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Abstract

Autonomy and connectivity are expected to enhance safety and improve fuel efficiency in
transportation systems. While connected vehicle-enabled technologies, such as coordinated cruise
control, can improve vehicle motion planning by incorporating information beyond the line of sight
of vehicles, their benefits are limited by the current short-sighted planning strategies that only utilize
local information. In this paper, we propose a framework that devises vehicle trajectories by
coupling a locally-optimal motion planner with a Markov decision process (MDP) model that can
capture network-level information. Our proposed framework can guarantee safety while minimizing
a trip’s generalized cost, which comprises of its fuel and time costs. To showcase the benefits of
incorporating network-level data when devising vehicle trajectories, we conduct a comprehensive
simulation study in three experimental settings, namely a circular track, a highway with on- and off-
ramps, and a small urban network. The simulation results indicate that statistically significant
efficiency can be obtained for the subject vehicle and its surrounding vehicles in different traffic
states under all experimental settings. This paper serves as a poof-of-concept to showcase how
connectivity and autonomy can be leveraged to incorporate network-level information into motion
planning.
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1. Introduction

Connected vehicle (CV) technology facilitates communication among vehicles, their surrounding
infrastructure, and other road users. This connectivity is enabled through Dedicated Short Range
Communication (DSRC) (Kenney 2011) or cellular technologies, and paints a more comprehensive
picture of the transportation network than what could be observed by each individual road user. As
such, it is expected that upon deployment, the CV technology would significantly improve mobility,
enhance traffic flow stability, reduce congestion, and improve fuel economy, among other benefits.
The CV technology has enabled several advanced driving assistance systems (ADAS), such as
Cooperative Adaptive Cruise Control (CACC) (Shladover et al. 2015; Wang, Wu, and Barth 2018;
Milanés and Shladover 2014), Connected Cruise Control (CCC) (Zhang, Sun, and Orosz 2017,
Orosz 2016) and Platooning (Lioris et al. 2017; Maiti, Winter, and Kulik 2017; Z. Huang et al. 2018;
Bhoopalam, Agatz, and Zuidwijk 2018). Although existing CV-enabled technologies are based on
local communications, the CV technology can also provide granular data at the network level by
strategically positioning road side units (RSUs) to ensure connectivity throughout an entire network.



Motion planning in transportation networks has been traditionally carried out using techniques
that leverage local information to make locally-optimal decisions (Gonzalez et al. 2015). In
particular, optimal control-based models have been widely applied to traditional transportation
networks for their ability to provide short-term efficient solutions. The CV technology can help
improve these locally-optimal motion planners, as it allows vehicles to see beyond line of sight. More
importantly, it enables vehicles to obtain network-level information through communication with
other connected vehicles and RSUs. Such connectivity can be leveraged to enhance long-term safety
and efficiency of planned trajectories; however, for this potential to be realized, the network-level
information should be integrated into the decision making systems. This cannot be accomplished
using existing techniques, as they are not scalable to utilize granular data collected from the entire
network. Hence, new methods need to be developed that can (i) leverage network-level data, and
(i) provide fast and efficient trajectories that adapt to the stochasticity of traffic networks.

This paper introduces a general framework that combines high-level network-level information
with granular local information to devise network-informed cruising, routing, lane-changing, and
platoon-merging decisions for a CAVs in a mixed traffic scenario, as shown in Figure 1. As
demonstrated in this figure, the proposed framework combines an optimal control (OC) trajectory
planning model proposed in (X. Liu et al. 2021, in press) with a Markov decision process (MDP)
model developed in this paper to devise an efficient trajectory for an entire trip. The proposed MDP
model can capture the progression of traffic as a stochastic process at an aggregate level, thereby
complementing the optimal-control-based motion planning model through incorporating network-
level information. In this context, using the proposed MDP framework allows vehicles to skip near-
sighted locally-optimal trajectories (X. Liu et al. 2021, in press), and make routing, lane-changing,
and platoon-merging decisions with a long-term view so as to minimize a combination of short-term
and long-term costs.

At each update period t,,;4, within road piece i:

For each actiona € A

I
| )

Granular data Coarse network-level data
Coc(a): Short term cost of the optimal V' (a): Expected discounted cost of the trip
trajectory by the OC model in the remaining from road piece i + 1 to the end of the trip
of the road piece i
Computed in real-time Looked-up from a policy table
MDP model: Select the trajectory with
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Figure 1: Structure of the proposed MDP framework. The optimal control (OC) model plans a number
of trajectory to determine the short-term cost associated with every higher-layer action a € A, which
includes a combination of route choice, lane changing, and platoon merging. The MDP model assesses the
long-term cost associated with each higher-level action a €A. The MDP framework selects the action a €A

that provides the minimum expected discounted cost of a trip, which is sum of the costs estimated by the
OC and MDP models.
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Figure 2: The upper figure displays a freeway stretch segmented into merge (on-ramp), diverge (off-ramp), and
regular road pieces, where the MDP model operates. The lower figure displays a zoomed out view of a road piece,
where the cost of each action (i.e., lane-changing, platoon-merging, and routing) is determined based on local
information. Note that the cost of the optimal control model, C,, is computed for a given action, which is
determines by the starting and ending states, s; and s;.

2. Related Works

2.1. Motion Planning

Motion planning for automated vehicles has been an active research topic (Gonzalez et al. 2015;
Zheng 2014; Larsson, Sennton, and Larson 2015; Cheng et al. 2015). With the advancement of
communication, computation and sensing technologies, various planning and control techniques
have been proposed, developed, and applied in complex traffic environments. Paden et al. (2010)
reviewed the planning and control techniques in an urban environment, Claussmann et al. (2019)
reviewed motion planning techniques for highway driving, Gritschneder, Graichen, and Dietmayer
(2018; Katrakazas et al. 2015) emphasized the real time performance of planning techniques, and
Zeng and Wang (2018; De Nunzio et al. 2016; H. Rakha and Kamalanathsharma 2011) focused on
the efficiency of the proposed methods. B. Li et al. (2018; C. Liu, Lin, and Tomizuka 2018)
attempted to balance computational performance and solution quality. Zhang, Sun, and Orosz
(2017; Orosz 2016) considered communication delay and reaction time in designing motion
planners, and Hardy and Campbell (2013; Galceran et al. 2015; Brechtel, Gindele, and Dillmann
2014) addressed the uncertainty in the driving behaviour of vehicles surrounding autonomous
vehicles.

The motivation of this large body of research on motion planning has been to improve safety and
comfort as well as reduce travel time and fuel consumption. Safety and collision avoidance have
been discussed in many studies (H. Guo et al. 2018; X. Li et al. 2017; Alia et al. 2015; J. Zhou et al.
2019), some of which have considered the uncertainty of the surrounding vehicles’ motion (Hardy
and Campbell 2013; Bandyopadhyay et al. 2013). Besides safety guarantee, efficiency manifested in
the form of reducing travel time (H. A. Rakha, Ahn, and Moran 2012; Paikari et al. 2013) and fuel
consumption (H. A. Rakha, Ahn, and Moran 2012; Ahn and Rakha 2013; Boriboonsomsin et al.
2012) or increasing traffic flow (Duret, Wang, and Ladino 2019; Wei et al. 2017) has been one of the
driving objectives in developing motion planners. Despite the proven short-term capability of the



proposed methods to increase efficiency, they cannot guarantee long-term efficiency due to the
limited captured horizon.

Several attempts have been made in the literature to devise trajectories that account for beyond
the local neighbourhood of the subject vehicle. One such approach is hierarchical design, which is
sometimes referred to as the combination of trajectory planning and tracking (H. Guo et al. 2018; X.
Li et al. 2017; Alia et al. 2015; Qian, De La Fortelle, and Moutarde 2016; Neunert et al. 2016; C.
Huang, Naghdy, and Du 2016), and sometimes as the combination of long- and short-horizon
planning. To avoid confusion, in this study, we use the term hierarchical design to denote the long-
and short-horizon planning, where higher- and lower-layer decisions are made, respectively.

There have been several attempts in the literature to conduct longer-term horizon planning using
hierarchical design, under specific assumptions. Zeng and Wang (2018) proposed a dynamic
programming algorithm under the assumption that the speed profile of the subject vehicle’s
immediate leading vehicle is fixed and known. Similarly, Qian et al. (2016) assumed the surrounding
vehicles’ future motions to be given. Studies that assume the surrounding traffic environment to be
fixed and known can compute the optimal speed profile of the subject vehicle and have the subject
vehicle follow this profile (K. Huang et al. 2018; G. Guo and Wang 2018; Zeng and Wang 2018).
However, due to the assumptions on the motion profiles of the surrounding vehicles, these higher-
layer plans are not guaranteed to be well-executed or feasible to navigate by lower-layer planners.
Because the lower-layer planners need to ensure safety and comfort and follow traffic rules,
sometimes they cannot follow the suggested speed or the planned route due to not finding the
opportunity to change lane, etc. On the other hand, the hierarchical layered design cannot simply be
replaced with a one-time optimization problem to make both higher- and lower-layer decisions, due
to its high computational complexity (Brechtel, Gindele, and Dillmann 2011). In this paper, We aim
to bridge the gap between the hierarchical but non-efficient trajectory planning and the optimal but
computationally-complex planning by establishing a feedback loop between higher- and lower-layer
decisions in hierarchical schemes. In our proposed method, while the lower-layer planner attempts
to follow the plan provided by the higher-layer planner, the higher-layer plan can also be adjusted
according to the real-time execution status in the lower-layer.

In addition to the possibility that the higher-layer plan may not be executable, the plans at the
lower-layer, the higher-layer, or both layers may be outdated at the time of execution in a fast-
changing traffic environment. To combat outdated decisions, Paikari et al. (2013; Boriboonsomsin et
al. 2012) proposed to update the higher-layer plan, while H. Guo et al. (2018; X. Li et al. 2017; Alia
et al. 2015) considered updating the lower-layer plan. K. Huang et al. (2018) utilized a genetic
algorithm for higher-layer planning, and a quadratic program for lower-layer adaptation, where plans
on both layers are updated periodically. The two layers of decision making in our proposed
hierarchical design are also closely coupled, as the lower-layer plan is devised based on higher-layer
decisions, and the higher-layer plan can also be adapted based on the lower-layer execution status.
Moreover, the higher-layer plan in our work is updated not only based on real-time state of the
downstream traffic, but also based on the network-level evolution of traffic. Additionally, our
framework is more comprehensive as it includes decision making for routing, lane-changing,
platooning, and cruising.

2.2. Martkov Decision Processes in Transportation

A Markov decision process (MDP) is a stochastic control process that is used extensively in many
fields, including transportation, robotics and economics. MDPs can model the interaction between
agents and the stochastic environment. The goal of an MDP model is to find a policy that



maximizes the total expected cumulative reward in a stochastic environment (Bellman 1957; Sutton
and Barto 2018).

In the transportation field, MDPs have been utilized to plan local trajectories by modeling the
uncertainty of driver behavior (Bandyopadhyay et al. 2013; Mouhagir et al. 2016). MDP and its
variant, partially observable Markov decision process (POMDP), have also been applied for vehicle
behavior analysis and prediction (Kamrani et al. 2020; Galceran et al. 2015; Brechtel, Gindele, and
Dillmann 2014) and driving entity switching policy (Wyk, Khojandi, and Masoud 2020). Brechtel,
Gindele, and Dillmann (2011) proposed an MDP-based motion planning model to devise a vehicle’s
target position and velocity. The authors identified the scalability of their proposed method with
respect to the number of vehicles as an open problem. To tackle the computational complexity of
the problem, the authors adopted a fixed discretization of the action space to formulate the
problem, which could render their methodology inefficient. You et al. (2018) designed a reward
function for MDP with the objective of obtaining expert-like driving behavior. This model
determines the velocity of the subject vehicle and whether the vehicle should change lanes,
considering the relative position of the subject vehicle and its surrounding vehicles.

The studies above mostly employ MDPs to determine the velocity of the subject vehicle, leaving
out higher-layer decisions. A recent work ((S. Zhou et al. 2017)) developed a hierarchical framework
in which an MDP model was employed to make lane-changing decisions in the higher layer. They
introduced three models, namely a trajectory smoother, a longitudinal controller, and a lateral
controller to address the detailed execution in the lower layer. In our work, we further consider the
long-term efficiency of a trajectory by extending the MDP model to a more general motion planner,
which includes routing, lane-changing, and platoon-merging. In our proposed work, safety and
comfort are ensured by the planner in the lower layer, while the MDP model explores the long term
benefits of the planned trajectory by considering the stochastic changes in the downstream traffic
environment. We use simulations to demonstrate that our proposed method results in statistically
significant reductions in the long-term generalized trip cost.

2.3, Our Contributions

This paper introduces a framework that facilitates making trajectory planning decisions (namely,
cruising, lane-changing, platoon-merging, and route choice) based on both local and network-level
data. More specifically, our framework makes joint cruising, lane-changing, platoon-merging, and
routing decisions to minimize the total expected discounted cost of a (leg of a) trip in a dynamic
environment. This is accomplished through two main modules within an MDP framework: (1) an
optimal-control-based trajectory planning model that provides the vehicle’s acceleration profile with
the goal of maximizing safety and comfort locally (X. Liu et al. 2021, in press); and (2) an MDP
model that enables incorporating network-level information into the decision making process.

The contributions of this paper are as follows. This work is the first to advance the traditional
local motion planning models by incorporating strategically-condensed high volume of network-
level data using a Markov Decision Process (MDP) modeling framework, hence devising entire
efficient trajectories in dynamic traffic streams. In this general framework, cruising, routing, lane-
changing, and platoon-merging decisions are made concurrently. We conduct comprehensive
simulation experiments to demonstrate the benefits of augmenting traditional trajectory planning
models with an MDP model for both the subject vehicle and its surrounding vehicles. We
demonstrate that not only does a CV benefit from utilizing network-level information in devising its
own trajectory, but its surrounding vehicles, which may be CAVs or legacy vehicles, also experience



second-hand cost-reduction benefits. These results could have great policy implications, as they
demonstrate that only a handful of CAVs in a traffic stream could serve as traffic regulators.

3. Problem Statement

Consider a CAV, to which we refer as the subject vehicle, who is making a trip from a known origin to
a known destination. The subject vehicle is able to directly observe its surroundings using its onboard
sensor systems as well as basic safety messages (BSMs) obtained from other vehicles or RSUs within
its communication range. Owing to its connectivity, the subject vehicle can also obtain network-level
information about the state of traffic. The objective of the subject vehicle is to navigate the network
safely and comfortably, while at the same time minimizing its travel cost, which is composed of time
cost and energy cost, by utilizing both granular local data and coarse network-level information.

4. Methodology
4.1. The MDP Framework

The proposed framework determines the trajectory of a subject vehicle, including fine-grained
decisions (i.e., the acceleration profile) and cwarse decisions (i.e., routing, lane changing, and platoon
merging). In this framework, fine-grained decisions are made by a local optimal control trajectory
planning model using only local information, and coarse decisions are made by an MDP model
using network-level information. The MDP framework combines the two models to make a final
decision about the trajectory of the subject vehicle: For each coarse action (where a coarse action is a
unique vector of route choice, platoon merging, and lane changing), the MDP framework uses the
optimal control model to obtain the lowest short-term cost of completing the action, and the MDP
model to obtain the long-term expected discounted cost of completing the same action. Finally, the
action that provides the the lowest total cost will be selected and pursued by the vehicle. This
framework is demonstrated in Figure 1.

An example network is displayed in Figure 1, where the subject vehicle is located on the right
lane, planning to take the off-ramp marked by an arrow. The general travel cost incurred by the
vehicle is a linear combination of the route travel time and fuel cost. To optimize its trajectory, in
addition to determining the exact position, speed, and acceleration of the subject vehicle at each
point in time, we need to make three sets of higher-level decisions with long-term implications:
whether (and where) to change lanes, whether to join (or split from) a platoon, and which route to
take.

Each action can have conflicting implications in terms of energy efficiency, travel time, and
passenger safety. For example, the vehicle would be able to travel at a higher speed on the left lane,
but may have more opportunities to join a platoon and increase its fuel economy on the right lane.
The trade-offs between these actions can be captured by an optimal-control-based trajectory
planning model that uses local information (i.e., the speed and availability of platoons at both lanes).
As another example, while joining a platoon would provide fuel efficiency, changing platoon
membership frequently could pose safety risks on the vehicle occupants and create instability in the
traffic stream. This example highlights the importance of not making decisions based solely on
minimizing the short-term vehicle-specific costs, and taking a longer-term, futuristic view of the cost
that requires incorporating network-level information into the decision making process. As such, the



proposed MDP framework is designed to capture the expected long-term cost of each action,
allowing the vehicle to make informed decisions based on both local and network-level information.

In order to model the system with a view on facilitating the incorporation of both granular and
network-level information, we make a number of assumptions. First, we divide the network into a
number of relatively large cells, to which we refer as road pieces. Road pieces are constructed such that
(i) the macroscopic-level traffic dynamics are homogeneous within each piece at each point in time;
and (i) all vehicles within a road piece are within a reliable communication range of one-another. As
such, we introduce three types of road pieces, namely, merge (which includes a single on-
ramp/road), diverge (which includes a single off-ramp/road), and regular (which does not include
any on- or off-ramps). In Figure 1, for example, [, is an on-ramp or merge piece, while [, and [5 are
regular pieces.

The trajectory planning model is re-optimized dynamically as the immediate neighborhood of the
subject vehicle evolves. This re-optimization occurs after a time petiod t;,q has lapsed, which is set
to 0.4 sec following (X. Liu et al. 2021, in press). The MDP model is solved oft-line, and its resulting
optimal policies are stored in a look-up policy table that can be accessed at any time. In the rest of
this section, we elaborate on the MDP model in subsection 4.2, and provide a brief overview of the
optimal control model in subsection 4.3.

4.2. The MDP Model

The MDP framework considers three traffic states, namely, free-flow, onset-of-congestion, and
congested traffic. The traveling speed of the subject vehicle is determined based on the traffic state
of the road piece the vehicle is traversing. When the subject vehicle enters a new road piece [;, a
decision is made as to whether the vehicle should change lanes and whether to join a platoon. It is
assumed that the vehicle can finish the lane changing and platoon merging processes within the
same road piece [;. If there are more than one road pieces following [;, the subject vehicle also has
to make a route choice decision by selecting one of the candidate road pieces, [ € S;(l;), where
S (1)) = {li1, liz, ... } is the set of road pieces connected to [;, and therefore depends on the network
structure.

Table 1: Table of Notation

Notation Definition
Le Left lane
Ri Right lane
l; Road piece i
l A generic road piece
lij The jth road piece directly connected to road piece [;
S = (U, Uy, ) Set of road pieces directly connected to road piece [;
li eSSy The selected road piece among the set of road pieces connected to [;
L={} Set of road pieces
l, The road piece at the origin of the trip
ly The road piece at the destination of the trip
Le Macroscopic state of traffic in the left lane
Ri Macroscopic state of traffic in the right lane
&, = [f Le, t’fi] Vector specifying the macroscopic state of traffic




Notation Definition
r’;e Percentage of platoon-enabled vehicles in the left lane
5 i Percentage of platoon-enabled vehicles in the right lane

&= 1556
u= [lir Etr! Ep]
¢, € {Le, Ri}
¢ € {0,1)

¢ = [ by d]
d

s=Wweo)ES
S ={s}

cf (s)

ct(s)

Cdi(spsz)

Nlc
A=A, A, Agi]

C(s1,52)
= [(cf(sl) +cf (sz))
/2, (Ct(51) + Ct(sz))
/2,64 (s1,52)]
Csslz = AC(sy,57)
V([L¢w Sl [¢0 b d])

Vector specifying the percentage of platoon-enabled vehicles

The environment state vector

The lateral position of the subject vehicle

Platoon membership status of the vehicle

The vehicle state vector

The number of road pieces to the scheduled splitting of the platoon, where
d = —1 if the subject vehicle is not in a platoon

State of the traffic dynamics process

Set of all possible states of the traffic dynamics process

The fuel cost of the subject vehicle at state S

The time cost of the subject vehicle at state S

Passenger discomfort/safety risk cost for a vehicle transitioning from state
S1 to Sy

Number of lane changes

Vector of cost component coefficients, containing elements for fuel, time,
and discomfort/safety

Cost vector for a vehicle transitioning from state Sy to Sp

Sum of fuel, time, and comfort/safety costs

The minimum total expected discounted cost-to-go starting from state § =

(w )

Cr1 Cost of missing the trip destination

Probability distributions

qé; () Probability that the subject vehicle fails to change lanes if such a decision
has been made

gt (& p) Probability of successful platoon merging with lane changing

gl (f p) Probability of successful platoon merging without lane changing

w(k) Probability distribution for the number of road pieces, k, for which the

subject vehicle can stay with a platoon it has met

Transition matrices

A GRID
P (65 1606

nbe (659 160 6)

Probability that the traffic state transitions to (€£8)" in the left lane, given
& and &y

Probability that the traffic state transitions to (fﬁi)’ in the right lane, given
§, and &p

Probability that the platoon intensity transitions to (Eﬁe), in the left lane,
given &, and &,




Notation Definition

hfi ((fgi),ﬁtr, fp) Probability that the platoon intensity transitions to (fgi)’ in the right lane,
given &, and &,

Actions

a; € {Le,Ri} Target lane

a, € {0,1} Target platoon membership

a, €51 Tatget route

a= [al: ap,, ar] The action taken by the subject vehicle

A ={a} Action set

Let s = (i, ) € S denote the state of the traffic dynamics process and § is the set of all possible
states S. Vector y = [li,ftr, Ep] in this process denotes the location-dependent environment state,
where [; € L and L includes the location of the origin and destination of the trip (leg), denoted by [,
and g, respectively, and all other road pieces on all possible paths that connect the origin to the
destination. The vector &, = [fée, t}fi] denotes the macroscopic state of traffic on the left and right
lanes, respectively. More specifically, we consider three macroscopic traffic states of free-flow,
onset-of-congestion, and congested. Vector &, = [ 59, 1})21’] denotes the percentage of platoon-

enabled vehicles on the left and right lanes, respectively.

Let ¢p = [¢l,¢p,d] denote the state of the subject vehicle. Here, ¢; € {Le, Ri} denotes the
lateral position of the subject vehicle, where ‘Le’ and ‘Ri’ refer to the left and right lanes,
respectively. Furthermore, ¢, € {0,1} is a binary indicator denoting the platoon membership status
of the vehicle, where ¢, = 0 indicates that the subject vehicle is not a platoon member and ¢, = 1
indicates otherwise. Let d denote the number of road pieces to the scheduled splitting of the
platoon the subject vehicle is a member of. We set d = —1 if the subject vehicle is not in a platoon.
We assume that before merging, vehicles that will stay in a same platoon will negotiate and reach
consensus on the scheduled splitting position d = k. Vehicles in a platoon moving to the next road
piece will have their d decreased by 1. The platoon has to split/dissolve when d = 0. (We assume
the subject vehicle can optimize its action periodically and thus actively split before the scheduled
splitting position in our current model, but this can be easily modified by disabling the first, third
and fourth expression in Equation (8).

Leta = [al, ap, ar] denote the action taken by the subject vehicle in the beginning of each road
piece, where a; € {Le, Ri} denotes the target lane for the subject vehicle, a, € {0,1} denotes the
target platoon membership, where a,, = 0 indicates that the vehicle stays as a free agent and a,, = 1

indicates that the vehicle merges into a platoon, and a, € S;(l;) denotes the path selected by the
vehicle.

Let ¢/ (s) and ct(s) denote the fuel cost and time cost of the subject vehicle at the state S,
respectively. See (X. Liu et al. 2021, in press) for the computation of fuel cost, ¢/ (s). The time cost
of a trip (leg) can be computed as the length of the road piece len; over the velocity in lane ¢; under
traffic condition &,,, v(&,, ¢;), i.c.,

ct(s) = len; /v(&,, b)) 1)



Let ¢*(sy,5,) denote the cost associated with passenger discomfort/safety risk for transitioning
from state S to S,. The passenger discomfort/safety cost is assumed to be realized when the vehicle
is changing lanes, and increase linearly with the number of lane changes. Therefore,

c¥(s1,52) = g(Ny) 2)

where g(.) is a linear function and Ny, is the number of lane changes in the current road piece. In
one road piece, the subject vehicle is not expected to change lanes more than once, i.c., N € {0,1}.

S . . . .
Tet C 512 denote the sum of all three costs discussed above for a vehicle that starts a road piece in

state §; and ends it in state S,. The exact transition position depends on the real-time traffic
environment. For simplification, we assume the transition takes place in the middle of a road piece,

and therefore C SS 12 can be formulated as:
Cs2 = AC(s1,8,) = A5 (cf(sl) + cf(sz)) /24 2(ct(s) + €t(52))/2 + Agic¥(sy, 55) 3)

where the vector A = [/11:, Aes Adi] contains the corresponding coefficients for each cost component,

, T
and C(s1,5,) = [(cf(sl) + cf(sz)) /2, (ct(sy) + ct(s2))/2, cdl(sl,sz)] is the cost vector for a
vehicle transitioning from state S; to S,. Note that all costs are functions of our action, where the

action is implied from the transition of the state from $; to S,. We assume that A can be different
for each driver, since different cost terms are of different importance for each driver. The total
travel cost Cssl2 describes the generalized cost of travel in a road piece. For example, the MDP cost
for a vehicle that starts a road piece on the left lane as a free agent and ends the road piece on the

. Ri,0,—1
right lane as a free agent can be denoted by C; ;’0’_1.

An important part of the MDP model is the transition probability matrices that allow us to model
the dynamics of the system. Let plLe((ftLre)’ham Ep) and pft ((ft}fi)’ﬁtr, fp) denote the probability

that given §, and &, the traffic state transitions to (§%°)" in the left lane and to (ft’fi), in the right
lane in road piece l;, respectively. Let hj€ ((fﬁe)lﬁtr, fp) and hR ((Egi)’|ftr, fp) denote the

probability that given &, and &, the platoon intensity transitions to (fz%e), in the left lane and to

AN
(fgl) in right lane, respectively. These transition probability matrices can be learnt from historical
data.

Let enote € proba that the subject vehnicle rais to change lanes it such a aecision
q), (1) denote the probability that the subject vehicle fails to change lanes if such a decisi

has been made. Note that q(]; is a function of the traffic state in target lane. Let g} (fp) and g} (Ep)
denote the probability of successful platoon merging with and without lane changing, respectively.
Note that g} is a function of the density of platoon-enabled vehicles in the target lane, and gy is a
function of the availability of platoon-enabled vehicles in the immediate downstream of the subject
vehicle in the original lane. Let l; and p' = [l{, 3 f{,] denote a candidate road piece directly
connected to [; and its corresponding environment state vectot, respectively. Hence, the problem
terminates when the vehicle reaches its destination, ie., [l; =1[;. Finally, let
V([li,ftr, fp], [(],')l,d)p,d]) denote the minimum total expected discounted cost starting with the

10



vehicle state [(;bl, (;bp,d] and the environment state [li, v fp]. Hence, for l; = l;, the minimum
total expected discounted cost is given by

0 if the vehicle is at the correct destination

V([ld' $ier fp]' [¢l' ¢p' d]) = {cﬂ otherwise ®

where Cf; is a cost incurred should the subject vehicle fail to reach its destination (e.g., the vehicle
should be a single vehicle in the right lane at the target off-ramp piece).

For l; # ly, when ¢y = Le, ¢, = 0, d = —1, the minimum expected discounted cost is given by
V(u Le,0,—1) =
(ACLo~ + U, Le,0,~1) a,=Le,a, =0

90 (E){ACLE T + W, Le, 1,k = DY +

(1-9P(&)){ACies =t + UG, Le,0,-1)) o= Ly =1
f Le,0,—1 , _

min,e, | 9 WHACLEQ T + UG, Le, 0~} + 5)
(1 - q(';(u)> {ACR9TT + U, Ri, 0,—1)} @ = Riay = 0

91 (&) (1 - qf;(u)) {ACfest + W R, Lk — D} +

L(1 - gt(&) (1 — q{;(y))> {Acky— !+ U, Le,0,-1)} a;=Ria,=1

where U and W are described in Equations (6) and (7) as the minimum expected discounted cost of
the remainder of the trip starting from the next road piece [; for a vehicle that intends to maintain
its state and join a platoon, respectively.

UG, o by d) = @ D o (Y 160601 (65160 6,)
£ ©)

RE ((85) 166 ) P (65 16, 6,) V (i b1 By )

W gLk =D =a ) > wpk (€ 1.6, )pf (65 16..5,)
§ikp K )

REe (859) 1600 & ) P (859 1606, ) V', 0, LK — 1)
The four arguments of the min function in Equation (5) correspond to the costs of the lane
changing and platoon merging actions. The expected discounted cost (with the initial values as

specified) is then the minimum cost over the entire action set, which consists of lane changing,
platoon merging, and route choice.
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The first expression in Equation (5) corresponds to the action that results in no change in the
state of the vehicle; that is, the subject vehicle stays on the left lane as a single agent. The cost of this
action is equal to the cost of continuing with the initial state (Le, 0, —1) on the cutrent road piece,
plus the min expected discounted cost of starting the next road piece under the same initial state.

The second expression in Equation (5) corresponds to the action of staying on the left lane, but
joining a platoon. The first term here corresponds to the expected cost of the scenario where the
vehicle successfully joins a platoon. Under this scenario, the vehicle incurs both the cost of this new
trajectory on the current road piece and the expected discounted cost of the rest of the trip starting
from its new state as a platoon member. In case the execution of this action fails (i.e., the vehicle
cannot join a platoon), the vehicle will continue under the previous state on the current road piece,
and incurs an expected discounted cost for the rest of the trip starting from the left lane as a single
agent. This cost is demonstrated in the second term.

The third expression in Equation (5) corresponds to the action of changing to the right lane and
remaining a free agent. Similar to the previous case, the first term captures the expected cost if the
action can be completed, and the second term corresponds to the cost of the trajectory if the vehicle
fails to complete the action.

Finally, the last expression in Equation (5) corresponds to the action of changing lanes and
joining a platoon. In this case, the expected discounted cost is the summation of two terms, the first
term corresponding to the entire action being completed, and the second term corresponding to the
action failing.

For the case where the subject vehicle is a platoon member and the platoon splitting time has not
been reached (ie., l; # lg, when ¢, = Le, ¢, = 1, d > 0), the minimum expected discounted cost
is given by

V(u Le 1,d) =
(ACira' + U, Le,0,~1) @, =Le,a, =0
ACEST + U, Le,1,d — 1) a =Le a,=1
. qLWACLT T + UG, Le,1,d — 1)} + ®)
mingeg 3 )
(1-a} ) {ACiy + UG, Ri, 0,—1)} a = Ri,a, =0
1 - gt (&) (1— W DUCE + U, Le, 1,d - 1))
+9i (&) (1 - q, (u)) (ACREY L W, Ri 1,k — 1)) a, = Ri,a, =1

The first expression in the min function in Equation (8) refers to the case that the subject vehicle
splits from its platoon without changing lanes. Since this can always be achieved, the expected
discounted cost of this action is the cost of the subject vehicle traveling on its current road piece as a
free agent, plus its expected discounted cost of continuing to travel as a free agent starting from the
next road piece.
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The second expression in Equation (8) describes the scenario where the subject vehicle maintains
its current state. Under this scenario, the subject vehicle traverses its current road piece while
maintaining its state, and continues the rest of its trip with the platoon splitting time reduced by one
unit.

The third expression in Equation (8) has the subject vehicle splitting from the platoon and
changing lanes. When the subject vehicle decides to change lanes while in a platoon, it has to split
from its platoon first. The first term here captures the scenario where the subject vehicle is not able
to change lanes, under which case it will continue in its current platoon. Note that the OC model
will inform the subject vehicle whether it can successfully change lanes. As such, if OC determines
that changing lanes cannot take place safely, the subject vehicle will not split from its platoon. If the
subject vehicle can change lanes, it will split from its platoon and continue the rest of the trip on the
right lane as a free agent.

Finally, the fourth expression in Equation (8) has the subject vehicle changing lanes and traveling
on the right lane in a platoon. For this action to take place, the subject vehicle should split from its
current platoon, change lanes, and join a platoon on the right lane. Since we are assuming that the
subject vehicle is always able to split from its current platoon, the probability of completing this
action is the probability of successfully changing lanes and joining a platoon in the new lane. The
first term here captures the cost of this action failing, in which case the subject vehicle would
continue on the left lane in its current platoon. The second term captures the cost of the action
being completed successfully.

For the case where the vehicle is a platoon member on the left lane and the platoon splitting time
has arrived (i.e., [; # lg, when ¢ = Le, ¢, = 1, d = 0), the minimum expected discounted cost is
given by

V(u,Le,1,0) =

rACf;,l(),,(;l + U(M,lLeJ 0) _1) a, = Le, ap =0
G (ENACL T + W', Le, Lk — D} +

(1 - glo(fp)) {ACLLQ%O—l + U(u', Le,0,—1)} a =Lea,=1

. _ ©)
mingea | ¢4 D{ACLEYT + U, Le, 0, — D)} +

(1- g} ) tAckoT" + UG, Ri,0,~ 1)} a = Ri,a, =0

gt (&) (1 - a5 @) (ACKIE™ + W, Ri, 1,k — 1)}
(+(1 - g2(&) (1 — g5 )DAC + UG, Le,0,—1)} a,=Ri,a, =1

In Equation (9), d = 0 indicates that the platoon is dissolving and the subject vehicle has to split
from it in the current road piece. The first expression in Equation (9) captures the scenario where
the subject vehicle continues to travel on the left lane as a free agent after splitting from its current
platoon.
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The second expression in Equation (9) captures the case where the subject vehicle decides to join
another platoon in the left lane, which may fail due to the absence of platoon-enabled vehicles in the
left lane (second term).

The third expression in Equation (9) indicates that the subject vehicle plans to change lanes and
continue to travel as a free agent. This action may fail if the subject vehicle cannot change lanes (first
term), in which case the subject vehicle continues to travel on the left lane as a free agent.
Otherwise, the subject vehicle travels on the right lane as a free agent.

The fourth expression in Equation (9) captures the scenario where the subject vehicle switches to
the right lane and joins a platoon. The first term is the cost of the case where this action can be
completed successfully, and the second term captures the case where this action fails.

For other cases that the vehicle is on the right lane (i.e., ¢; = Ri), the minimum expected
discounted cost has similar formulas as above. Refer to 7 for details.

4.3. The Optimal Control (OC) Model

The MDP model creates a policy that advises the set of coarse actions the vehicle needs to take in
order to complete its trip in the most cost-effective way. However, the MDP model cannot provide
a full, implementable trajectory for the subject vehicle that includes its target acceleration profile. As
such, the MDP framework utilizes an optimal control (OC) model to bridge this gap. The role of the
OC model is two-fold: First, it devises an acceleration profile for the subject vehicle to complete
coarse actions (or determines the infeasibility of completing the coarse actions) following a quintic
trajectory function and subject to collision avoidance and bounds on the vehicle’s speed,
acceleration, and jerk (X. Liu et al. 2021, in press). The quintic trajectory function is selected due to
its ability to provide a smooth trajectory. This function is demonstrated in Equation (10). In this
equation, x(t) and y(t) indicate the longitudinal and lateral positions of the vehicle at time ¢,
respectively, Coefficients a§ through ak and by through a are decision variables that determine the
optimal solution.

x(t) =akt®+ait* + aitd + abt? + ait + a} (10)
y(t) = bit> + bit* + bit3 + bit? + bit + b

Additionally, the OC model quantifies the short-term cost of completing the coarse actions based
on the acceleration profile of the vehicle (X. Liu et al. 2021, in press). More specifically, given the
action a = {a;, a,, a, }, the OC model plans a trajectory that minimizes a convex combination of

fuel and time costs, subject to safety and comfort guarantees. The details on the OC model can be
found in (X. Liu et al. 2021, in press).

For each action a € A, this short term cost C, is then combined with the expected long-term

cost V(u, ) in the MDP framework. The MDP framework enumerates all coarse actions a € A,
and selects the action that minimizes the total cost by the OC and MDP models.

5. Experiments and Analysis

In this section, we will conduct simulations in three experimental settings, namely a circular track, a
straight highway, and a small network with route choice. We compare the performance of the local
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OC model and the MDP framework, in which the OC and MDP models are combined, under
different traffic states in all three experimental settings. Our simulations are based on a previously
built simulation platform in (X. Liu et al. 2021, in press), in which surrounding vehicles follow the
Intelligent Driver Model (Jin and Orosz 2016). We consider aerodynamic, rolling, grade, and inertial
resistance forces for fuel cost computation (Gillespie 1992), and set the value of time (VoT) to 10
dollars per hour.

5.1. Model Calibration

In a future connected and automated vehicle system, parameters of the MDP framework can be
calibrated using historical data. Note that even when abundant CAV data becomes available, it could
still be a difficult task to fully and precisely represent every single driving scenario due to the
complexity of human behavior, non-linearity of interactions between vehicles, and the dynamic

nature of the transportation network. Therefore, a more practical approach would be to use

historical data to partition &8, ERE, {,je and f;fl into different clusters, representing different traffic

states and platoon intensities in the left and right lanes, respectively. The transition probabilities can
then be estimated using the maximum likelihood principle, based on the occurrence percentages of
the corresponding state transitions in historical records. Furthermore, once data is available, we can

use it in a maximum likelihood estimation framework to calibrate functions q(]; (W), gt (fp) and
gl (Ep), and w(k).

For the current study, since historical data does not exist, we use simulations to create CAV
driving scenarios, and treat observations within simulations as historical data. We conduct
simulations using the OC model proposed in (X. Liu et al. 2021, in press), in which a mixed traffic
of CAVs and legacy vehicle can travel in a traffic stream. The parameter values used in these
simulations are specified in 8. After a warm-up period of about 20 minutes, we estimate the required
parameters for this study using the maximum likelihood principle.

In this work, we assume that only the subject vehicle is adopting the MDP framework, and thus
the actions taken by a single vehicle do not change the macroscopic traffic state of the system. If the
penetration rate of vehicles that adopt the MDP framework is high, actions taken by these vehicles
could change the state. In this case, model parameters and the optimal MDP policy can be updated
periodically to capture such changes.

5.2. A Circular Track Scenario

Circular track is a great experimental setting as it can demonstrate the impact of the proposed
methodology not only on the generalized cost of a trip, but also on the properties of traffic wave
propagation (Sugiyama et al. 2008; Tadaki et al. 2013). Stern et al. (2018) demonstrate that a low
penetration of autonomous vehicles can effectively dampen the stop-and-go wave using a circular
track. Here, we conduct our simulations in a circular track, where the surrounding vehicles can
merge into platoons, but cannot change lanes, enter through on-ramps, or exit from off-ramps. In
these simulations, the subject vehicle will have a trip of 10.8 kilometers in length, and different
traffic states (e.g., free-flow, onset-of-congestion and congested) are generated similar to (X. Liu et
al. 2021, in press), by utilizing a fundamental diagram of traffic flow.

In figures presented in this paper, OC and MDP refer to the local optimal controller and the
MDP framework (also referred to as the MDP controller), respectively. The suffix _xK indicates that
the circle length is x kilometers. The suffix _/Jow, _medium and _high represent the penetration of
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platoon-enabled vehicles. Specifically, _/ow indicates that all surrounding vehicles are non-platoon-
enabled, _medium indicates a subset (about 30%) of surrounding vehicles are platoon-enabled, and
_high indicates that all surrounding vehicles are platoon-enabled.

Figure (3) shows the generalized cost incurred by the subject vehicle under the OC and MDP
controllers when the circular track is 2, 5 and 10 km in perimeter, respectively. This figure indicates
that the circle perimeter does not significantly affect the subject vehicle’s generalized cost. In the
free-flow and onset-of-congestion states, the MDP controller provides statistically significant (at the
5% significance level) lower costs. In the congested traffic state, no statistically significant difference
in cost is observed between the MDP and OC controllers, although the variance of cost is lower
under the MDP controller.

Figure (4) shows the generalized cost for the subject vehicle under different controllers and a
track perimeter of 5km, as the penetration rate of platoon-enabled vehicles in the surrounding traffic
changes. In the free-flow state, it is only under a high penetration rate that the MDP controller
results in a significantly smaller cost compared with the OC controller, and there is no significant
difference when penetration rate is low or medium. In onset-of-congestion traffic state, the MDP
controller has significantly smaller costs than the OC controller at all penetration rates. In congested
traffic, the MDP and OC controllers are not different in a statistically significant manner, although
the generalized cost is much lower under a high penetration rate of platoon-enabled vehicles.
Generally, higher intensity of platoon-enabled vehicles gives rise to more opportunities for the
subject vehicle to join a platoon, thereby resulting in less cost.

free-flow: generalized cost for subject vehicle, dollars/10km
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Figure 3: The simulation environment is a circular track. The top, middle and bottom sub-figures represent
the free-flow, onset-of-congestion, and congested traffic states, respectively. The vertical axes show the
generalized costs with VoT set to 10 dollars per hour. Along the horizontal axes, the generalized costs of
the subject vehicle under different controllers in circular tracks of different lengths are compared. Here ‘OC’
and ‘MDP’ denote local optimal and the MDP controllers, respectively. The suffix ¢ xK’ indicates that the
length of the circular track is x kilometers.
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free-flow: generalized cost for subject vehicle, dollars/10km
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Figute 4: The suffixes © low’, * medium’ and ° high’ represent different levels of intensities of platoon-enabled
vehicles in the environment. Specifically, ¢ low’ indicates that all surrounding vehicles are non-platoon-
enabled, ¢ medium’ indicates that a proportion (about 30%) of the surrounding vehicles are platoon-enabled,
and  high’ indicates that all surrounding vehicles are platoon-enabled. Other settings are the same as Figure
3.
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Figure 5: Differences in average time, fuel, and generalized costs of the vehicles upstream to the subject
vehicle for different track lengths. A positive value indicates that MDP results in a higher cost than OC,
while a negative value indicates that MDP brings more cost savings than OC. The simulation settings are
similar to those in Figure 3.
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Figure 6: Differences in average time, fuel, and generalized costs of the vehicles upstream to the subject
vehicle under different penetration rates of platoon-enabled vehicles. A positive value indicates that MDP
results in a higher cost than OC, while a negative value indicates that MDP brings more cost savings than
OC. The simulation settings are similar to those in Figure 4.

5.3. A Two-lane Highway Scenario

In this highway scenario, we adopt the same surrounding environment setting as in (X. Liu et al.
2021, in press). Sutrounding vehicles can change lanes, merge/exit from the highway, and join
into/split from a platoon. Figure (7) demonstrates the generalized costs of different controllers,
where the number in the controller name is the value of @, i.e., the discount factor used in the MDP
model. This figure shows that in all traffic states, the larger the discount factor (i.e., the more weight
on the expectation of the long term cost), the smaller the cost for the subject vehicle along the entire
trip, which highlights the importance of accounting for the long-term trip cost. Figure (8) shows the
generalized cost of the surrounding vehicles. In the free-flow traffic state, the MDP controller
results in significantly smaller cost for the surrounding vehicles, and these savings grow as the MDP
discount factor increases. However, under the onset-of-congestion and congested traffic states, the
OC and MDP controllers do not show significant differences in cost.

Figure (9) shows the generalized costs incurred by the subject vehicle and its immediate
downstream vehicles for an example trip in the onset-of-congestion traffic state, as well as the lateral
position and platoon membership status of the subject vehicle. The top plot in this figure pertains to
the trajectory formed by the OC model, and the bottom plot demonstrates the trajectory devised by
the MDP controller. In the top plot, the subject vehicle makes decisions based solely on local
information; as such, its trajectory tends to closely follow the trajectory of its downstream vehicle.
This figure shows that under the OC controller, the subject vehicle changes to the left lane at about
2950 time steps, and then returns to its original lane at about 3750 time steps, an indicator of short-
sighted decisions. The subject vehicle’s platoon membership status also changes frequently starting
at about 4600 time steps. These actions disturb the traffic stream and increase the generalized cost
of the subject vehicle and its surrounding vehicles. In the bottom plot, the subject vehicle changes to
the left lane at an early time, in which it travels for the rest of its trip. The subject vehicle also joins
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platoons twice during its trips, but for longer periods of time. In general, the cost of the subject
vehicle under the OC controller is much higher than that of the MDP controller.

free-flow: generalized cost for subject vehicle, dollars/10km

e[ T | T
® ——
m© L I s e —_— —_1
5 E == [E—— —— E
Casp L —+ e — -
oc MDP_01 MDP_05 MDP_10 MDP_50 MDP_95
onset-of-congestion: generalized cost for subject vehicle, dollars/10km
28F T —— T T T T 3
26 | T .
3P | ' - T ~
S22 1 1 — B
T 2r L ] [ ] —— .
18— - —_— I — % 3
oc MDP_01 MDP_05 MDP_10 MDP_50 MDP_95
congested: generalized cost for subject vehicle, dollars/10km
I I T —‘0— I
® 10 ‘ .
g 1
g i
5 % —— E : ] % %\ %
oc MDP_01 MDP_05 MDP_10 MDP_50 MDP_95

Figure 7: The simulation environment is a highway with on- and off-ramps. The value following ‘MDP ’ in
the name of the controller specifies the discount factor, « in the MDP model. Other settings are similar to

those in Figure 3.
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Figute 8: The average generalized cost of the surrounding vehicles. The value following MDP in the name
of the controller specifies the discount factor, a in the MDP model. Other settings are similar to those in

Figure 7.

19



Generalized consumption and decision making with local optimal controller
T

= = - ‘Downstream vehicle in left lane —
—-—-=-Downstream vehicle in right lane
e Subject vehicle

Lane indicator (1 = left)

en
T

N

Platoon membership indicator (1 = in platoon) |
;

r w

=]

generalized cost, dollars per 10 km
2

00 1500 2000 2500 3000 3500 4000 4500 5000
time, 0.1 secs

Generalized consumption and decision making with MDP-optimal controller
T T T T T T
- - - -Downstream vehicle in left lane 3
- Downstream vehicle in right lane
- Subject vehicle
Lane indicator (1 = left)
Platoon membership indicator (1 = in platoon)
P |

o
T

IS
T

w
T

generalized cost, dollars per 10 km

N SR I —— - — 1
1000 1500 2000 2500 3000 3500 4000 4500 5000
time, 0.1 secs

Figure 9: The vertical axis shows the generalized cost, with the unit of dollars per 10 km. The horizontal
axis is time, with the unit of 0.1 second. Generalized cost of the subject vehicle and its immediate upstream
vehicles, as well as its lane position and platoon membership status are shown. In the top plot, the subject
vehicle is traveling under the OC controller, while in the bottom plot, the subject vehicle is traveling under
the MDP controller.

5.4. A Networf-level Scenario with Route Choice

In these experiments, we show the extensibility of the MDP framework in a joint decision making
scenario, in which the framework makes routing, lane-changing, and platoon-merging decisions. In
the scenario shown in Figure 10, the subject vehicle has two possible routes to the destination,
namely ‘Routel’ and ‘Route2’. Figure 11 shows the results under three scenarios. Under Routel and
Route2, the traveling route is fixed, and the OC model determines the lane changing and platoon
merging decisions. Under MDP, the MDP framework makes all three sets of decisions. This figure
demonstrates that under all traffic states, the MDP model results in statistically significant savings in
the generalized cost compared to the OC model with a fixed route.

Route 1

®
v
v

Route 2

Figure 10: The subject vehicle has two available routes from the origin (blue point) to the destination (red
point). Route 1 has a slightly shorter distance, but it is more congested compared with route 2.
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Figure 11: ‘Routel’ and ‘Route2’ refer to scenarios where the subject vehicle will take routes 1 and 2,
respectively. In these two scenarios, the OC controller is applied. The ‘MDP’ label refers to the case where
the MDP framework selects the adopted route. Other settings are the same as Figure 3.

6. Conclusion

In this paper we proposed a motion planning framework for a CAV in a mixed traffic environment.
The framework design leverages an optimal control model to quantify the short-term cost of a trip
and an MDP model to capture its long-term cost. This general framework outputs the target
acceleration profile of the vehicle as well as routing, platooning and lane changing decisions in a
dynamic traffic environment. We implemented this motion planning framework in three
experimental scenarios including a highway section with multiple on- and off-ramps, a circular track,
and an urban network with route choice, and conducted a comprehensive set of simulations to
quantify the long-term benefits the subject vehicle and its surrounding vehicles may experience as a
result of incorporating network-level information into the decision-making process. Our
experiments indicate that, generally speaking, the MDP framework outperforms a local OC
controller in reducing the generalized trip cost. With higher intensity of platoon-enabled vehicles or
higher weight on long-term cost (larger discounting factor), the reduction in generalized cost for
both the subject vehicle and its upstream vehicles is statistically significant. This significant cost
saving, which originates from accounting for network-level conditions, exists in all simulated
environments, undet vatrious traffic states.
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Appendix A. Expected Discounted Cost in Right Lane

For l; # 1y, when ¢, = Ri, ¢, = 0, and d = —1, the minimum expected discounted cost is given
by
V(u, Ri,0,—1) =
ACER T + U, Ri,0,—1) a,=Ri,a, =0

9P (E)ACRE Y + W', Ri, 1,k — D} +
(1= 9P (&) (ACRTY + U (W', R, 0,—-1)) a,=Ri,a, =1

(A. 1)
a5 UD{ACK S~ + UG, Ri,0,—1)} +

(1 = qf;,(u)) {ACF{ Y + U, Le,0,—1)} a,=Le,a, =0

mingeg 3

91(6) (1 - ) (0 ) (ACK AT + W e, 1, — 1))

+ (1 - gi(&) (1- qé(u))) (ACROTE 4 U, RI,0,~1)) a; = Le,a, =1

The explanation for the case that the subject vehicle is a free agent in the right lane is similar to
that in the left lane.

For l; # lg, when ¢y = Ri, ¢, =1, d > 0, the minimum expected discounted cost is given by

V(w Ri,1,d) =
(ACK YT + U, Ri,0,—1) a,=Ri,a, =0
ACEHS T + U(W, R, 1,d — 1) a,=Ri,a, =1

 Ld— o A. 2
qg;(u){Acg;';;g Y+ U@, Ri,1,d -1} + (A 2)

(1 - qé(u)) {ACFYT + U, Le, 0, —1)} a,=Le,a,=0

MmiNgey 4

(1 - g(&) (1 - af 0 ACELE™ + UG, R, 1,d - 1)
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The explanation for the case that the subject vehicle is a member of platoon in the right lane is
similar to the case that in the left lane.

For l; # g, when ¢ = Ri, ¢, = 1, d = 0, the minimum expected discounted cost is given by

22



V(,uiRll 150) =
(ACg s + U, Ri,0,—1) a,=Ri,a, =0

G (E)ACEE + W R, 1,k — 1)} +

(1- 9P () (ACE S + U, Ri,0,~1)} a,=Ri,a, =1
(A. 3)
f Ri,0,~1 " by
minge, 4 9o WACR; 1o~ + UG, R0, —1)} +
(1= 0§ @) tACKELS™ + UG, Le,0, 1)) @ =Le,a,=0

9 () (1 - af 00 ) LACKT + W Le, 1,k = 1))

+ (1 - gll(fp) (1 — q£(u))> {Acgii,lo,'o_l + U, Ri,0,-1)} a;=Lea,=1

The explanation for the case that the subject vehicle is in the right lane is similar to the last case
that it is in the left lane.

Appendix B. Parameters for Generating Simulations

Table B.1: Summary of parameters

Parameter Value Definition

tupd 0.4 secs the updating period of the trajectory of the subject vehicle

Pon 0.6 the probability that a vehicle is interested in joining the freeway
from an on-ramp

Doff 0.6 the probability that a vehicle is interested in taking an off-ramp

Prnpe 0.5 the probability that the vehicle is not platoon-enabled

Pmerge 0.6 the probability of that a vehicle intends to merge

Dchange 0.1 the probability of that the vehicle intends to change lane

tp 3.5 secs the time gap between two successive vehicles not in a platoon

tg 0.55 secs the time gap between two successive vehicles in a platoon

ticp 3.6 secs the period of time within which the surrounding vehicles
complete changing lanes

tic 5 secs the minimum time interval between two successive lane changes
by two successive vehicles in the same lane

T 0.4 secs the reaction time delay in the car-following model

Nocr 10 secs the prediction horizon in the optimal control model

vle 20 m/s the velocity in the left lane at the maximum flow rate

v 14 m/s the velocity in the right lane at the maximum flow rate

vle 30 m/s maximum velocity in left lane
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Parameter Value Definition

Amax 2 m/s? maximum acceleration for the subject vehicle

Jmax 3.5m/s3 maximum jerk for the subject vehicle

deg 50 m critical gap to decide whether it is feasible to change lanes

lear 5m length of a vehicle

hgt 5m vehicle would stop at headway of this value

a 2 m/s? the maximum desired acceleration

b 3 m/s? the comfortable deceleration

VAR 0.3987 coefficient for air resistance force

YRR 281.547 coefficient for rolling resistance force

YGR 0 coefficient for grade resistance force

YIR 1750 coefficient for inertial resistance force

ur 5.98x108 fuel cost for a unit energy consumed by the vehicle (dollars/Joule)

Pech {2, 10, 50} the scheduled splitting position can be in 2, 10 or 50 road pieces

N (Usch, Osch) N(2,5), left, the normal distribution of the scheduled splitting position in the
N(-1,5), right left and right lanes

Appendix C. Sensitivity Analysis over Parameters in Traffic Environment

To demonstrate the performance of our method under various settings, we conduct sensitivity
analysis over parameters Pon, Doff> Pnpe> Pmerge 20d Pehange in the two-lane highway scenario.

Under univariate analysis, we adjust the value of one parameter at a time while keeping the values
of other parameters unchanged. To maintain a relatively steady traffic environment, i.e., to avoid
changes in traffic state, we use the same value for pyy and pyrs to balance the number of vehicles
entering and exiting the highway.

Figures C.1 and C.2 display the generalized cost when poy, = Dosr = 0.4 and poy, = Porr = 0.8
for the subject vehicle and surrounding vehicles, respectively. Figures C.3 and C.4 demonstrate the
generalized costs when ppy,e = 0.1 and ppy,e = 0.9, respectively. Figures C.5 and C.6 correspond to
the cases where Pperge = 0.4 and Pperge = 0.8. Figures C.7 and C.8 show the cost when

Pchange = 0.05 and Pchange = 0.3.

Under all these settings, our MDP framework generally results in statistically significant cost
savings for subject vehicle and its surrounding vehicles in free-flow and onset-of-congestion states,
and there is no significant difference in the congested state.
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free-flow: generalized cost for subject vehicle, dollars/10km
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Figure C. 1: The value following ‘OC_" or ‘MDP_’ in the name of the controller specifies the value of
Ponand pogr. Other settings are similar to those in Figure 7.

free-flow: generalized cost for surrounding vehicle, dollars/10km
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Figure C. 2: The value following ‘OC_" or ‘MDP_’ in the name of the controller specifies the value of
Pon and Pygr. Other settings are similar to those in Figure 8.
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free-flow: generalized cost for subject vehicle, dollars/10km
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free-flow: generalized cost for surrounding vehicle, dollars/10km

5[ T ; T ]
» ‘ !
3 s — — T
® — ' ! ——
15L ! e — —
0OC_0.4 MDP_0.4 0C_0.8 MDP_0.8
onset-of-congestion: generallzed cost for surroundlng vehicle, dollarsl1 Okm
w22+ i
§22) == E T
S ol i *
1.8 4
OC 0.4 MDP_0.4 oCc_0.8 MDP70.8
5 congested: generalized cost for surrounding vehicle, dollars/10km
" i — i — i
]
5.} E= — — —
o 1 1
L 1 —— ——
OC_0.4 MDP_0.4 oCc_ 0.8 MDP_0.8
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