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Abstract— As power systems transit to a state of high
renewable penetration, little or no presence of synchronous
generators makes the prerequisite of well-regulated fre-
quency for grid-following inverters unrealistic. Thus, there
is a trend to resort to grid-forming inverters which set fre-
quency directly. We propose a novel grid-forming frequency
shaping control that is able to shape the aggregate system
frequency dynamics into a first-order one with the desired
steady-state frequency deviation and Rate of Change of
Frequency (RoCoF) after a sudden power imbalance. The
no overshoot property resulting from the first-order dynam-
ics allows the system frequency to monotonically move to-
wards its new steady-state without experiencing frequency
Nadir, which largely improves frequency security. We prove
that our grid-forming frequency-shaping control renders
the system internally stable under mild assumptions. The
performance of the proposed control is verified via numeri-
cal simulations on a modified Icelandic Power Network test
case.

Index Terms— Control of networks, power systems.

I. INTRODUCTION

POWER system frequency control by storage units has
been a topic of extensive research over the last decade,

especially under the circumstances of the increasing penetra-
tion of renewable generation. Compared to conventional syn-
chronous generators, storage units have outstanding ramping
capabilities, which makes them an ideal choice for provision of
various types of frequency control services. At present, special
policies for storage participation in frequency control services
are being developed by system operators around the world [1].
For instance, the existing rules of the Enhanced Frequency

1Y. Jiang and E. Mallada are with the Johns Hopkins University,
Baltimore, MD 21218, USA. Emails: {yjiang,mallada}@jhu.edu

2A. Bernstein is with the National Renewable Energy Laboratory,
Golden, CO 80401, USA. Email: andrey.bernstein@nrel.gov

3P. Vorobev is with the Skolkovo Institute of Science and Technology,
Moscow 143026, Russia. Email: P.Vorobev@skoltech.ru

This work was supported by NSF through grants EPCN 1711188,
AMPS 1736448, CAREER 1752362, and TRIPODS 1934979, and
Johns Hopkins University Discovery Award. This work was supported in
part by the National Renewable Energy Laboratory (NREL), operated by
Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy
(DOE) under Contract DE-AC36-08GO28308 and in part by the Labora-
tory Directed Research and Development (LDRD) Program at NREL.
The views expressed in the paper do not necessarily represent the
views of the DOE or the U.S. Government. The U.S. Government retains
and the publisher, by accepting the paper for publication, acknowledges
that the U.S. Government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this
work, or allow others to do so, for U.S. Government purposes.

Response –program introduced by National Grid in Great
Britain– already assume the power-frequency response with
a gain of up to 100 p.u. [2], far exceeding typical capabilities
of synchronous generators (15-25 p.u.). Thus, with the fall
of the power system inertia and primary frequency reserves
due to the increased penetration of renewables, energy storage
systems have a potential to become the major providers of
frequency control services in the future power systems.

So far, synthetic inertia and droop response by storage
dominate the scientific literature. These two services are
supposed to compensate for the falling system inertia and
primary reserves, and seem to be a logical solution under
existing grid codes. Typically, the storage units are supposed
to realize the power-frequency type of response while being
in the so-called grid-following mode. That is, inverters of the
storage units measure the grid frequency and then inject (or
consume) power based on a particular control strategy. Such
an approach seems to be effective, yet the fact that there
are certain delays associated with inverter control systems
poses a threat to the frequency security. These delays are
originated from the frequency measurement system – typically
a phase-locked-loop (PLL), and also from inverter current
control and pulse-width modulation (PWM) systems. It is
foreseeable that, in the future low-inertia grid, these delays can
become fatal to frequency security. As an example, during the
already famous South Australian blackout of 2016, the Rate
of Change of Frequency (RoCoF) had hit the values as high as
6 Hz s−1 [3]. Clearly, it becomes vital to develop new methods
for storage participation in frequency control so as to minimize
any possible response delays.

Grid-forming inverters [4] have recently attracted a lot of
attention from the research community, mainly in the context
of autonomous microgrids. Beneficially, this type of inverters
bring a broad range of new options for frequency control.
First, they naturally adjust power almost with no delays (apart
from some electro-magnetic transients in filters). Second,
new control options become available. For instance, inertial
response can be realized without any low-pass filters (hence,
even less delays), since in the grid-forming mode this type
of control becomes strictly causal. Third, inverters in the
grid-forming mode are much less susceptible to grid voltage
variations that often accompany frequency transients, which
provides more reliability to the system. For a more detailed
discussion, interested readers can refer to a recent review [5].
In the present manuscript, we explore a new approach for
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Fig. 1. Block diagram of power network.

advanced frequency control realized by grid-forming inverters
– a topic that is not yet studied sufficiently by both power
and control communities. We note that there is an abundant
literature on stability of grid-forming inverter based systems,
see, e.g., [6]–[8], but most of them consider conventional
approaches for frequency control - droop response and virtual
inertia.

With the aim of improving the frequency security in low-
inertia systems, we propose a novel grid-forming frequency
shaping control that is inspired by its grid-following counter-
part proposed in [9]. We first show that the proposed control
is able to fashion the aggregate system frequency dynamics,
a.k.a. Center of Inertia (CoI) frequency, into a first-order one
with the desired steady-state frequency deviation and RoCoF
(following a sudden power imbalance). Notably, a first-order
system frequency evolution naturally avoids overshoot so that
the frequency deviation moves towards its steady-state without
experiencing the frequency Nadir. Nadir elimination largely
improves the frequency security since it reduces the risk
of under-frequency load shedding. We then show that the
proposed control ensures the internal stability of the overall
system under mild conditions by using the decentralized sta-
bility criterion developed in [10]. We finally confirm the good
performance of the proposed controller through numerical
simulations on the modified Icelandic Power Network test
case [11].

II. POWER SYSTEM MODEL

We consider a power network composed of n buses indexed
by i ∈ N := {1, . . . , n} and transmission lines denoted by
unordered pairs {i, j} ∈ E ⊂ {{i, j} : i, j ∈ N , i 6= j}.
As illustrated by the block diagram in Fig. 1, the system
dynamics are modeled as a feedback interconnection of bus
dynamics and network dynamics. The input signals pin :=
(pin,i, i ∈ N ) ∈ Rn represent power injection changes and
the output signals ω := (ωi, i ∈ N ) ∈ Rn represent the bus
frequency deviations from its nominal value. We now discuss
the dynamic elements in more detail.

1) Bus Dynamics: The set of buses N is a disjoint union of
the set of generator buses G and the set of inverter buses I,
i.e., N = G ] I . The bus dynamics that map net power bus
imbalances uP := (uP,i, i ∈ N ) ∈ Rn to frequency deviations

ω can be described by the transfer function matrix Ĥ(s) :=
diag(ĥi(s), i ∈ N ), where ĥi(s) is the transfer function of
either generator or inverter depending on whether i ∈ G or
i ∈ I.

a) Generator Dynamics: We consider generator dynamics
that are composed of the standard swing dynamics with turbine
droop, i.e.,

ĥi(s) =

(
mis+ di +

r−1t,i

τis+ 1

)−1
, ∀i ∈ G , (1)

where mi > 0 denotes the aggregate generator inertia, di >
0 the aggregate generator damping, τi > 0 the turbine time
constant, and rt,i > 0 the turbine droop coefficient.

b) Inverter Dynamics: We consider grid-forming inverters,
which set local grid frequency deviations ωi directly as a
function of their power output variation qr,i = −uP,i. The
detailed function depends on the control law ĥi(s) employed
to map uP,i to ωi for buses with i ∈ I.

2) Network Dynamics: The network power fluctuations
pe := (pe,i, i ∈ N ) ∈ Rn are given by a linearized model
of the power flow equations [12]:

p̂e(s) =
LB

s
ω̂(s) , (2)

where p̂e(s) and ω̂(s) denote the Laplace transforms of pe
and ω, respectively.1 The matrix LB is an undirected weighted
Laplacian matrix of the network with elements

LB,ij = ∂θj

n∑
k=1

|Vi||Vk|bik sin(θi − θk)
∣∣∣
θ=θ0

.

Here, θ := (θi, i ∈ N ) ∈ Rn denotes the angle deviation from
its nominal, θ0 := (θ0,i, i ∈ N ) ∈ Rn are the equilibrium
angles, |Vi| is the (constant) voltage magnitude at bus i, and
bij is the line {i, j} susceptance.

3) Closed-Loop Dynamics: We are interested in the closed-
loop response of the system in Fig. 1 from the power injection
changes pin to frequency deviations ω, which can be described
by the transfer function matrix

T̂ωp(s) :=
ω̂(s)

p̂in(s)
=

(
In + Ĥ(s)

LB

s

)−1
Ĥ(s) . (3)

It is in general tough to analyze or tune the perfor-
mance of T̂ωp(s). Nevertheless, when the system is tightly-
connected [13], [14], all buses exhibit a coherent response
approximated by

T̂ωp(s) ≈ ĥc(s)1n1Tn , (4)

where 1n ∈ Rn is the vector of all ones and

ĥc(s) :=

(∑
i∈G

ĥ−1i (s) +
∑
i∈I

ĥ−1i (s)

)−1
. (5)

Henceforth, we refer to ĥc(s) in (5) as the coherent dynamics
of the network. Although (5) constitutes an accurate model
when the network connectivity is high, numerical simulations
suggest that it is an accurate model for the response of the
CoI frequency even if such a condition is not satisfied [14].

1We use hat to distinguish the Laplace transform from its time domain
counterpart.



III. GRID-FORMING FREQUENCY SHAPING CONTROL

Motivated by (4) and the above discussion, we focus in this
paper on shaping the response ĥc(s), instead of (3). Thus,
given generator dynamics ĥi(s) for buses with i ∈ G, our
goal is to design inverter dynamics ĥi(s) for buses with i ∈ I
such that the coherent dynamics ĥc(s) is a first-order transfer
function with two degrees of freedom. As a result, the step
response of the coherent dynamics ĥc(s) naturally exhibits no
Nadir as well as tunable steady-state frequency deviation and
RoCoF, as the following theorem formally states.

Theorem 1 (Grid-forming frequency shaping control).
Consider generator dynamics ĥi(s), i ∈ G, as in (1). Then,
the grid-forming inverter control law

ĥi(s) =
1

mI,is+ dI,i − ĝI,i(s)
, ∀i ∈ I , (6)

with mI,i, dI,i > 0, renders a first-order coherent dynamics

ĥc(s) =
1

as+ b
, (7)

with a, b > 0 given by

a :=
∑
i∈I

mI,i +
∑
i∈G

mi and b :=
∑
i∈I

dI,i +
∑
i∈G

di , (8)

if and only if ∑
i∈I

ĝI,i(s) =
∑
i∈G

r−1t,i

τis+ 1
. (9)

In this case, the frequency deviation of the coherent dynam-
ics will experience no Nadir and the steady-state frequency
deviations ω(∞) and the RoCoF |ω̇|∞ will be given by

ω(∞)≈
∑n
i=1 u0,i
b

1n and |ω̇|∞≈
∑n
i=1 u0,i
a

1n , (10)

when the system undergoes step power injection changes, i.e.,
pin = u01t≥0 ∈ Rn with u0 ∈ Rn being any arbitrary vector
direction and 1t≥0 being the unit-step function.

Proof. Applying the desired coherent dynamics given by (7)
and the generator transfer function given by (1) to the defini-
tion of coherent dynamics given by (5) yields

as+ b =
∑
i∈G

(
mis+ di +

r−1t,i

τis+ 1

)
+
∑
i∈I

ĥ−1i (s) .

Thus, the desired inverter control law should satisfy∑
i∈I

ĥ−1i (s)=

(
a−

∑
i∈G

mi

)
s+

(
b−
∑
i∈G

di

)
−
∑
i∈G

r−1t,i

τis+ 1
.

It is straightforward that the control law determined by (6),
(8), and (9) guarantees that the above condition hold. This
concludes the proof of the first statement.

Next, combining (3) and (4), we can see that the frequency
deviations ω̂(s) of the system T̂ωp in response to step power
injection changes p̂in(s) = u0/s is given by

ω̂(s) = T̂ωp(s)p̂in(s) ≈ ĥc(s)1n1Tn
u0
s

=
n∑
i=1

u0,i
ĥc(s)

s
1n , (11)

which can be interpreted as that the frequency deviation on
each bus reacts to the aggregate step power injection change
of size

∑n
i=1 u0,i with the coherent dynamics ĥc(s). Now,

applying initial and final value theorems to (11) with ĥc(s)
given by (7), we find that a and b satisfy the following
relations:

|ω̇|∞= lim
s→∞

s2ω̂(s) ≈ lim
s→∞

s2
∑n
i=1 u0,i

s(as+ b)
1n=

∑n
i=1 u0,i
a

1n ,

ω(∞)= lim
s→0

sω̂(s) ≈ lim
s→0

s

∑n
i=1 u0,i

s(as+ b)
1n =

∑n
i=1 u0,i
b

1n ,

which concludes the proof of (10).

Clearly, given specific requirements on steady-state fre-
quency and RoCoF, there are infinite ways of choosing mI,i

and dI,i to satisfy (8). A straightforward choice is to set

mI,i=
a−∑i∈Gmi

|I| and dI,i=
b−∑i∈G di

|I| , ∀i ∈ I , (13)

where |I| denotes the cardinality of I. Similarly, we propose
the following two strategies to meet (9).
• Matching individual turbine dynamics by individual invert-

ers: Assume the cardinality of I is no less than that of G,
i.e., |I| ≥ |G|. Let It ⊂ I such that there is a bijection
between It and G that maps each j ∈ G to distinct i ∈ It
by the following relation

ĝI,i(s) =
r−1t,j

τjs+ 1
.

∀i ∈ I \ It, simply set ĝI,i(s) = 0.
• Distributing the first-order reduced order model of the

aggregate turbine dynamics [15] over inverters: Let zi ≥
0, ∀i ∈ I, be weighting parameters satisfying

∑
i∈I zi = 1.

Set

ĝI,i(s) = zi
r̃−1t

(τ̃ s+ 1)
, ∀i ∈ I ,

where r̃t and τ̃ are the turbine droop coefficient and time
constant, respectively, of a first-order reduced order model
of ∑

i∈G

r−1t,i

τis+ 1
.

Tuning ĝI,i(s) by distributing the first-order reduced order
model of the aggregate turbine dynamics over inverters seems
to be a more practical choice for two reasons. First, it gets
rid of the need to accurately estimate droop coefficients and
time constants of all individual turbines. Second, it relaxes the
cardinality assumption |I| ≥ |G|.
Remark 1 (Meeting frequency specifications (10)). Choos-
ing a and b to meet frequency specifications (10) naturally
asks for knowledge of the current network composition via
(8) and (9). The estimation of dynamic parameters, including
but not limited to inertia, is currently an active research
area [14], [16], [17]. This endorses our utilization of (10) for
safety specification. Arguably, whether (8) holds rigorously for
chosen a and b is not of major concern. We highlight that the
proposed control always improve RoCoF for any positive mI,i

and steady-state for large enough dI,i, ∀i ∈ I.



Remark 2 (Steady-state power output from grid-forming
frequency shaping control inverters). It is easy to show
from (1), (5), (6), and (8) that the steady-state power output
from the proposed inverters depends on the relation between
di for i ∈ I and r−1t,i for i ∈ G. Note that, if I =

∅, then ĥc(0) = 1/
∑
i∈G
(
di + r−1t,i

)
; otherwise ĥc(0) =

1/
(∑

i∈G di +
∑
i∈I dI,i

)
. Hence, as long as

∑
i∈I dI,i >∑

i∈G r
−1
t,i , the collection of inverters will provide power in

steady-state since the steady-state frequency deviation will be
reduced.

Remark 3 (Freedom in resource allocation). The coherent
dynamics ĥc(s) depends merely on the summation of the
inverse of grid-forming frequency shaping control transfer
functions ĥi(s) over i ∈ I , but not on the way of how
these control resources are distributed across the network.
Although, in our discussion above, control resources are
mainly equally distributed over inverters, there are actually
many other possibilities. Thus, a promising future research
direction will be the exploration of how to optimally allocate
control resources based on additional performance metrics
that may be of interest.

Considering the two choices of ĝI,i(s) suggested before, we
make the following assumption on the form of ĝI,i(s).

Assumption 1 (The form of ĝI,i(s)). ∀i ∈ I, ĝI,i(s) is in one
of the two forms below, i.e.,

ĝI,i(s) = 0 or ĝI,i(s) =
ρi

σis+ 1
, (14)

where ρi, σ > 0.

IV. STABILITY ANALYSIS

In this section, we show that the grid-forming frequency
shaping control given by (6) and (14) ensures internal sta-
bility of the overall system in Fig. 1 under mild conditions
compatible with (9). To this end, we first review some standard
concepts that play a role in our stability analysis.

Definition 1 (H∞ space [18]). H∞ is the Hardy space of
functions F̂ (s) that are analytic in the open right-half complex
plane C+ with a bounded norm ‖F̂‖∞ := sups∈C+

|F̂ (s)|.
Definition 2 (Positive real [19]). A proper rational transfer
function matrix F̂ (s) is called positive real (PR) if:
• Poles of all elements of F̂ (s) are in the closed left-half

complex plane C−.
• For any ν ∈ R such that jν is not a pole of any element of
F̂ (s), the matrix F̂ (jν)+ F̂T (−jν) is positive semidefinite.

• For any ν ∈ R such that jν is a pole of some element
of F̂ (s), the pole jν is simple and the residue matrix
lims→jν (s− jν) F̂ (s) is positive semidefinite Hermitian.

Here, j represents the imaginary unit that satisfies j2 = −1.

Remark 4 (Real rational subspace ofH∞). The real rational
subspace of H∞ consists of all proper real rational stable
transfer matrices. Thus, in order to check whether a proper
real rational transfer function belongs to H∞ or not, it is
sufficient to check whether it is stable or not.

Remark 5 (Applications of positive realness). The posi-
tive realness was originally introduced in electrical network
synthesis [20] and recently extended to mechanical network
synthesis [21]. Moreover, it has been applied a lot to stability
analysis for both linear and nonlinear systems.

We are now ready to conduct a stability analysis.

Theorem 2 (Internal stability under grid-forming fre-
quency shaping control). Let Assumption 1 hold. The system
T̂ωp with (1) and (6) is internally stable if dI,i > ρi, ∀i ∈ I
with nonzero ĝI,i(s).

Proof. According to the decentralized stability criterion pro-
posed in [10], the system T̂ωp is internally stable if ∃τα, ε > 0
such that

γiĥi(s) ∈ Q , ∀i ∈ N , (15)

with

Q :=

{
q̂(s) ∈ H∞

∣∣∣∣ q̂(0) 6= 0,
s

s+ τα

(
1+

q̂(s)

s

)
−ε∈PR

}
,

γi := 2

n∑
j=1

V iV jbij ,

where V i and V j denote the maximum allowable voltage
magnitudes at endpoints of the line {i, j}. Thus, the key is to
check whether the condition in (15) holds for ĥi(s), ∀i ∈ N .

Combining (6) and (14), we know that ∀i ∈ I,

ĥi(s)=
1

mI,is+ dI,i
or ĥi(s)=

(
mI,is+ dI,i−

ρi
σis+ 1

)−1
.

We begin with the later case, from which we get

γiĥi(s) =
γi (σis+ 1)

mI,iσis2 + (mI,i + dI,iσi) s+ dI,i − ρi
. (16)

First, it is well-known that a second-order transfer function is
stable if all coefficients of its denominator have the same sign.
Thus, mI,i, dI,i, σi > 0, and dI,i > ρi, ∀i ∈ I, guarantee the
stability of (16), i.e., γiĥi(s) ∈ H∞. Second, it is trivial to
check that γiĥi(0) = γi/ (dI,i − ρi) 6= 0. Last but not least,
we need to show that ∃τα, ε > 0 such that

1

s+ τα

[
s+

γi (σis+ 1)

mI,iσis2+(mI,i + dI,iσi) s+dI,i−ρi

]
−ε∈PR ,

which is equivalent to

ξ3,is
3 + ξ2,is

2 + ξ1,is+ ξ0,i
η3,is3 + η2,is2 + η1,is+ η0,i

∈ PR (17)

with

ξ0,i := γi − (dI,i − ρi) ταε , (18a)
ξ1,i := (dI,i−ρi) (1−ε) + γiσi − (mI,i+dI,iσi) ταε , (18b)
ξ2,i := (mI,i + dI,iσi) (1− ε)−mI,iσiταε , (18c)
ξ3,i := mI,iσi (1− ε) , (18d)
η0,i := (dI,i − ρi) τα , (18e)
η1,i := (dI,i − ρi) + (mI,i + dI,iσi) τα , (18f)
η2,i := mI,i + dI,iσi +mI,iσiτα , (18g)
η3,i := mI,iσi . (18h)



We now show that (17) holds by performing the algebraic
test for positive realness proposed in [22]. That is, for the
nondegenerate case, i.e., (ξ0,i, ξ1,i, ξ2,i, ξ3,i)

T ∈ R4
≥0 and

(η0,i, η1,i, η2,i, η3,i)
T ∈ R4

≥0\04 with 04 being the zero vector
of size 4, the condition (17) holds if and only if

(ξ1,i + η1,i) (ξ2,i + η2,i) ≥ (ξ0,i + η0,i) (ξ3,i + η3,i) . (19)

We check the nonnegativity of all coefficients in (17) first.
Suppose τα > 0 and 0 < ε < 1. Clearly, it follows
directly from mI,i, dI,i, σi > 0, and dI,i > ρi, ∀i ∈ I, that
ξ3,i, η0,i, η1,i, η2,i, η3,i > 0. Also, for any given τα > 0,
ξ0,i, ξ1,i, ξ2,i > 0 if ε is sufficiently small. Now we are ready
to check whether (19) holds or not. Applying (18) to the left
hand side of (19) yields

(ξ1,i + η1,i) (ξ2,i + η2,i) (20)
= [(dI,i − ρi) (2− ε) + γiσi + (mI,i + dI,iσi) τα (1− ε)]

[(mI,i + dI,iσi) (2− ε) +mI,iσiτα (1− ε)] .
Applying (18) to the right hand side of (19) yields

(ξ0,i + η0,i) (ξ3,i + η3,i) (21)
= [γi + (dI,i − ρi) τα (1− ε)]mI,iσi (2− ε) .

Through standard algebra, using (20) and (21), we get

(ξ1,i + η1,i) (ξ2,i + η2,i)− (ξ0,i + η0,i) (ξ3,i + η3,i)

= (dI,i − ρi) (mI,i + dI,iσi) (2− ε)2

+ (mI,i + dI,iσi)
2
τα (2− ε) (1− ε) + γidI,iσ

2
i (2− ε)

+ [γiσi + (mI,i + dI,iσi) τα (1− ε)]mI,iσiτα (1− ε)
≥ 0 ,

for any sufficiently small ε, which means (19) holds. Thus, the
required positive realness in (17) has been proved. Therefore,
γiĥi(s) ∈ Q in this case.

We then turn to the simple case where

γiĥi(s) =
γi

mI,is+ dI,i
. (22)

First, the stability of (22), i.e., γiĥi(s) ∈ H∞, follows from
the fact that the only pole of it is −dI,i/mI,i < 0. Second,
γiĥi(0) = γi/dI,i 6= 0. As for the required positive realness,
(22) can be considered as a special case of (16) with ρi = 0
and σi = 0. Plugging ρi = 0 and σi = 0 into (18) gives
ξ0,i, ξ1,i, ξ2,i, η0,i, η1,i, η2,i > 0, ξ3,i = η3,i = 0, and

(ξ1,i + η1,i) (ξ2,i + η2,i)− (ξ0,i + η0,i) (ξ3,i + η3,i)

= dI,imI,i (2− ε)2 +m2
I,iτα (2− ε) (1− ε) ≥ 0 ,

for any sufficiently small ε, which lead to the required positive
realness. Therefore, γiĥi(s) ∈ Q in this case.

Finally, from (1), we know that ∀i ∈ G,

γiĥi(s) =
γi (τis+ 1)

miτis2 + (mi + diτi) s+ di + r−1t,i

. (23)

Observe that (23) and (16) have the same form except for
some minor sign differences. Thus, the proof of γiĥi(s) ∈ Q
follows from a similar argument on (16). This concludes the
proof that the system T̂ωp is internally stable.

V. NUMERICAL ILLUSTRATIONS

In this section, we present simulation results that compare
the novel grid-forming frequency shaping control with the pop-
ular grid-forming virtual inertia control [23]. The simulations
are conducted on the Icelandic Power Network available in
the Power Systems Test Case Archive [11]. The simulations
are built upon a nonlinear setup including nonlinear power
flows and line losses. The original dynamic model contains 35
generator buses and 83 load buses, whose union is denoted as
N . To mimic a low-inertia scenario, we only keep 6 generator
buses that are equipped with turbines out of original 35
generator buses. Each of above 6 generator buses is distinctly
indexed by some i ∈ {1, . . . , 6} := G here. We then randomly
pick 6 buses from the set N \ G as inverter buses. Each
of above 6 inverter buses is distinctly indexed by some i ∈
{7, . . . , 12} := I here. The remaining buses are left as load
buses denoted by L := N \ (G ∪ I).

For every generator bus i ∈ G, the aggregate generator
inertia mi, the turbine time constant τi, and the turbine
droop coefficient rt,i are directly obtained from the dataset.
In addition, turbine governor deadbands are taken into account
such that turbines are only responsive to frequency deviations
exceeding ±0.036 Hz [24]. Given that the values of generator
damping coefficients are not provided by the dataset, we set
di = 1 p.u.. For every load buses i ∈ L, the damping
coefficient is chosen as 1/20 of the mean of all generator
damping coefficients, i.e., d̄ := (

∑
i∈G di)/|G|.

The inverter control law on buses i ∈ I is either grid-
forming virtual inertia (GF-VI) or grid-forming frequency
shaping (GF-FS). The GF-VI is modelled as

ĥi(s) =
1

mv,is+ dv,i
, ∀i ∈ I ,

where mv,i > 0 is the virtual inertia constant and dv,i > 0
is the virtual damping constant. ∀i ∈ I , we set mv,i = m̄ :=
(
∑
i∈Gmi)/|G| and dv,i = d̄. As for the GF-FS in (6), we only

test the more practical tuning method suggested in Section III,
where ĝI,i(s) is obtained by distributing the first-order reduced
model of the aggregate turbine dynamics over inverters. Thus,
∀i ∈ I, we set mI,i = m̄,

dI,i = d̄+
r̃−1t

6
and ĝI,i(s) =

r̃−1t

6 (τ̃ s+ 1)
,

which ensures that the RoCoF and steady-state frequency
deviations under GF-VI and GF-FS are the same so as to
provide a fair comparison. Note that, with this setting, the
stability condition required in Theorem 2 is satisfied since
dI,i = d̄+ r̃−1t /6 > r̃−1t /6 = ρi, ∀i ∈ I.

For the purpose of comparison, the frequency deviation of
the system without inverters when there is a step change of
0.3 p.u. in power consumption at a randomly picked bus at
time t = 1 s is provided in Fig. 2(a). The performances of
the system under the two inverter control laws are given in
Fig. 2(b) and Fig. 2(c). Some observations can be made. First,
the system under GF-FS almost exhibits a first-order coherent
dynamics as predicted by Theorem 1, while the system under
GF-VI experiences a deep Nadir. Second, Nadir elimination
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(a) System without inverters, where inverters on buses i ∈ I are
replaced by loads with damping coefficients given by d̄/20 and the
generator damping is increased so as to exactly compensate the lost
inverter damping
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(b) System with GF-VI inverters

0 10 20 30

-0.6

-0.4

-0.2

0

0.2

0 10 20 30

-0.2

-0.1

0

0.1

0.2

(c) System with GF-FS inverters

Fig. 2. Performance of the system when a −0.3 p.u. step change in
power injection is introduced to a randomly picked bus.

via GF-FS only requires an acceptable amount of inverter
power output variation.

VI. CONCLUSIONS AND FUTURE WORK

A novel grid-forming frequency shaping control has been
proposed for inverter-based frequency control in low-inertia
power systems. The proposed control is able to force the
system frequency to exhibit first-order coherent dynamics
with specified steady-state frequency deviations and RoCoF
in response to sudden power injection changes. The key
benefit of a first-order frequency response is that the frequency
deviations gradually evolve towards the final equilibrium with-
out experiencing Nadir so as to improve frequency security.
The internal stability of the system is guaranteed by the
proposed control under mild conditions. The performance of
the proposed control is verified by numerical simulations.

Future work include: (i) developing a more advanced control
to achieve a second-order coherent dynamics with desired
steady-state frequency deviations, RoCoF, and tunable Nadir;
(ii) investigating the problem of optimal allocation of the
proposed control resources over the network; (iii) considering
a more detailed inverter model to throw light to device-level
execution of the proposed control.
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