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Abstract
Consider a system of m polynomial equations {p;(x) = b;}i<,;, of degree D > 2 in n-

dimensional variable x € R" such that each coefficient of every p; and b;s are chosen at ran-
dom and independently from some continuous distribution. We study the basic question of
determining the smallest m — the algorithmic threshold — for which efficient algorithms can find
refutations (i.e. certificates of unsatisfiability) for such systems. This setting generalizes prob-
lems such as refuting random SAT instances, low-rank matrix sensing and certifying pseudo-
randomness of Goldreich’s candidate generators and generalizations.

We show that for every d € IN, the (1 + m)°(@)-time canonical sum-of-squares (S0S) relax-
ation refutes such a system with high probability whenever m > O(n) - (5)P~1. We prove a
lower bound in the restricted low-degree polynomial model of computation which suggests that
this trade-off between SoS degree and the number of equations is nearly tight for all d. We
also confirm the predictions of this lower bound in a limited setting by showing a lower bound
on the canonical degree-4 sum-of-squares relaxation for refuting random quadratic polyno-
mials. Together, our results provide evidence for an algorithmic threshold for the problem at
m > O(n) - n1=-9)(D-1) for 27" _time algorithms for all é.

Our upper-bound relies on establishing a sharp bound on the smallest integer d such that
degree d — D polynomial combinations of the input p;s generate all degree-d polynomials in
the ideal generated by the p;s. Our lower bound actually holds for the easier problem of dis-
tinguishing random polynomial systems as above from a distribution on polynomial systems
with a “planted” solution. Our choice of planted distribution is slightly (and necessarily) sub-
tle: it turns out that the natural and well-studied planted distribution for quadratic systems
(studied as the matrix sensing problem in machine learning) is easily distinguishable whenever
m > O(n) - a factor n smaller than the threshold in our upper bound above. Thus, our setting
provides an example where refutation is harder than search in the natural planted model.
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1 Introduction

Suppose you are given a system of polynomial equations {p;(x) = b;}i<,, where each p; is a
homogeneous polynomial of degree D and each b; and each coefficient of p; are independent
standard Gaussians. When m > 1 + 1, an elementary argument!' shows that the system has no
real (or complex!) solution with probability 1. In this work, we study the problem of finding
refutations — certificates of unsatisfiability — for such random polynomial systems with m > n + 1.

When D = 1, the classical Gauss-Jordan elimination for solving linear systems efficiently pro-
duces a refutation whenever m > n 4+ 1. When D > 2, the problem is NP-hard in the worst-case
(it encodes Max-Cut) and the setting above is a (and perhaps, “the”) natural average-case formu-
lation. As m increases, finding refutations gets easier and indeed whenm > Np =} ;<p (”+f_1) =
Q(nP) (we call this the linearization threshold), one can simply “linearize” the polynomials and ap-
ply Gauss-Jordan elimination to linear functions on Np variables to obtain a refutation algorithm.

Can efficient algorithms refute random polynomial systems below the linearization thresh-
old? More generally, what's the algorithmic threshold — i.e. the smallest m = m(n, D) — such that
efficient algorithms can (with high probability) come up with efficiently verifiable certificates of
unsatisfiability of random polynomial systems with m equations?

Let’s cut to the chase: in this paper, we design algorithms and prove lower bounds that sug-
gest that polynomial time algorithms can non-trivially but not appreciably beat the “linearization”

threshold above. Specifically, for any d € IN, and degree D > 2 polynomials, we give an n°(%) time
algorithm that succeeds in refuting random polynomial systems with m 2> O(n) - (g)D_1 equa-

tions and our lower bounds (in restricted models of computation) suggest that this trade-off is
nearly tight. This threshold is smaller (but only by a constant factor) than the linearization thresh-
old for any d > 2. This may come as a surprise since for related problems such as maximizing
low-degree polynomials, the case of degree D = 2 polynomials (in contrast to degree D > 3) is of-
ten “easy” and exhibits no information-computation gap. For 2" time algorithms more generally,
our results suggest that the algorithmic threshold beats the linearization threshold by a multi-
plicative factor of ~ n°(P~1). Taken together, our results suggest that the algorithmic threshold
“smoothly” drops from ~ n to the information-theoretic threshold of ~ n as the running time
budget for the refutation algorithm grows from poly(n) to 2".

Before presenting our results, we discuss how the problem above is the refutation counterpart
of natural algorithmic questions arising in diverse areas.

1.1 Random polynomial systems generalize well-studied problems

In algebraic geometry, the study of random polynomials and their zeros began with the 1932 paper
of Bloch and Pélya [BP’31] leading to the seminal work of Kac [Kac49] on average number of real
zeros of random univariate polynomials. More recently, beginning with work of Shub and Smale
as part of their “Bezout series” [SS93b, 5593a, S593c, 5596, 5594, Shu09, BS09], an influential se-
quence of works has focused on estimating the distribution of the number of common zeros of n

1The classical Bezout’s theorem says that the number of common complex zeros of 1 “generic” polynomials — this
condition holds with probability 1 whenever the coefficients are independently drawn from a continuous distribution —
of degree < d in n variables is at most d". Apply this to the first n equations and observe that the chance that the n + 1-th
polynomial has a zero at any of the < d” common zeros of the rest is 0. Via more sophisticated arguments (e.g. [KZ13]),
such a result can be extended to random polynomial systems with coefficients chosen from discrete distributions.



Gaussian random n-variate polynomials of degree D. For example, it is known that the expected
number of complex common zeros grows as ~ D"™/2 — a quadratic improvement over the the
“worst-case” bound obtained via Bezout’s theorem. Extending this to counting real common ze-
ros requires constraining the combinatorial structure of the monomials with non-zero coefficients
and more sophisticated ideas (see Kostlan’s work [Kos02] for an overview). As his 17th problem
for the 21st century, Smale [Wik] asked if there is a deterministic polynomial time algorithm for
finding one such common zero. A sequence of breakthroughs due to Beltran and Pardo [BP08],
Burgisser and Cucker [BC11] and Lairez [Lail7] resolved Smale’s question and found a determin-
istic polynomial time algorithm based on numerical homotopy methods.

The problem we study in this work is a natural extension: when the number of equations is
m < n, the pertinent algorithmic problem is that of counting and finding common zeros. When
m > n, the relevant question is of finding refutations (i.e. certificates of unsatisfiability).

In combinatorial optimization, refuting random polynomial systems generalizes foundational
problems such as certifying bounds on combinatorial quantities like the clique number and chro-
matic number of random graphs. One well-studied special case is that of refuting random con-
straint satisfaction problems (CSPs), which is equivalent to refuting sparse polynomial equations
(one for each “clause”) with random coefficients over the hypercube. A long line of work [Fei02,
COGLO7, Fei07, AOW15, BM16, RRS17, BCK15, KMOW17, AGK21] have led to a complete under-
standing of algorithmic thresholds for refuting random constraint satisfaction problems in terms
of a basic combinatorial property of the underlying predicate. The problem we study in this work
is a natural dense (i.e. all monomials appear with non-zero coefficients) counterpart to the sparse
random polynomial systems arising in the study of random CSPs.

In statistical learning theory, random polynomial systems arise naturally and in fact are closely
related to the well-studied matrix and tensor sensing problems. For example, in the matrix sens-
ing problem with “random Gaussian measurements”, there is an unknown rank-r matrix X such
that one is required to reconstruct X from equations of the form (G;, X) = b; where G; are random

matrices with Gaussian entries. When the rank 7 = 1 (and X = xx'

is symmetric) this corre-
sponds to the problem of solving random quadratic equations (i.e. D = 2) where the right hand
sides correspond to evaluation of the polynomials at some unknown vector x. The tensor sensing
problem is a generalization where instead of matrices, G;s are random Gaussian tensors of order
D. A long line of work beginning with [Can10, Rec11, Grol1] has led to essentially optimal algo-
rithms based on semidefinite programming for solving the matrix sensing (and variants such as
matrix completion) problem and more recently, much progress [BM16, PS17, dKNS20] has been
made even on the tensor variants. This work can be seen as studying the refutation variant of the
matrix/tensor sensing problems for rank 1 matrices/tensors.

In cryptography, random polynomial systems over the reals arise naturally in a recent sequence
of works that use conjectures about the hardness of solving random polynomial systems. The work
of [Lin16] led to a program [Lin17, AS17, LT17] for building indistinguishability obfuscation (iO)
based, among other components, on a certain variant of Goldreich’s [Gol00] candidate pseudo-
random generator. An offshoot of this program recently culminated [JLS21] in the discovery of
the first construction of indistinguishability obfuscation based on standard assumptions.

At a high-level such works consider maps f : Z" — Z™ where each of the m outputs is com-
puted as a low-degree D polynomial p; of the n inputs. The interest is in finding maps f such that
D is small (say 2) but for m > n (say, m ~ n'‘! for concreteness), the m-dimensional output is com-



putationally indistinguishable from some distribution where each output is independent. Several
candidate constructions of such pseudo-random generators were shown to be insecure by describ-
ing efficient algorithms (based on the sum-of-squares hierarchy of semidefinite programs studied
in this work) that invert the map f —i.e. compute a solution to the system of polynomial equations
defined by the map [LV17, BBKK18, BHJ"19]. One candidate construction (see [BHJ " 19]) was in
fact based on choosing each of the m polynomials to be random quadratic polynomials as in the
model studied in this paper. This work provides strong evidence for the algorithmic threshold for
the refutation version of this problem.

1.2 Ouwur results

Algorithms. Our main algorithmic result uses the sum-of-squares hierarchy to non-trivially im-
prove on the linearization trick for refuting random polynomial systems. We note that for the
various special cases (such as random constraint satisfaction problems, the matrix/tensor sensing
problems and generalizations of Goldreich’s pseudo-random generator), semidefinite programs
from the sum-of-squares hierarchy provide the state-of-the-art algorithms for solving/refuting
polynomial systems.

Theorem 1.1 (Refutation Algorithm, Informal, See Theorem 3.2 for a formal version). For every
D € N and every d > D, there is a n°?) time algorithm — namely the canonical degree-d sum-of-squares
relaxation — that takes input a system of m polynomial equations and either correctly outputs “infeasible”
or returns “don’t know”. When each coefficient of each input polynomial is drawn from an independent
nice distribution and m > O(nP /dP~1), the algorithm outputs “infeasible” with probability > 1 —1/n.

We note a few important comments about some implications to settings studied in average-
case complexity, cryptography and proof complexity.
Computational Model: The algorithm works in the standard word RAM model of computation. We
assume that the coefficients of all our polynomials are rational numbers. The bit-complexity of
our algorithm (see Theorem 3.2 for details) is polynomial in the input size (including the size of
the coefficients of the input polynomials).

Nice Distributions: Our algorithm works for any system of random polynomial equations as long as
the coefficients are chosen from independent (possibly different for each coefficient) distributions
as long as they satisfy two niceness conditions (see Definition 3.1). The first asks that the distri-
butions be supported on rational numbers with some upper bound B on the bit complexity. The
running time of our algorithm grows polynomially in B. Such a condition is essentially® necessary
for any algorithmic result. The second condition forces a certain weak anti-concentration property
and posits that no rational number should have a probability larger than 7~°(4). We note that
n°@)bit rational truncations of any natural continuous distribution such as uniform distribution
on [—1,1] or the standard Gaussian distribution N (0, 1) satisfy such properties.

Time vs Signal Strength Trade-off: The algorithm provides a certificate of unsatisfiability of the input
polynomial system since whenever the algorithm outputs “infeasible” it is correct. The guarantees
of the algorithm provide a trade-off between running time budget (parameterized by d) and the

%In principle, there could be specialized algorithms that work with non-standard representations of real numbers.
We do not know of any such algorithm.



number of equations (a measure of “signal strength” in this setting) required for the algorithm
to succeed in refuting with high probability. For any d, the smallest m for which the algorithm
succeeds improves on the requirement of the linearization trick by a factor of roughly d2(P). On
the other hand, to refute at the information-theoretically minimum required m, the algorithm runs
in time exponential in n. In general, by setting d = n’, we obtain a 20(n") time algorithm that
succeeds in refuting random degree-D polynomial systems with O(n) - n(1=9)(P=1) equations.

One can view this result as a generalization of the work of Bhattiprolu, Guruswami and
Lee [BGL17], and Raghavendra, Rao and Schramm [RRS17] who proved a sum-of-squares degree
vs signal-strength trade-off for certifying maxima of random tensors and refuting random CSPs,
respectively. In particular, the result in [RRS17] can be seen as a degree vs number of equations
trade-off that is qualitatively similar to ours above for random 1-sparse polynomials (i.e. monomi-
als) over the hypercube.

The Importance of Solutions with Typical vs Atypical Norm: There appears to be a key and perhaps
surprising difference in the setting of random polynomial system refutation when compared to
random CSP refutation (and more generally, related problems such as certifying maxima of ran-
dom low-degree polynomials) that we wish to highlight. For random polynomial systems arising
in the context of refuting CSPs (as in [AOW15, RRS17]), the case of degree D = 2 polynomial
systems is “easy” and appears to exhibit essentially no information-computation gap. In con-
trast, in our setting, our upper bound above requires m = Q(n?) for polynomial time algorithms
to succeed in refutation. Further, our lower bounds suggest that our algorithm above is in fact
essentially optimal in the running time vs number of equations trade-off.

This apparently paradoxical difference is related to the issue of having a good upper bound on
the /, norm in the solution space. In the context of CSP refutation, the goal is to find certificates of
unsatisfiability over the n-dimensional hypercube — in particular, the solution vectors have a fixed
¢ norm of y/n. Indeed, the spectral (and thus, SoS-based) refutation algorithms developed in that
context continue to work even for refuting random (sparse) polynomial systems over the space of
all vectors with “typical” (with respect to the scale of the coefficients of the input polynomials p;s
and the right-hand sides b;s) ¢/, norm.

On the other hand, in our setting, the goal is to refute the given random polynomial system
over a solution space of vectors of arbitrarily large norms. This crucial difference appears to make
our setting harder even for the usually tame case of quadratic polynomials. Indeed, this becomes
even more apparent when we construct our low-degree polynomial hardness described below
where it’s crucial to make a subtle choice of planted distribution where the solution vector needs
to be of /,-norm about n'/2-factor larger than “typical”.

Further, this uncertainty in /,-norm of the solution space in fact occurs in random polynomial
systems that arise in applications. For e.g., in the cryptographic applications discussed above, the
“planted” solution vectors have integer coordinates with variance poly(n) and thus, the f,-norm
is known only up to some (large) poly(n)-factor. That is precisely the setting where our results
apply and appear to suggest a difference from the refutation settings studied in prior works. In
particular, it suggests that speculating the hardness of solving/refuting random polynomial sys-
tems based on CSP hardness results may lead to incorrect conclusions. We believe that it’s an
interesting goal to chalk out a full trade-off between sparsity, length of the solution vector and
algorithmic thresholds. Such an endeavor is likely to yield interesting insights into the phase tran-



sitions between the qualitatively different behaviors exhibited by random polynomial systems.

Nullstellensatz vs Sum-of-Squares Refutation: Our proof of the theorem above works by showing that
there is a degree-d sum-of-squares “refutation” (i.e. a proof of unsatisfiability of the polynomial
system that can be written in the restricted degree-d sum-of-squares proof system) of the input poly-
nomial equations (see Section 2.3). Thus, from a proof complexity perspective, our result shows
that there are degree-d sum-of-squares refutations for systems of random polynomials over the re-
als whenever m > O(nP/dP~1). Our proof in fact establishes a stronger result: we show that our
certificate of unsatisfiability can be written in the (formally) weaker Nullstellensatz proof system.
As we discuss next, this shows that for the problem of refuting random polynomial equations,
the degree required for Nullstellensatz and sum-of-squares proof systems can only be different by
some fixed constant factor.

Sharp thresholds at degree 2. For the special case of degree d = 2 and D = 2 (i.e. quadratic
polynomials and degree-2 sum-of-squares algorithm) and standard Gaussian coefficients, we can
obtain sharp constants in the threshold m.

Theorem 1.2 (Sharp Thresholds for Degree-2 SoS). Let G = {gi(x) = bi}ic|y) be a system of m
polynomial equations where each coefficient of each g; is chosen from the standard Gaussian distribution
N(0,1). Then,

o ifm > %2 + O(n), there is a degree-2 sum-of-squares refutation of the system G with probability
0.49.

2 ~

e ifm < & — O(n), there is no degree-2 sum-of-squares refutation of the system G with probability
1-1/n.

Our proof of Theorem 1.2 is short and is based on direct application of results from [ALMT14]
that build methods based on conic integral geometry to analyze the feasibility of convex programs
with random inputs. Our present analysis does not give a bit-complexity bound on the degree-2
sum-of-squares proofs obtained via this technology. As a result, they do not immediately imply
algorithmic results. However, they do strongly suggest that the threshold value of m at d = 2
should be ~ n?/4.

It is not hard to prove that the threshold m for d = 2-degree Nullstellensatz refutation is
~ n?/2. Thus, this result implies a factor 2 multiplicative gap between the thresholds for Nullstel-
lensatz and SoS refutations to succeed at degree d = 2.

Lower bounds in the low-degree polynomial model. Our algorithms beat the linearization trick
non-trivially at all degrees d. However, polynomial-time methods from our schema still require
Q(nP) equations for the refutation to succeed. This is a factor n”~! larger than the information-
theoretic threshold of n + 1. Thus, it is natural to ask if this information vs computation gap is “real”
and in particular, if our algorithmic results are suboptimal. We provide lower bounds that suggest
that our algorithmic results are tight up to absolute constant factors.



Our lower bounds actually hold for the formally easier® algorithmic task of distinguishing ran-
dom systems of polynomial equations from an appropriately designed planted distribution on
polynomial systems that always admit a solution.

In this work, we prove the following lower bound for the distinguishing variant above in the
low-degree polynomial model of computation.

Theorem 1.3 (Low-Degree Hardness, Informal, See Theorem 4.1 for a formal version). Fix D € IN.
For every d < 3%, whenever m < O (d’,—f)—f_)l), there exists a probability distribution vp on systems of

m polynomial equations that admit a solution with probability 1 such that degree-d polynomials fail to
distinguish between vp and the distribution of random polynomial systems with m equations.

The trade-off between d and m achieved by Theorem 1.3 matches that of our algorithm in
Theorem 1.1 up to absolute constant factors. This suggests, in particular, that the algorithmic
threshold of polynomial-time algorithms might be Q(nP).

The low-degree polynomial method (see [KWB19] for a great exposition) allows distinguishers
that compute thresholds of bounded-degree polynomials of input data. While low-degree poly-
nomials might appear restricted, they capture several algorithms including power iteration, ap-
proximate message passing, and local algorithms on graphs (cf. [DMMO09, GJW20]). Moreover, it
turns out that they are enough to capture the best known spectral algorithms for several canonical
problems such as planted clique, community detection, and sparse/tensor principal component
analysis [BHK 19, HS17, DKWB19, HKP*17]. This model arose naturally from work on con-
structing sum-of-squares lower bound for the planted clique problem [BHK ™ 19]. It was formal-
ized in [HKP"17] with a concrete quantitative conjecture (called the pseudo-calibration conjecture)
which informally says that for average-case refutation problems satisfying some mild niceness
conditions, degree-(d log 1) lower bounds for the low-degree polynomial method for distinguish-
ing a random draw from a random draw of some planted distribution imply lower bounds on
the canonical sum-of-squares relaxation of degree-d for the refutation problem. Subsequently,
starting with [HS17, Hop18], researchers have used the low-degree polynomial method as a tech-
nique to demarcate average-case algorithmic thresholds for a number of average-case algorithmic
problems including densest k-subgraph, sparse/tensor principal component analysis, finding in-
dependent sets in random graphs among others [HKP 17, GJW20, SW20, Wei20].

Sum-of-Squares lower bound at degree 4. We provide further evidence in favor of the thresh-
olds suggested by both our algorithms and hardness results by proving a lower bound on the
degree-4 sum-of-squares relaxation for refuting random quadratic polynomial systems. Our proof
is based on constructing a dual witness via pseudo-calibration — this has become a standard
technique for constructing dual witnesses for sum-of-squares lower bounds [BHK 19, HKP 17,
MRX20, GJJ20]. We believe that it is possible to extend our lower bounds (with the same con-
struction of the dual witness) to both higher-degree random polynomials and higher-degree SoS
relaxations. But this will likely require challenging technical work in the analysis.

Theorem 1.4 (Sum-of-Squares Lower Bound at Degree 4, see Theorem 6.1 for a formal version).
Let g1, 82, - - . §m be homogeneous degree-2 polynomials in x1, X2, ..., X, with independent Gaussian coef-

3 Any refutation algorithm provides a distinguishing algorithm that succeeds with high probability in distinguishing
between an instance of a random polynomial system from an instance chosen at random from any planted distribution.
This algorithm runs the refutation algorithm and simply returns “not planted” if the algorithm outputs “infeasible”.



ficients. Then, whenever m < n?/ poly(logn), the canonical degree-4 sum-of-squares relaxation fails to
refute {gi(x) = 0}i<,y with probability at least 1 — o(1) over the draw of g;s.

Remark 1.5 (Hardness of Refutation vs Hardness of Natural Planted Variants). Random polyno-
mial systems arising in applications are often studied in two closely related variants: the refutation
version for random polynomial system (the null model) studied in this work and a related planted
variant. In the planted setting, the resulting polynomial system has a solution with probability 1.
There are three natural problems that are studied in this context: 1) efficiently distinguish between
a polynomial system chosen from either random or the planted distribution, 2) efficiently find the
planted solution, and 3) efficiently refute the existence of a solution.

For average-case variants of several well-studied problems, the complexities of the three prob-
lems for natural planted and null distributions are often conjectured to be related. Indeed, re-
searchers often prove lower bounds for the refutation problem (this turns out to be especially
natural in the context of hardness for convex programs) and interpret it as a lower bound for the
associated planted variant *.

The natural, well-studied planted variant in the context of random polynomial systems hap-
pens to be the following model: a) choose polynomials p1, p2, . . ., pm randomly, say, with indepen-
dent Gaussian coefficients, b) choose a z ~ N (0,1)", and c) output {p;(x) = p;(z) }i<m with the
planted solution z. This planted variant captures both the rank-1 case of the matrix/tensor sens-
ing problems in machine learning and the low-degree pseudo-random generators arising in recent
works [LV17, BBKK18, BHJ " 19] on constructing indistinguishability obfuscation in cryptography.

The planted distribution that we use in proving both low-degree hardness and our sum-of-
squares lower bound is actually different from this natural variant and it turns out that this is
necessary! Indeed, for D = 2, for e.g, the natural planted distribution on quadratic systems above
turns out to be solvable at nearly the information-theoretic threshold of m = O(n) via the nuclear
norm minimization semidefinite program (~ degree-2 SoS). In contrast, our results suggest that
refuting random degree-2 polynomial systems in polynomial time likely requires Q(1n?) equations.
On the other hand, our slightly subtle variant (see Definition 4.3) of the planted distribution that
appears hard even with Q)(n?) equations for all the three problems.

Beyond the application to polynomial systems, this suggests that care must be taken in specu-
lating hardness of natural planted variants of average-case problems based on the hardness of the
refutation variants of the problem.

1.3 Overview of our techniques

In this section, we give a brief overview of our techniques.

Algorithm via completeness of generated ideals. Let {p;(x) — b; = 0},<,, be the input polyno-
mial equations of degree D given to the algorithm. If x satisfies this system, observe that it must
hold that p;(x)x* — bjx* = 0 for any monomial x*. Further, if |a| = d — D is the degree of the
monomial x*, then this reasoning is “captured” by the degree-d sum-of-squares proof system (in

4For e.g., the works [DM15, MPW15, HKP* 16, BHK ' 19] proving sum-of-squares lower bounds for refuting clique
number of random graphs has planted or hidden clique appearing in the title.



fact, by simply the degree-d Nullstellensatz proof system). Thus, starting from the original poly-
nomial system, we can “derive” a collection of degree-d polynomial equations that must all be
true if the original system is: {p;(x)x* — b;jx* = 0}, — we call this the generated ideal at degree d.
Here’s the main idea in our algorithm: suppose that the generated ideal at degree d happens
to be complete — that is, for every homogeneous polynomial f of degree d, there are polynomials
a1,az,...,ay of degree d — D such that } ;. a;(x)(pi(x) — b;) = f(x). We claim that it is easy
to find a refutation in this case. To see why, suppose that for some i < m, b; # 0 (such an i

exists whp). Then, note that we can derive pi(x)d/ P bf/ P from the input equations in degree d

(assuming d is a multiple of D). On the other hand, since pi(x)d/ b
of degree d and the generated ideal at degree d is complete, we must also have that p;(x
Y.iai(x)(pi(x) — b;) for some polynomials a; of degree d — D. Thus, together, we can infer that

b?/D = Pi(x)d/D = Y a;(x)(pj(x) — bj) or:

1= b;d/DZaj(x)(pj(x) —bj).
]

is a homogeneous polynomial
)d/ D _

This is a (degree-d Nullstellensatz and thus, sum-of-squares) refutation since the LHS is the con-
stant 1 while at any x that satisfies the input system, the RHS must be 0. Finally, we can argue (see
Lemma 3.7) that whenever such a polynomial identity as above exists, the a;s can be guaranteed
to exist with coefficients of bit-complexity polynomial in n¢ and the bit-complexity of the coeffi-
cients of the inputs p;s. This immediately implies (via Fact 2.12) that the n°(%) time algorithm (see
Algorithm 3.3) for approximately solving the canonical degree-d SoS relaxation of the polynomial
system above succeeds in refuting the input polynomial system.

Thus, our task reduces to establishing that when m > nP /dP~!, the generated ideals at degree
d of random (p; — b;)s are complete. Such a condition naturally yields a system of linear equations
so our task reduces to proving that this system admits a solution — that happens if and only if
the coefficient matrix of the equations has full row rank. One might be tempted to prove such a
claim by showing that when the p;s are random, then for each i and each «, p;(x)x* — b;x" are
linearly independent when viewed as their coefficient vectors. This is false — there are several
linear dependencies between such vectors.

Indeed, in general, such an argument requires some care as the entries of the matrix defin-
ing the linear equations are heavily correlated — this is not surprising since the there are roughly
mnP < n?P independent random variables in the input while the matrix is of dimension roughly
n (and d > D). We analyze this matrix by a careful decomposition (see Definition 3.12) that ex-
ploits the structure of the matrix to argue that whenever m > nP/dP~1, the resulting matrix is

indeed full row rank with probability 1 — n~°@ over the draw of the coefficients of p;s.

Low-degree hardness and the hard-to-distinguish planted distribution. In order to construct
our lower bound, we need to come up with a planted distribution on polynomial systems with
m > n+ 1 equations such that 1) every system in the support always admits a solution but at
the same time, 2) a draw from the planted distribution is indistinguishable from random polyno-
mial systems that do not have a solution with probability 1 by any low-degree polynomial in the
coefficients of the input polynomials. Notice that for e.g., this must mean that low-degree polyno-
mials in the coefficients of the input polynomials cannot approximate the fraction of polynomial
constraints satisfied by any x. Operationally, this means that we must pick a distribution on poly-



nomial equations that is “as close as possible” to random polynomial systems (the null model)
while being satisfiable.

As we discussed in Remark 1.5, the design of the planted distribution is slightly subtle. One
might be tempted to use the natural (and well-studied) variant where we pick each p; randomly
just as in the null model and then choose b;s to equal p;(x*) for each i for some random x*. Notice
that this must introduce correlations in b;s and it in fact turns out that these correlations are strong
enough that the resulting planted model can be easily distinguished from the null model by just a
degree-4 polynomial® in the coefficients of the input polynomials whenever m > n — the informa-
tion theoretic threshold. This is not surprising as there is in fact an algorithm (the so called nuclear
norm minimization semidefinite program) that recovers the planted x* when given input a random
polynomial system chosen from the planted model above.

Instead, our construction of the planted distribution encodes subtle correlations in the polyno-
mials p;s themselves. Specifically, our planted distribution first picks b;s to be independent draws
from the standard Gaussian distribution, chooses a random x* of sufficiently large length that — oo
as m — oo, and then chooses p;s to be polynomials with standard Gaussian coefficients condi-
tioned on p;(x*) = b;. In this version, notice that b;s are clearly independent but unlike the natural
planted variant, the coefficients of p;s are mildly correlated. We show that such correlations are
subtle enough that no low-degree polynomial can “notice” them. The argument crucially requires
that the planted solution x* have sufficiently large norm — in Remark 4.5 we show that there’s a
simple distinguisher if the planted solution has bounded or slowly growing norm. It turns out that
when the planted solution x* has sufficiently fast-growing norm, there’s a sharp phase transition for
distinguishability by degree-d polynomials at a threshold m = Op(nP/dP~!) from the planted
model — a threshold that precisely matches the bound at which our algorithm works! This gives
a pleasingly tight algorithmic threshold of @p(n”/dP~1) for distinguishing random polynomial
systems from the above planted ones and thus also for refuting them.

Our analysis of the performance of low-degree polynomial distinguishers for the above pair
relies on expressing the coefficients of the “likelihood ratio” (ratio of the probability density func-
tions of the planted and the null distributions) in the Hermite basis — this is a standard strat-
egy [KWB19, SW20] employed in proving such results. The performance of the low-degree poly-
nomial distinguishers is related (again via standard ideas from prior works) to the truncated low-
degree likelihood ratio — a natural quantity that depends on the density functions of the planted
and the null models above. Our analysis then proceeds by combinatorial characterization and
estimates for the Hermite coefficients of the planted density function.

Sum-of-Squares lower bounds. Our sum-of-squares lower bound shows that for a system of
m random homogeneous quadratic equations with RHS all set to 0, there is no degree-4 sum-of-
squares refutation as long as m < n?/ poly(logn). As is standard, we show such a statement by
exhibiting a dual witness —a pseudo-distribution of degree 4 (see Definition 2.9) — that is consistent
with the input system of polynomial equations.

More specifically, we view the equations as {x' G;x = 0},c,, where each G; is a matrix with
independent standard Gaussian entries. A pseudo-distribution of degree 4 satisfying such con-
straints is a linear map ]EH that assigns a real number to every degree < 4 polynomial and satisfies

°The degree-4 polynomial (¥; b?)? is a distinguisher whp between the null and planted models.



1) Normalization: E,[1] = 1, 2) Positivity: E,[¢?] > 0 for every degree < 2 polynomial g, and 3)
Constraints: E, [(x" G;x)g] = 0 for every degree-2 polynomial g and every i.

Our construction of such a map uses pseudo-calibration — a general technique for constructing
candidate dual witnesses discovered in [BHK"19]. Informally speaking, this technique gives a
“mechanical” method of constructing a candidate pseudo-distribution for an average-case refu-
tation problem on some null distribution given a planted distribution that is indistinguishable
from the null by low-degree polynomials. Our construction (see Definition 6.2) is based on the
planted distribution described above in the context of our proof of lower bounds for the low-
degree method.

While pseudo-calibration makes the job of coming up with candidate pseudo-distributions
easy, the analysis of the resulting construction still essentially needs to be done via techniques
specific to a given setting (we note that the pseudo-calibration conjecture of [HKP*17] hypothe-
sizes the existence of a more mechanical translation). Thus, the bulk of our technical work goes
into analyzing the construction above.

Our idea (as is standard in such settings) is to use the Hermite polynomial basis to explicitly
write down expressions for the pseudo-distribution. Analyzing the pseudo-distribution requires
analyzing the spectrum of the moment matrix associated with the pseudo-distribution. The mo-
ment matrix M is indexed by indices of monomials I, ] of degree < 2 on rows and columns and
has its (I, ]) entry given by E,[xx/]. In our case, note that this is a random matrix with heavily
correlated entries. The positivity property of ]Ey is equivalent to the positive semidefiniteness of
the matrix M.

Our analysis works by decomposing the M into a linear combination of graph matrices (analogs
of the bases used in prior works e.g. [HKP"17, BHK 19, GJJ*20]) that form a good basis for
analyzing the spectra of such correlated random matrices. Thankfully, some of the technology
for understanding the spectra of such graph matrices — whose spectra can be directly related
to combinatorial properties of associated graphs called shapes — was developed in the context of
proving n°(1)-degree sum-of-squares lower bounds for the Sherrington-Kirkpatrick Hamiltonian
by [GJ]F20, AMP20].

The high-level outline of our analysis resembles the strategy adopted by [G]] " 20] though the
details differ because of the difference in the structure of the pseudo-distribution. First, the con-
struction above does not quite exactly satisfy the constraints but we show that an appropriately
small perturbation of it does. To analyze this construction, we study the decomposition of the M
and identify the shapes that are negligible (i.e. contribute sufficiently small singular values), trivial
(these contribute a large positive semidefinite mass) and spiders — these can be “killed” — that is,
one can show that the contributions of the corresponding terms adds up to 0.

While our analysis follows a similar high-level plan to [G]] " 20] so far, the combinatorial char-
acterization of shapes that fall into each of the three types above differs from that [G]]"20] and
requires an analysis specialized to our setting. This is because [G]]"20] work with a special form
of “rank 1” polynomial constraints relevant to their setting {(x,g;)> = 1}i<,, where the g;s are
random vectors (the “affine planes” problem). As a result, the resulting construction of pseudo-
distribution leads to a moment matrix with a different set of shapes playing a prominent role — 2
uniform graphs as opposed to 3-uniform hypergraphs in our case.

With the above techniques, it is possible to obtain a lower bound that works whenever m <

15 as in the work of [G]]* 20]. But just as in their setting, this bound is off from the optimal bound

nl
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of ~ n?. This is entirely due to the difficulties in the analysis of the construction above.

In our setting, we are able to obtain (only at degree 4) an analysis of the construction that
does work all the way to the threshold of n? up to polylogarithmic factors in n. One crucial
ingredient is a further sub-classification of non-negligible shapes appearing in the decomposition
into disconnected and the rest. We give a different “charging scheme” for the disconnected shapes
in order to show that they cannot contribute negative eigenvalues to the spectrum of M.

2 Preliminaries

2.1 Notations

We use the standard conventions N = {0,1,2,...} and [N] = {1,2,...,N}. Consider vectors
x € RN and @ € NN. We use the notation |a| = YN, a; and a! = [T, («;!), and further denote
X =TI, x{1. Moreover, we say « is simple if « € {0,1}V, i.e. the monomial x* is multilinear.
With slight abuse of notation, we will often treat « € NN as a multiset of [N].

In this paper, we will encounter the case where N = m X n x n. The same notations apply: for
a = (al,..., &™) € N1 |g| = Lsem] Lijeln) &5 and &l = Tse ) [Tijefn (ocf-j)!. In this case, we
may view w as a labeled directed multigraph (with self-loops allowed) on vertex set [1], where each
edge has a label in [m]. Thus, || is the total number of edges, and |a°| is the number of edges
labeled s.

In this work, we will deal with algorithms that operate on numerical inputs. In all such cases,
we will rely on the standard word RAM model of computation and assume that all the numbers
are rational represented as a pair of integers describing the numerator and the denominator. In
order to measure the running time of our algorithms, we will need to account for the length of the
numbers that arise during the run of the algorithm. The following definition captures the size of
the representations of rational numbers:

Definition 2.1 (Bit Complexity). The bit complexity of an integer p € Z is 1+ [log, p|. The bit
complexity of a rational number p/q where p,q € Z is the sum of the bit complexities of p and q.
2.2 Hermite polynomials

In this section, we introduce the Hermite polynomials, which are orthogonal polynomials with re-
spect to the Gaussian measure (see [Sze39] for a standard reference). The univariate Hermite poly-
nomials {hy }xen are defined by the following recurrence:

ho(x) =1, hi(x) =x, hgpq(x) = xh(x) — khg_q(x) .

Next, we define the multivariate Hermite polynomials. For an index a € NV and vector x € RV,
ho(x) = TIN, he (x;). The Hermite polynomials form an orthogonal basis with respect to the
Gaussian measure: for aq,a, € NV,

0(1! if N1 = Ko,

0 otherwise.

1Exrv./\/(O,]I) [htxl (x)htxz(x)] = {
We will need the following facts about Hermite polynomials:
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Fact 2.2. For an even integer k > 2, hi(0) = (—1)2(k — 1)!\. For an odd k, h.(0) = 0.
Fact 2.3. For an even integer k > 2, (k — 1)1 < (§)¥/2.

Fact 2.4. For any x € IR, the generating function of Hermite polynomials is the following,
xt— 2 . tk
e 2 = k;) hk (x) F .

2.3 Sum-of-Squares and Nullstellensatz proofs vs algorithms

Sum-of-squares proof system is a restricted reasoning system for certifying unsatisfiability of a
system of polynomial equality and inequality constraints over the reals. We refer the reader to the
monograph [FKP19] for a detailed exposition.

Definition 2.5 (Sum-of-Squares Refutations). Let p1, p2, ..., px be polynomials in variables x1, ..., x,
with coefficients over the reals. Given a system of constraints {p; > 0}k, a sum-of-squares refutation of
the system is a polynomial identity of the following form:

-1=Y Sr]]pi (1)
TClk)  i€T
where S, S1, ..., St are sum-of-squares polynomials. The degree of the sum-of-squares proof is the mini-
mum positive integer { such that for every T C [k| such that St # 0, Y_;cr deg(p;) + deg(St) < L.

Observe that if an identity of the form (1) exists, then it immediately proves that the associated
constraint system is unsatisfiable. This is because any x that satisfies the constraint system must
make the right hand side evaluate to a non-negative real number while the left hand side is the
negative real —1. Under mild conditions on the polynomials p1, p2, ..., px, a converse holds. Such
results are called positivstellensatz. We state a general one due to Krivine and Stengle [Kri64, Ste74].

Fact 2.6 (Krivine/Stengle’s Positivstellensatz [Kri64, Ste74], see Theorem 3.73 in [FKP19]). Let
P1,P2,- -, px be n-variate real-coefficient polynomials in x1,xy,...,X,. If there does not exist x € R”"
such that p;(x) > 0 for every i < k, then, there are sum-of-squares polynomials {St}rcy such that the

following polynomial identity holds:
-1 = Z ST H pi.

TClk]  i€T

While positivstellensatz implies that there’s always a refutation for all polynomial systems, it
provides no bound on the degree of the resulting proof.

It is instructive to compare it with the strictly weaker Nullstellensatz proof system that we will
also encounter in this work.

Definition 2.7 (Nullstellensatz Refutation). Let p1, p2, . . ., px be polynomials in variables x1, xa, . . ., X
with coefficients over the reals. Given a system of constraints {p; = 0};<x, a Nullstellensatz refutation of
the system is a polynomial identity of the following form:

1= Zaipi, (2)

i<k

where ay, . . ., ay are arbitrary polynomials. The degree of the Nullstellensatz proof is the minimum positive
integer ¢ such that for every i, deg(p;) + deg(a;) < ¢.
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Unlike the sum-of-squares proof system, the Nullstellensatz proof systems only deals with
polynomial equality constraints. Analogously to positivstellensatz, the completeness of the Null-
stellensatz proof systems is implied by Hilbert’s Nullstellensatz.

Fact 2.8 (Corollary of Hilbert’s Nullstellensatz, see for e.g., [Pit97]). Suppose p1, p2, ..., px are real-
coefficient polynomials in x1, X, . .., X, such that there is no x satisfying p;(x) = 0 for every i < k. Then,
there are polynomials ay,ay, . . ., ax with real coefficients such that the following polynomial identity holds:

1= Zaipi.

i<k

Informally speaking, the key difference between the sum-of-squares and the Nullstellensatz
proof system is the ability to reason about the non-negativity of square polynomials. This seem-
ingly minor change results in a huge difference in the power of the proof systems. For example,
the pigeonhole principle requires ()(1) degree for Nullstellensatz to refute but has a degree-4 SoS
refutation (see Claim 3.59 on Page 125 of [FKP19] for a short proof).

2.4 Pseudo-distributions

Pseudo-distributions are generalizations of probability distributions and form dual objects to sum-
of-squares proofs in a precise sense that we will describe below.

Definition 2.9 (Pseudo-distribution, Pseudo-expectations, Pseudo-moments). A degree-¢ pseudo-
distribution is a finitely-supported function p : R" — R such that Y, u(x) = Land ¥, u(x)f(x)?> > 0
for every polynomial f of degree at most £/2. (Here, the summations are over the support of u.)

The pseudo-expectation of a function f on R? with respect to a pseudo-distribution u, denoted

lﬁy(x)f(x), as B
By f(x) =) pu(x)f(x) . 3)

The degree-f moment tensor of a pseudo-distribution u is the tensor Ey(x)(l,xl,xz, ... ,xn)w. In
particular, the moment tensor has an entry corresponding to the pseudo-expectation of every monomial of
degree at most ¢ in x.

Observe that if a pseudo-distribution y satisfies, in addition, that yu(x) > 0 for every x, then
it is a mass function of some probability distribution. Further, a straightforward polynomial-
interpolation argument shows that every degree-co pseudo-distribution satisfies p > 0 and is
thus an actual probability distribution. The set of all degree-¢ moment tensors of probability dis-
tribution is a convex set. Similarly, the set of all degree-/ moment tensors of degree-d pseudo-
distributions is also convex.

Definition 2.10 (Constrained pseudo-distributions). Let u be a degree-{ pseudo-distribution over R".
Let A= {p1 20,p2 > 0,...,pm = 0} be a system of m real-coefficient polynomial inequality constraints.
We say that u satisfies the system of constraints A at degree ¢ if for every sum-of-squares polynomial h
and any T C [m] such that deg(h) + Licr deg(pi) < £, Eulh - TTier pi] > 0.

The following fact describes the precise sense in which pseudo-distributions are duals to sum-
of-squares proofs.
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Fact 2.11 (Strong Duality, [JH16], see Theorem 3.70 in [FKP19] for an exposition). Let p1, p2, ..., Pk
be real-coefficient polynomials in x1, X3, . .., X,. Suppose there is a degree-d sum-of-squares refutation of the
system {p;i(x) = 0}i<k. Then, there is no pseudo-distribution p of degree > d satisfying {pi(x) = 0}i<.
On the other hand, suppose that there is a pseudo-distribution y of degree d consistent with {p;(x) > 0};<k.
Suppose further that the set {p1, p2, ..., px} contains the quadratic polynomial R — Y; x2 for some R > 0.
Then, there is no degree-d sum-of-squares refutation of the system {p;(x) > 0};<.

2.5 Algorithms and numerical accuracy

The sum-of-squares proof system is automatizable via semidefinite programming in an appro-
priate sense that we describe next. Informally, this means that degree-bounded sum-of-squares
proofs and low-degree pseudo-distributions satisfying a system of constraints can be found via
efficient algorithms. Such algorithms deal with numerical inputs and thus, in the context of algo-
rithms, we only allow our input polynomial systems to have rational coefficients.

The following fact follows by using the ellipsoid algorithm for semidefinite programming.
The resulting algorithm to compute pseudo-distributions approximately satisfying a given set of
polynomial constraints is called the sum-of-squares algorithm.

Fact 2.12 (Computing pseudo-distributions consistent with a set of constraints [Sho87, Par00,
Nes00, Las01]). There is an algorithm with the following properties: The algorithm takes input B € IN,
T > 0, and polynomials p1,pa, ..., px of degree ¢ with rational coefficients of bit complexity B. If there
is a pseudo-distribution of degree d consistent with the constraints {p;(x) = 0}k, the algorithm in time
poly(B, 1) - n9W) outputs a pseudo-distribution y of degree d satisfying |E,p;(x)x*| < T if it exists and
otherwise outputs “infeasible”.

2.6 Background on the low-degree polynomial method

The low-degree polynomial method is a restricted class of computationally bounded algorithms
for hypothesis testing problems arising in statistics.

In order to describe this method, let vy (for “null”) and vp (for “planted” distribution; often
called the “alternative” distribution in statistics) be a pair of probability distributions on RX. In-
formally, we will set vy to be a distribution on instances of some optimization problem that admit
no solutions with high probability (such as random polynomial systems in our case) while vp will
be the distribution on random polynomial systems that always admit a solution.

In the hypothesis testing problem, the algorithm is given a sample z with the promise that it is
generated by the mixture 0.5vy 4 0.5vp. The goal is to determine correctly with high probability
if z is generated from vy or vp. Often vy and vp are parameterized family of distributions (for e.g,
the degree D, the number of variables n or equations m in our setting).

The key question is to determine the parameter regimes under which the hypothesis testing
problem is solvable with high (say 1 — 0x (1)) probability. Any such “testing” algorithm can be
seen as computing some function T : R€ — R on the input sample z and outputting “null” if
Tk (z) exceeds some threshold 7. Observe that a family of tests { Tk } x succeeds with probability
1—o0k(1) as K — c0if E,, Tx — E,, Tx — o0 as K — oo.

Information-theoretically speaking, the classical Neyman-Pearson lemma identifies an optimal
(in the sense of achieving optimal trade-off between false positives and false negatives) statistical
test — the likelihood ratio — that distinguishes the given pair of distributions.
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Restricting to low-degree polynomial tests. While the likelihood ratio test is statistically opti-
mal, it is often hard to compute and thus does not yield an efficiently computable distinguisher.
The low-degree polynomial method restricts the algorithm to a smaller class of statistical tests so as to
gain computational efficiency.

Specifically, such tests T are restricted to 1) evaluating some degree-d polynomial f on the
input sample z and 2) “accepting” if f(z) exceeds some chosen threshold 7. Such a test is clearly
computable in K4 time by explicitly evaluating each monomial of f.

While such tests may appear restricted, recent works showed that O(logn)-degree polyno-
mial tests in fact can simulate algorithms such as power iteration (and thus computing spectral
norms), approximate message passing, and local algorithms applied to z and more generally ma-
trices/tensors with entries set to constant-degree polynomials of z. This allows the method to
capture the strongest known algorithms for fundamental distinguishing tasks including planted
clique and spiked Wigner models, and more generally, random optimization problems such as
clique/independent set and densest k-subgraph in random graphs. In what can be construed to
be an even more evidence of the power of the method, recent work [BBH "20] shows that under
appropriate restrictions, algorithms in the O(logn)-degree polynomial model are as powerful as
polynomial time algorithms in the statistical query model studied arising in learning theory and
recently applied [FGR"17] to prove lower bounds for average-case variants of several founda-
tional combinatorial and statistical learning problems. The low-degree likelihood ratio and the
low-degree polynomial tests were introduced in the context of establishing sum-of-squares lower
bounds implicitly in [BHK"19] and formalized explicitly in [HKP"17]. In particular, for average-
case distinguishing problems satisfying some mild “niceness” conditions, [HKP"17] conjecture
(this is called the pseudo-calibration conjecture) that indistinguishability by degree-d polynomials
implies lower bounds for a canonical O(d)-degree SoS relaxation for the associated refutation
problem.

Subsequent works (starting with [[HS17], see Conjecture 2.2.4 in [Hop18] and 1.16 in [KWB19])
have proposed the stronger conjecture that concludes a lower bound against all n0@) time distin-
guishing algorithms.

The following definition presents a formal, quantitative version of what it means to use low-
degree polynomials to distinguish between a pair of distributions as above.

Definition 2.13 (Distinguishing by Low-Degree Polynomials). Let vy, vp be a pair of null and planted
distributions on RX. We say that degree-d polynomials succeed in (1 — 6)-distinguishing between vy and
vp from a single sample if there is a degree < d polynomial f : RX — R such that:

1. By [f3] = 1.

2. By, [f] >}

It turns out that it is possible to precisely characterize the best low-degree polynomial distin-
guisher f in terms of the density functions of the associated pair of distributions.

Proposition 2.14 (Truncated Low-Degree Likelihood Ratio; see [HKP"17] and Proposition 1.15 of
[KWB19]). Let vy, vp be a pair of probability distributions on RX. The truncated low-degree likelihood ratio

LS at degree d is defined as the unique solution to argmins E, [(L(z) — f(z))?] where the minimiza-

tion is over all degree < d polynomials f. The normalized truncated likelihood ratio L% /B, [(LS?)?] 12
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is then the optimal solution to the following optimization problem:
max E,,f s.t E,,f?=1and f is a degree-d polynomial.

Moreover, the value of the optimization problem is E,, [(LS%)?] Y2 particular, vy and vp are (1 — 6)-

indistinguishable by degree < d polynomials if B, [(LS?)?] 2 < 5.

3 Algorithmic Thresholds: Upper Bound

In this section, we describe and analyze our algorithm for refuting random polynomial systems.
Our algorithmic results apply to all random polynomial systems where all coefficients are inde-
pendent from some distribution on rational numbers that satisfies some niceness properties. Such
properties are satisfied by the uniform distribution on a large enough subset of rational numbers,
a polynomial bit truncation of the standard Gaussian distribution among others.

Definition 3.1 (Nice Rational Distributions). For B € IN, we say that a probability distribution v on Q
is B-nice if the following hold:

1. v is supported on low-bit complexity rationals: The support of v are rational numbers with
numerator and denominator in [—28, 28],

2. v is spread-out: for any q € Q, Pryy[x = gq] < ﬁ.

The main result of this section is the following theorem:

Theorem 3.2 (Refutation Algorithm for Random Polynomial Systems). Fix D € IN. There is an al-
gorithm with the following properties: the algorithm takes input m polynomial equations {g;(x) = b;}ic(m
where each g; is a polynomial of degree D with rational coefficients of bit-complexity B, and in (Bn)°(@)
time, either correctly outputs “infeasible” or returns “don’t know”. Further, if m > Op <d’ﬁ,—2> and gi, b;
are obtained by sampling each coefficient of each g; and each b; from (possibly different) independent n**-nice
rational distributions, then, with probability 1 — n~4 over the choice of the input equations, the algorithm
outputs “infeasible”.

Our algorithm is quite simple. It approximately solves the degree-d SoS relaxation for the
constraint system {p;(x) = 0};<,, where p;(x) = gi(x) — b;, and returns “infeasible” if the SDP
outputs infeasible and “don’t know” otherwise. More precisely:

Algorithm 3.3 (Refute Random Polynomials).

Given: A rational accuracy parameter T = exp <—no(d) B ) and degree-D polynomials py, ..., pu|
with rational coefficients of bit complexity at most B for B € IN.

Output: “Infeasible” or “Don’t Know”.
Operation:

1. Find a degree-d pseudo-distribution  such that [, p;(x)x%| < T for every i < m
and monomial index « of degree at most d — deg(p;).
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2. If no such pseudo-distribution exists, return “Infeasible”.

3. Otherwise output “don’t know”.

Analysis of algorithm. The key to the proof of the theorem is the following lemma that guaran-
tees the existence of a sum-of-squares refutation for the input random polynomial system.

Lemma 3.4 (Sum-of-squares refutation for random polynomial systems). Let D € N andd > D bea
multiple of D. Let F = {g1,...,§m} be a set of homogeneous degree-D polynomials with each coefficient of
each g; chosen from an independent B-nice rational distribution. Let by, by, . .., by, be independent samples
from a B-nice rational distribution. Then, whenever m = Op <d’ﬁ,—lil> , with probability at least 1 — n~% over
the choice of the g;s and b;s, there exist polynomials ay,a, . .., ay of degree d — D such that the following
polynomial identity holds:

—1=Y ai(gi—bi). (4)

i<m
Further, the coefficients of a;s are rational numbers with bit complexity at most O(n>*dlogn + n>B).

Remark 3.5 (Nullstellensatz vs Sum-of-Squares). Observe that in the refutation identity, there is
no additive sum-of-squares term. As a result, our refutation is in fact a Nullstellensatz refutation
(Definition 2.7). As we show, there’s a strong indication (see the next section on lower bounds)
that the trade-off achieved by Lemma 3.4 between m and d is tight up to absolute constant factors
for the sum-of-squares proof system. Thus, in this case, we expect that the m vs d trade-off for
Nullstellensatz and SoS proof systems to be essentially the same. Interestingly, the constant factor
gap allowed by our upper and lower bounds might be “real”. At degree d = 2, it is not hard to
argue that m > ”7 is necessary for a Nullstellensatz refutation to exist. However, Theorem 5.1

shows that m 2 HT is sufficient for degree-2 SoS.
It is easy to complete the analysis of the algorithm using this lemma.

Proof of Theorem 3.2. The running time of the algorithm follows immediately by applying Fact 2.12.
In order to prove correctness of the algorithm, let’s assume that for the given set of g;s, a sum-of-
squares proof of the form promised by Lemma 3.4 holds. Let B’ = O(n*dlogn + n*B) be an
upper-bound on the bit complexity of the coefficients of 4;. By Lemma 3.4, such an event happens
with probability 1 — n~ over the choice of g;s and b;s. We will prove that conditioned on this
event, the algorithm outputs “infeasible” with probability 1.

By Fact 2.12, if there is a pseudo-distribution of degree d consistent with {g;(x) = b;}i<,, then
the sum-of-squares algorithm finds a pseudo-distribution y such that | E u[x*(gi — bi)]| < 7foreach
monomial index & of degree < d — D. We will show that there does not exist a pseudo-distribution
satisfying the latter condition. Thus, the SDP solver must output “infeasible” as desired.

Assume for the sake of contradiction that for T = 0.5-275'(n 4 1) 9m~1, there is a pseudo-
distribution y satisfying |E,[(g; — bi)x*]| < 7 for every i < m and every monomial index « of
degree < d — D. Then, since all < (1 + 1)? coefficients of each of the a; are of bit complexity at
most B/, the pseudo-expectation under y of the RHS of (4) can be upper-bounded by:

E,[a:(g; < Y 2Pr<mn+1)2% 7 <05.

i<m,u

-

N
I
—_
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On the other hand, the pseudo-expectation under u of the LHS satisfies: |E[—1]| = 1. This is a
contradiction. Thus, there is no such pseudo-distribution p. O

3.1 Proof of Lemma 3.4

Generated ideals. Our analysis relies on the key idea of generated ideals and their completeness
that we define and discuss below. Intuitively speaking, given a set of constraints 7 = {f; =
0,f2=0,..., fu = 0}, the generated ideal of F at degree d is the set of all degree-d polynomials
that the sum-of-squares proof system (and in fact, the Nullstellensatz proof system) can infer to
be 0 at any simultaneous solutions of F. The following definition captures this idea.

Definition 3.6 (Generated Ideal at Degree d). Let D,d € Nand D < d. Let F = {f1,..., fu} be a set
of degree-D polynomials. The generated ideal of F at degree d is defined as the following set of degree-d
polynomials:

Geng(F) ={a1fi+ -+ amfm: Vi deg(a;) <d—D}.

We say that the generated ideal is complete at degree d if Py C Geny(F) where Py is the set of all
homogeneous degree-d polynomials.

One important consequence of completeness of generated ideals at degree d is the following
important lemma that shows that every homogeneous degree-d polynomial can be written as a
polynomial combination of the f;s such that the coefficients of all the polynomials appearing in
the representation are of polynomial bit complexity.

Lemma 3.7 (Low-Bit Complexity Representations in Complete Generated Ideals). Let D,d € IN
and D < d. Let F = {g1,...,§m} be a set of degree-D polynomials with rational coefficients of bit
complexity B such that the generated ideal Gen,(F) is complete. Let Ny_p < n?~P be the number of all
monomials in x1,X, ..., X, of total degree exactly d — D. Let f be an arbitrary homogeneous polynomial
of degree d with rational coefficients of bit-complexity B.

Then, there is a vector v € Q™ Ni-p with entries of bit complexity at most O(n>dlogn + n>B) such

that Zigm,zx Ui,txgi(x)x“ = f(x)
We will use the following fact that appears in a classical work of Kannan [Kan85].

Fact 3.8 (Bit-Complexity of Solutions to Integer Systems, see Proposition 2.1 in [Kan85]). Let Ax =
ufor A € Z"*" and u € Z™ be a system of m linear equations in n variables x such that each entry of A
and u is an integer of magnitude < B.

Suppose that the system is soluble over Q —i.e., there is an x € Q" such that Ax = u. Then, there is in
fact an x € Q" such that Ax = u where the entries of x have bit complexity O(n(B + logn)).

Proof of Lemma 3.7. Since Gen,(F) is complete at degree d and f is a homogeneous polynomial of
degree d, f must belong to Gen,(F). Thus, there are polynomials a1, ay, ..., a,, of degree < d —k
such that ) ;a;; = f.

For each i, write a;(x) = Y_, a*x* where the sum ranges over monomial indices « of total degree
< d — k. Then, we know that f = Y; , a%x%g;. By matching the < (n + 1)? coefficients of f on both
sides, we obtain a system of linear equations with rational coefficients. We are guaranteed that
this system has a solution over the reals. In fact, since all the coefficients are rational numbers, we
can infer that there must be a solution over the rationals.
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Each coefficient in this linear system is a sum of at most m different coefficients of one from
each g;. Since each coefficient of each g; has bit complexity at most B, the coefficients of the result-
ing linear system have bit complexity at most B + O(d logn).

The lowest common multiple of all the denominators appearing in the < (n + 1)?4 entries of
the equation is at most their product that has bit complexity at most O(n3d log n + n*B). By mul-
tiplying all the equations by this integer, we obtain a system of linear equations over the integers.
By Fact 3.8, such a system has a solution of bit complexity at most O(n>dlog n 4+ n>*B). Thus the
original system has a solution over the rationals with bit complexity at most O(n>d log n + n>B).
This completes the proof. O

Our task thus reduces to showing that the generated ideal of the input polynomials is complete
at degree d when m > O(n) - (%)Dfl.
Completeness of generated ideal at degree d. The key to the proof of Lemma 3.4 is the following
lemma that identifies a non-trivial 4 such that the generated ideal at degree d of a collection of m
random polynomials is complete.

Lemma 3.9 (Completeness of Generated Ideals). Let D € IN be a constant, let d,n € IN such that
2<D<d<nandlet m > Op (d’g—?l). Suppose G = {g1(x) —b1,...,qm(x) — by} is a set of m
degree-D polynomials obtained by choosing each coefficient of each g; and each b; from independent n**-nice
rational distributions. Then, the generated ideal of G at degree d is complete with probability 1 — n=4,

Proof of Lemma 3.4 by Lemma 3.9. Consider the first polynomial equation g1(x) = b;. Then, by # 0
with probability 1 — n2%% since it is sampled from a n??-nice distribution. Let’s condition on
by # 0in the following. Let p(x) = bllgl (x), and let g(x) := bll 2?46’—1 p(x)* (since d is a multiple
of D). Then, we have

(81(x) = b1)a(x) = p(x)"'P —1. ()

Thus, the polynomial p#/P — 1 € Geny(G) and moreover p?/P is a homogeneous polynomial of
degree d. Thus, by Lemma 3.9, the following polynomial identity holds for some polynomials
a1,a,...,a, of degree < d — D such that each coefficient has bit-complexity O(n5d(B +logn)):

Y (8i(x) = bi)ai(x) = —p(x)¥", (6)
i=1
Adding the identities from (5) and (6), we obtain:

m

Y (gi(x) — bi)ai(x) + (g1(x) — b1)g(x) = —1.

i=1
This completes the proof. O

We now focus on proving Lemma 3.9.
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Reduction to rank lower bounds. Let f be an arbitrary polynomial such that there exist poly-
nomials a1, 4y, ..., a4, of degree d — D such that f = Y/" ;(gi — bi)a; € Geny(G). This polynomial
identity holds if and only if the coefficients of a;s satisfy a system of linear equations as we de-
scribe next. To prove that Geny(G) is complete, it suffices to restrict the polynomials a; to be
homogeneous degree d — D.

Foreveryi € [m],let gi(x) = ¥,./,=p 8§ (7)x” where v € IN" ranges over indices of monomials
in x1,x2,...,x, of total degree D. Let f(x) = Z|a|:d,d7D]?(“)x“ and a;(x) = ¥ gj—4—D a;(B)xP,
where a, B € IN" are multisets indexing monomials in xy, xp, . .., x,. Then, we have

= Y foe=Y Y Y g a@P— Y Yba

|a|=d,d—D i=1|y|=D |p|=d—D |B|l=d—Di=1

Comparing coefficients on both sides, we get f = Mgy - 4, where fhas dimension (”Jr;l*l) +
(”JFZ:B ~1) (the number of degree d and d — D monomials) and @ has dimension (HZ:B -h.

Let’s write such equations as f varies over all monomials of total degree exactly 4. If all the
resulting equations admit a solution, then clearly, every homogeneous polynomial of degree d is

in Geng(G). The coefficient matrix M, of the resulting linear system has the following structure:

Here, the rows of M, and M}, are indexed by multisets a with |#| = d and d — D, respectively. The
columns of M, j, are indexed by (B, i) with |B| = d — D and i € [m]. Writing out the entries of M, ,
explicitly:

Mgw,(ﬁ,i)):{gim ¢ Pt omheshl =P, Mb(tx’,(ﬁ,i)):{_bi E o

0 otherwise 0 otherwise

To prove Lemma 3.9, it suffices to show that M, has full row rank. We will prove this by
showing that that the rows of M, ; are linearly independent.

Lemma 3.10. Let D € N be a constant, let d,n € N such that 2 < D < d < n,and let B > n??. Consider
the matrix Mg j, defined in (7), where each nonzero entry is sampled from a B-nice mtzonal distribution. If

m = Op < D= 1) then the rows of Mg j are linearly independent with probability 1 —n~

Remark 3.11. Observe that m must be at least (”+d hy/ (”+g 41 for M, to have more
columns than rows. Thus, for small d (e.g. d = o(n)), m > Q)

ideal of G at degree d to be complete.

D
n?

") is necessary for the generated

Lemma 3.9 is an immediate corollary of Lemma 3.10. We proceed to prove Lemma 3.10 in the
next section.
3.2 Rank lower bound by row-decomposition of M

To prove that Mg is full row rank, it’s enough to work with an appropriate permutation of
rows/columns and delete any column from M ;. If the modified matrix is full row rank, then
the original matrix is full row rank as well.
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The main insight in the proof is that although M, ; is difficult to analyze, we can extract square
submatrices My, ..., My of Mg,b that are full rank, and more importantly, can be “stitched to-
gether” to show that M, ; is full row rank. To do so, we define the following,

Definition 3.12 (row-rank decomposition). We say that the collection (M, ..., M) of square subma-
trices of M j, is a row-rank decomposition of M if

1. they cover all the rows of M, (i.e. each row of M j, appears in at least one M;),
2. they have disjoint columns of M p, (i.e. no column of My ;, appears in more than one M;),

3. the entries in the diagonal of each M; are independent of the off-diagonal entries of M; and the entries
of M; for every j # i.
The following lemma illustrates why the existence of a row-rank decomposition suffices to
prove that M, ; is full row rank.

Lemma 3.13. Let A, B be submatrices of a matrix M such that A is full row rank and A, B have disjoint
columns. Let M’ be the submatrix of M with rows (columns, respectively) equal to the union of rows
(columns, respectively) of A, B. Suppose further that B is K x K for some K < n*? and B = B’ + g, where
g is a scalar sampled from a n*-nice rational distribution independent of B' and the other entries in M'.
Then, M is full row rank with probability 1 — n=100,

Proof. First, we write M’ (up to permutations of rows and columns) as

A G
C: B

A G

M =
C B’—i—g][

7

where A’ is the matrix A with the rows that overlap with B removed (those rows are now in Cy).
A’ may not be square, but since A’ is still full row rank (the rows are linearly independent), we
may delete some columns from A’ (and C;) such that A’ is square and full rank. Hence, we may
assume that A’ and M’ are square matrices without loss of generality.
A’ being full rank implies that (A’)~! exists. Then, M’ is full rank if and only if the Schur
complement
B—Ci(A)1Ca =g+ B —Ci(A)'C,
is full rank. Suppose not, then the matrix gl + B' — C;(A’ )_1C2 is rank-deficient, which implies
2d_nice distribu-
tion and is independent of C;, Cy, A’, B/, the probability that g is exactly one of the K eigenvalues
is < Kn—200d < ,;—100d 0

that g is an eigenvalue of C;(A’)"!C, — B’. However, since g is sampled from a n

As an immediate corollary,

Corollary 3.14. Let d € N and B > n®?. If there exists a row-rank decomposition (My, ..., My) of Mg p
for N < n?, then Mgy is full row rank with probability 1 — n=,

Proof. We apply Lemma 3.13 inductively to M, My, ..., My. Each submatrix M; has dimension

at most 7%, thus by the union bound, Mg,b is full row rank with probability 1 — N p—100d > 1 _
—d

n—°. O

Thus, to prove Lemma 3.10, it suffices to construct a row-rank decomposition. For clarity of
exposition, we will first prove Lemma 3.10 for the special case of D = 2 in the subsequent sections,
and then show how the ideas extend to the case of D > 2 in Section 3.4.
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3.3 Proof of Lemma 3.10, D = 2 case

Recall that the rows and columns of M, are indexed by « and (B, i) respectively, where &, B are
multisets with || = dord —2, |[§| = d —2, and i € [m]. To ensure that the decomposition
have disjoint columns, the submatrices will be constructed using different i, i.e. selected from
disjoint subsets of [m]. Thus, we need m to be sufficiently large so that we have enough “fresh
random equations” to select from. Using different i also ensures that each (random) submatrix is
independent of each other, especially the diagonal entries. All other columns not present in the
decomposition are ignored since we can delete columns arbitrarily.

Covering rows of M,. To extract a submatrix for the decomposition, we first select a pair v =
{j1,j2} C [n] (j1 = j2is allowed) and consider all multisets a such that« = Uy where || =d —2,
and pick one “fresh” i € [m]. This gives a square submatrix A, where the columns are indexed by
B and the rows are indexed by & = B U 7y and the entries are defined to be:

Sifa\B) ifpCua

0 otherwise.

Ay(a,B) = {

For example, say v = {1,2} and d = 4; the first three columns are indexed by {1,1},{1,2},{1,3},
and the first three rows are indexed by {1,1,1,2},{1,1,2,2},{1,1,2,3}.

L2 S(L1) 0 e 0]

a22) L) 0 e 0
Apa = |8023D) L3 @12 o

o 0 0 a(L2)),

Note that there are non-zero off-diagonal entries, but they are all independent of the diagonal
entries g;(y). By Lemma 3.13, A, is full rank with high probability and satisfies the conditions of
the row-rank decomposition (Definition 3.12). Crucially, all multisets a containing <y are covered
by A,.

Now, to construct the row-rank decomposition, we will select pairs 71, . . ., yn such that |y | =
2 and that A,,, ..., A, cover all as with |a| = d.

Lemma 3.15. Let 2 < d < n. There exist pairs y1,..., YN for N < 2(511) + O(n) such that the rows of

Ay, ..., Ay cover all multisets o of size d.

Proof. First, we split [n] into d — 1 buckets, each bucket contains at most | ;| items. Within each
bucket, we choose all pairs in the bucket, giving us ([T%J) + [ 745 pairs. The total number of pairs

@-v(11) < ;o o)

using the fact that |25 < % + 1.

Now, it suffices to prove that all as are covered. Observe that any multiset « that intersects a
bucket in more than 1 element must be covered: if the intersection contains {ji, j»}, then A (uj)
covers a. Thus, any uncovered « can only have 1 element in each bucket. However, there are only
d — 1 buckets whereas |x| = d, hence every a must be covered. O
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Covering rows of M;,. We use a single submatrix to cover all rows of M, (indexed by a with
|a| = d —2). Since My(a, (B,i)) = —b; when a = B and 0 otherwise, we simply take the submatrix
of a single i:

B=—-b-1L

B is full rank and cover all rows in M.

Putting things together. Recall that M, , being full row rank (Lemma 3.10) implies that the gen-
erated ideal of G = {g1(x) — by, ..., gm(x) — by } at degree d is complete (Lemma 3.9), which then
implies our refutation result (Lemma 3.4).

Proof of Lemma 3.10, D = 2 case. By Lemma 3.15, the submatrices A, ..., A,, cover the rows of
My, and B covers the rows in M. Together they form a valid row-rank decomposition of M.
The total number of equations required is

2
n

< —— .

N+1\2(d_1)+0(n)

Thus, by Corollary 3.14, as long as m > 2(;—11) + O(n), My, is full row rank with probability
1—n" O

3.4 Proof of Lemma 3.10, D > 2 case

The proof strategy is very similar to the case of D = 2: we construct a row-rank decomposition
of M, by considering the rows of Mg and M, separately. We first prove the following analog of
Lemma 3.15,

Lemma 3.16. Let D € IN be a constant and d € IN such that 3 < D < d < n. There exist multisets
Y1,---,7N of size D for N < O (‘ﬁ—Z) such that the rows of A,,,..., Ay, cover all multisets a of size d.

Proof. We split [n] into t := { 1 11J buckets of size at most [ %]. Within each bucket, we choose all
t

size-D multisets, which gives (( WJISD 1. The total number is

t.<[¥1+DD—1><I;< +D><?+D—1>< +D-2) Dt,< +D—1> ,

using the fact that [ﬂ < F + 1. Next, we have D 7 <2 V;—llJ = 2t sinced > D > 3. Further-
more, by (D —1)t<d—1<mnand (D—-1)! > (Dfl)Dil,

e

(4e)P  nP nP
(oo <o (),

t
D!

By construction, any uncovered « can only intersect each bucket in D — 1 elements, hence |«|
isat most (D — 1) < d, contradicting that || = d. Therefore, all as are covered. O

Finally, the same matrix B covers all rows of M;. Thus, we have a row-rank decomposition
and are ready to prove Lemma 3.10.
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Proof of Lemma 3.10. The submatrices A,,,..., A, and B together form a valid row-rank decom-
position of M, ;. By Lemma 3.16, the total number of equations required is

nD
N+1<OD<F>.

Thus, by Corollary 3.14, as long as m > Op (dg—?l), Mg is full row rank with probability 1 —
n=a. O

4 Algorithmic Thresholds: Lower Bounds

In this section, we prove a lower bound for the problem of distinguishing random polynomial
systems from a carefully constructed “planted” distribution on random polynomial systems that
admit a solution with probability 1. This algorithmic task is formally easier than refutation: ob-
serve that any refutation algorithm for random polynomial systems also serves as a distinguishing
algorithm. Our lower bounds hold for algorithms in the restricted computation model called the
low-degree polynomial method and match (up to constant factors) the trade-offs achieved by our
refutation algorithm from the previous section.
Specifically, we will prove the following theorem in this section.

Theorem 4.1 (Low-Degree Hardness of Distinguishing Planted vs Null Polynomial Systems). Let
D > 2 be a constant and d,n,m € IN. Let vy be the probability distribution of the system of degree-D
n-variate polynomial equations {g;(x) = b;} ) such that g;(x) = (Gj, x*P) for a D-th order coefficient
tensor G; such that each entry of G; is chosen to be an independent standard Gaussian. Then, for every
d < 2, whenever m < Op (d’,é—?l) , there exists a probability distribution vp supported on solvable systems

of m polynomial equations such that degree-d polynomials fail to (1/2)-distinguish between vy and vp.

Remark 4.2. The random polynomials appearing in the theorem above are obtained by choosing
a random-entry tensor instead of choosing the coefficients of the polynomial directly. This leads
to the coefficients of different monomials to have variances that differ by constant factors. This
choice is convenient for our analysis but not necessary for the result to hold though we do not
formally prove this.

We will prove Theorem 4.1 by exhibiting an explicit planted distribution defined below.

Definition 4.3 (Planted distribution vp). Fix a parameter c = o (ﬁ), the planted distribution vp is
sampled as follows,

1. Sample z uniformly from {iﬁ j
2. Foreachi € [m], sample b; ~ N(0,1) independently.

3. Foreach i € [m], sample tensor G; € (R™)®P with i.i.d. standard Gaussian entries conditioned on
(G, z%P) = cb;.
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From Proposition 2.14, the task of proving indistinguishability of vy and vp by low-degree
polynomials reduces to analyzing the truncated low-degree likelihood L<? of the pair vy and vp.
We will analyze LS by computing a Hermite expansion for it:

LsG,b)= Y Lup ha(G)hg(b)
0 Bilal+|Bl<d

<d

To analyze LS“, we will show the following key technical claim:

Lemma 4.4. Let D > 2 be a constant, let d,n,m € IN such that 0 < d < %”, and let c = o < L ) Let

g

{hp}|p<a be the multivariate Hermite polynomials. If m < Op <d’§—?1>, then

Y Ey, [m(G)hg(h)]” < 1.

w,pB:
1<]a|+|Bl<d
We finish the proof of Theorem 4.1 modulo this claim:

Proof of Theorem 4.1 by Lemma 4.4. From Definition 2.13, it’s enough to prove that E, [(LS%)?] < 2.
We first write the Hermite expansion of LS4, as a function of G and b, in the (unnormalized)
Hermite basis,
LSG,b)= Y Lup ha(G)hg(b)
o f:laf +|pl<d
where &« € IN"*"*" and € IN" are the Hermite indices. Since {/,(G)hg(b)},p are orthogonal
with respect to vy, the degree < d Hermite coefficients of L<? equal that of L.
Thus, the Hermite coefficients /I:M; can be computed as:

Lup = E(G )y [L(G,b) - B (G)hp(b)] - %ﬁ! =BG p)~vy [(VP/VN) - ha(G)hp(b)] - %ﬁ!
= By [he(C)p(8)] - 1357
Note that for a, f = 0 (the first coefficient), fo,o = 1. Then, by Lemma 4.4,
E,, [(L<d)2} = Y LsaBl=1+ Y EGu [ (G)hg ()] a%‘ <2.
|a|+[Bl<d 1<)+ Bl<d

Along with Proposition 2.14, this shows that the value E,, [f] is at most E,, [(L<9)?] V22
for any degree < d polynomial f such that E,, [f?] = 1. O

Remark 4.5 (The Importance of Scaling c). The planted distribution outputs a feasible system of
polynomial equations {(G;, x*P) = bi}ticim), where the satisfying assignment is x = —75. Note
that x has large norm: || x|, = cl%' We note that our proof of indistinguishability requires that the
scaling c be appropriately small. This is necessary. In particular, there is an efficient distinguisher
if c > /n/m. Given input (G, b), calculate the tensor

Q:=)_ G;i-sgn(b).
i=1
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For the null distribution vy, Q is distributed as /mH where H € (R")®P is a tensor with i.i.d.
standard Gaussian entries. On the other hand, for the planted distribution, Q = ¢ (Y7, |b;]) z®P +
L - /mH, where L is a linear operator of norm 1 operating on the flattened vector of H for ||z||, =
1.

In the case of D = 2, ||/mH|| = O(y/mn), whereas ||c (Y, |bi]) zz" || = Q(cm) with high
probability. Thus, if ¢ > \/n/m, then the algorithm that computes the spectral norm of Q is a
distinguisher for vy and vp. We note that there’s an analogous distinguisher based on spectral
relaxations of tensor norm for D > 2.

For clarity of exposition, we will first prove Lemma 4.4 for the special case of D = 2 then show
that the ideas generalize to the case of D > 2.

41 Computing Hermite coefficients of L<? for D = 2

The Hermite coefficients of the truncated likelihood LS4 are naturally characterized if we attach
a certain combinatorial interpretation to each Hermite index. Towards this goal, let’s associate
every index « € IN"*""*" with a labeled directed multigraph (with self-loops allowed) with n vertices
and |a| edges with labels from [m].

Notations. From here on, we will use s to denote an index in [m], and i, j to denote indices in [n].
For each s € [m], a° € IN"*" corresponds to the adjacency matrix of the subgraph whose edges
have label s, hence |a°| is the number of edges labeled s. Furthermore, define A € IN" such that
A=Y Y a; + o for i € [n], interpreted as the total degree of vertex i. Note that « can have
self-loops and each self-loop contributes an additive 2 to the definition of A.

Lemma 4.6 (Hermite Coefficients of L). Let « € IN"*"*" B € IN™. Let A = A(x) € IN" such that
A; is the total degree of vertex i in the labeled directed graph associated with a. Then, if 1) A; is even for all
i€[nl],2)Bs < ||, and 3) |a°| + Bs =0 (mod 2) for all s € [m], then

E (G p)~vp [Ma(G)p(D)] = n~ 1" ECWWS(C),

_ 2\ 7
where 8(€) = Ee-aon) Inleglie)) = - s (~+5)
=y

Otherwise, (G p)~v, [1a(G)hp(b)] = 0.
To prove Lemma 4.6, we first look at the term ¢ 4(c):

Lemma 4.7. Foranyk,{ € Nand c € [0,1],

K[ 1-2\
Cre(0) == Egnron) le(cg)he(8)] = ¢ - ED); <_ 2C>

if{ <kandk+ ¢ =0 (mod 2). Otherwise, §(c) = 0.
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Proof. First, let us write the function i (cx) in the Hermite basis,

),
=0 :

such that the coefficients ¢ ¢(c) exactly equals Eg.r(0,1) [k (cg)he(8)]-
Using the generating function of Hermite polynomials (Fact 2.4), for any x,t € RR,

cxt—f - _oooo tkh()
= Ewteo = LR aa g

On the other hand, we can rewrite the left-hand side:

2 212 2 ad t = 2(1 - )\’
pCXt=l  pret= =5 (1=c%) th(x) (Cg') Zl <_7t (12 ¢ )>

Matching coefficients, we see that ¢ ¢(c) is nonzero only if k = ¢ + 2i for some i > 0, i.e. £ < k and

k+¢=0 (mod 2). In this case,
k! 1—c2\'
.=
gklé( ) l' ( 2 > 4

where i = % This completes the proof. O

We will rely on the following technical computation from [G]] " 20]:

Lemma 4.8 ([G]] 720, Lemma 4.5]). Let « € NN, and fix v € RN and b € R such that ||v]; = 1.
Suppose ¢ € RN is sampled from N (0, 1) conditioned on (g,v) = b, then

Eg [ha(g)] = 0" - Iy (b).
We are now ready to prove Lemma 4.6.

Proof of Lemma 4.6. In our planted distribution vp, each G is sampled conditioned on z' Gsz =
(Gs,2z") = cbs. Thus, applying Lemma 4.8 with v = zz" (a vector in R""),

E(Gp)~vp [1a(G)hp, (b)] = Eyp H(ZZT)“shms(Cbs)hﬁs(bs)]
s=1 (8)
A;
=E, (s1y [ﬂzi ] 'l_[llEbsw(o,l) [0 (cs) g, (b5)]
i= 5=
Since H;n:l(zz—r)“s _ 1’[ l lEb] b+ 5 _ ?:l Zl‘Ai'

Note that }°; A; = 2|a|, thus E, [Hi 41} = n~l*lif every A; is even and 0 otherwise. Moreover,

by Lemma 4.7, By, (0,1) [#]as) (cbs)hp(bs)] = &jas| p.(¢) if Bs < [#°| and have the same parity, and
0 otherwise. O
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4.2 Bounding Hermite coefficients of L<? for D = 2

In this section, we prove Lemma 4.4 for the special case of D = 2. We first give a sketch.

Proof sketch. To begin, we divide the as based on |a| (number of edges ¢) and write the summa-
tion as ]

LY X Ey[m@h®)]

e=la:|a|=e p:|f|<d—e

We upper bound the above in the following steps. First, we show that for a fixed «, the inner-
most sum is dominated by the fs where B; = 0 or 1 if |a®| is even of odd, respectively (Lemma 4.9).
Moreover, any odd |a®| introduces an extra factor of c? (Corollary 4.10). Thus, in the end the terms
where |a°| are all even dominate if ¢ is appropriately small.

Next, recall that A; must be even by the condition in Lemma 4.6. We show that for all |a| =e,
the dominating terms are the as with A; = 2 and |a°| = 2 for all nonzero A; and |#°| (Lemma 4.11,
Lemma 4.12). Viewing a as a graph, the dominating terms are the graphs with e edges and e
vertices such that each vertex has degree 2 and each edge label appears exactly twice.

For the sake of a clean sketch, let’s ignore all other terms. The number of 2-regular graphs with
e edges is < 2%, and there are n° ways to label the vertices. For edge labels, we choose e/2 labels
¢/2¢¢/2 ways to do so. Finally, we multiply by
the coefficient in Lemma 4.6) and summing from e = 2 to d, we get

L o) s L G =

e>2, even e=>2, even

from [m] and assign to the e edges, thus there are m
—2e
n==(

2

when m = O(%). This completes the sketch.

Contributions from f for fixed . Suppose we fix an « with |¢| = e. Note that we must have
Bs < |a°| due to the condition in Lemma 4.6. Thus,

Y, E, [ha(G)hﬁ(b)]z =n% Y ﬁims\,ﬁg@z < n—zelmll

B:|pl<d—e B:|B|<d—es=1 s=1 g,

; sl (c 9)

Next, we show that the dominating term is when s = 0 or 1 for all s € [m] (depending on the
parity of |a°]).

Lemma 4.9. Forany k > 0and c = 0(%),

B

((k—1)!"? ifkis even,

<k c?(k!!)? if k is odd.

Y Zre(e)* < (1+0(1)) - {

Proof. Using Lemma 4.7,

2 k—2¢
k! 1—¢2
ggk{é(C)Z < . CZZ ((%)l) < 2C > .

/<
{+k=0 mod 2

~
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Let a; be the summand. We have that a‘” = c*(554)%(+25)? which s o(1 )1fc:0(\/-) Thus, the

1—c2
term with the smallest ¢ in the summatlon dominates. If k is even, then ¢ = 0 dominates,

2
Y Cre(e) < (1+0(1)) - (ﬁ—) 27 = (1+0(1)) - ((k—1)1)%

<k (i)!

If kis odd, then ¢/ = 1 dominates,

K
(55!

As an immediate corollary, we can upper bound (9) based on the parity of |a|:

2
Y Gke(0)* < (1+0(1))- c2< ) 2701 = (14 0(1)) - Ak O

<k

Corollary 4.10. Fix an « € IN"™*"*" with |a| = e < d. Let odd(a) = {s € [m] : |a°| odd}, and
even(a) = {s € [m] : |a®| > 0, even}. Then,

Y By (©hs@)? <n - [T (a2 T[T (] - 1.

B:|Bl<d—e seodd(a) s€even(a)

Contributions from |¢| = e. Fix the number of edges e < d, we upper bound the contribution
of all « with |a| = e. The nonzero condition of Lemma 4.6 means that the only nonzero terms are
the as (viewed as graphs) where each vertex has even degree (counting each self-loop twice). To
upper bound the total contribution of all such graphs, we

1. upper bound the number of graphs with even degrees where the vertices have labels in [n],
2. upper bound the contributions from assigning labels in [m] to the edges.
Note that the contribution of each a can vary based on how we label the edges.

Lemma 4.11. Let e € IN such that 0 < e < d < n. Consider directed graphs with e unlabeled edges
(parallel edges and self-loops allowed) such that the vertices have even degrees and have distinct labels in
[n]. The number of such graphs is upper bounded by (8n)°.

Proof. We first count the number of unlabeled graphs. Let G(e,v) be the set of unlabeled undi-
rected graphs with e edges, v vertices, and has even degrees. We will prove an upper bound on
undirected graphs. For directed graphs, we can simply multiply our upper bound by 2°, since
each edge can be in either direction.

First, we look at the case when v = e. In this case, all vertices must have degree 2, hence
the graphs must consist of disjoint cycles and isolated vertices with self-loops. This is easily upper
bounded by the number of ways to partition e identical elements. The number of ways to partition
e identical elements into j non-empty groups is ( ) Thus,

i <E_1> =201 2
= 1 S
j=1

For v < e, observe that every graph in G (e, v) can be obtained by contracting e — v vertices
from a graph in G (e, e) without deleting any edge (possibly forming self-loops or parallel edges).
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The number of ways to do so can be upper bounded the number of ways to partition e distinct
items into v non-empty identical buckets, which we can bound by

e—1 ‘e_!<e£,_v e
e—v) ol = v/’

1G(e,v)| <7 (Z) |G (e e)] < 2€e‘"”<e>.

0

Thus,

For directed graphs, we multiply the upper bound by an additional 2°.
Next, we assign labels to the vertices. For graphs with v vertices, there are n” ways to assign

labels. . .
v A2 e—vf€ e e n\v e n\e .
. _ 7~ LAY '
v;” 2%e <U> (4e) El(v)(e) < (4e) (1+e) < (8n)
Here we use the facte < d < n. O

Next, fix a graph H, we assign labels to the edges.

Lemma 4.12. Lete € INsuchthat 0 < e < d < nandletc = o (ﬁ) Let H be any directed graph
with e (unlabeled) edges and n vertices, and let Ay be the set of as that have H as its graph, i.e. ) s &° is the

adjacency matrix of H. Then,

Z ZIEVP [ha(G)hﬂ(b)]z <

nEAY ‘B

{7128(27116)@/2 e is even (10)

(Ze)n=2(2me) T eis odd.

Proof. We need to handle the odd and even |a°| differently. Recall that odd(a) = {s € [m] :
|a°| odd} and even(a) = {s € [m] : |a°| > 0, even}. Suppose we assign labels from [m] to edges
such that |even(a)| = i and |odd(«)| = j where 2i + j < e. Note that e and j must have the same
parity since e — j must be even.

We first fix i < |[e/2]. We will see that j = 0 or 1 is the dominating term, depending on the
parity of e. We upper bound the contribution as follows:

1. Choose i different labels for even(a) and j labels for odd (). The number of ways to choose
is () (")
2. Choose the |a°|. First, set the default values: |a°| = 2 for s € even(a) and |a°| = 1 for

s € odd(a). Next, for the other e — 2i — j, we can add any even number to any |a°|. This is

the same as the number of ways i + j nonnegative integers add up to 672217]‘ , which is

S+ -1 _ (S -1
i+j—1 i+j—1)

3. Assign all e edges: e!. Note that each s is double counted |a°|! times.

4. For each s € [m], the contribution is scaled by a factor given by Corollary 4.10. In this step,
we also adjust the contribution due to the double counting in the previous step.

(o112

e |a°| even: I
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* |a*| odd: CZ(“;ii!!)z < ?laf] < cPe.
Thus, the contribution is scaled by n=2¢(c?e)/.
(11)

For a fixed i, the total contribution is
_ etj _
Nz ). el.
i+j—1

Y el .
J

]<1 —2i
e—jeven

Let a; be the summand. ]jz <m?- e () () < (2e?m)? = o(1) since ¢ = o <d\ﬁ> Thus,
the summation is dominated by j = 0 and 1 for even and odd ¢ respectlvely
“2! . ("f)(t ) Summing i from 1 to
2

If e is even, then j = 0 dominates: (11) equals (14 0(1))n

e/2, we get
2y 2 (M 31 —2¢ m+5—1
(T+o(1))n e -y (. )(2 = (1+0(1))n %! - : .
NN 2
Since m > nand § < 4 < %, we can upper bound the above by n~%e! (( )) Thus,
2 —2e /2 2 /2
Y By (e (G (8)] < (2 2 o < (ame)
nEAY ‘B
If e is odd, then j = 1 dominates: (11) equals (1 + o(1))n %*e!(c%e)(m — i) - (’l”)(?l) In this
e— l
m+ &t
2e C2em)_ < e—12 )
2

case, we sum i from 0 to &=

e—1
2
1 1)) 2¢e!(c2e) - o m
(1+0(1))n *e!(c%) i;)(m z)(l T
Similar analysis shows that
Y LBy, [1(G)itp(0)) < (Cepn~*(2me) T
IXEAH 'B

This completes the proof
Proof of Lemma 4.4. Now, it suffices to sum up the contributions of e from 1 to d

Proof of Lemma 4.4. Combining Lemma 4.11 and Lemma 4.12, in total we have,
2(2me)’? + Y (8n)° - (Pe)n~*(2me)
e+1

Y., (8n)-n”
e>0, even e odd
e/2
128
<128me> L O(Gen) Y ( me>

- Z n? e odd

e>0, even
Then, setting ¢ = o < y f) we can ignore the odd terms. Moreover, take m = 5z, we have

d
e e/2
) <1

Z Ev, [h“(G)hﬁ(b)]z S e)Z,Ze:ven (ﬂ

1<]a|+|Bl<d
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4.3 Generalizingto D > 2

In this section, we prove Lemma 4.4 for arbitrary D. In this case, we have polynomial equations
gs(x) = (Gs, x®P) = b, for s € [m], where G, € (R")®P.

For Hermite indices « € N"*"**" and B € IN", we calculate E ¢ p),, [ (G)hg(b)]. Here,
we view « as a labeled directed D-uniform hypergraph with edges labeled 1,...,m, and define
A € IN" as the total degree of vertex i € [n]. Note that |A| = Y ; A; = D|a|. The following lemma
is almost identical to Lemma 4.6.

Lemma 4.13. For D > 2, indices « € IN">*">*>" B ¢ IN™, and ¢ > 0, define A € IN" such that A; is
the total degree of vertex i when viewing « as a labeled D-uniform hypergraph. Then, if A; is even for all
i € [n]and Bs < |a®|, |a°| + Bs =0 (mod 2) forall s € [m], then

E(Go)mvp [1a(G)p(b)] = P2 [T 80 . (0)-
s=1
Otherwise, (G p)~v, [1a(G)hp(b)] = 0.

Proof. Similar to the proof of Lemma 4.6, we apply Lemma 4.8 with v = z®P (a vector in R""),

TT(252)% e (che s, (bs)

s=1

E(6,p)~vp [ha(G)bﬁ} =E.,

m
_ n7D|0¢|/2 H glas\,ﬁs (C),
s=1

since |A| = Y 1 A; = D|a|. This completes the proof. O

The proof of Lemma 4.4 for arbitrary D is almost identical to the case of D = 2, except
for counting the number of graphs with even degrees. The following is the generalization of
Lemma 4.11.

Lemma 4.14. Let D,d,e,n € IN such that D > 2and 0 < e < d < %”. Consider directed D-uniform
hypergraphs with e unlabeled edges (parallel edges and self-loops allowed) such that the vertices have even
degrees and have distinct labels in [n]. The number of such graphs is upper bounded by

O(Dn) Telz-1e,
if De is even. Otherwise, there are no such graphs.

Proof. Note that De is the total degree, which must be even. The number of vertices v can range
from 1 to Z¢. In order to perform the counting, we view a hypergraph H as a bipartite factor
graph (V,F, E) with left-hand side vertex set V that contains the vertices of H, and right-hand
side vertices F that contains a vertex for each hyperedge. Note, in particular, that the right-degree
of the bipartite graph is D. And all left-degrees have to be even in the hypergraphs we intend to
count.

We directly analyze the number of v-vertex graphs.

1. We choose v labels from [n], giving us (7).
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2. We choose the left-degrees: the degrees must be even and sum to De. This is the same as the

De
number of ways v positive integers add up to 3¢, which is (g_i)

3. We add edges between V and F while ensuring that the degrees are consistent. To do so, we
construct a vertex set V' by including deg(i) copies of vertex i € V, hence |V’| = De. Then,
we add edges between F and V' such that each f € F has degree D and each i € V' has

(De)!

degree 1. Since the factor vertices are unlabeled, there are at most “—~ ways to do so.

Then, combining the above and summing v from 1 to %,

5 De _ De _
(De)! n\ (5 -1 < (De)! (n+ 5 —1
e! Z 19 De _ v = e! De )
Coo=1 2 : 2

Using the fact that % < n and Stirling’s approximation, we can upper bound the above by

O(Dn)%e(%_l)". O

The contributions from assigning labels to edges is exactly the same as Lemma 4.12, except
with coefficient n~P¢. Thus, we are in position to prove Lemma 4.4.

Proof of Lemma 4.4. We sum over all contributions of |¢| = e from 1 to d. Setting ¢ = o (ﬁ), we
can ignore the odd terms; in fact, if D is odd, the odd terms are exactly zero since De must be even.
Thus, the total contribution is

De

Y Ey, [h(Gh®)]*< Y O (%) ’ (E>2 <1,

B eeven e
I<]af+|pl<d

when m < Op (d%—Z)- This completes the proof. O

5 Algorithmic Thresholds at Degree 2

In this section, we give a short proof of the following theorem that gives a sharp threshold on the
number of quadratic equations m required for the existence of degree-2 SoS refutations.

Theorem 5.1. For any homogeneous quadratic polynomials g1,82, ..., gm in X1,X2,. .., X, and real num-
bers by, by, ..., by, let SOSy(P) be the degree-2 SoS relaxation of the system of constraints {gi(x) =
bi}icm. Specifically, let G; € R™ " be matrices such that ¢;(x) = x' G;x for each i € [m]. Then, the
degree-2 SoS relaxation is the following SDP:

X =0, tr(GX)=0b; forall1 <i<m. (12)

Suppose each coefficient of g; is chosen to be an independent draw from the standard Gaussian distribution
N (0,1). Then, there is an absolute constant C such that if m > %2 + Cnlogn, the semidefinite pro-
gram above is infeasible with probability at least 0.49. On the other hand if m < %2 — Cnlogn then the

semidefinite program above is feasible with probability at least 1 — 1.
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Our proof is an immediate application of a classical work [ALMT14] on understanding phase
transitions for convex programs with random data that relies on deep results from conic integral
geometry [SWO8]. In particular, our proof relies on the following approximate kinematic formula.

Fact 5.2 ((ALMT14, Theorem I]). Fix a tolerance j € (0,1). Let C and K be convex cones in RN, and let
Q € RN*N be a uniformly random (i.e. Haar distributed) orthogonal matrix. Then,

6(C)+6(K) < N—0O(VNlog(1/n)) = %r [CNQK # {0}] <7;

6(C) +6(K) = N+ O(VNlog(1/7)) = Pr [CNQK #{0}] >1—7.

Here, QK = {Qz | z € K} is the rotation of the cone K by Q and 6(C), 6(K) are statistical dimensions
of the cones C, K respectively.

We will not define statistical dimension formally in this work but note that the statistical di-
mension of a subspace of dimension r is r and that of the cone of positive semidefinite n x n
matrices is 171(n + 1) (see Table 3.1 of [ALMT14]). For background and proofs, we refer the reader
to [ALMT14].

Proof of Theorem 5.1. Let S be the open convex cone of positive definite matrices. Let K be the

linear span of the symmetric matrices Gy, ..., G, viewed as @ dimensional vectors. Let K+ be

the orthogonal complement of K in R

Since 0 < m < @, K and K+ have dimension m and @ — m with probability 1 over
the draw of the G;s. Thus, the statistical dimension of K, K+ is m and @ — m respectively.

Observe that because the coefficients of ;s are independent standard Gaussians, G;s are standard
Gaussian vectors, and K, K+ are random (rotations of) subspaces of their dimension. The statistical
dimension of S is tn(n +1).

Applying Fact 5.2 to K and K with 7 = 1 yields that there is a constant C > 0 such that:

1. Case1: If m > ”72 + Cnlogn, then, there is a positive definite matrix M; in K.

2. Case 2: If m < %2 — Cnlogn, with probability at least 1 — 1/n, there is a positive definite
matrix M in K.

Let’s now condition on the existence of M; /M in the two cases and analyze the SDP (12).

Case 1: Suppose for the sake of contradiction that there is a PSD Y such that (G;,Y) = b; for
every i € [m]. Let My = Y ,;¢;G; € Kforc; € R. Then, (My,Y) = Y ,;cib;. Now, the LHS is
non-negative since My, Y are both positive semidefinite. The RHS }; ¢;b;, on the other hand, is
distributed as a standard scalar Gaussian and is thus < 0 with probability 1/2. Thus, there can be
no such Y with probability at least 1/2.

Case 2: Let M be the positive definite matrix such that (My, G;) = 0 for every i € [m]. LetY €
R"*" be any solution to (G;, Y) = b; for every i. Such a Y exists since G;s are linearly independent
with probability 1. Then, observe that for some large enough scaling R, RM; + Y is positive
semidefinite and is feasible for the SDP (12).

This completes the proof. O
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6 Sum-of-Squares Lower Bounds at Degree 4

In this section, we show that there is an m = n?/ poly(log n) such that for random homogeneous
quadratic polynomials g1, g2, . . ., ¢m of degree 2, the constraint system {g;(x) = 0},<,;, does not ad-
mit a degree-4 sum-of-squares refutation. Specifically, we will establish the following dual version
of such a claim:

Theorem 6.1. Fix m = m(n) < n?/ poly(logn). Let 1,2, - - -, §m be homogeneous degree-2 polynomi-
als in x1,xy,..., X, such that each coefficient of each g; is an independent draw of the standard Gaussian
distribution N'(0,1). Then, with probability 1 — o(1), there exists a degree-4 pseudo-distribution y on
X1,X2,..., X, consistent with the constraint system {gi(x) = O}igm-

We will prove Theorem 6.1 by giving an explicit construction of a pseudo-distribution y satis-
tying the requirements of the theorem. Our construction of y will rely on the standard technique
of pseudo-calibration and will use the planted distribution constructed in the previous section.
Our analysis adapts the high-level analysis strategy invented in [G]]"20] who proved a sum-of-
squares lower bound for optimizing the Sherrington-Kirkpatrick Hamiltonian. The details of this
strategy in our setting are somewhat different.

Candidate pseudo-distribution. We construct a candidate pseudo-distribution i based on the
pseudo-calibration method, using the planted distribution vp in Definition 4.3 (with D = 2 and
¢ = 0). In a nutshell, the pseudo-calibration method is a mechanical way to construct each entry
of the candidate pseudo-moment matrix based on vp.

Definition 6.2 (Candidate pseudo-distribution). Fix m = m(n) < n?/poly(logn) and trunca-
tion threshold T = poly(logn). Given G sampled from the null distribution vy, we define the pseudo-
distribution y over {j:ﬁ}” (as a function of G) by describing the pseudo-expectation of all degree < 4
monomials: for I C [n] and |I| < 4,

_ (G
E.x':= Y Eg.u [zlh“(G’)} : o(c' ) .
aeNmXnxn :
la|<T

Note that we have the “normalized” booleanity constraint x? = 1. Our final construction that
yields Theorem 6.1 will be obtained by a small perturbation of the construction in Definition 6.2.

To analyze this construction, it is helpful to study a matrix — the moment matrix — associated
with the pseudo-distribution.

The Moment Matrix. The moment matrix M of p is a matrix indexed by subsets I, ] C [n] of
size < 2 and entries defined by:

_ h (G
M(L,]) = lEy[x”]] = Z ]E(G/,z)~1/p [ZH_]h“(G/)} ) D(é' ) )
we]NmXV’XV’ ’
la|<T

We can explicitly compute the coefficient of the Hermite polynomial /,(G) in the above ex-
pression for M(1I,]) as follows. Again, we will use s to denote an index in [m] and i, to denote
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indices in [n]. By the computation we did in the context of our low-degree lower bounds, specifi-
cally Lemma 4.6 (setting f = 0 and ¢ = 0), we obtain that for any I, ] C [n] and any « € IN"*"*",

1 I+ (! lal/2, o]~ T ) s n. 1
Aot = (2 [2a(G)] = ()M 2B (e = - (13)
s=
if |a°| is even for all s € [m] and A; + I; + J; is even for all i € [n] (here we denote [; := 1{i € I}),
and 0 otherwise (recall that A € IN" where A; == Y"1 Y74 aj; + a5, interpreted as the total degree
of vertex i). Thus, we have

M(I,]) = Z /\a,I,]hac(G)-

ala|<T
|as| even, Ai—ili—&-]i even
Note the 1/a! factor in (13) is there because we use the unnormalized Hermite polynomials. By
an upper bound on the double factorial (Fact 2.3),

— [ || /2
|A0¢,I,]| <n 2 7 . (14)

Keep in mind that M will only approximately satisfy the conditions of a pseudo-moment,
e.g. M(2,2) ~ 1and M({i},{i}) ~ 1. However, we will show that we can “fix” the moment
matrix such that it represents a valid pseudo-distribution and satisfies all constraints. Note that
the positivity property, i.e., ]EV [4%] = 0 for every degree-2 polynomial g is equivalent to the positive
semidefiniteness of the moment matrix M of .

Lemma 6.3. There exist constants C;,Cy > 0 such that if m = n?/1log“' n and T = log™ n, then
there exists a correction matrix & such that M — & satisfies all constraints {gs(x) = 0}s<m and that

M-E=0.

This lemma is the bulk of the proof of Theorem 6.1 and requires a relatively technically in-
volved argument. In order to prove PSDness of M we need to analyze its spectrum. This is
somewhat challenging as the matrix has dependent random entries. Our proof relies on a strategy
invented in previous works (starting with [BHK " 16] and built further in [HKP 17, GJJ " 20]) that
decomposes moment matrices built via pseudo-calibration into a sum of structured random ma-
trices (called graph matrices) that are helpful in spectral analysis. We start with a brief background
of graph matrices specialized to our setting before giving an outline of our proof.

6.1 Background on graph matrices

Our notations and definitions follow that of [AMP20, GJJ*20] who also studied with graphical
matrices when the input data is random Gaussian.

We represent each Hermite index « € IN"*"*" as a 3-uniform hypergraph with two types of
vertices: circles (_) and squares [ | Each square [i]has a label i € [n], and each circle (5) has a
label s € [m]. A nonzero entry aj; is represented by a hyperedge ([i}[j],(s)). See Figure 1 for an
example. Note that the order of | i | and [j] matters since we allow «; # w3;, but for simplicity we
don’t draw it out explicitly.

Next, we define ribbons and shapes (see Definitions 2.9-2.12 in [G]] 720]). Denote S := {[i]:i €
[n]} and C == {(5) : s € [m]}. A ribbon R is simply a hypergraph (V(R), E(R)) of some « (as in
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(@)al, =2and ad, = 3. (b)a}; =2and aly = 1.

Figure 1: Examples of & € IN"*"*" represented as hypergraphs.

Figure 1) with a set of “left” and “right” vertices Ag, Bx € V(R). Each ribbon defines a matrix
with a single entry.

Definition 6.4 (Ribbons). A ribbon is a 3-uniform hypergraph R = (V(R), E(R), Ar, Br) such that
V(R) C S UC contains labeled square and circle vertices, and Ar, Bx C V(R) (not necessarily disjoint).
The edges in E(R) are labeled and must be connected to two square vertices and one circle vertex.

Definition 6.5 (Matrix of a ribbon). Let a ribbon R = (V(R),E(R), Agr,Br), and let « € IN"*"*"
be the multiset represented by (V(R),E(R)). The matrix of a ribbon Mg, indexed by subsets of S UC, is
defined as

hoc(G) I'= Ag,] = Bg,

0 otherwise.

MR(I/]) = {

The shape is a ribbon with the labels of each vertex removed, i.e. ribbons with the same hyper-
graph structure but different labels have the same shape.

Definition 6.6 (Shape). A shape is a 3-uniform hypergraph a = (V(a), E(a), U,, V,) where V(a) con-
tains unlabeled circle and square vertices and U,, V, C V (a) (not necessarily disjoint). The edges in E(a)
are labeled and must be connected to two square vertices and one circle vertex.

We call U,, V, the “left” and “right” vertices. Moreover, define W, = V(a) \ (U, N V,) to be the
“middle” vertices of the shape and Wis, to be the isolated vertices in W,.

Definition 6.7 (Graph matrix). The matrix of a shape M, is defined as

M, = ) M.
R: ribbon of shape a

Ribbons and shapes are best explained by examples. Consider the ribbon R and shape 2 in
Figure 2. The matrix Mg has entries Mg (I, ]) = ha(Gi,)h3(G3;) if I = {1}, ] = {3}, and 0 other-
wise. The graph matrix M, is a sum of all ribbons of shape 4, including R. Thus, M, ({i}, {j}) =
Ckeln ktij Lo #sacim) 12(G)ha(G2) for i 5 .

Definition 6.8 (Transpose of a shape). The transpose of a shape a = (V(a), E(a), U,, V,) is defined as
a' == (V(a),E(a), V,,U,). This implies that M, = (M,7)".

Graph matrix norm bounds. We will require spectral norm bounds of graph matrices. We can
directly use the norm bounds from [AMP20], which are obtained using the trace power method.
First, define the weights of square and circle vertices: w([ ]) = 1 and w(()) = log,(m). This is
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(a) Ribbon R. (b) Shape a. Smin = {[x]}.

Figure 2: Example of a ribbon and shape. The minimum vertex separator of a shape is colored
green.

defined such that for any shape a and any subsets S, C of square and circle vertices, n®(5)+%(C) =
n!8lm!Cl, which is roughly the number of ways you can label S, C; such quantities naturally arise
in trace moment calculations.

Next, we define the minimum vertex separator:

Definition 6.9 (Minimum vertex separator). For a shape a, a set S C V(a) is a vertex separator if
all paths from U, to V, pass through S. A minimum vertex separator Smin is the smallest weight vertex
separator.

See Figure 2b for example; in our figures the minimum vertex separator is colored green. Note
that by definition, U, N V; must be in the minimum vertex separator. Using the norm bounds from
[AMP20, Corollary 8.16] and the same calculations from [G]] " 20, Appendix A]), we have

Proposition 6.10. With probability over 1 — o(1), for all shapes a the graph matrix satisfies

2

Mol < (V@] - [E(@)] - Tog ) VO£ =i=psstin _ g (sisisiiad)

6.2 Proof overview of Lemma 6.3

Since the proof is rather technical, we first provide an overview of the proof and defer the technical
details to the Appendix. At a high-level, our strategy resembles that of [G]]"20] who proved a
sum-of-squares lower bound for the problem of certifying the optimum value of the Sherrington-
Kirkpatrick Hamiltonian. However, there are important differences to adapt this strategy to our
setting as we describe in Remark 6.26.

At a high-level, our strategy works in two steps which are rather common in the analyses of
moment matrices arising in several prior works on SoS lower bounds using pseudo-calibration.
In the first step, we will prove that the moment matrix M is positive semidefinite and approxi-
mately (but not exactly) satisfies the polynomial constraints. In the second step, we will modify
the pseudo-distribution y so as to satisfy the constraints exactly and further show that this correc-
tion is small and does not affect the analysis of PSDness.

Decomposition of M. Observe that the coefficients A, ;; in (13) only depend on the shapes.
Thus, we can write M as

M= Y MM,

a: shape
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We will first identify combinatorial conditions on the shapes defining the graphical matrices
that appear with nonzero coefficients in the above expansion. The shapes with A, # 0 need to
satisfy the following conditions,

Definition 6.11. Let L be the set of shapes a such that
1. U,, V, contain only square vertices and |U,|, |Va| < 2,
cdeg((i])+1{[i] € U} + 1{[i] € Vi } is even forall[i| € V(a),

3. deg((s)) is even for all (s) € V(a)
4. |E(a)] < T,

N

5. There are no isolated vertices in W,,.

In words, Condition 1 is because M only contains moments of degree < 4; Condition 2 ensures
that A; + I; + I; is even; Condition 3 ensures that |a°| is even; Condition 4 ensures that |a| <
T; and finally Condition 5 is simply because shapes with isolated vertices don’t appear in the
decomposition (there can only be isolated vertices in U, N V,).

Remark 6.12. For any a € £, the conditions in Definition 6.11 also imply that |E(a)| is even and
the total degree of square vertices is a multiple of 4.

Thus, we can decompose M into shapes in L:

M=) AM,.

aceLl

Next, observe that we can break M into blocks indexed by (k,¢) € {0,1,2}2. The (k, ¢) block
My is () x () whose rows are indexed by subsets ([Z]) and columns are indexed by subsets ([z}).
Clearly, shapes a with |U,| = k, |V,| = ¢ contribute to My, only. Moreover, |U,| + |V,| must be
even because the total degree of the square vertices must be even (each hyperedge contributes
two). Thus, the blocks My, M1y, M1, and My are zero, i.e. all odd moments are zero. Thus,
M has the following structure

Mp 0 Mg
M — 0 M]l 0 7
My 0 Mp

where My is a scalar, and My, = MZTO is a vector and has the same entries as M.

We need to show that M, with some small modifications, is positive semidefinite and satisfies
all constraints in the quadratic system.
Proving PSDness. We parameterize m = n>¢ for ¢ = Cl%;f?” for a sufficiently large constant
C in the analysis that follows. We know that M can be expanded as a sum of graphical matrices
indexed by shapes a in £ with coefficient A,. We first identify the shapes that contribute scaled
identity matrices in the diagonal blocks. We call these shapes the trivial shapes; see Figure 3 for
examples.
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U.NV,

U,NV,

(@) [Aa] =171, [ Mo = 1. (0) [Aa] =72, [|Mu]| = 1.

Figure 3: Trivial shapes: U, = V,, E(a) = @, and M, = L.

Definition 6.13 (Trivial shape). A shape a is trivial if U, = V,, W, = &, and E(a) = @. Its associated
matrix M, = 1.

In other words, the trivial shapes correspond to the Hermite indices « = 0 and |I| = |]|. For
a trivial shape agiy x with Uy, .| = [Vay, | = k, its matrix A, Mg, , = n % -1 is a component
in M. Crucially, it is full rank and has minimum singular value n~¥, hence we can charge other
shapes that have small norm to the trivial shapes. We call this procedure a charging scheme.

Negligible shapes. We can charge several shapes to the trivial shapes if the contribution from
those shapes are dominated by the scaled identity matrices from the trivial shapes; we call all
shapes that can be charged this way negligible.

Definition 6.14. We say a shape is negligible if |E(a)| # 0 and
AeMy]) < nm 2 g OEE@D,

Intuitively, for a negligible shape a in block My (meaning |U,| = |V,| = k), its contribution
[AaM,|| < n~F, which is the minimum singular value of A, , Mo, ,-

In Section A.1, we will identify a simple criterion to determine whether a shape is negligible or
not (Lemma A.3), then we will prove that M, , dominates all negligible shapes, hence forming a
PSD component in M:

Lemma 6.15. For k = 0,1,2, let Lpeg1 1 be the set of negligible shapes in block My, and let Epegy i =

Y e Loegii AaM,. There exist constants c1,co > 0 such that if the threshold T < n“, then

Hgnegl,kH < nk-es,
This implies that
)\ﬂtriv,kMﬂtriv,k + 51’1€g1,k > 0 .

Note that in the case k = 0, we have My = 1+ o(1). This is consistent with the calculations
of low-degree hardness in Section 4. Note also that M must have a non-trivial null space due to
the constraints, hence there must be non-negligible shapes in £ which we deal with next.

The same analysis also shows the following norm bounds,

Lemma 6.16. There exists a constant ¢c1 > 0 such that if the threshold T < n“¥, then for any k, ¥,

kit

Ml Sn— 7.
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Figure 4: Spider agpider-

Connected shapes and spider. We look at the shapes in M1 and My, that are connected, mean-
ing there is path from U, to V, and Smin # &. We show in Section A.2 that there is only one
connected non-trivial shape that is not negligible, namely the spider; see Figure 4 for illustration.

Lemma 6.17. If a € L is a connected shape and not a trivial shape nor a spider, then a is negligible.

Next, we handle the spider a4,,.,. The main insight is that My, is “almost” in the null space
of M, i.e. /\/lMaSPi 1 = 0. Then, we use the following result (see also [G]] 20, Fact 3.1]); we give a
short proof for completeness.

Lemma 6.18. Suppose a matrix A satisfies M A = 0, then M — A = 0 implies M = 0.

Proof. For any vector x, let y be its projection onto the column space of M. We have y L Null(M)
andy' Ay = 0. Then, x ' Mx = y'" My =y " (M — A)y. Thus, M — A = 0 implies x' Mx > 0 for
all x, which means M > 0. O

Intuitively, Lemma 6.18 allows us to add/remove any component of M which is in the null
space of M. In our case, we can thus remove the component Aq_;,. Ms_;,,, from M modulo some
small error Sspider. More specifically, in Section A.3, we will show the following,

Lemma 6.19. Suppose M exactly satisfies all constraints {gs(x) = O}s<mu. Then there exists a matrix A
such that M A = 0 and

A M“spider =A + 800 + 820 + 82—5 + 822,

Aspider

where €y, Ex, Exy, Ex are errors in blocks Moo, Mao, Moz, Moy respectively, and 1E00| = 5(71_3),
|€20]l = O(n=>72), and [|Ex || = O(n=27¢).

Thus, we have

M i= M= A= M= Ry Mayy + Expicer

Aspider
Mo +Eo0 0 My +Ey (15)
= 0 M 0 ,

Moo + Ex 0 ./\/1/22 +Ex»

where M), is the block My, with the spider removed.
Then, by Lemma 6.18, it suffices to prove that M — A > 0. Next, we turn to the shapes in
Moo, M2 and the disconnected shapes in Mo,.

Disconnected shapes. Several disconnected shapes in £ (with Spin = @) are not negligible. We
note that all shapes in Mj; must be connected due to the conditions in Definition 6.11. We will
show that all disconnected shapes can be captured in a positive semidefinite component while
introducing negligible errors.

We first introduce the following definition,
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Definition 6.20 (One-sided shape). We say a shape is one-sided if either U, or V, is empty and there is
no isolated component disconnected from U, or V,. If V, = &, we call it a left one-sided shape; if U, = @,
we call it a right one-sided shape.

Note that the transpose of a left one-sided shape is a right one-sided shape, and further any
disconnected shape in M, contains a left and right one-sided shape. The main observation is that
for any disconnected shape a = (al,a;), M, ~ M,, M;z.

Lemma 6.21. For a disconnected shape a = (a, ng ) where ay, ay are left one-sided shapes,

M, = MM, + €,

ollapse(a1,a; )

where € qapse(a,,a]) CONSists of shapes obtained from collapsing ay and a, . Moreover, all such collapsed

shapes are negligible.

The collapsed shapes are a result of graph matrix multiplication; see details in Section A.4. We
will show that all disconnected shapes can be captured in a PSD component. The intuition is that
SinCe )\a — )\al )\az, the term AaMa ~ (Aal Mal ) ()\azMaz)T.

Lemma 6.22. Consider the first column of M': (Moo, 0, Mog), and let v == (1,0, ﬁ—ég) The matrix
Moo - o0 captures all disconnected shapes in Mo, modulo some error consisting of negligible shapes.

At this point, we can conclude that all shapes in M are accounted for and thus M is positive
semidefinite. However, it does not exactly satisfy the constraints. We now proceed to prove that
we can correct M with a small perturbation.

Fixing the pseudo-distribution. We show that we can “fix” M such that Mg, = M + & sat-
isfies all constraints exactly and that £ is negligible. Suppose we view the pseudo-expectation
E as a flattened vector, then there exists a matrix Q such that QE = 0 if and only if E satisfies
all constraints. Here we assume that E only includes even-degree monomials, since odd-degree
monomials are zero already and don’t need to be fixed.

To begin, in Section A.5 we show that if the truncation threshold 7 in Definition 6.2 is chosen
appropriately, then M already approximately satisfies the constraints, i.e. the norm of the “error
vector” || QE||, ~ 0.

Lemma 6.23. There exist constants C,Cy,ca,c3 > 0 such that if e > Clﬁ;g;:lg” and % < 7 < n, then
|QE|, < n=%eT,

Next, we fix E by projecting it to the null space of Q,
Ena = E— Q" (QQ")'QE,

where (QQ )" is the pseudo-inverse of QQ since it is not invertible. Clearly, QFEna = O.

Finally, to bound the norm of the correction ||Q (QQ " )*QE||,, it suffices to upper bound ||Q||
and |[(QQ")*||. For [[(QQT)T||, we need to lower bound the smallest nonzero singular value of Q.
We prove the following in Section A.6,

Lemma 6.24. There exists a constant C such that for ¢ > Cl%:lzgn, Q|| < O(n) and the smallest nonzero
eigenvalue of QQ " is Q1 (n?).
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Lemma 6.23 and Lemma 6.24 immediately imply the following

Lemma 6.25. There exist constants C,Cy,ca,c3 > 0 such that if e > Cli’ggbg "and & < T < n%, then

there exists a matrix Egy that corrects the nonzero blocks of M such that M + Egy satzsﬁes all constraints
{gs(x) = OYep and that || Egy || < n= D),

Proof. ||Q]| - [[(QQT)* H ~(1/11) due to Lemma 6.24. Thus, the correction |Q" (QQ")TQE||; <
QI - 1(QQ )| - [QE|l> < n~ D), 0

Putting things together. We are ready to prove Lemma 6.3. The proof is essentially a summary
of the results in this overview.

Proof of Lemma 6.3. The candidate moment matrix given by Definition 6.2 can be written as a sum
of graph matrices of shapes in £: M =Y, A;M,, and has the following structure,

Mg 0 Mg
M= 0 M 0
My 0 Mpy

By Lemma 6.25, we can correct the moment matrix so that Mg, = M + &gy satisfies all
constraints with error || Egy || < n~ ).
Next, by Lemma 6.19, there exists a matrix A such that Mg, A = 0 and that the spider term

Moy, €quals A plus some errors:

Aspider
Moo + Eno 0 ./\/l + 52—5
M= Mgpg — A = 0 M+ E&n 0 ,
Moo+ Ex 0 M, +En

where M, is the block My, with the spider removed, and the errors [y| = O(n72), ||Ex] =
O(n=52), |Ex|l = O(n27%), and ||En || = n~2E). Now, due to Lemma 6.18 it suffices to prove
that M’ is positive semidefinite.

Next, let u == (1,0, ﬁégi?‘)) the first column of M’ divided by the first entry, and consider
the matrix (Moo + ) - uu' (note that Mgy + Eyp = 1+ 0(1)). This matrix is approximately the
matrix Mg - vv ' in Lemma 6.22 that captures the disconnected shapes in Mpy;:

0 0 0
M = (Moo + 500) cuu! + |0 Mu+&n 0 ,
0 0 b+ Ep

where MY, is M/, with the disconnected shapes removed, and £}, contains error terms including
negligible shapes, ./\/lzoé'zTO, and 500./\/120./\/1;0. By Lemma 6.16, the latter two have norms O(n~3) <
2
n®.
Finally, both My; + &1 and MY, + £, now only contain the trivial shapes and negligible
shapes, hence by Lemma 6.15 they are PSD. This proves that M’ = 0, which completes the proof.
O
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Remark 6.26 (Comparison to the proof strategy of [G]] "20]). Our proof is conceptually similar
and builds heavily on the analysis in [G]] " 20] with some key differences. In [G]]"20], the goal is
to work with a special form of “rank 1” polynomial constraints {(x, ¢;)?> = 1};c,, where the g;s are
random vectors (the “affine planes” problem). As a result, the construction of pseudo-distribution
leads to a moment matrix with a different set of shapes playing a prominent role — 2-uniform
graphs as opposed to 3-uniform hypergraphs in our case. As a result, several components in the
proof (including the spectral norm bounds, the characterization of negligible shapes and spiders)
are different.

Our analysis also requires dealing with certain disconnected shapes a bit differently by “charg-
ing” them to an appropriate extra PSD component. This actually leads to an important quantita-
tive difference: in the result of [G]]720], the sum-of-squares lower bound (that works for nOM)-
degree as against just degree 4 in our work) succeeds only for m < n3/27¢. This is despite the
fact that low-degree hardness even for the rank-1 random polynomial above suggests a threshold
of m < n?7¢. In contrast, our analysis provides a nearly optimal lower bound at degree 4 that
matches the prediction of low-degree hardness.
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A  Omitted Proofs

A.1 Contributions from negligible shapes

In this section, we look at what shapes are negligible, and we show that the total contribution of
the negligible shapes is dominated by the trivial shapes.
By the graph matrix norm bounds (Proposition 6.10) and (14),

(a)|— \Ua\-z*-\Va\ ) n“’(V(“))*W(SEninH“’(Wiso) ‘

Aa| - | Mal| < n™ (IE(a)| - logn)PUE@D (16)

since |V (a)| < O(|E(a)|) fora € L.
In the following lemma, we identify a quantity that indicates if a shape is negligible or not.

Lemma A.1. For a shape a € L, define

p(a) = [E(a)] - LD =2 Cmin) £ (o) a7

Cloglogn
logn

Then, there exist constants C,c1 > 0 such that for e =
|E(a)| # 0and

and T = n“¥, if a shape a € L satisfies

€
p(a) > ¢lE(a)],
then it is negligible.

Proof. First, Wis, = @ due to Condition 5 of £ (in Definition 6.11). If we choose C to be sufficiently
large and c; sufficiently small, then since |E(a)| < T = n“¢, by (16) we have

M, || < n— 25 —00) yOCIE@)) =23 —caelE(a)

for some constant c;. This satisfies the definition of negligible shapes (Definition 6.14), thus a is
negligible. O

Figure 5 includes some negligible shapes for illustration.

U, U,
k

v, i

Figure 5: Negligible shapes.

Next, we analyze the quantity ¢(a). To do so, we first introduce some more notations. For a
shape a, let S,, C, be the set of square and circle vertices respectively. Let u, = Uu, \ (U, NV,)and
vV, =V, \ (U, NV,), and let Spin = Smin \ (Us N V;). The conditions of £ in Definition 6.11 ensure
that

1. The degree of any square vertex in U, U V, must be odd; minimum degree 1,
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2. The degree of any square vertex in U, N V, must be even; minimum degree 0,
3. The degree of any other vertex must be even; minimum degree 2.

Definition A.2 (Large-degree vertex). We say that a vertex has large degree if its degree is larger than
the minimum degree (and must be larger by at least 2 due to the conditions in Definition 6.11).

The following lemma lets us determine whether a shape in £ is negligible or not,

Lemma A.3. Forashape a € L, let &5, 5. be the number of large-degree square and circle vertices,

1, ~ ~ € 1 ~ 1 €
(P(a) 2 _Z(|ua| + |Va’) + Z’E(LZ)’ + EW(Smin) + §5s+ <1 - E) 56'

Proof. First, by Condition 5 of £, Wi, = &. Moreover, U, N V, must be in the minimum vertex
separator, so their contributions in (17) cancel out. Then, using w(| ]) = 1 and w(()) =2 —¢, we
can rewrite ¢(a) as

9la) = [E@)] = 313 — (1= 5) 1G] + 50(Gin).

where S, is the set of square vertices excluding U, N V.

By Condition 2 of £, each square vertex in U,, V, must have degree at least 1, and each square
vertexin S, \ (U, U V,) must have degree at least 2 (they are not isolated). Each large degree vertex
introduces at least two more. Thus, the total number of hyperedges

1/~ ~ ~ ~ o~ ~ 1/~ ~
@] > 5 (106l + 1Val +213:\ (Ua U V)| +265) = [Sal = 5 (18al + |Val) +36;
Moreover, each circle vertex must have degree at least 2. Thus,
|E(a)| = 2|C,| + 26..

Combining the two, we get

1, ~ ~ 1 €
(Tl + 172]) + SIE@)] + 30(Gmia) + 50+ (1 5 ) .

o(0) = E)| - (F1E@)| + (16l +17) - 30 ) (1-5) (3IE@1 - &) + 30(Gmn)
)
This completes the proof. O
We now prove Lemma 6.15. We first derive a bound on the number of negligible shapes.

Lemma A.4. Let ¢ > 2. The number of shapes with exactly ¢ edges and no isolated vertices is at most
00,

Proof. Since each hyperedge connects to 3 vertices, there can be at most 3/ vertices. If there are v
vertices, then there are v3 ways to assign edges. Thus, in total, the number of shapes is at most
Y, 0% < (30) - (36)38 < 00, O
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Lemma A.5 (Restatement of Lemma 6.15). For k € {0,1,2}, let Lpeq1x e the set of negligible shapes
in block My, and let Enegk = Yae Loegii AaM,. There exist constants c1,cp > 0 such that if the threshold
T < n%¢, then

||gnegl,kH < nikiczg .

This implies that
Aatriv,kMatriv,k + gnegl,k = 0.

Proof. The shapes in Lpeg x can have number of hyperedges ranging from 2 to 7. By Lemma A4,
Definition 6.14 of the negligible shapes, and the triangle inequality,

[Enegiill < Y Al [IMa]l < Zgo —k—0(e0) —kzn—czgg

ac £neg1,k

for some constant ¢, > 0 provided that ¢; is small enough. The summation is upper bounded by
n~% for some 3. Thus, [|Enegrill < 77572 < 0(n~F), much smaller than the minimum singular
value of Ay, M, - This completes the proof. O

Atriv k

The same analysis shows that the norm of block My, is dominated by the shape with the
largest norm.

Lemma A.6 (Restatement of Lemma 6.16). There exists a constant c¢; > 0 such that if the threshold
T < n, then for any k, £, || My || < n=T,

Proof. By Lemma A.3, ¢(a) > —W — £|E(a)|. The same calculations show that

ktt
1

Ml < 3 [AaMa] <n”

acL:
|Ua|:k/‘va‘:€

A.2 Non-trivial non-spider connected shapes are negligible

We say that a shape is connected if there is path from U, to V,. For connected shapes, we will
show that except for one shape, all connected shapes can be charged to the trivial shapes. We call
that shape a spider; see Figure 4.

We first show the following result about the structure of connected shapes.

Lemma A.7. For connected shapes « € L, suppose |U,| = |Va| = 2, U, NV, = &, and the minimum
vertex separator contains only one square vertex, then that vertex must have degree at least 4.

Proof. Suppose for contradiction Smin contains one square vertex [ i | and it has degree 2 (it can-
not be isolated). Then, consider the left and right sides of the graph separated by this vertex.
Since [ i | must contribute exactly one degree to each side, the total degree of square vertices on
each side must be odd (each hyperedge contributes two degrees). However, by the conditions in
Definition 6.11, the degree of any [ | € U, U V, must be even, whereas the degree of [j] € U, UV,
must be odd, thus due to |U,| = |V,| = 2 the total degree must be even. This is a contradiction.
Thus, deg([ i |) must be larger than 2, which means it must be at least 4. O

52



Next, we show that all non-spider non-trivial connected shapes are negligible. Recall that a
shape is negligible if ¢(a) > £|E(a)|, and this can be determined by Lemma A.3.

Lemma A.8 (Restatement of Lemma 6.17). If a € L is a connected shape and not a trivial shape nor a
spider, then a is negligible.

Proof. First, observe that for connected shapes, we must have |U,| = |V,| < 2. We split into several
cases and apply Lemma A.3,

1. U, = V,. In this case, U, V, = &, and since 4 is not a trivial shape, |E(a)| > 0. Thus,
¢(a) > 7|E(a)].

2. |U,| = |V4] = 1and U, NV, = @. Such shapes must be connected, so w(Smin) is at least 1,
which cancels out with —§ (|Us| 4 |Va|) = —3. Thus, ¢(a) > £|E(a)|.

3. |U,| = |Vu| = 2and |U, N V,| = 1. Since |U,| = |V,| = 1 and U,, V, must be connected, this
is the same as the previous case.

4. |U,| = Vol =2, U, NV, = &, and w(Smin) = 1 or w(Smin) = 2. First, if Smin contains just
one square vertex, then by Lemma A.7 it must have large degree, hence %w(Smm) + %(55 >1,
canceling out the term —; (|U,| + |V4|) = —1. On the other hand, if w(Smin) > 2, then clearly
it already cancels out the —1.

5. Uyl = |Vua| =2, U,NV, = &, and w(Smin) = 2 — &. In this case, Smin contains exactly one
circle vertex, and ¢(a) > —1+ £|E(a)| + (1 — e/2) = e(}|E(a)| — 3). Now, if a is a spider,
then |E(a)| = 2 and ¢(a) = 0. Fortunately, for other non-spider shapes, |E(a)| > 4, which
means ¢(a) > §|E(a)|.

Thus, except the spider, all non-trivial connected shapes have ¢(a) > £|E(a)|. O

A.3 The spider is close to the null space of M

As described in the proof overview, we first identify the null space of the moment matrix M that
satisfies all constraints exactly: for any I C [n] (|I| < 2) and s € [m],

- - 1 -

0=E[x (x"Gx)] = ZijlE [xlxz-x]-] + - ZGfiIE[xI] ,
i#] i

where we use x% = % We can represent the above using a matrix L, = M,, + %Maz (drawn as

graph matrices in Figure 6), with rows indexed by s € [m] and columns indexed by I C [n]. It

is easy to see that the (s, I) entry of Ly M is exactly E[x!(x" Gsx)]. One can view L, as a “check

matrix”, i.e. if M exactly satisfies the constraints, then LM = 0.

Un [ | Ve + 1w |G

Figure 6: L, = Mg, + %Mﬂz.

Next, we prove that MasPi 1 18 close to the null space of M.
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Lemma A.9 (Restatement of Lemma 6.19). Suppose M exactly satisfies all constraints {gs(x) =
0}s<m. Then there exists a matrix A such that M A = 0 and

A M“spider =A + 600 + 620 + 62—5 + 622,

Aspider

where 500, &, Exy, Exp are errors in blocks Moy, Mag, Moz, Moy respectively, and |Eqp| = O(n73),
1€20]l = O(n=%/2), and || x| = O(n27F).

Proof. Consider the matrix L; and shapes ai,ap in Figure 6. Using the graph matrix norm bounds
(Proposition 6.10), | My, || = O(n) and LM, || = O(n2~%). Now, we consider L, Ly:

Ly Ly = M, M, + (MTMa1+MTMa2)+ MTM@ M, My, + Ejy + E5y + Ego.

where ||E})|| < 5(71%_5) and ||E},]| < ( n1=¢). For the first term MalMal, for iy # ip and j1 # jo,
M;Mal({il,iz}, {jler} Z G1112 2
SG m

Represented using graph matrix multiplication, M, M,, is a sum of shapes in Figure 7. Note that
the last two graphs come from the term M, My, ({i1,i2}, {i1,2}) = Lse(m)(G;;,)* and using the
fact hy(z)? = (22 — 1) + 1 = ha(z) + ho(z).

ualr }@ ‘/U‘ X U, 1 @’{ Vo, =
u,
u, >—G)—~< Ve + + wnv, ; + Wnv, O
U0 Vo
Va

Figure 7: Expansion of M M,,.

Observe that the first shape in Figure 7 is the spider, which is the dominating term in the

expansion: ||Mag,,. || = O(n?), whereas the rest of the shapes have norms O(n%¢). Since Aagpiger =

n~*, we can rewrite the spider term
/\aspiderMﬂspider - (MTMﬂl + EZZ) - n74L2 L2 + 500 + 520 + 520 + 522/
where [|Ego|| = O(1n7), [|Ex| = O(n~>/?), and || €| = O(n~27). O

Thus, since M - L2T L, = 0, by Lemma 6.18 it suffices to show that M — 11_4L2T L, = 0. This
essentially kills the spider term A Mage, I M.

Aspider
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A.4 Disconnected shapes are captured in a PSD component

Disconnected shapes are the shapes where U,, V, are disconnected, i.e. there is no minimum vertex
separator. Many of these shapes are not negligible compared to the trivial shapes. However, we
will prove that such shapes can be captured in a PSD component of M.

Given a disconnected shape a = (aj, a2T ) where a5, a, are left one-sided shapes, we first ana-
lyze the multiplication M, M,, (recall that M,,, M,, are both vectors). Consider the example in
Figure 8. For iy # ip # j1 # jo, the entry of MalMaT2 is

T .. PR _ S1 81 S2 52
(MmMaz)({llrQ}/ {]11]2}) = Z Gilkaiz : Z Gjlszgg
k#iyip tEji
s1€[m] s$2€[m]
— 51 (251 52 52 51 (251 (251 51
- Z _ Gilkaiszlsz€é+ Z _ Gilkaithszée
k#L¢{i1,ig,j1.j2} k#0¢{iqig.j1.d2}
S1752 51=%2
51 (251 (S2 52 51 (251 (51 51
+ ), GLGLGRLGR+ ). GGG G+
k=t2{i,in,j1.j2} k=t {iyig,j1z}
51752 51=52

This expansion introduces several graph matrices, the first is the disconnected shape a. The first
two terms are drawn out in Figure 8. For other entries such as i :=i; = j; and i # ip # jo,

(Mo My,) (i} {12} = )0 GEGLGEGE+ ). GiGyGiLGl

1]2 1]2
k#e{;‘zz,i,fz} kAl iigifp)
S17#8S2 1=52
S1 (281 (252 52 S1 (281 (251 251
+ ) G G, Gif, G + Y, Gy G, Gify G + -+ -
k=t¢{iinijr} k=t¢{iinijr}
S17#£8 51=52

These terms correspond to the collapsed shapes: each collapsed shape is obtained by iteratively
merging one vertex from the left one-sided shape with one vertex (of the same type) from the right
one-sided shape. The first and second terms above are drawn out in Figure 8.

Uy,

Figure 8: Shapes introduced by multiplying M, M,,. The first is a disconnected shape; the second
is by collapsing s, sp (setting s; = s); the third is by collapsing i1, j; and sy, s, (setting s; = s> and
i1 = J1)-

Now, we proceed to prove Lemma 6.21.
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Lemma A.10 (Restatement of Lemma 6.21). For a disconnected shape a = (aj, ng ) where ay, ay are left
one-sided shapes,
Ma - M{ZlM + g

collapse (1,45 )

where & apse(a,,a]) CONSists of shapes obtained from collapsing a, and a, . Moreover, all such collapsed

shapes are neglzgzble

Proof. By the discussions above, expanding the matrix M,, M, results in a summation of several
shapes, one of which is the disconnected shape a = (al,aZT ). Now, it suffices to show that all
collapsed shapes are negligible.

For a collapsed shape g, since it is connected, Smin must contain at least one vertex. Moreover,
the merged vertices must have large degree (recall Definition A.2), hence J; or 6. must be at least
1. Since |U,| + |V;| = 4, by Lemma A.3 we must have ¢(a) > {|E(a)|, meaning that a is negligible.

Some care is required if the collapsed shape has parallel edges, which may happen if the end-
points of two different hyperedges collapse. We handle this by breaking the parallel edge into a
sum of graph matrices. For example, suppose a shape collapsed from a; and 4, has two parallel
edges ¢ labeled 1. Then by h;(z)? = hy(z) + 1, we get a sum of two shapes by, by (with the same
coefficient A4, A4,), where by has the same edge e labeled 2, and b, has no edge (and may have an
isolated vertex). Clearly, by is negligible, but to show that b, is also negligible requires some work.

Let a = (a1,a, ) be the disconnected shape, and consider a shape b with isolated vertices
collapsed from a; and a, . This collapsed shape introduces an error A,M,;, and we must show
that [|[A,M,|| < O(n=2~QEE®D), Let Eyq be the set of deleted edges, and note that [A,| = |Ay] -
O(n~IEaell) and || Ay M, || = O(n=2~9(®)) (recall the definition of ¢ in (17)). Thus, it suffices to show
that

¢(b) + [Eqel| = Q(e|E(b))).

Let Siso, Ciso be the set of isolated square and circle vertices respectively, and let b’ = b\ (Siso U
Ciso), the shape without the isolated vertices. Clearly, ¢(b) = ¢(V') — w(Wiso) = @(V') — [Siso| —
(2 — €)|Cisol, and further by Lemma A.3, ¢(b') > —1 + £|E(b)| + 4w (Smin)- Next, observe that the
vertices in Wi, must have degree > 4 before the edges were removed. We consider two cases:

1. The isolated vertices were originally connected to circle vertices only: In this case, we have
W(Smin) > 2 — &. Burthet, |Egel| > % - 4/Siso| and |Egel| > 4|Ciso| + 2. Thus,

1 1 |Egel| —

S
p(0) + |Eaal = 1+ SIEG) + 22— ) — 5|Eaal — 2~ T2 4 By > £JE®)].

r-l>|0'>

2. Theisolated vertices were originally connected to some square vertices: In this case, we have
w(Smin) = 1. Observe that the originally connecting square vertices must contribute at least
2 deleted edges. Thus, |Egel| = 2|Siso| + 2 and |Ege1| = 4|Ciso|, and we have

3 1 |Ege| —2 E €
p(b) + [Eaal > ~1+ SIE®)| 43— Fel =20 g lEaal g s Sip).
In both cases, the collapsed shape is negligible. This completes the proof. O

Finally, we handle the disconnected shapes with an additional disconnected component. Con-
sider a = (ay,ay) where a; is a left one-sided shape and 4, is the disconnected component. Note
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that a, must be a shape in £ and M,, is a scalar which is negligible due to Lemma A.3. More-
over, A, 4,) = AayAa,- The matrix M, can be written as M, = Ma, Mg, — Ecoliapse(ay,a,), Where
Ecollapse(ar,a,) CONSists of shapes obtained by collapsing a1,42. Now summing up all possible a,’s
for a fixed a1, we get

Aoy Ma, + ZA(m,ﬂz)M(ﬂlﬂz) = Aoy My, (1 + Z)‘“ZM@) —Aay ZA“ZECOHaPSG(ﬂlﬂz)
ap a

a

Observe that 1+ Y, A4, My, is simply Mog! The same procedure can be done for shapes (a1, a2, a3 )
where a1, a3 are left one-sided shapes. This essentially shows that all disconnected components can
be absorbed into the shape without that component.

Lemma A.11 (Restatement of Lemma 6.22). Consider the first column of M: (Moo, 0, Myg), and let
v = (1,0, ﬁ—;g) The matrix My - vo ' captures all disconnected shapes in Moy modulo some error
consisting of negligible shapes.

Proof. Let Lieft, Liight be the set of left and right one-sided shapes in £. Also, note that Mgy =
1+ 0(1). From the discussion above, we can write the vector

MZO = MOO Z /\aMa + Z Z )\a/\bgcollapse(a,b) .

a€ Liegt a€ Lo bEL

Similarly, the sum of disconnected shapes in M3, can be written this way:

MOO Z )Lal )\az Mﬁ1,a2 + Z Z )\al )\112 Abgcollapse((m,az),b) ’

1,42 € Lyeft 1,026 Lyee bEL
where the first term
-
Z )\alAazMal,az = ( Z )\aMa> ( Z )\aMa> +gcollapsed
1,82 € Lyeft a€ Lieft a€ Lyeft

with Eollapsed consists of negligible collapsed shapes due to Lemma 6.21.

Then, consider the first column of M: (Mg, 0, My), and let v = (1,0, ﬁ—gg) Clearly, the
matrix Moo - vo! captures all disconnected shapes in My, modulo some negligible collapsed
shapes. O

A.5 Truncation error is small

We first prove that the candidate moment matrix M given by the pseudo-calibration method
already approximately satisfies the constraints x ' Gsx = 0 with very small error. Specifically, we
show that E[x!(x Gsx)] is close to 0 for any I C [n], |I| < 2.

Adopting the notation of [G]]"20], we use QE to denote the error, where E is treated as a
dimension () vector, Q is a matrix with rows indexed by (I,s) for I C [n],s € [m], and

QE(I,s) :=E [xl(xTGsx)] .
Note that we only work with degree-4 SoS, so |I| < 2.
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Lemma A.12 (Restatement of Lemma 6.23). There exist constants C,Cy,c2,c3 > 0 such that if e >
Clogl ~ _

% and % < T < n%, then ||QE||; < n™ %,

Proof. By Definition 2.9,

E [xl(xTGsx)} = Z GHE [x xx]}

ijeln
1 I / (18)
= Z} |Z|:< G ‘X!IE(G/,Z)NVP [Z ZZ'Z]']/Z,X(G )] .
1]6 a|<T

Next, using the recurrence of Hermite polynomials, we have xh(x) = hgyq(x) + khy_1(x) for all
k € IN (assuming h_1(x) = 0). For simplicity of presentation, let us single out an entry (s, i, ) and
let k := aj;. We look at the terms hi(x) and hyyo(x),

%x hie(x )hk(x,)+ﬁx'hk+z(x)hk+z(xl)

= H (g1 (x) 4 Kl () hye(x") + ﬁ (M3 (x) 4 (k4 2) g (%)) hpa (X7)

Now, the coefficient of hy1(x) is

1 1

(k I 1)!hk+1 (x) : ((k + 1)hk(x/) + hk+2(xl)) - mthrl(x) . xlthrl(xl) ,

again using the recurrence of Hermite polynomials. Intuitively, this allows us to rewrite a sum of
xhi(x)hi (x") as a sum of x'hy(x")hy(x). Thus, (18) can be rewritten as

~ ~ h
QE(I,s) =E [xl(xTGsx)] = ) 5; Y EG ) {z zizjG Z]hﬁ(G/)} +e.(L,9)
sl P ijei
hp(G) s
— [;T]E(G,,z)wp #'hp(G) (26727 | +ex(l,s)
plp<e1 P

=¢e(I,s),

here we see the importance of the planted distribution: any (G’,z) ~ vp satisfies zG’°z" = 0.

Finally, we analyze the remaining error term e;(I,s). Denote a,s; € IN"*"*" as the index &
with the entry aj; incremented by 1. Since || must be even, |f| must be odd, and the error only
consists of terms h15(G) where B = a g and |a| = 7.

Z Z a+s,] “E,, |: I+{1]}h ] Z Z Aa[{u}hﬂé+5q G). (19)

ala|=Tije(n) a:la|=Ti,je(n)

First, the magnitude of A, ; 1;  (recall equation (13)) can be upper bounded by
M%L{W” < n_\a\+|1|/2+1(|a| _ 1)!! < n_T+2TT/2

here we use the fact that |I| < 2, |«| = T, and (2k — 1)!! < (2k)F.
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Next, fix I,s,i,j. The quantity }-jsj—r Ay, 1+ {ij}fla,; (G) is a sum of graph matrices over shapes
with T edges. By Lemma A 4, there are at most T°(7) such shapes. Since (a, I, {i,j}) must satisfy
the conditions in Definition 6.11 so that A, ; (; i} is nonzero, we can use Lemma A.3 to upper bound

Z /\"‘r1+{irf}h“+sij(G) <~ 7000,
la|=T

Q(eT)+0(1)

Summing over all 7, j, we get |e<(I,s)| < n~ if T < n®* for a small enough constant

c2. Moreover, if T > & for a large enough constant Cy, then ||e<[> < n~?¢7). This requires
> Cl?fgflg” for some constant C. This completes the proof. O

We remark that a result similar to Lemma 6.23 can be also obtained using [G]] 20, Lemma 7.7].
In general, due to the pseudo-calibration method, if the truncation threshold 7 is not too small,
then the candidate moment matrix already approximately satisfies all constraints with tiny error.

A.6 Bounds on the norm and nonzero singular values of Q

Since QE = 0 if and only if [E exactly satisfies all constraints, the natural “fix” is
Es = E-Q'(QQ")'QE.

(QQ")* is the pseudo inverse. Clearly, QEg, = 0.

We assume that [E only contains the even degree monomials since the odd monomials are zero
and don’t need to be fixed. Moreover, we assume that the G;’s are symmetrized so that ij = G]?i;
this has no effect on the results and will greatly simplify the presentation. The entries Gj; and Gj;
will thus have different scaling, but this is only a constant factor difference.

Recall that the rows of Q are indexed by (s, I) where |I| = 0 or 2.

|I| = 0 case. We first look at the entries of QIE corresponding to I = &:

_ - ~ 1
QE(,s) = E[x " Gsx] = ZZijlE xixj] += Y Gj.

i<j e
Here we use xl-2 = % We can see that this is same as the analysis in Section A.3, and the above can

be represented by the matrix L, (see Figure 6).
Lemma A.13. ||Ly|| = O(n) and LyL] has minimum eigenvalue Q(n?).

Proof. ||Ly|| = O(n) is immediate from graph matrix norm bounds. For the minimum singular
value, observe that since m < 12, L, is a dense rectangular matrix and every entry is independent:
Ly((s,2),{i,j}) = ij. Standard techniques in random matrix theory (such as an e-net argument)

show that L, is full rank and has minimum eigenvalue Q(n?) with high probability. O
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|I| =2 case. SupposeI = {k, ¢} withk # ¢, we have

QIE(I,S) = ]E[XI(XTGSX)] =2 Z ijlﬁ[xixjxkxg] + % Z Gijlﬁ[ijg]

i<jiiFEjFEkAL /:{#/}fﬁ
=
1 -
+= ), GiElxx]+ -
Wi iZkze

The expansion corresponds to the shapes in Figure 9 (first 3 terms are drawn out). We denote the
sum as L.

u =+ Lo |G + 1oou |GOdi] 4
u,nv,

U, NV, U, NV,

Figure 9: Shapes in Ly.

Before we dive into the analysis, we first define a shape a* drawn in Figure 10. This shape
appears in the expansion of LsL; and will play a crucial role in our analysis.

Definition A.14 (Shape a*). We define a* as the shape drawn in Figure 10. The matrix Mg+ has entries
Mo ({s1,i1, ju}, {2, 12, jo}) = G, G}Z.

ifs1 # sy and iy # j1 # ip # jo, and O otherwise.
@ JE
Us

Figure 10: Special shape a*. || M- | = O(n?).

PN

® & [
=

Analysis of [4L]. Letay,az,a3 be the first three shapes in Ly drawn in Figure 9. ||[M,, || = O(n),

1_ ¢

1M, < O(nz-1), 1M, || = 6(71%_5), and the rest of the terms have norm o(1). Thus, our
analysis will focus on M,,. We show the following lemma,

Lemma A.15. There exists a matrix Ay such that
Lyl = O(n?) - T+ A1A] + My + &

where ||& || = O(n?~1).
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Proof. First, L4 L4T can be written as
LiL{ = My M, +&

where ||& || = (n2 7). Thus, it suffices to analyze the matrix Ma M, .

Let us write out the entries of My, explicitly: M, ({s, k', '}, {i,j,k, £}) = G} if {K', ¢’} = {k, {}
and 0 otherwise. In other words, it is nonzero only when {k’, ¢’} C {i,j,k, ¢}. Then, we can write
the entries of M,, M, explicitly,

Yisezii CuGr i {in it = {i2, 2},
(May M) ({5101, 1}, {52, 2, 12}) = { Tk fininjny GikGixe  ifju = jo # i1 # ia,
szljz Gflzjl ifiy # iy # j1 # o
The above can be represented as a sum of several graph matrices. We split into different cases;
each case corresponds to a shape:

* 51 = s (diagonal blocks of MalMT

- Case {i1,j1} = {i2, o }: fgr this shape there is an identity component, M, = @(n?) -1+ &
where the error ||€]| = O(n).

— Case jj = jp # i1 # ip: for this shape || M,|| = O(n*" ).

— Case iy # iy # j1 # j2: this shape can be decomposed into a PSD component plus some
errors: M, = A1A] + & where ||E]| = O(n).

* 51 # s (off-diagonal blocks of M,, MaTl):

— Case {i1,j1} = {io, j2}: for this shape |M,| = O(n?>"1).
— Case jj = jp # i1 # ip: for this shape || M,|| = O(n*"2).
- Case iy # iy # j1 # j»: this shape is exactly a* in Figure 10.

Therefore, we can write
MuM, =0O(n?) -1+ A1A] + Mg+ &
where ||&|| = O(n?~1). This completes the proof. O

Remark A.16. We will later show that L4L, has a non-trivial null space. Thus, the shape a* must
exist in the expansion of MQIM;E ; without it, L4L;1r would be full rank, which is a contradiction.

Null space of L4L;]. Consider any E and fix s; < s, € [m]. Observe that

]EZx G, x)Gpaxexy — ]EZx Gs,x)Gpxpxy = 0.

Treating E as a vector, this can be written as ]ETLINSLSZ = 0. Since this holds for all vectors E,

N, s, is in the null space of L, . Collecting the vectors for all pairs s; < sy, we get a matrix N such
that L, N = 0.
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Similar to the analysis of L4, we look at the dominating component M;, of N; M, has norm
1_ ¢

O(n) whereas the other term has norm O(n7 7). The rows of Mj, are indexed by {s,i,j} and the
columns are indexed by {s1,s2}:

Gf]? ifs =51,
My, ({s,1,j},{s1,52}) = —ijl ifs =sp,
0 otherwise.
Next, we prove the following result for NN T,
Lemma A.17. There exists a matrix A, such that
NN = AyA)] — Mg+ &
where ||| < O(n?~2).

Proof. It suffices to consider My, Mle .

.o P _G?Z‘ Gsl if 51 7§ S2
(My,My,) ({s1,i1, 1}, {s2,12, jo}) = T "
2537&51 Gi]j] Gizjz 1 Sl = 52

We can also write My, M; as a sum of graph matrices:

* s =51 = sy (diagonal blocks of M;,leT1 ): it is clear that ) ., G G

i1j1 ~iaf2
Thus, we can write this component as AZAZT for some matrix As.

is a PSD component.

* 51 # s, (off-diagonal blocks of My, Mle ):

— Case i # i # J1 # j2: this shape is exactly a* but with a crucial negative sign.

— Other cases: these shapes have norms bounded by O(n?~%).

Thus, we have
NNT = AyA) — M, + &

where ||& < O(n?2). O

Proof of Lemma 6.24. Combining Lemma A.15 and Lemma A.17, we see that the term M, can-
cels out. This implies that L4L; + NN is full rank and has minimum eigenvalue Q(n?). Now,
we are ready to prove Lemma 6.24.

Cloglogn

Lemma A.18 (Restatement of Lemma 6.24). There exists a constant C such that for e > Togn

Q|| < O(n) and the smallest nonzero eigenvalue of QQ " is Q(n?).

Proof. Q = Ly + Ly. By the graph matrix norm bounds, we have ||Q|| < O(n).
Next, we lower bound the minimum eigenvalue of QQ'. Observe that

L,L] L,L;
T _ 2L9o 2Ly
QQ [L4L2T L4L4T]
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For L,L, , Lemma A.13 shows that it has minimum eigenvalue Q(n?).
For L4L4T, by Lemma A.15 and Lemma A.17 we have

LyLi + NN =0@(n?) - T+ A1A] + ArA] + &,

where ||&]| < 5(112_5 ). This means that L4L;Lr + NN is full rank and has minimum eigenvalue
Q(n?).

For the off-diagonal block L,L, , although both ||L,|| and ||L4|| = O(n), note that L, and M,,
(the dominating component of L) have disjoint rows and columns in Q, meaning that LM, does
not contribute to LyL, . Then, since ||Ls — M,, || < 5(71%*5), we have ||LoL)] || < 5(71%*5).

We have shown that QQ " plus an orthogonal matrix is full rank and has minimum eigenvalue
Q(n?). This implies that the minimum nonzero eigenvalue of QQ' is Q(n?). This completes the
proof. O
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