seen
by noticing that in the physically relevant parameter regime
where Jg > A and J, < A, where A is the magnetic field
gradient across neighboring QDs, the evolution (truncated
to the logical subspace) after two periods is approximately
given by

i 0 0 O

01 0 0
[Wswar(Ts)Vewo TP ~ [ 0 0 7 (15)

0 0 0 i

in the basis {|0)]0), [0)|1), [1)]0), |1)|1)}, with |0) = | 1) and
[1) = |{1) forming the logical basis of the ST qubits. This
result can be obtained using the approximate expressions for
each piece of the evolution given in Sec. IV. The subsequent
application of the z rotations on each ST qubit as indicated
in Eq. (14) converts the right-hand side of Eq. (15) into a
Cz gate. Below, we show that the discrepancy between U,
and €z is mostly due to additional single-qubit gates that arise
from terms of order A/Jg and J,/A. Thus, U, remains locally
equivalent to a Cz gate even when these higher-order effects
are included.

In Fig. 10(a) we present numerical results for the Cz
gate probability, pcz, for 100 randomly selected initial prod-
uct states of the ST qubits: |¢;) = |1pi(‘)>|w;2)). Despite the
single-qubit gates caused by finite A/Jg and J,/A, the mean
probability is high: pcz = 0.991. The use of more compli-
cated pulse shaping techniques that effectively remove these
extra local gates can be expected to improve this result
further [26,44,45]. Unless noted otherwise, calculations are
performed with fixed field gradients across each ST qubit,
without any “noise” component. Corrective pulse shaping can
be designed using the knowledge of these gradients to produce
a pure CZ gate. In our simulations, the R; ],rz/)z operation is im-
plemented by allowing each ST qubit to precess freely under
its respective field gradients for a time (7, — t, — 275)/2. Here
T, =1 us is the total gate time, while

P {n/(ZA) if A>0,

3r/(2A) if A <0, (16)

After this precession, a SWAP pulse is applied and the qubit is
allowed to precess again until 7, — Ts, at which time a final
SWAP is applied. This process allows for the rotation of the
single-qubit state, along with an additional spin-echo-like part
that keeps the different qubits in sync. Below, we also consider
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FIG. 10. (a) Probability p., = |(Czidml|CZacmal)|2 of finding the
spin chain in the state that would be produced by an ideal Cz gate
after the sequence in Eq. (14) is applied. J, = 7 /(27T,), with T, =
1.4 ps, as indicated by the vertical gray line in panel (b). Initial
states are random product states in the ST qubit logical subspace.
The red dashed line indicates the mean CZ gate probability pc; =
0.991. (b) Makhlin invariants G;, G, and Gj3, as functions of the
interqubit coupling J,. Other parameters are L = 4, AB, = 18 MHz,
AB, =TMHz, T, =14 us, Ty =2ns,Js =7 /T, and T, = 1 pus.

the noisy situation in which the true values of the gradients
deviate from the ones assumed by the experimentalist imple-
menting the gate.

To assess the intrinsic entangling properties of the physical
two-qubit Cz, we compute the Makhlin invariants Gy, G, and
G3, which characterize a given two-qubit gate up to arbitrary
single-qubit rotations [46,47]. The Makhlin invariants for an
ideal €z are G; = G, = 0 and G3 = 1. Figure 10(b) shows
the Makhlin invariants for the physical CZ as functions of the
interqubit coupling J,. For the optimal value J, = 7 /(2T,),
the values of G, 3 are given in Table I. One sees that the
invariants of the physical gate closely approximate those of
the ideal one. This suggests that errors in the single-qubit
rotations are the main factor leading to the imperfect Cz proba-
bilities shown in Fig. 10(a). We also note that Gj3 is necessarily
real for any two-qubit gate. Thus, the small imaginary part
in the numerical calculation must arise due to leakage out

245303-8



PROTECTING QUANTUM INFORMATION IN QUANTUM DOT ...

PHYSICAL REVIEW B 103, 245303 (2021)

TABLE I. Makhlin invariants for the SWAP-DTC two-qubit CZ
gate. Parameters are the same as in Fig. 10.

Gl G2 G3

Actual €z 3.5x 107 —4.1x 1077 14+39x 107> —9.0 x 1077i
Ideal cz 0 0 1

of the computational subspace. Figure 10(b) indicates that
significant departures from the optimal J, lead to non-
negligible errors in G; and Gs. Thus, precise experimental
control over the magnitude of J, is important for realizing
the desired gate. For a value of J, that is 1% larger than the
optimal one, however, G; remains well within 0.01% of its
ideal value.

One should also consider variations in the magnetic field
gradients across the two qubits. While these can be controlled
to some extent, for instance by micromagnet design, there are
also contributions due to nuclear spin noise. Figure 11 shows
the Makhlin invariants for the physical Cz gate as functions
of the magnetic field gradients across qubits 1 and 2, respec-
tively (the left spins of each qubit are assumed to have the
same field value). In this figure, the axes give the nominal
field gradients that are assumed in order to determine the
pulse sequences that execute the necessary z rotations. The
actual magnetic fields used in the calculation are modified,
however, by the addition of Gaussian random field noise with
standard deviation oz = 1 MHz. The difference between the
nominal and actual field values leads to errors in the single-
qubit rotations of Eq. (14). As the Makhlin invariants are
unaffected by single-qubit rotations, the results are essentially
the same as for o = 0 (not shown). Nevertheless, we find that
large values (~100 MHz) of the field gradients lead to sizable
departures from the ideal CZ gate, due to errors in the SWAP
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FIG. 12. cz gate probabilities for random initial product states
of the ST qubits, for which the true magnetic field for each data
point is modified by the addition of Gaussian random field noise
with standard deviation oy = 1 MHz. The red dashed line shows
the mean value p = 0.968. Other parameters are L =4, AB, =
18 MHz, AB, =7MHz, J, =n/Q2T,), T, =14 us, ny =2, Ty =
2 ns, Js=m/Ts, and T, =1 ps. Results are averaged over 20
disorder realizations.

gates induced by the gradients. But for AB|, AB, < 50 MHz,
the Makhlin invariants remain close to the ideal ones. Use of
composite pulse shaping is expected to allow for successful
operation in the larger gradient regime as well.

Unlike the Makhlin invariants, the CZ gate probabilities
are reduced by inaccurate z rotations, and thus by differences
between the nominal and actual magnetic field gradients in
the system. Figure 12 shows the return probabilities in the
presence of oy = 1 MHz Gaussian field noise when the nomi-
nal gradients are AB; = 18 MHz and AB, = 7 MHz. We find
that the mean return probability is lowered from 0.991 in the
noiseless case to 0.968 in the presence of noise. This suggests
that reliable knowledge of the field gradients is crucial for
obtaining accurate ST qubit gates.

0.995

FIG. 11. Makhlin invariants G, G,, and G5 as functions of the
nominal magnetic field gradients across each qubit. The true mag-
netic field for each data point is modified by the addition of Gaussian
random field noise with standard deviation oy = 1 MHz. Other pa-
rameters are L =4, J, = /(2T,), T, = 1.4 us, np =2, Ts =2 ns,
Js =m/Ts, and T, = 1 pus. Results are averaged over 40 disorder
realizations.
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FIG. 13. Optimized unitary fidelity of Eq. (17) as a function of
the magnetic field gradients across each qubit. Other parameters are
L=4J,=7n/2T,), T,=1.4 us, np =2, Ts =2 ns, Js =nr /Ty,
and T, = 1 us.
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FIG. 14. (a) cz gate probability for the ny = 1 protocol, using
the optimal J, = /T, indicated by the vertical gray line in panel
(b). The red dashed line indicates the mean CZ gate probability pc, =
0.675. (b) Makhlin invariants for the ny = 1 protocol for the Cz gate.
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An alternative metric for the quality of the physical Cz gate
is given by the fidelity [48,49]

f = 5(TrlUcz,, UL, )+ ITHUS, ,CZP),  (17)

where CZ* = U,UsCZU,U, is the generalized CZ consist-
ing of the ordinary CzZ preceded by arbitrary one-qubit
unitaries U;, of the two qubits, and followed by the ar-
bitrary unitaries Us 4. Furthermore, Ucyz, ), is the DTC part
([Uswap(Ts)Ueyo(T)]?) of the physical Cz gate projected down
to the computational subspace, and CZ* is optimized over
the parameters o;, §;, ¥;, §; defining the one-qubit unitaries
U, = ei"fRZ(ﬁi)Ry(yi)Rz(Si). With this definition, the opti-
mized fidelity of the physical Cz gate is shown as a function
of the magnetic field gradients in Fig. 13. For gradients below
50 MHz, the optimized fidelity reaches values in excess of
0.995, indicating that single-qubit rotations are the limiting
factor in achieving an accurate gate in this case. While z rota-
tions can be performed by turning off the intraqubit exchange
coupling Jy for the appropriate length of time, thereby allow-

Rotation angle 6, »
(=) —_ [3%) w = ot (=2}
s o o o = o o
w =S ot [=>] -1 [oe} <o
Mean C'Z Gate Probability

o
—

2 3 4 5 6
Rotation angle 0.

FIG. 15. Mean €z gate probability for the ny =1 protocol,
varying the single-qubit rotation angles applied after the two-qubit
evolution. Other parameters are L =4, AB; =18 MHz, AB, =
7MHz,03 =0,J, =7 /T,, T, = 1.4 s, and T, = 1 pus. Results are
averaged over 100 randomly selected initial states, which are product
states of generic ST qubit states.

ing the system to evolve in the “always on” field gradients,
perfect x rotations cannot be similarly achieved by applying a
single value of Jg for a given time, as the axis of rotation is
tilted due to the gradients. This again highlights the need for
pulse shaping methods to improve single-qubit rotations.

Thus far we have considered a two-qubit CZ gate that re-
quires two periods of the SWAP DTC driving protocol, with
a modified value of J, that maximizes the gate performance
instead of preserving the initial state. It is natural to ask
whether a Cz gate could also be executed using a single period
of interqubit evolution. That is indeed the case, as illustrated in
Fig. 14(a), which shows that for a single evolution period such
that J,T, = m, the Makhlin invariants are close to their ideal
values. Here, the evolution is not followed by the subsequent
intraqubit SWAP pulses of the DTC protocol, as these amount
to unnecessary additional single-qubit rotations. However, the
corresponding CZ gate probabilities for the optimal value of J,
are very poor [Fig. 14(a)]. This is due to the fact that the one-
period protocol lacks the spin-echo behavior of the two-period
version discussed above, which cancels the continuous z ro-
tations of ST qubits with finite field gradients. Nevertheless,
one can still achieve high Cz gate probabilities by selectively
rotating each qubit through different angles 6, ;, 6, », such that
the total rotation for each qubit at the end of the gate is the
required R;  ». This is seen in Fig. 15, which displays the Cz
gate probability as a function of single-qubit rotation angles
applied to each qubit after the interqubit evolution part of
the gate. The optimal choices of rotation angles depend on
the field gradients across each qubit; in Fig. 15 the highest
return probability attained is 0.980, comparable to that of the
two-period CZ protocol.

The advantage of the one-period protocol (apart from the
twofold reduction in gate time) can be seen by considering
the Makhlin invariants as functions of the magnetic field
gradients (Fig. 16). The invariants remain within 10> of
their ideal values throughout the range considered, thus show-
ing considerable improvement from the two-period case at
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FIG. 16. Makhlin invariants G;, G,, and G3 as functions of
the nominal magnetic field gradients across each qubit. [Note that
1 — Re[G3] is plotted in (c¢).] The true magnetic field for each data
point is modified by the addition of Gaussian random field noise
with standard deviation oy = 1 MHz. Other parameters are L = 4,
Jo=m/T,,T, = 1.4 us,ny = 1,and T, = 1 pus. Results are averaged
over 40 disorder realizations.

large gradients. This suggests that optimizing over arbitrary
single-qubit operations before and after an ideal Cz gate, in
the manner of Eq. (17), should lead to very high fidelities.
We confirm this expectation, as shown in Fig. 17, where the
lowest infidelity over the range of gradients considered is only
~5 x 1077, Infidelities obtained in experiments will likely be
higher due to single-qubit rotation errors. Despite the signifi-
cantly improved fidelities of the one-period protocol over the
two-period version, the fact that the required z rotations are
gradient-dependent may present further experimental chal-
lenges. This would necessitate adaptive control of the pulse
sequence, in response to a prior measured value of the field
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FIG. 17. cz gate infidelity for the one-period protocol (ny = 1)
as a function of the magnetic field gradients across each qubit.
The infidelity at each point is optimized over single-qubit gate
parameters. Other parameters are L =4, J, =n/T,, T, = 1.4 us,
and T, = 1 us.
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FIG. 18. (a) Return probability of the leftmost two spins as a
function of time for an initial state | 1) under the SWAP DTC pro-
tocol (solid lines) compared to the undriven system (dashed line), in
the presence of time-dependent noise. (b) Return probability of an
initial singlet state. Power law noise parameters are given in the text.
The infrared and ultraviolet cutoff frequencies for the noise spectra
are 25 kHz and 0.5 MHz, respectively. Other parameters are L = 4,
By =3075MHz, T, =0.998 us, Ts =2 ns, J, = /T,, Js = 7 /Ts,
and € = 0. Results are averaged over 6000 disorder realizations.

gradient. The two-period sequence, on the other hand, always
involves z rotations of 7 /2 for each qubit, regardless of the
gradient strength, such that the pulse sequence does not need
to be changed “on the fly.”

VIII. CONCLUSIONS

We have shown that driving exchange interactions, as op-
posed to performing single-spin rotations, in QD spin chains
leads to an alternative route to time crystal physics that can
be used for the preservation and manipulation of quantum
states. We demonstrated that such driving preserves entangled
states over timescales that are orders of magnitude longer
than coherence times in the absence of driving, and that, on
average, it improves the preservation of arbitrary states by
nearly 40%. In addition, we uncovered additional signatures
of the exchange-driven time crystal phase, including a 47
periodicity of the singlet return probability that runs counter
to the 27 periodicity normally encountered in such systems.
While our work focused on the case of GaAs, it could also
be implemented in Si (for which the nuclear spin bath is much
weaker) if the requisite magnetic field gradients were supplied
by an embedded micromagnet. The other requirements of fast
SWAP pulses followed by longer periods of evolution under
small exchange couplings are readily achievable in most semi-
conductor QD platforms.
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We also considered applications of this time crystal
physics to the design of exchange-driven quantum gates for
singlet-triplet qubits. In particular, we showed that a simple
modification of the SWAP-DTC protocol yields a high-fidelity
Cz gate, up to single-qubit operations. These results suggest
that time crystal physics may be beneficial to quantum infor-
mation applications based on QD spin qubits.
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APPENDIX: TIME-DEPENDENT MAGNETIC FIELD AND
CHARGE NOISE

The assumption of static noise sources, while accurate
over sufficiently short timescales, may be questioned if the
dynamics is studied over many periods of time evolution.
Since the present study considers state preservation out to
tens of periods, it is important to verify that time-dependent
noise does not alter the usefulness of the SWAP DTC protocol.
In GaAs singlet-triplet qubits, both magnetic field and charge
noise have been described by power-law spectra [50-52],

I+ap

Sp(w) = 22—, (Al)

w%B.J

where ap ~ 2.6, Ap~0.3 MHz, a;~0.7, and A; ~
100 MHz. In our calculations, we begin by randomly gen-
erating site-dependent magnetic field noise with standard
deviation op (similarly to the main text), but now also includ-
ing charge noise in the form of random shifts of the exchange
couplings J;;. In this case, the standard deviations are given by

Jij/(+/2 Q), where Q = 21 is the exchange oscillation qual-
ity factor [23]. On top of these static noise components, we
introduce time-dependent fluctuations by inverse fast Fourier
transforming the above spectra to generate time-series disor-
der realizations [53,54].

Figure 18 shows the long-time return probability for
initial product and entangled states. For the initial state | 1)
[Fig. 18(a)], whether one includes magnetic field noise, charge
noise, or both has little effect on the degree of state preser-
vation under the SWAP DTC protocol. Similarly to the static
noise case, the undriven Hamiltonian stabilizes this product
state more effectively than the driving protocol. The situation
for the initial singlet state [Fig. 18(b)] under time-dependent
noise also essentially mirrors the results of the static model, in
that SWAP driving significantly improves the state preservation
compared to the undriven system. In this case, however, we
find that the time-dependent charge noise is more significant
overall in degrading the return probability. Thus we see overall
that realistic levels of time-dependent noise do not signifi-
cantly affect the performance of the SWAP DTC protocol for
state preservation.

[1] R. Augusiak, F. M. Cucchietti, and M. Lewenstein, in
Modern Theories of Many-Particle Systems in Condensed Mat-
ter Physics, edited by D. C. Cabra, A. Honecker, and P. Pujol
(Springer, Berlin, 2012), Vol. 843, pp. 245-294.

[2] B. Zeng, X. Chen, D.-L. Zhou, and X.-G. Wen, Quantum
Information Meets Quantum Matter: From Quantum Entangle-
ment to Topological Phases of Many-Body Systems, Quantum
Science and Technology (Springer, New York, 2019).

[3] J. Preskill, Quantum 2, 79 (2018).

[4] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik,
New J. Phys. 18, 023023 (2016).

[5] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. M. Gambetta, Nature (London) 549, 242
(2017).

[6] D. V. Else, B. Bauer, and C. Nayak, Phys. Rev. Lett. 117,
090402 (2016).

[7]1 N. Y. Yao, A. C. Potter, 1.-D. Potirniche, and A. Vishwanath,
Phys. Rev. Lett. 118, 030401 (2017).

[8] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod.
Phys. 91, 021001 (2019).

[9] D. V. Else, C. Monroe, C. Nayak, and N. Y. Yao, Annu. Rev.
Condens. Matter Phys. 11, 467 (2020).

[10] V. Khemani, R. Moessner, and S. L. Sondhi, arXiv:1910.10745.

[11] V. Khemani, M. Hermele, and R. Nandkishore, Phys. Rev. B
101, 174204 (2020).

[12] N. Y. Yao, C. R. Laumann,
arXiv:1508.06995.

[13] R. A. Santos, F. Iemini, A. Kamenev, and Y. Gefen, Nat.
Commun. 11, 5899 (2020).

and A. Vishwanath,

[14] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J.
Smith, G. Pagano, L.-D. Potirniche, A. C. Potter, A. Vishwanath,
N. Y. Yao, and C. Monroe, Nature (London) 543, 217
(2017).

[15] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F.
Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. von Keyserlingk,
N. Y. Yao, E. Demler, and M. D. Lukin, Nature (London) 543,
221 (2017).

[16] M. Pioro-Ladriere, T. Obata, Y. Tokura, Y. S. Shin, T. Kubo, K.
Yoshida, T. Taniyama, and S. Tarucha, Nat. Phys. 4, 776 (2008).

[17] T. F. Watson, S. G. J. Philips, E. Kawakami, D. R. Ward,
P. Scarlino, M. Veldhorst, D. E. Savage, M. G. Lagally, M.
Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K.
Vandersypen, Nature (London) 555, 633 (2018).

[18] A.J. Sigillito, J. C. Loy, D. M. Zajac, M. J. Gullans, L. F. Edge,
and J. R. Petta, Phys. Rev. Appl. 11, 061006(R) (2019).

[19] K. Takeda, A. Noiri, J. Yoneda, T. Nakajima, and S. Tarucha,
Phys. Rev. Lett. 124, 117701 (2020).

[20] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby,
M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Science 309, 2180 (2005).

[21] M. D. Reed, B. M. Maune, R. W. Andrews, M. G. Borselli,
K. Eng, M. P. Jura, A. A. Kiselev, T. D. Ladd, S. T. Merkel,
1. Milosavljevic, E. J. Pritchett, M. T. Rakher, R. S. Ross, A. E.
Schmitz, A. Smith, J. A. Wright, M. F. Gyure, and A. T. Hunter,
Phys. Rev. Lett. 116, 110402 (2016).

[22] F. Martins, F. K. Malinowski, P. D. Nissen, E. Barnes, S. Fallahi,
G. C. Gardner, M. J. Manfra, C. M. Marcus, and F. Kuemmeth,
Phys. Rev. Lett. 116, 116801 (2016).

245303-12


https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1038/nature23879
https://doi.org/10.1103/PhysRevLett.117.090402
https://doi.org/10.1103/PhysRevLett.118.030401
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1146/annurev-conmatphys-031119-050658
http://arxiv.org/abs/arXiv:1910.10745
https://doi.org/10.1103/PhysRevB.101.174204
http://arxiv.org/abs/arXiv:1508.06995
https://doi.org/10.1038/s41467-020-19646-4
https://doi.org/10.1038/nature21413
https://doi.org/10.1038/nature21426
https://doi.org/10.1038/nphys1053
https://doi.org/10.1038/nature25766
https://doi.org/10.1103/PhysRevApplied.11.061006
https://doi.org/10.1103/PhysRevLett.124.117701
https://doi.org/10.1126/science.1116955
https://doi.org/10.1103/PhysRevLett.116.110402
https://doi.org/10.1103/PhysRevLett.116.116801

PROTECTING QUANTUM INFORMATION IN QUANTUM DOT ...

PHYSICAL REVIEW B 103, 245303 (2021)

[23] H. Qiao, Y. P. Kandel, J. S. Van Dyke, S. Fallahi, G. C. Gardner,
M. J. Manfra, E. Barnes, and J. M. Nichol, Nat. Commun. 12,
2142 (2021).

[24] J. Levy, Phys. Rev. Lett. 89, 147902 (2002).

[25] M. D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V.
Umansky, and A. Yacoby, Science 336, 202 (2012).

[26] X. Wang, L. S. Bishop, J. P. Kestner, E. Barnes, K. Sun, and
S. D. Sarma, Nat. Commun. 3, 997 (2012).

[27] E. A. Calderon-Vargas and J. P. Kestner, Phys. Rev. B 91,
035301 (2015).

[28] J. M. Nichol, L. A. Orona, S. P. Harvey, S. Fallahi, G. C.
Gardner, M. J. Manfra, and A. Yacoby, npj Quantum Inf. 3,
3(2017).

[29] D. Buterakos, R. E. Throckmorton, and S. Das Sarma, Phys.
Rev. B 100, 075411 (2019).

[30] R. K. L. Colmenar and J. P. Kestner, Phys. Rev. A 99, 012347
(2019).

[31] P. Cerfontaine, R. Otten, M. A. Wolfe, P. Bethke, and H. Bluhm,
Phys. Rev. B 101, 155311 (2020).

[32] Y. P. Kandel, H. Qiao, S. Fallahi, G. C. Gardner, M. J. Manfra,
and J. M. Nichol, Nature (London) 573, 553 (2019).

[33] A.J. Sigillito, M. J. Gullans, L. F. Edge, M. Borselli, and J. R.
Petta, npj Quantum Inf. 5, 110 (2019).

[34] E. Barnes, J. M. Nichol, and S. E. Economou, Phys. Rev. B 99,
035311 (2019).

[35] B. Li, J. S. Van Dyke, A. Warren, S. E. Economou, and E.
Barnes, Phys. Rev. B 101, 115303 (2020).

[36] P. Weinberg and M. Bukov, SciPost Phys. 2, 003 (2017).

[37] A. Pizzi, J. Knolle, and A. Nunnenkamp, Nat. Commun. 12,
2341 (2021).

[38] E. Barnes, D.-L. Deng, R. E. Throckmorton, Y.-L. Wu, and S.
Das Sarma, Phys. Rev. B 93, 085420 (2016).

[39] J. Medford, J. Beil, J. M. Taylor, S. D. Bartlett, A. C.
Doherty, E. 1. Rashba, D. P. DiVincenzo, H. Lu, A. C.

Gossard, and C. M. Marcus, Nat. Nanotechnol. 8, 654
(2013).

[40] J. Medford, J. Beil, J. M. Taylor, E. I. Rashba, H. Lu, A. C.
Gossard, and C. M. Marcus, Phys. Rev. Lett. 111, 050501
(2013).

[41] Z. Shi, C. B. Simmons, J. R. Prance, J. K. Gamble, T. S.
Koh, Y.-P. Shim, X. Hu, D. E. Savage, M. G. Lagally, M. A.
Eriksson, M. Friesen, and S. N. Coppersmith, Phys. Rev. Lett.
108, 140503 (2012).

[42] M. P. Wardrop and A. C. Doherty, Phys. Rev. B 90, 045418
(2014).

[43] J. A. Jones, Prog. Nucl. Magn. Reson. Spectrosc. 38, 325
(2001).

[44] E. Barnes, X. Wang, and S. D. Sarma, Sci. Rep. 5, 12685
(2015).

[45] J. Zeng, C. H. Yang, A. S. Dzurak, and E. Barnes, Phys. Rev. A
99, 052321 (2019).

[46] Y. Makhlin, Quantum Inf. Process. 1, 243 (2002).

[47] J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, Phys. Rev. A 67,
042313 (2003).

[48] H. P. Pedersen, N. M. Mgller, and K. Mglmer, Phys. Lett. A
367, 47 (2007).

[49] S. E. Economou and E. Barnes, Phys. Rev. B 91, 161405(R)
(2015).

[50] J. Medford, L. Cywiniski, C. Barthel, C. M. Marcus, M. P.
Hanson, and A. C. Gossard, Phys. Rev. Lett. 108, 086802
(2012).

[51] O. E. Dial, M. D. Shulman, S. P. Harvey, H. Bluhm, V.
Umansky, and A. Yacoby, Phys. Rev. Lett. 110, 146804
(2013).

[52] E. Barnes, M. S. Rudner, F. Martins, F. K. Malinowski, C. M.
Marcus, and F. Kuemmeth, Phys. Rev. B 93, 121407(R) (2016).

[53] J. Timmer and M. Ko6nig, Astron. Astrophys. 300, 707 (1995).

[54] X.-C. Yang and X. Wang, Sci. Rep. 6, 1 (2016).

245303-13


https://doi.org/10.1038/s41467-021-22415-6
https://doi.org/10.1103/PhysRevLett.89.147902
https://doi.org/10.1126/science.1217692
https://doi.org/10.1038/ncomms2003
https://doi.org/10.1103/PhysRevB.91.035301
https://doi.org/10.1038/s41534-016-0003-1
https://doi.org/10.1103/PhysRevB.100.075411
https://doi.org/10.1103/PhysRevA.99.012347
https://doi.org/10.1103/PhysRevB.101.155311
https://doi.org/10.1038/s41586-019-1566-8
https://doi.org/10.1038/s41534-019-0225-0
https://doi.org/10.1103/PhysRevB.99.035311
https://doi.org/10.1103/PhysRevB.101.115303
https://doi.org/10.21468/SciPostPhys.2.1.003
https://doi.org/10.1038/s41467-021-22583-5
https://doi.org/10.1103/PhysRevB.93.085420
https://doi.org/10.1038/nnano.2013.168
https://doi.org/10.1103/PhysRevLett.111.050501
https://doi.org/10.1103/PhysRevLett.108.140503
https://doi.org/10.1103/PhysRevB.90.045418
https://doi.org/10.1016/S0079-6565(00)00033-9
https://doi.org/10.1038/srep12685
https://doi.org/10.1103/PhysRevA.99.052321
https://doi.org/10.1023/A:1022144002391
https://doi.org/10.1103/PhysRevA.67.042313
https://doi.org/10.1016/j.physleta.2007.02.069
https://doi.org/10.1103/PhysRevB.91.161405
https://doi.org/10.1103/PhysRevLett.108.086802
https://doi.org/10.1103/PhysRevLett.110.146804
https://doi.org/10.1103/PhysRevB.93.121407
https://doi.org/10.1038/s41598-016-0001-8

