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Abstract
The homotopy continuation method has been widely used in solving parametric systems
of nonlinear equations. But it can be very expensive and inefficient due to singularities
during the tracking even though both start and end points are non-singular. The current
tracking algorithms focus on the adaptivity of the stepsize by estimating the distance to the
singularities but cannot avoid these singularities during the tracking. We present a stochastic
homotopy tracking algorithm that perturbs the original parametric system randomly each
step to avoid the singularities. We then prove that the stochastic solution path introduced by
this new method is still closed to the original solution path theoretically. Moreover, several
homotopy examples have been tested to show the efficiency of the stochastic homotopy
tracking method.

Keywords Stochastic homotopy tracking · Nonlinear parametric systems · Convergence
analysis

1 Introduction

The homotopy continuationmethod is themain tool to solve systems of polynomial equations
in numerical algebraic geometry (NAG) [6,14,18]. The basic idea is to trace out a one-real-
dimensional solution curve described implicitly by a system of equations: given a nonlinear
system F(u) to solve, one first forms a nonlinear system G(u) that is related to F(u) in a
prescribed way but has known, or easily computable solutions. The systems G(u) and F(u)

are combined to form a homotopy, such as the linear homotopy

H(u, t) = F(u)(1 − t) + tG(u) = 0, (1)

where G(u) is a start system with known solutions and F(u) is the target system we want
to solve. Then solutions of F(u) = 0 can be solved by tracking t from 1 to 0 via this linear

B Wenrui Hao
wxh64@psu.edu

Chunyue Zheng
cmz5199@psu.edu

1 Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-021-01506-y&domain=pdf
http://orcid.org/0000-0002-6925-7424


87 Page 2 of 14 Journal of Scientific Computing (2021) 87 :87

homotopy. In NAG, there is a well-developed theory on how to choose the start system
G(u) to guarantee all the solutions of F(u) via this homotopy. Furthermore, by constructing
different start systems based on other theories, the homotopy continuation method has also
successfully applied to compute solutions of nonlinear systems such as nonlinear PDEs
[11,19,20], machine learning [9,10], and nonlinear systems in biology and physics [12].
Moreover, the homotopy continuation method has been also used to explore the general
parameter space, so-called paramotopy, as a quite powerful tool for many classes of problems
that arise in practice [3].

In the linear homotopy setup, each solution path can be tracked via the predic-
tion/correction algorithm [6,14,18] which is referred as the homotopy tracking algorithm.
This algorithm could become very inefficient if the parametric system is singular or near
singular. To avoid the singular system, in NAG [18], the gamma trick is proposed to con-
struct a random homotopy setup in (1) by multiplying a random complex number. Then the
probability of hitting a singularity during the tracking is zero. Nevertheless, the system could
be still near singular so that the homotopy tracking is still time-consuming [6,14,18]. In order
to address this numerical challenge, an adaptive multi-precision path tracking algorithm [5]
has been developed by adjusting precision in response to step failure according to the error
estimates. An adaptive step-size homotopy tracking method [13] has also been developed
to control the tracking stepsize each time to compute the bifurcation point. An endgame
algorithm [7] has also been widely used to deal with the singularities at t = 0. However,
all these algorithms could be very slow and inefficient when the size of nonlinear systems
becomes large [4].

Stochastic algorithms have been widely used in scientific computing [8,17], e.g., the
coordinate gradient descent has been developed for solving large-scale optimization problems
[16] and has also been revised for solving the leading eigenvalue problem [15]. Motivated
by these stochastic algorithms, in this paper, we present an efficient stochastic homotopy
tracking method that gives the original system a random perturbation each step so that it can
avoid singularities and improve the efficiency during the tracking. The paper is organized as
follows: In Sect. 2, we present a novel stochastic homotopy tracking algorithm; In Sect. 3,
we analyze the stochastic homotopy tracking algorithm and show the solution path is close to
the original solution path under certain conditions; several numerical examples are presented
in Sect. 4 to illustrate the efficiency of the stochastic homotopy tracking method.

2 Stochastic Homotopy ContinuationMethod

Generally speaking, a nonlinear parametric system is written as F : Rn × R → R
n,

F(u, p) = 0, (2)

where p ∈ [a, b] is a parameter and u is the variable vector that depends on the parameter
p, i.e., u = u(p). Suppose we have a solution at the starting point, namely u(a) = u0, the
homotopy tracking along the solution path, u(p), reduces down to solving the Davidenko
differential equation [6,18],

⎧
⎨

⎩

Fu(u, p)
du
dp

+ Fp(u, p) = 0,

u(a) = u0,
(3)
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Fig. 1 An illustration example, x2 − p6 = 0, has two solution paths x = ±p3 and one bifurcation point
at p = 0. The traditional homotopy tracking (Left) hits the bifurcation point while the stochastic tracking
(Right) can avoid the bifurcation point by tracking x = ±(p3 + ξ), where ξ ∼ N (0, 0.1)

where Fu(u, p) is the Jacobian matrix and Fp(u, p) is the derivative vector with respect
to p. If Fu(u, p) is nonsingular, the solution path u(p) is smooth and unique. However,
when Fu(u, p) becomes singular, the solution path yields different types of bifurcations
[6]. Then the numerical homotopy tracking could become very inefficient. In order to solve
this numerical issue, a trial-and-error homotopy tracking method [6,18] and an adaptive
homotopy tracking method [13] have been developed to control the stepsize of p. However,
the computational cost could still be very expensive when the homotopy tracking method is
applied to the large-scale nonlinear systems due to the slow tracking near the singularity.

To address this challenge, we propose to solve a stochastic version of the Davidenko
differential equation by introducing a noise term, namely

{
Fu
(
u(p, ω), p

)
du(p, ω) + Fp(u(p, ω), p)dp = g(u(p, ω), p)dW (p, ω),

u(a, ω) = u0,
(4)

whereω is a randomvariable and possesses the initial conditionu(a, ω) = u0 with probability
one and dW (p, ω) denotes differential form of the Brownian motion [2]. Then, in this case,
the solution path can avoid the singularity with probability one (See Fig. 1 for an illustration).

In order to integrate the idea of the stochastic differential equation into the homotopy
tracking, we track the solution u(p) from p = a to p = b with a stepsize �p. Then for each
pk = a + �p · k, we solve the stochastic system below

F̃(u, pk) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F1(u, pk)
...

Fi−1(u, pk)
u( j) − ũk−1( j)
Fi+1(u, pk)

...

Fn(u, pk)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:= F(u, pk, ξ = (i, j)) = 0, (5)

where ũk−1 is the solution from previous step and F̃ : Rn × R → R
n can be viewed as

randomly chooses n − 1 equations from F(u, pk) and replaces Fi by u( j) − ũk−1( j). Here
the random variable ξ follows the uniform distribution, namely P(ξ = (i, j)) = 1

n2
, and
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quantifies the perturbations to the original systemF(u, pk). More generally, we can randomly
replacem (1 ≤ m ≤ n) equations of F(u, p) by u(J ) = ũk−1(J )whereJ = (J1, · · · ,Jm)

is a m index. Then we define the s-th equation of F̃ as

F̃s(u, pk) =
{
Fs(u, pk), s /∈ I
u(Jc) − ũk−1(Jc), s ∈ I and Ic = s

, (6)

where I = (I1, · · · , Im) stands for randomly choosing m equations. If s ∈ I, then we
find c such that Ic = s and replace the s-th equation by the previous value, namely,
u(Jc)− ũk−1(Jc). Here I and J are randomly drawn from the uniform distribution, namely
P(I,J ) = 1

(Cm
n )2

. We denote the set of all possible m indexes as M.

Finally, we summarize the stochastic homotopy tracking algorithm in Algorithm 1. In
this algorithm, we increase the number of random equations, m, if there is no solution to
the stochastic system F̃(u, pk+1) = 0. This is equivalent to perform a larger perturbation
to the original system by solving fewer equations. Similarly, we could also increase the
perturbation by setting an adaptive tolerance for ‖F(ũk+1, pk+1)‖ < T OL by fixing the
number of randomly choosing equation, m.

Algorithm 1: The pseudocode of the stochastic homotopy tracking algorithm.

Input: A step-size �p, a threshold T OL , and a start point (ũ0, p0)
Output: A nearby solution path (ũk, pk)Nk=1
for k = 0, · · · , N do

Set m=1;
Randomly choose n − m equations and n − m variables to form the stochastic
system F̃(u, pk+1) (5);

Solve F̃(u, pk+1) = 0 using the predictor-corrector method;

if ‖F̃(ũk+1, pk+1)‖ < T OL then
Update the solution sequence;

else
Increase m and solve the stochastic system again.

end
end

3 Convergence Analysis

We employ the Euler predictor and the Newton corrector [1] for the homotopy tracking
algorithm: Given a solution (u0, p0) on the path, that is, F(u0, p0) = 0, an Euler predictor
step gives

Fu(u0, p0)�u = −Fp(u0, p0)�p, (7)

and then letting u1 = u0 + �u; The Newton corrector reads

Fu(u1, p1)�u = −F(u1, p1). (8)

Then we repeat this correction until (u1, p1) is on the path. The predictor-corrector method
for the stochastic homotopy tracking method needs to replace F by F̃ defined in (5) with the
corresponding derivatives below:
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F̃p(u) = Fp(u, ξ = (i, j)) = Fp(u) − ∂Fi
∂ p

ei ,

F̃u(u) = Fu(u, ξ = (i, j)) = Fu(u) − ei
∂Fi
∂u

(u) + Ei j ,

where Ei j is a matrix with all zero elements except the (i, j)-th element as one. For the
general stochastic system (6) with m random equations, we have ξ = (I,J ) and

F̃p(u) = Fp(u) −
∑

i∈I

∂Fi
∂ p

ei � Fp(u) − C(u, ξ),

F̃u(u) = Fu(u) −
∑

i∈I
ei

∂Fi
∂u

(u) +
∑

i∈I, j∈J
Ei j � Fu(u) − S(u, ξ).

We also define the tensor ∇Fu(u) as follows:

[∇Fu(u)]i jk = [∇2Fi (u)] jk, i, j, k ∈ {1, 2, · · · , n}
and define the multiplication of the tensor with a vector, b ∈ R

n , as

[∇Fu(u)b]i j =
n∑

k=1

[∇2Fi (u)] jkbk .

Then ‖∇Fu(u)‖ = max1≤i≤n ‖∇2Fi (u)‖. In this section, we analyze that the solution path
guided by the stochastic homotopy tracking is closed to the path guided by the traditional
homotopy tracking under certain conditions. This analysis is performed for Euler’s prediction
in Theorem 3.1 and for Newton’s correction in Theorem 3.2.

Theorem 3.1 (Euler’s Prediction). Suppose u0 and ũ0 are the start points for the original
system F and the stochastic system F̃ respectively. If we have the following assumptions

• Fu and F̃u are invertible and differentiable and

‖Fu‖ ≤ Lu, ‖F−1
u ‖ ≤ Mu and ‖F̃−1

u ‖ ≤ Mu;
• ∇Fu, ∇F̃u are continuous;
• Fp and F̃p are differentiable and ‖Fp‖ ≤ Mp;
• ∇Fp is continuous and ‖∇Fp‖ ≤ L p,

then we have

‖E(uN − ũN )‖2 ≤CS1‖E(u0 − ũ0)‖2 + CS2
m2

n2
+ O(

m2�p

n2
), (9)

where CS1 and CS2 are constants.

Proof We compare the predictor step of the traditional and the stochastic homotopy tracking
at p = pk−1 and obtain

uk = uk−1 + F−1
u (uk−1)Fp(uk−1)�p,

ũk = ũk−1 + F̃−1
u (ũk−1)F̃p(ũk−1)�p,

(10)

which implies

uk − ũk = uk−1 − ũk−1 + FP(uk, ũk)�p, (11)
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where FP(uk, ũk) = F−1
u (uk−1)Fp(uk−1)− F̃−1

u (ũk−1)F̃p(ũk−1). Then by taking the expec-
tation with respect to ξ , we have

‖E(uk − ũk)‖2 = ‖E(uk−1 − ũk−1) + E
(
FP(uk , ũk)

)
�p‖2

≤ ‖E(uk−1 − ũk−1)‖2 + ‖E(FP(uk , ũk)
)‖2�p2 + 2‖E(uk−1 − ũk−1)‖‖E

(
FP(uk , ũk)

)‖�p

≤ (1 + �p)‖E(uk−1 − ũk−1)‖2 + ‖E(FP(uk , ũk)
)‖2(�p + �p2).

(12)

Moreover, by Taylor’s theorem, there exists tk−1 such that

Fu(uk−1) = Fu(ũk−1) + ∇Fu(tk−1) · (uk−1 − ũk−1). (13)

Therefore, we have

FP(uk, ũk) = F−1
u (uk−1)

[
Fp(uk−1) − Fu(uk−1)F−1

u (ũk−1, ξk)Fp(ũk−1, ξk)
]

= F−1
u (uk−1)

[
Fp(uk−1) −

(
(Fu + S)(ũk−1, ξk) + ∇Fu(tk−1) · (uk−1 − ũk−1)

)

F−1
u (ũk−1, ξk)

(
Fp(ũk−1) − C(ũk−1, ξk)

)]

= F−1
u (uk−1)[Fp(uk−1) − Fp(ũk−1) + R(ũk−1,uk−1, ξk)],

(14)

where

R(ũk−1,uk−1, ξk)

= C(ũk−1, ξk) − S(ũk−1, ξk)F−1
u (ũk−1, ξk)(Fp(ũk−1) − C(ũk−1, ξk))

− ∇Fu(tk−1) · (uk−1 − ũk−1)F−1
u (ũk−1, ξk)(Fp(ũk−1) − C(ũk−1, ξk)).

Moreover, there exists sk−1 such that

Fp(uk−1) = F−1
u (uk−1) + ∇Fp(sk−1)(uk−1 − ũk−1),

then Eq. (14) becomes

‖E(FP(uk−1, ũk−1))‖2
= ‖E(F−1

u (uk−1)∇Fp(sk−1)(uk−1 − ũk−1)) + E(F−1
u (uk−1)R(ũk−1,uk−1, ξk))‖2

≤ 2‖E(F−1
u (uk−1)∇Fp(sk−1)(uk−1 − ũk−1))‖2 + 2‖E(F−1

u (uk−1)R(ũk−1,uk−1, ξk))‖2)
≤ 2‖F−1

u (uk−1)‖2‖∇Fp(·)‖2‖E((uk−1 − ũk−1))‖2 + 2‖F−1
u (uk−1)‖2‖E(R(ũk−1,uk−1, ξk))‖2

(15)

Since F−1
u and ∇Fp are bounded, we have

‖E(FP(uk−1, ũk−1))‖2 ≤ 2M2
uL

2
p‖E((uk−1 − ũk−1))‖2 + 2M2

u‖E(R(ũk−1,uk−1, ξk))‖2
(16)

Next we estimate R(ũk−1,uk−1, ξk):
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‖E(R(ũk−1, uk−1, ξk))‖2 = ‖Eξ0ξ1...ξk−1 (Eξk R(ũk−1, uk−1, ξk))‖2

=
∥
∥
∥E
( 1

(Cm
n )2

∑

I,J ∈M
R(ũk−1, uk−1, ξk = (I,J ))

)∥∥
∥
2

≤ 3
( ∥
∥ 1

(Cm
n )2

∑

I,J ∈M
E(C(ũk−1, ξk = (I,J )))

∥
∥2

︸ ︷︷ ︸
A1

+ ∥∥ 1

(Cm
n )2

∑

I,J ∈M
E(S(ũk−1, ξk = (I,J ))F−1

u (ũk−1, ξk = (I,J ))(Fp(ũk−1) − C(ũk−1, ξk = (I,J ))))
∥
∥2

︸ ︷︷ ︸
A2

+ ∥∥ 1

(Cm
n )2

∑

I,J ∈M
E(∇Fu(tk−1) · (uk−1 − ũk−1)F−1

u (ũk−1, ξk = (I,J ))(Fp(ũk−1)

︸ ︷︷ ︸

−C(ũk−1, ξk = (I,J ))))
∥
∥2

︸ ︷︷ ︸
A3

)
.

(17)

Since
∑

I,J∈M
C(ũk−1, ξk = (I,J )) =

∑

I,J∈M

∑

i∈I

∂Fi
∂ p

ei = Cm
n C

m−1
n−1 Fp(ũk−1),

we have

A1 = ‖C
m
n C

m−1
n−1

(Cm
n )2

E(Fp(ũk−1))‖2 = ‖C
m−1
n−1

Cm
n

E(Fp(ũk−1))‖2 ≤ m2

n2
M2

p.

Moreover, we have

A2 ≤ ‖ 1

(Cm
n )2

∑

I,J∈M
E(S(ũk−1, ξk = (I,J ))‖2‖F−1

u (ũk−1, ·)‖2‖Fp(ũk−1)‖2

≤ M2
uM

2
p

(Cm
n )4

∥
∥
∑

I,J∈M
E(S(ũk−1, ξk = (I,J ))

∥
∥2,

By the definition of S(ũk−1, ξk = (I,J ), we have
∑

I,J∈M
E(S(ũk−1, ξk = (I,J )) =

∑

J∈M
E
( ∑

I∈M
(
∑

i∈I
ei

∂Fi
∂u

(u) −
∑

i∈I, j∈J
Ei j )

)

= Cm
n C

m−1
n−1 E(Fu(ũk−1)) − Cm−1

n−1 C
m−1
n−1 E,

where E is the all-ones matrix. Therefore

A2 ≤ m2

n2
(Lu + 1)2M2

uM
2
p.

Similarly, we have

A3 ≤ ∥∥ 1

(Cm
n )2

∑

I,J∈M
∇Fu(tk−1)‖2‖E(uk−1 − ũk−1)‖2‖F−1

u (ũk−1, ·)‖2‖Fp(ũk−1)
∥
∥2

≤ L2
uM

2
uM

2
p‖E(uk−1 − ũk−1)‖2.
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Then Eq. (17) becomes

‖E(R(ũk−1,uk−1, ξk))‖2 ≤ m2

n2
C1 + C2‖E(uk−1 − ũk−1)‖2, (18)

where C1 = 3(M2
uM

2
p(Lu + 1)2 + M2

p) and C2 = 3L2
uM

2
uM

2
p .

Then we get the estimate below

‖E(FP(uk−1, ũk−1))‖2 ≤ m2

n2
M1 + M2‖E(uk−1 − ũk−1)‖2,

where

M1 = 2M2
uC1 and M2 = 2M2

uL
2
p + C2.

Plugging the above results into (12), we have

‖E(uk − ũk)‖2

≤(1 + �p)‖E(uk−1 − ũk−1)‖2 + (
m2M1

n2
+ M2‖E(uk−1 − ũk−1)‖2))(�p + �p2)

≤ (1 + �p + M2(�p + �p2))
︸ ︷︷ ︸

M̃1

‖E(uk−1 − ũk−1)‖2 + m2

n2
M1(�p + �p2)

︸ ︷︷ ︸

M̃2

.

(19)

which implies

‖E(uk − ũk)‖2 ≤M̃1‖E(uk−1 − ũk−1)‖2 + M̃2

≤M̃2
1‖E(uk−2 − ũk−2)‖2 + M̃1M̃2 + M̃2

≤M̃k
1‖E(u0 − ũ0)‖2 + (1 + M̃1 + · · · + M̃k−1

1 )M̃2

=M̃k
1‖E(u0 − ũ0)‖2 + 1 − M̃k

1

1 − M̃1
M̃2.

(20)

Then we obtain the estimate of
1−M̃k

1

1−M̃1
M̃2 as follows

1 − M̃k
1

1 − M̃1
M̃2 ≤ e(1+M2)(b−a) − 1

(1 + M2)�p + M2�p2
M̃2

≤e(1+M2)(b−a) − 1

(1 + M2)�p
(1 − M2

1 + M2
�p + O(�p2))

m2M1

n2
(�p + �p2)

≤m2M1

n2
e(1+M2)(b−a) − 1

1 + M2
+ O(

m2�p

n2
)

Thus, Eq. (20) becomes

‖E(uN − ũN )‖2 ≤ e(1+M2)(b−a)
︸ ︷︷ ︸

CS1

‖E(u0 − ũ0)‖2 + M1
e(1+M2)(b−a) − 1

1 + M2︸ ︷︷ ︸
CS2

m2

n2
+ O(

m2�p

n2
).

�	
Remark 1 For large-scale nonlinear parametric problems, when n is large, the error caused
by the stochastic homotopy tracking becomes very small due to the O( 1

n2
) estimate for any
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given m. Therefore, the Euler’s prediction of the stochastic homotopy tracking stays closed
to the prediction by the traditional homotopy tracking.

Theorem 3.2 (Newton’s correction). Suppose uik and ũik are i-th Newton’s iterations for

solving F(u, pk) = 0 and F̃(u, pk) = 0 respectively. If we have the following assumptions

• Fu and F̃u are invertible and differentiable and

‖F−1
u ‖ ≤ Mu and ‖F̃−1

u ‖ ≤ Mu;
• ∇Fu, ∇F̃u are continuous and

‖∇Fu‖ ≤ Ku and ‖∇F̃u‖ ≤ Ku;
• The initial guesses u0k and ũ0k are in a small neighborhood of the real solutions uk and

ũk ,

then we have

lim
i→∞ ‖E(uik − ũik)‖ ≤ ‖E(uk − ũk)‖. (21)

Proof We consider the i-th iteration of Newton’s correction for F(u, pk) = 0 and F̃(u, pk) =
0. There exists tk and t̃k such that the following Taylor expansions hold

0 = F(uk, pk) = F(uik) + Fu(uik)(uk − uik) + 1

2
(uk − uik)

T∇Fu(tk)(uk − uik),

0 = F̃(ũk, pk) = F̃(ũik) + F̃u(ũik)(ũk − ũik) + 1

2
(ũk − ũik)

T∇F̃u(t̃k)(ũk − ũik).

Thus the Newton’s schemes are re-written as

ui+1
k = uik − F−1

u (uik)F(uik) = uk + 1

2
F−1
u (uik)(uk − uik)

T∇Fu(tk)(uk − uik),

ũi+1
k = ũik − F̃−1

u (ũik)F̃(ũik) = ũk + 1

2
F̃−1
u (ũik)(ũk − ũik)

T∇F̃u(t̃k)(ũk − ũik).

Therefore,

‖E(ui+1
k − ũi+1

k )‖ =
∥
∥
∥E
((

(uik − F−1
u (uik)F(uik)

)− (ũik − F̃−1
u (ũnk )F̃(ũnk ))

))∥∥
∥

=‖E(uk − ũk) + E(
1

2
F−1
u (uik)(uk − uik)

T∇Fu(tk)(uk − uik))

− E(
1

2
F̃−1
u (ũik)(ũk − ũik)

T∇F̃u(t̃k)(ũk − ũik))‖

≤‖E(uk − ũk)‖ + 1

2
‖F−1

u (uik)‖‖∇Fu(tk)‖E(‖uk − uik‖2)

+ 1

2
‖F̃−1

u (ũik)‖‖∇F̃u(t̃k)‖E(‖ũk − ũik‖2)
≤‖E(uk − ũk)‖ + MuKu

(
E(‖uk − uik‖2) + E(‖ũk − ũik‖2)

)
.

(22)

Due to the local assumption of the initial guesses, then we have the quadratic convergence
of Newton’s method, namely,

E(‖uk − uik‖) ≤ αE(‖uk − ui−1
k ‖2),

E(‖ũk − ũik‖) ≤ α̃E(‖ũk − ũi−1
k ‖2). (23)
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Fig. 2 An illustration of the stochastic homotopy tracking method for tracking the solution path x(t) of (24)
on four solution branches. The solid lines are for the traditional homotopy tracking while the dashed lines are
for stochastic homotopy tracking

Therefore

‖E(ui+1
k − ũi+1

k )‖ ≤‖E(uk − ũk)‖ + MuKu
(
αE(‖uk − ui−1

k ‖4) + α̃E(‖ũk − ũik‖4)
)

≤‖E(uk − ũk)‖ + MuKu
(
αi
E(‖uk − u0k‖2

i+1
) + α̃n

E(‖ũk − ũik‖2
i+1

)
)
.

By taking the limit on both sides, we have

lim
i→∞ ‖E(uik − ũik)‖ ≤ ‖E(uk − ũk)‖.

�	
Remark 2 The difference of Newton’s corrections between the traditional and the stochastic
homotopy tracking is bounded by the difference of the solutions between the original and the
stochastic systems which is pretty small for large scale systems. Thus Newton’s corrections
by two different homotopy tracking algorithms are near each other.

4 Numerical Examples

In this section, we compare the stochastic homotopy tracking with the traditional homotopy
tracking on theMatlab platform.Weuse the stopping criteria of�p < 10−7 for the traditional
homotopy tracking method to detect the bifurcation points.

4.1 Example 1

We first consider a homotopy setup for solving a system of polynomial equations with the
total degree start system, namely,

H(x, y, z; t) = t

⎡

⎣
x2 + y2 + z2 − 1
x2 − y2 − z2

x + y + z

⎤

⎦+ (1 − t)

⎡

⎣
x2 − 1
y2 − 1
z − 1

⎤

⎦ = 0. (24)
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Table 1 Timing comparison between traditional and stochastic homotopy tracking methods on different
branches shown in Fig. 2

Traditional homotopy tracking Stochastic homotopy tracking

Branch 1 1.05s (259 steps) 0.24s (11 steps)

Branch 2 0.59s (221 steps) 0.24s (11 steps)

Branch 3 0.91s (246 steps) 0.17s (11 steps)

Branch 4 0.84s (237 steps) 0.18s (11 steps)

When t = 0, the solutions of H(x, y, z; 0) = 0 are known explicitly. The solutions of the
target system, H(x, y, z; 1) = 0, are revealed by tracking t from 0 to 1 on the complex field.
There are four solution paths needed to track from 0 to 1 for u = [x, y, z]T shown in Fig. 2.
The solid lines indicate the solution path of x(t) for the traditional homotopy tracking, while
the dashed lines represent the solution paths guided by stochastic homotopy tracking.

The timing data is compared between two tracking methods is shown in Table 1 with
�t = 0.1 which clearly demonstrates that the stochastic homotopy tracking method is more
efficient with fewer steps from t = 0 to t = 1.

4.2 Example 2

We consider the following 1D nonlinear boundary value problem.

{
uxx = u2(u2 − p),

ux (0) = 0, u(1) = 0,
(25)

where p is the parameter. The multiple solutions become more as p gets larger. Therefore,
turning points happen when p is tracked. We discretize (25) by using the finite difference
method and have the following discretized polynomial system

F(u, p) :=
⎛

⎜
⎝

1
h2

(u1 − 2u1 + u2) − u21(u
2
1 − p)

1
h2

(ui−1 − 2ui + ui+1) − u2i (u
2
i − p)

1
h2

(un−2 − 2un−1) − u2n−1(u
2
n−1 − p)

⎞

⎟
⎠ = 0. (26)

where h = 1
n , u ∈ R

n−1 and ui = u( i
n ) for i = 1, 2, · · · , n − 1. We track the parameter p

from 14 down to 2 with �p = −1 for one solution path with a turning point shown in Fig 3.
Since the lower solution branch is close to the constant solution branch (the red line in Fig. 3,
the stochastic homotopy tracking just switches to the constant solution branchwhen it is close
to the turning point. Moreover, the stochastic homotopy tracking is much efficient than the
traditional method by comparing the average tracking time shown in Table 2 for different grid
points n. For the upper solution branch, since no nearby solution branch exists, the stochastic
homotopy tracking has to deal with a stochastic system with a large perturbation, namely
increasing m in Algorithm 1.
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Fig. 3 An illustration of stochastic homotopy tracking for tracking (25) with respect to p from 14 to 2. The
lower solution branch is switched to the constant solution branch (Left); The upper solution branch needs a
large T OL (Middle) or a large m (Right) in Algorithm 1

Table 2 Comparison between the
traditional and the stochastic
homotopy tracking with different
number of grid points n

n Traditional Stochastic

10 0.027s (24 steps) 0.013s (12 steps)

20 0.051s (22 steps) 0.022s (12 steps)

40 0.141s (30 steps) 0.076s (12 steps)

80 0.530s (29 steps) 0.272s (12 steps)

4.3 Example 3

Last we consider the Schnakenberg model which is a system of partial differential equations
shown below [12]:

⎧
⎪⎨

⎪⎩

∂u

∂t
= �u + η(a − u + u2v),

∂v

∂t
= d�v + η(b − u2v),

(27)

where u is an activator and v is a substrate. The steady-state system of (27) with non-flux
boundary condition has been well-studied in [12] and shown multiple steady-state solutions
and the bifurcation structure to the diffusion parameter d . In this example, we consider the
discretized steady-state system on a 1D domain x ∈ [0, 1]with no-flux boundary conditions:

F(u, v, d) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
h2

(2u2 − 2u1) + η(a − u1 + u21v1)
1
h2

(ui−1 − 2ui + ui+1) + η(a − ui + u2i vi )
1
h2

(2un − 2un+1) + η(a − un+1 + u2n+1vn+1)
d
h2

(2v2 − 2v1) + η(b − u21v1)
d
h2

(vi−1 − 2vi + vi+1) + η(b − u2i vi )
d
h2

(2vn − 2vn+1) + η(b − u2n+1vn+1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0. (28)

where h = 1
n , u, v ∈ R

n+1 with ui = u( i−1
n ) and vi = v( i−1

n ) for i = 1, 2, · · · , n + 1. We
introduce ghost points u0, v0,un+2, and vn+2 at x = 0 and x = 1. The nonflux boundary
conditions imply that u0 = u2, v0 = v2,un+2 = un , and vn+2 = vn . We choose a =
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Fig. 4 Traditional and stochastic homotopy tracking methods with different number of grid points

Table 3 Comparison between traditional and stochastic homotopy tracking with different number of grid
points n and different step-sizes �d

Lower branch Upper branch
n �d Traditional Stochastic Traditional Stochastic

100 −0.5 2.76s(32steps) 2.30s(31steps) 2.49s(28steps) 1.87s(31steps)

−1 3.23s(59steps) 1.35s(16steps) 2.38s(34steps) 0.93s(16steps)

200 −0.5 12.88s(53steps) 8.83s(31steps) 10.62s(35steps) 8.93s(31steps)

−1 9.36s(53steps) 3.08s(16steps) 7.61s(21steps) 3.88s(16steps)

300 −0.5 77.9s(90steps) 34.1s(31steps) 40.2s(34steps) 36.9s(31steps)

−1 40.3s(90steps) 16.5s(16steps) 30.1s(34steps) 15.6s(16steps)

1/3, b = 2/3, η = 50 and track d from 50 to 35 with different number of grid points n. As
shown in Fig. 4, the traditional homotopy tracking method stops near the bifurcation around
d ≈ 45 with a very small tracking stepsize. However, the stochastic homotopy tracking
method can avoid the bifurcation point and track down to 35. Moreover, as n goes larger,
the solution path guided by the stochastic homotopy tracking gets closer to the original path.
Detailed iteration comparison between two tracking methods is shown in Table 3 for the
different number of grid points n and different tracking stepsizes �d . It clearly shows that
the stochastic homotopy tracking method becomes more efficient compared to the traditional
one as the size of the system gets larger.

5 Conclusion

By taking the path tracking from a stochastic differential equation point of view, we have
developed a stochastic homotopy path tracking algorithm that perturbs the nonlinear para-
metric system by randomly removing m equation each step. In this paper, we also proved
that the solution path guided by the stochastic homotopy algorithm is nearby the original
solution path but can avoid the singularities during the tracking. Several numerical exam-
ples are used to demonstrate the efficiency of this new method through comparison with the
traditional homotopy tracking method. However, the efficiency of the stochastic homotopy
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tracking depends on the solution landscaping of the original system: if there exists a nearby
solution path for bifurcation points, then the stochastic homotopy tracking can switch to
the nearby solution paths and keep tracking. Otherwise, the computational cost might be
still expensive since it keeps solving stochastic systems by increasing perturbations. In the
future, we will improve the efficiency of stochastic homotopy tracking further by exploring
the optimal perturbation.
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