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Abstract 

Autonomy and connectivity are expected to enhance safety and improve fuel efficiency in 
transportation systems. While connected vehicle-enabled technologies, such as coordinated cruise 
control, can improve vehicle motion planning by incorporating information beyond the line of sight 
of vehicles, their benefits are limited by the current short-sighted planning strategies that only utilize 
local information. In this paper, we propose a framework that devises vehicle trajectories by 
coupling a locally-optimal motion planner with a Markov decision process (MDP) model that can 
capture network-level information. Our proposed framework can guarantee safety while minimizing 
a trip’s generalized cost, which comprises of its fuel and time costs. To showcase the benefits of 
incorporating network-level data when devising vehicle trajectories, we conduct a comprehensive 
simulation study in three experimental settings, namely a circular track, a highway with on- and off-
ramps, and a small urban network. The simulation results indicate that statistically significant 
efficiency can be obtained for the subject vehicle and its surrounding vehicles in different traffic 
states under all experimental settings. This paper serves as a poof-of-concept to showcase how 
connectivity and autonomy can be leveraged to incorporate network-level information into motion 
planning. 

Keywords: Connected and Automated Vehicles ,Trajectory planning 

1. Introduction 

Connected vehicle (CV) technology facilitates communication among vehicles, their surrounding 
infrastructure, and other road users. This connectivity is enabled through Dedicated Short Range 
Communication (DSRC) (Kenney 2011) or cellular technologies, and paints a more comprehensive 
picture of the transportation network than what could be observed by each individual road user. As 
such, it is expected that upon deployment, the CV technology would significantly improve mobility, 
enhance traffic flow stability, reduce congestion, and improve fuel economy, among other benefits. 
The CV technology has enabled several advanced driving assistance systems (ADAS), such as 
Cooperative Adaptive Cruise Control (CACC) (Shladover et al. 2015; Wang, Wu, and Barth 2018; 
Milanés and Shladover 2014), Connected Cruise Control (CCC) (Zhang, Sun, and Orosz 2017; 
Orosz 2016) and Platooning (Lioris et al. 2017; Maiti, Winter, and Kulik 2017; Z. Huang et al. 2018; 
Bhoopalam, Agatz, and Zuidwijk 2018). Although existing CV-enabled technologies are based on 
local communications, the CV technology can also provide granular data at the network level by 
strategically positioning road side units (RSUs) to ensure connectivity throughout an entire network. 
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Motion planning in transportation networks has been traditionally carried out using techniques 
that leverage local information to make locally-optimal decisions (González et al. 2015). In 
particular, optimal control-based models have been widely applied to traditional transportation 
networks for their ability to provide short-term efficient solutions. The CV technology can help 
improve these locally-optimal motion planners, as it allows vehicles to see beyond line of sight. More 
importantly, it enables vehicles to obtain network-level information through communication with 
other connected vehicles and RSUs. Such connectivity can be leveraged to enhance long-term safety 
and efficiency of planned trajectories; however, for this potential to be realized, the network-level 
information should be integrated into the decision making systems. This cannot be accomplished 
using existing techniques, as they are not scalable to utilize granular data collected from the entire 

network. Hence, new methods need to be developed that can (𝑖) leverage network-level data, and 

(𝑖𝑖) provide fast and efficient trajectories that adapt to the stochasticity of traffic networks. 

This paper introduces a general framework that combines high-level network-level information 
with granular local information to devise network-informed cruising, routing, lane-changing, and 
platoon-merging decisions for a CAVs in a mixed traffic scenario, as shown in Figure 1. As 
demonstrated in this figure, the proposed framework combines an optimal control (OC) trajectory 
planning model proposed in (X. Liu et al. 2021, in press) with a Markov decision process (MDP) 
model developed in this paper to devise an efficient trajectory for an entire trip. The proposed MDP 
model can capture the progression of traffic as a stochastic process at an aggregate level, thereby 
complementing the optimal-control-based motion planning model through incorporating network-
level information. In this context, using the proposed MDP framework allows vehicles to skip near-
sighted locally-optimal trajectories (X. Liu et al. 2021, in press), and make routing, lane-changing, 
and platoon-merging decisions with a long-term view so as to minimize a combination of short-term 
and long-term costs. 

 

Figure 1: Structure of the proposed MDP framework. The optimal control (OC) model plans a number 

of trajectory to determine the short-term cost associated with every higher-layer action a ∈ A, which 
includes a combination of route choice, lane changing, and platoon merging. The MDP model assesses the 

long-term cost associated with each higher-level action a ∈A. The MDP framework selects the action a ∈A 
that provides the minimum expected discounted cost of a trip, which is sum of the costs estimated by the 
OC and MDP models. 
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Figure 2: The upper figure displays a freeway stretch segmented into merge (on-ramp), diverge (off-ramp), and 
regular road pieces, where the MDP model operates. The lower figure displays a zoomed out view of a road piece, 
where the cost of each action (i.e., lane-changing, platoon-merging, and routing) is determined based on local 

information. Note that the cost of the optimal control model, 𝐶𝑜𝑐, is computed for a given action, which is 

determines by the starting and ending states, 𝑠𝑖  and 𝑠𝑗 . 

2. Related Works 

2.1. Motion Planning 

Motion planning for automated vehicles has been an active research topic (González et al. 2015; 
Zheng 2014; Larsson, Sennton, and Larson 2015; Cheng et al. 2015). With the advancement of 
communication, computation and sensing technologies, various planning and control techniques 
have been proposed, developed, and applied in complex traffic environments. Paden et al. (2016) 
reviewed the planning and control techniques in an urban environment, Claussmann et al. (2019) 
reviewed motion planning techniques for highway driving, Gritschneder, Graichen, and Dietmayer 
(2018; Katrakazas et al. 2015) emphasized the real time performance of planning techniques, and 
Zeng and Wang (2018; De Nunzio et al. 2016; H. Rakha and Kamalanathsharma 2011) focused on 
the efficiency of the proposed methods. B. Li et al. (2018; C. Liu, Lin, and Tomizuka 2018) 
attempted to balance computational performance and solution quality. Zhang, Sun, and Orosz 
(2017; Orosz 2016) considered communication delay and reaction time in designing motion 
planners, and Hardy and Campbell (2013; Galceran et al. 2015; Brechtel, Gindele, and Dillmann 
2014) addressed the uncertainty in the driving behaviour of vehicles surrounding autonomous 
vehicles. 

The motivation of this large body of research on motion planning has been to improve safety and 
comfort as well as reduce travel time and fuel consumption. Safety and collision avoidance have 
been discussed in many studies (H. Guo et al. 2018; X. Li et al. 2017; Alia et al. 2015; J. Zhou et al. 
2019), some of which have considered the uncertainty of the surrounding vehicles’ motion (Hardy 
and Campbell 2013; Bandyopadhyay et al. 2013). Besides safety guarantee, efficiency manifested in 
the form of reducing travel time (H. A. Rakha, Ahn, and Moran 2012; Paikari et al. 2013) and fuel 
consumption (H. A. Rakha, Ahn, and Moran 2012; Ahn and Rakha 2013; Boriboonsomsin et al. 
2012) or increasing traffic flow (Duret, Wang, and Ladino 2019; Wei et al. 2017) has been one of the 
driving objectives in developing motion planners. Despite the proven short-term capability of the 
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proposed methods to increase efficiency, they cannot guarantee long-term efficiency due to the 
limited captured horizon. 

Several attempts have been made in the literature to devise trajectories that account for beyond 
the local neighbourhood of the subject vehicle. One such approach is hierarchical design, which is 
sometimes referred to as the combination of trajectory planning and tracking (H. Guo et al. 2018; X. 
Li et al. 2017; Alia et al. 2015; Qian, De La Fortelle, and Moutarde 2016; Neunert et al. 2016; C. 
Huang, Naghdy, and Du 2016), and sometimes as the combination of long- and short-horizon 
planning. To avoid confusion, in this study, we use the term hierarchical design to denote the long- 
and short-horizon planning, where higher- and lower-layer decisions are made, respectively. 

There have been several attempts in the literature to conduct longer-term horizon planning using 
hierarchical design, under specific assumptions. Zeng and Wang (2018) proposed a dynamic 
programming algorithm under the assumption that the speed profile of the subject vehicle’s 
immediate leading vehicle is fixed and known. Similarly, Qian et al. (2016) assumed the surrounding 
vehicles’ future motions to be given. Studies that assume the surrounding traffic environment to be 
fixed and known can compute the optimal speed profile of the subject vehicle and have the subject 
vehicle follow this profile (K. Huang et al. 2018; G. Guo and Wang 2018; Zeng and Wang 2018). 
However, due to the assumptions on the motion profiles of the surrounding vehicles, these higher-
layer plans are not guaranteed to be well-executed or feasible to navigate by lower-layer planners. 
Because the lower-layer planners need to ensure safety and comfort and follow traffic rules, 
sometimes they cannot follow the suggested speed or the planned route due to not finding the 
opportunity to change lane, etc. On the other hand, the hierarchical layered design cannot simply be 
replaced with a one-time optimization problem to make both higher- and lower-layer decisions, due 
to its high computational complexity (Brechtel, Gindele, and Dillmann 2011). In this paper, We aim 
to bridge the gap between the hierarchical but non-efficient trajectory planning and the optimal but 
computationally-complex planning by establishing a feedback loop between higher- and lower-layer 
decisions in hierarchical schemes. In our proposed method, while the lower-layer planner attempts 
to follow the plan provided by the higher-layer planner, the higher-layer plan can also be adjusted 
according to the real-time execution status in the lower-layer. 

In addition to the possibility that the higher-layer plan may not be executable, the plans at the 
lower-layer, the higher-layer, or both layers may be outdated at the time of execution in a fast-
changing traffic environment. To combat outdated decisions, Paikari et al. (2013; Boriboonsomsin et 
al. 2012) proposed to update the higher-layer plan, while H. Guo et al. (2018; X. Li et al. 2017; Alia 
et al. 2015) considered updating the lower-layer plan. K. Huang et al. (2018) utilized a genetic 
algorithm for higher-layer planning, and a quadratic program for lower-layer adaptation, where plans 
on both layers are updated periodically. The two layers of decision making in our proposed 
hierarchical design are also closely coupled, as the lower-layer plan is devised based on higher-layer 
decisions, and the higher-layer plan can also be adapted based on the lower-layer execution status. 
Moreover, the higher-layer plan in our work is updated not only based on real-time state of the 
downstream traffic, but also based on the network-level evolution of traffic. Additionally, our 
framework is more comprehensive as it includes decision making for routing, lane-changing, 
platooning, and cruising. 

2.2. Markov Decision Processes in Transportation 

A Markov decision process (MDP) is a stochastic control process that is used extensively in many 
fields, including transportation, robotics and economics. MDPs can model the interaction between 
agents and the stochastic environment. The goal of an MDP model is to find a policy that 
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maximizes the total expected cumulative reward in a stochastic environment (Bellman 1957; Sutton 
and Barto 2018). 

In the transportation field, MDPs have been utilized to plan local trajectories by modeling the 
uncertainty of driver behavior (Bandyopadhyay et al. 2013; Mouhagir et al. 2016). MDP and its 
variant, partially observable Markov decision process (POMDP), have also been applied for vehicle 
behavior analysis and prediction (Kamrani et al. 2020; Galceran et al. 2015; Brechtel, Gindele, and 
Dillmann 2014) and driving entity switching policy (Wyk, Khojandi, and Masoud 2020). Brechtel, 
Gindele, and Dillmann (2011) proposed an MDP-based motion planning model to devise a vehicle’s 
target position and velocity. The authors identified the scalability of their proposed method with 
respect to the number of vehicles as an open problem. To tackle the computational complexity of 
the problem, the authors adopted a fixed discretization of the action space to formulate the 
problem, which could render their methodology inefficient. You et al. (2018) designed a reward 
function for MDP with the objective of obtaining expert-like driving behavior. This model 
determines the velocity of the subject vehicle and whether the vehicle should change lanes, 
considering the relative position of the subject vehicle and its surrounding vehicles. 

The studies above mostly employ MDPs to determine the velocity of the subject vehicle, leaving 
out higher-layer decisions. A recent work ((S. Zhou et al. 2017)) developed a hierarchical framework 
in which an MDP model was employed to make lane-changing decisions in the higher layer. They 
introduced three models, namely a trajectory smoother, a longitudinal controller, and a lateral 
controller to address the detailed execution in the lower layer. In our work, we further consider the 
long-term efficiency of a trajectory by extending the MDP model to a more general motion planner, 
which includes routing, lane-changing, and platoon-merging. In our proposed work, safety and 
comfort are ensured by the planner in the lower layer, while the MDP model explores the long term 
benefits of the planned trajectory by considering the stochastic changes in the downstream traffic 
environment. We use simulations to demonstrate that our proposed method results in statistically 
significant reductions in the long-term generalized trip cost. 

2.3. Our Contributions 

This paper introduces a framework that facilitates making trajectory planning decisions (namely, 
cruising, lane-changing, platoon-merging, and route choice) based on both local and network-level 
data. More specifically, our framework makes joint cruising, lane-changing, platoon-merging, and 
routing decisions to minimize the total expected discounted cost of a (leg of a) trip in a dynamic 
environment. This is accomplished through two main modules within an MDP framework: (1) an 
optimal-control-based trajectory planning model that provides the vehicle’s acceleration profile with 
the goal of maximizing safety and comfort locally (X. Liu et al. 2021, in press); and (2) an MDP 
model that enables incorporating network-level information into the decision making process. 

The contributions of this paper are as follows. This work is the first to advance the traditional 
local motion planning models by incorporating strategically-condensed high volume of network-
level data using a Markov Decision Process (MDP) modeling framework, hence devising entire 
efficient trajectories in dynamic traffic streams. In this general framework, cruising, routing, lane-
changing, and platoon-merging decisions are made concurrently. We conduct comprehensive 
simulation experiments to demonstrate the benefits of augmenting traditional trajectory planning 
models with an MDP model for both the subject vehicle and its surrounding vehicles. We 
demonstrate that not only does a CV benefit from utilizing network-level information in devising its 
own trajectory, but its surrounding vehicles, which may be CAVs or legacy vehicles, also experience 
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second-hand cost-reduction benefits. These results could have great policy implications, as they 
demonstrate that only a handful of CAVs in a traffic stream could serve as traffic regulators. 

3. Problem Statement 

Consider a CAV, to which we refer as the subject vehicle, who is making a trip from a known origin to 
a known destination. The subject vehicle is able to directly observe its surroundings using its onboard 
sensor systems as well as basic safety messages (BSMs) obtained from other vehicles or RSUs within 
its communication range. Owing to its connectivity, the subject vehicle can also obtain network-level 
information about the state of traffic. The objective of the subject vehicle is to navigate the network 
safely and comfortably, while at the same time minimizing its travel cost, which is composed of time 
cost and energy cost, by utilizing both granular local data and coarse network-level information. 

4. Methodology 

4.1. The MDP Framework 

The proposed framework determines the trajectory of a subject vehicle, including fine-grained 
decisions (i.e., the acceleration profile) and coarse decisions (i.e., routing, lane changing, and platoon 
merging). In this framework, fine-grained decisions are made by a local optimal control trajectory 
planning model using only local information, and coarse decisions are made by an MDP model 
using network-level information. The MDP framework combines the two models to make a final 
decision about the trajectory of the subject vehicle: For each coarse action (where a coarse action is a 
unique vector of route choice, platoon merging, and lane changing), the MDP framework uses the 
optimal control model to obtain the lowest short-term cost of completing the action, and the MDP 
model to obtain the long-term expected discounted cost of completing the same action. Finally, the 
action that provides the the lowest total cost will be selected and pursued by the vehicle. This 
framework is demonstrated in Figure 1. 

An example network is displayed in Figure 1, where the subject vehicle is located on the right 
lane, planning to take the off-ramp marked by an arrow. The general travel cost incurred by the 
vehicle is a linear combination of the route travel time and fuel cost. To optimize its trajectory, in 
addition to determining the exact position, speed, and acceleration of the subject vehicle at each 
point in time, we need to make three sets of higher-level decisions with long-term implications: 
whether (and where) to change lanes, whether to join (or split from) a platoon, and which route to 
take. 

Each action can have conflicting implications in terms of energy efficiency, travel time, and 
passenger safety. For example, the vehicle would be able to travel at a higher speed on the left lane, 
but may have more opportunities to join a platoon and increase its fuel economy on the right lane. 
The trade-offs between these actions can be captured by an optimal-control-based trajectory 
planning model that uses local information (i.e., the speed and availability of platoons at both lanes). 
As another example, while joining a platoon would provide fuel efficiency, changing platoon 
membership frequently could pose safety risks on the vehicle occupants and create instability in the 
traffic stream. This example highlights the importance of not making decisions based solely on 
minimizing the short-term vehicle-specific costs, and taking a longer-term, futuristic view of the cost 
that requires incorporating network-level information into the decision making process. As such, the 
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proposed MDP framework is designed to capture the expected long-term cost of each action, 
allowing the vehicle to make informed decisions based on both local and network-level information. 

In order to model the system with a view on facilitating the incorporation of both granular and 
network-level information, we make a number of assumptions. First, we divide the network into a 
number of relatively large cells, to which we refer as road pieces. Road pieces are constructed such that 

(𝑖) the macroscopic-level traffic dynamics are homogeneous within each piece at each point in time; 

and (𝑖𝑖) all vehicles within a road piece are within a reliable communication range of one-another. As 
such, we introduce three types of road pieces, namely, merge (which includes a single on-
ramp/road), diverge (which includes a single off-ramp/road), and regular (which does not include 

any on- or off-ramps). In Figure 1, for example, 𝑙1 is an on-ramp or merge piece, while 𝑙4 and 𝑙5 are 
regular pieces. 

The trajectory planning model is re-optimized dynamically as the immediate neighborhood of the 

subject vehicle evolves. This re-optimization occurs after a time period 𝑡𝑢𝑝𝑑  has lapsed, which is set 

to 0.4 sec following (X. Liu et al. 2021, in press). The MDP model is solved off-line, and its resulting 
optimal policies are stored in a look-up policy table that can be accessed at any time. In the rest of 
this section, we elaborate on the MDP model in subsection 4.2, and provide a brief overview of the 
optimal control model in subsection 4.3. 

4.2. The MDP Model 

The MDP framework considers three traffic states, namely, free-flow, onset-of-congestion, and 
congested traffic. The traveling speed of the subject vehicle is determined based on the traffic state 

of the road piece the vehicle is traversing. When the subject vehicle enters a new road piece 𝑙𝑖, a 
decision is made as to whether the vehicle should change lanes and whether to join a platoon. It is 
assumed that the vehicle can finish the lane changing and platoon merging processes within the 

same road piece 𝑙𝑖. If there are more than one road pieces following 𝑙𝑖, the subject vehicle also has 

to make a route choice decision by selecting one of the candidate road pieces, 𝑙𝑖
′ ∈ 𝑆𝑙(𝑙𝑖), where 

𝑆𝑙(𝑙𝑖) = {𝑙𝑖1
′ , 𝑙𝑖2

′ , … } is the set of road pieces connected to 𝑙𝑖, and therefore depends on the network 
structure. 

Table 1: Table of Notation 

Notation Definition 

𝐿𝑒 Left lane 

𝑅𝑖 Right lane 

𝑙𝑖 Road piece 𝑖 

𝑙 A generic road piece 

𝑙𝑖𝑗
′  The 𝑗th road piece directly connected to road piece 𝑙𝑖 

𝑆𝑙(𝑙𝑖) = {𝑙𝑖1
′ , 𝑙𝑖2

′ , … } Set of road pieces directly connected to road piece 𝑙𝑖 

𝑙𝑖
′ ∈ 𝑆𝑙(𝑙𝑖) The selected road piece among the set of road pieces connected to 𝑙𝑖 

𝐿 = {𝑙𝑖} Set of road pieces 

𝑙𝑜 The road piece at the origin of the trip 

𝑙𝑑 The road piece at the destination of the trip 

𝜉tr
𝐿𝑒 Macroscopic state of traffic in the left lane 

𝜉tr
𝑅𝑖  Macroscopic state of traffic in the right lane 

𝜉tr = [𝜉tr
𝐿𝑒, 𝜉tr

𝑅𝑖] Vector specifying the macroscopic state of traffic 
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Notation Definition 

𝜉𝑝
𝐿𝑒 Percentage of platoon-enabled vehicles in the left lane 

𝜉𝑝
𝑅𝑖  Percentage of platoon-enabled vehicles in the right lane 

𝜉𝑝 = [𝜉𝑝
𝐿𝑒, 𝜉𝑝

𝑅𝑖] Vector specifying the percentage of platoon-enabled vehicles 

𝜇 = [𝑙𝑖 , 𝜉tr, 𝜉𝑝] The environment state vector 

𝜙𝑙 ∈ {𝐿𝑒, 𝑅𝑖} The lateral position of the subject vehicle 

𝜙𝑝 ∈ {0,1} Platoon membership status of the vehicle 

𝜙 = [𝜙𝑙, 𝜙𝑝, 𝑑] The vehicle state vector 

𝑑 The number of road pieces to the scheduled splitting of the platoon, where 

𝑑 = −1 if the subject vehicle is not in a platoon 

𝑠 = (𝜇, 𝜙) ∈ 𝑆 State of the traffic dynamics process 

𝑆 = {𝑠} Set of all possible states of the traffic dynamics process 

𝑐𝑓(𝑠) The fuel cost of the subject vehicle at state 𝑠 

𝑐𝑡(𝑠) The time cost of the subject vehicle at state 𝑠 

𝑐𝑑𝑖(𝑠1, 𝑠2) Passenger discomfort/safety risk cost for a vehicle transitioning from state 

𝑠1 to 𝑠2 

𝑁𝑙𝑐 Number of lane changes 

𝛬 = [𝜆𝑓 , 𝜆𝑡 , 𝜆𝑑𝑖] Vector of cost component coefficients, containing elements for fuel, time, 

and discomfort/safety 

𝐶(𝑠1, 𝑠2)

= [(𝑐𝑓(𝑠1) + 𝑐
𝑓(𝑠2))

/2, (𝑐𝑡(𝑠1) + 𝑐
𝑡(𝑠2))

/2, 𝑐𝑑𝑖(𝑠1, 𝑠2)]
⊤

 

Cost vector for a vehicle transitioning from state 𝑠1 to 𝑠2 

 

𝐶𝑠1
𝑠2 = 𝛬𝐶(𝑠1, 𝑠2) Sum of fuel, time, and comfort/safety costs 

𝑉([𝑙, 𝜉tr, 𝜉𝑝], [𝜙𝑙, 𝜙𝑝 , 𝑑]) The minimum total expected discounted cost-to-go starting from state 𝑠 =

(𝜇, 𝜙) 

𝑐𝑓𝑙  Cost of missing the trip destination 

Probability distributions 

𝑞𝜙
𝑓(𝜇) Probability that the subject vehicle fails to change lanes if such a decision 

has been made 

𝑔𝑙
1(𝜉𝑝) Probability of successful platoon merging with lane changing 

𝑔𝑙
0(𝜉𝑝) Probability of successful platoon merging without lane changing 

𝑤(𝑘) Probability distribution for the number of road pieces, 𝑘, for which the 

subject vehicle can stay with a platoon it has met 

Transition matrices 

𝑝𝑙
𝐿𝑒((𝜉tr

𝐿𝑒)′|𝜉tr, 𝜉𝑝) Probability that the traffic state transitions to (𝜉tr
𝐿𝑒)′ in the left lane, given 

𝜉tr and 𝜉𝑝 

𝑝𝑙
𝑅𝑖 ((𝜉tr

𝑅𝑖)
′
|𝜉tr, 𝜉𝑝) Probability that the traffic state transitions to (𝜉tr

𝑅𝑖)
′
 in the right lane, given 

𝜉tr and 𝜉𝑝 

ℎ𝑙
𝐿𝑒 ((𝜉𝑝

𝐿𝑒)
′
|𝜉tr, 𝜉𝑝) Probability that the platoon intensity transitions to (𝜉𝑝

𝐿𝑒)
′
 in the left lane, 

given 𝜉tr and 𝜉𝑝 



 
9 

Notation Definition 

ℎ𝑙
𝑅𝑖 ((𝜉𝑝

𝑅𝑖)
′
|𝜉tr, 𝜉𝑝) Probability that the platoon intensity transitions to (𝜉𝑝

𝑅𝑖)
′
 in the right lane, 

given 𝜉tr and 𝜉𝑝 

Actions 

𝑎𝑙 ∈ {𝐿𝑒, 𝑅𝑖} Target lane 

𝑎𝑝 ∈ {0,1} Target platoon membership 

𝑎𝑟 ∈ 𝑆𝑙(𝑙𝑖) Target route 

𝑎 = [𝑎𝑙, 𝑎𝑝, 𝑎𝑟] The action taken by the subject vehicle 

𝐴 = {𝑎} Action set 

Let 𝑠 = (𝜇, 𝜙) ∈ 𝑆 denote the state of the traffic dynamics process and 𝑆 is the set of all possible 

states 𝑠. Vector 𝜇 = [𝑙𝑖 , 𝜉tr, 𝜉𝑝] in this process denotes the location-dependent environment state, 

where 𝑙𝑖 ∈ 𝐿 and 𝐿 includes the location of the origin and destination of the trip (leg), denoted by 𝑙𝑜 

and 𝑙𝑑 , respectively, and all other road pieces on all possible paths that connect the origin to the 

destination. The vector 𝜉tr = [𝜉tr
𝐿𝑒 , 𝜉tr

𝑅𝑖] denotes the macroscopic state of traffic on the left and right 

lanes, respectively. More specifically, we consider three macroscopic traffic states of free-flow, 

onset-of-congestion, and congested. Vector 𝜉𝑝 = [𝜉𝑝
𝐿𝑒 , 𝜉𝑝

𝑅𝑖] denotes the percentage of platoon-

enabled vehicles on the left and right lanes, respectively. 

Let 𝜙 = [𝜙𝑙 , 𝜙𝑝, 𝑑] denote the state of the subject vehicle. Here, 𝜙𝑙 ∈ {𝐿𝑒, 𝑅𝑖} denotes the 

lateral position of the subject vehicle, where ‘𝐿𝑒’ and ‘𝑅𝑖’ refer to the left and right lanes, 

respectively. Furthermore, 𝜙𝑝 ∈ {0,1} is a binary indicator denoting the platoon membership status 

of the vehicle, where 𝜙𝑝 = 0 indicates that the subject vehicle is not a platoon member and 𝜙𝑝 = 1 

indicates otherwise. Let 𝑑 denote the number of road pieces to the scheduled splitting of the 

platoon the subject vehicle is a member of. We set 𝑑 = −1 if the subject vehicle is not in a platoon. 
We assume that before merging, vehicles that will stay in a same platoon will negotiate and reach 

consensus on the scheduled splitting position 𝑑 = 𝑘. Vehicles in a platoon moving to the next road 

piece will have their 𝑑 decreased by 1. The platoon has to split/dissolve when 𝑑 = 0. (We assume 
the subject vehicle can optimize its action periodically and thus actively split before the scheduled 
splitting position in our current model, but this can be easily modified by disabling the first, third 
and fourth expression in Equation (8). 

Let 𝑎 = [𝑎𝑙 , 𝑎𝑝, 𝑎𝑟] denote the action taken by the subject vehicle in the beginning of each road 

piece, where 𝑎𝑙 ∈ {𝐿𝑒, 𝑅𝑖} denotes the target lane for the subject vehicle, 𝑎𝑝 ∈ {0,1} denotes the 

target platoon membership, where 𝑎𝑝 = 0 indicates that the vehicle stays as a free agent and 𝑎𝑝 = 1 

indicates that the vehicle merges into a platoon, and 𝑎𝑟 ∈ 𝑆𝑙(𝑙𝑖) denotes the path selected by the 
vehicle. 

Let 𝑐𝑓(𝑠) and 𝑐𝑡(𝑠) denote the fuel cost and time cost of the subject vehicle at the state 𝑠, 
respectively. See (X. Liu et al. 2021, in press) for the computation of fuel cost, 𝑐𝑓(𝑠). The time cost 

of a trip (leg) can be computed as the length of the road piece len𝑖  over the velocity in lane 𝜙𝑙 under 

traffic condition 𝜉tr, 𝑣(𝜉tr, 𝜙𝑙), i.e., 

 𝑐𝑡(𝑠) = len𝑖/𝑣(𝜉tr, 𝜙𝑙) (1) 
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Let 𝑐𝑑𝑖(𝑠1, 𝑠2) denote the cost associated with passenger discomfort/safety risk for transitioning 

from state 𝑠1 to 𝑠2. The passenger discomfort/safety cost is assumed to be realized when the vehicle 
is changing lanes, and increase linearly with the number of lane changes. Therefore, 

 𝑐𝑑𝑖(𝑠1, 𝑠2) = 𝑔(𝑁𝑙𝑐) (2) 

where 𝑔(. ) is a linear function and 𝑁𝑙𝑐 is the number of lane changes in the current road piece. In 

one road piece, the subject vehicle is not expected to change lanes more than once, i.e., 𝑁𝑙𝑐 ∈ {0,1}. 

Let 𝐶𝑠1
𝑠2 denote the sum of all three costs discussed above for a vehicle that starts a road piece in 

state 𝑠1 and ends it in state 𝑠2. The exact transition position depends on the real-time traffic 
environment. For simplification, we assume the transition takes place in the middle of a road piece, 

and therefore 𝐶𝑠1
𝑠2 can be formulated as: 

 𝐶𝑠1
𝑠2 = 𝛬𝐶(𝑠1, 𝑠2) = 𝜆𝑓 (𝑐

𝑓(𝑠1) + 𝑐
𝑓(𝑠2)) /2 + 𝜆𝑡(𝑐

𝑡(𝑠1) + 𝑐
𝑡(𝑠2))/2 + 𝜆𝑑𝑖𝑐

𝑑𝑖(𝑠1, 𝑠2) (3) 

where the vector 𝛬 = [𝜆𝑓, 𝜆𝑡 , 𝜆𝑑𝑖] contains the corresponding coefficients for each cost component, 

and 𝐶(𝑠1, 𝑠2) = [(𝑐
𝑓(𝑠1) + 𝑐

𝑓(𝑠2)) /2, (𝑐
𝑡(𝑠1) + 𝑐

𝑡(𝑠2))/2, 𝑐
𝑑𝑖(𝑠1, 𝑠2)]

⊤
 is the cost vector for a 

vehicle transitioning from state 𝑠1 to 𝑠2. Note that all costs are functions of our action, where the 

action is implied from the transition of the state from 𝑠1 to 𝑠2. We assume that 𝛬 can be different 
for each driver, since different cost terms are of different importance for each driver. The total 

travel cost 𝐶𝑠1
𝑠2 describes the generalized cost of travel in a road piece. For example, the MDP cost 

for a vehicle that starts a road piece on the left lane as a free agent and ends the road piece on the 

right lane as a free agent can be denoted by 𝐶𝐿𝑒,0,−1
𝑅𝑖,0,−1

. 

An important part of the MDP model is the transition probability matrices that allow us to model 

the dynamics of the system. Let 𝑝𝑙
𝐿𝑒((𝜉tr

𝐿𝑒)′|𝜉tr, 𝜉𝑝) and 𝑝𝑙
𝑅𝑖 ((𝜉tr

𝑅𝑖)
′
|𝜉tr, 𝜉𝑝) denote the probability 

that given 𝜉tr and 𝜉𝑝, the traffic state transitions to (𝜉tr
𝐿𝑒)′ in the left lane and to (𝜉tr

𝑅𝑖)
′
 in the right 

lane in road piece 𝑙𝑖, respectively. Let ℎ𝑙
𝐿𝑒 ((𝜉𝑝

𝐿𝑒)
′
|𝜉tr, 𝜉𝑝) and ℎ𝑙

𝑅𝑖 ((𝜉𝑝
𝑅𝑖)

′
|𝜉tr, 𝜉𝑝) denote the 

probability that given 𝜉tr and 𝜉𝑝, the platoon intensity transitions to (𝜉𝑝
𝐿𝑒)

′
 in the left lane and to 

(𝜉𝑝
𝑅𝑖)

′
 in right lane, respectively. These transition probability matrices can be learnt from historical 

data. 

Let 𝑞𝜙
𝑓(𝜇) denote the probability that the subject vehicle fails to change lanes if such a decision 

has been made. Note that 𝑞𝜙
𝑓

 is a function of the traffic state in target lane. Let 𝑔𝑙
1(𝜉𝑝) and 𝑔𝑙

0(𝜉𝑝) 

denote the probability of successful platoon merging with and without lane changing, respectively. 

Note that 𝑔𝑙
1 is a function of the density of platoon-enabled vehicles in the target lane, and 𝑔𝑙

0 is a 
function of the availability of platoon-enabled vehicles in the immediate downstream of the subject 

vehicle in the original lane. Let 𝑙𝑖
′ and 𝜇′ = [𝑙𝑖

′, 𝜉tr
′ , 𝜉𝑝

′ ] denote a candidate road piece directly 

connected to 𝑙𝑖 and its corresponding environment state vector, respectively. Hence, the problem 

terminates when the vehicle reaches its destination, i.e., 𝑙𝑖 = 𝑙𝑑 . Finally, let 

𝑉([𝑙𝑖 , 𝜉tr, 𝜉𝑝], [𝜙𝑙 , 𝜙𝑝, 𝑑]) denote the minimum total expected discounted cost starting with the 
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vehicle state [𝜙𝑙 , 𝜙𝑝, 𝑑] and the environment state [𝑙𝑖 , 𝜉tr, 𝜉𝑝]. Hence, for 𝑙𝑖 = 𝑙𝑑 , the minimum 

total expected discounted cost is given by 

 
𝑉([𝑙𝑑 , 𝜉tr, 𝜉𝑝], [𝜙𝑙 , 𝜙𝑝, 𝑑]) = {

0  if the vehicle is at the correct destination

𝑐𝑓𝑙  otherwise  (4) 

where 𝑐𝑓𝑙  is a cost incurred should the subject vehicle fail to reach its destination (e.g., the vehicle 

should be a single vehicle in the right lane at the target off-ramp piece). 

For 𝑙𝑖 ≠ 𝑙𝑑 , when 𝜙𝑙 = 𝐿𝑒, 𝜙𝑝 = 0, 𝑑 = −1, the minimum expected discounted cost is given by 

𝑉(𝜇, 𝐿𝑒, 0, −1) =

min𝑎∈𝐴

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝛬𝐶𝐿𝑒,0,−1

𝐿𝑒,0,−1 + 𝑈(𝜇′, 𝐿𝑒, 0, −1) 𝑎𝑙 = 𝐿𝑒, 𝑎𝑝 = 0

𝑔𝑙
0(𝜉𝑝){𝛬𝐶𝐿𝑒,0,−1

𝐿𝑒,1,𝑘−1 +𝑊(𝜇′, 𝐿𝑒, 1, 𝑘 − 1)} +

(1 − 𝑔𝑙
0(𝜉𝑝)) {𝛬𝐶𝐿𝑒,0,−1

𝐿𝑒,0,−1 + 𝑈(𝜇′, 𝐿𝑒, 0, −1)} 𝑎𝑙 = 𝐿𝑒, 𝑎𝑝 = 1

𝑞𝜙
𝑓(𝜇){𝛬𝐶𝐿𝑒,0,−1

𝐿𝑒,0,−1 + 𝑈(𝜇′, 𝐿𝑒, 0,−1)} +

(1 − 𝑞𝜙
𝑓(𝜇)) {𝛬𝐶𝐿𝑒,0,−1

𝑅𝑖,0,−1 + 𝑈(𝜇′, 𝑅𝑖, 0, −1)} 𝑎𝑙 = 𝑅𝑖, 𝑎𝑝 = 0

𝑔𝑙
1(𝜉𝑝) (1 − 𝑞𝜙

𝑓(𝜇)) {𝛬𝐶𝐿𝑒,0,−1
𝑅𝑖,1,𝑘−1 +𝑊(𝜇′, 𝑅𝑖, 1, 𝑘 − 1)} +

(1 − 𝑔𝑙
1(𝜉𝑝) (1 − 𝑞𝜙

𝑓(𝜇))) {𝛬𝐶𝐿𝑒,0,−1
𝐿𝑒,0,−1 + 𝑈(𝜇′, 𝐿𝑒, 0,−1)} 𝑎𝑙 = 𝑅𝑖, 𝑎𝑝 = 1

 (5) 

where 𝑈 and 𝑊 are described in Equations (6) and (7) as the minimum expected discounted cost of 

the remainder of the trip starting from the next road piece 𝑙𝑖
′ for a vehicle that intends to maintain 

its state and join a platoon, respectively. 

 
𝑈(𝜇′, 𝜙𝑙 , 𝜙𝑝, 𝑑) = 𝛼 ∑ 𝑝𝑙

𝐿𝑒

𝜉tr
′𝜉𝑝
′

((𝜉tr
𝐿𝑒)′|𝜉tr, 𝜉p)𝑝𝑙

𝑅𝑖 ((𝜉tr
𝑅𝑖)

′
|𝜉tr, 𝜉p)

ℎ𝑙
𝐿𝑒 ((𝜉𝑝

𝐿𝑒)
′
|𝜉𝑝, 𝜉p) ℎ𝑙

𝑅𝑖 ((𝜉𝑝
𝑅𝑖)

′
|𝜉𝑝, 𝜉p)𝑉(𝜇′, 𝜙𝑙 , 𝜙𝑝, 𝑑)

 (6) 

 
𝑊(𝜇′, 𝜙𝑙 , 1, 𝑘 − 1) = 𝛼 ∑ ∑𝑤

𝑘𝜉tr
′𝜉𝑝
′

(𝑘)𝑝𝑙
𝐿𝑒((𝜉tr

𝐿𝑒)′|𝜉tr, 𝜉p)𝑝𝑙
𝑅𝑖 ((𝜉tr

𝑅𝑖)
′
|𝜉tr, 𝜉p)

ℎ𝑙
𝐿𝑒 ((𝜉𝑝

𝐿𝑒)
′
|𝜉𝑝, 𝜉p)ℎ𝑙

𝑅𝑖 ((𝜉𝑝
𝑅𝑖)

′
|𝜉𝑝, 𝜉p) 𝑉(𝜇′, 𝜙𝑙 , 1, 𝑘 − 1)

 (7) 

The four arguments of the min function in Equation (5) correspond to the costs of the lane 
changing and platoon merging actions. The expected discounted cost (with the initial values as 
specified) is then the minimum cost over the entire action set, which consists of lane changing, 
platoon merging, and route choice.  
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The first expression in Equation (5) corresponds to the action that results in no change in the 
state of the vehicle; that is, the subject vehicle stays on the left lane as a single agent. The cost of this 

action is equal to the cost of continuing with the initial state (𝐿𝑒, 0, −1) on the current road piece, 
plus the min expected discounted cost of starting the next road piece under the same initial state.  

The second expression in Equation (5) corresponds to the action of staying on the left lane, but 
joining a platoon. The first term here corresponds to the expected cost of the scenario where the 
vehicle successfully joins a platoon. Under this scenario, the vehicle incurs both the cost of this new 
trajectory on the current road piece and the expected discounted cost of the rest of the trip starting 
from its new state as a platoon member. In case the execution of this action fails (i.e., the vehicle 
cannot join a platoon), the vehicle will continue under the previous state on the current road piece, 
and incurs an expected discounted cost for the rest of the trip starting from the left lane as a single 
agent. This cost is demonstrated in the second term.  

The third expression in Equation (5) corresponds to the action of changing to the right lane and 
remaining a free agent. Similar to the previous case, the first term captures the expected cost if the 
action can be completed, and the second term corresponds to the cost of the trajectory if the vehicle 
fails to complete the action.  

Finally, the last expression in Equation (5) corresponds to the action of changing lanes and 
joining a platoon. In this case, the expected discounted cost is the summation of two terms, the first 
term corresponding to the entire action being completed, and the second term corresponding to the 
action failing. 

For the case where the subject vehicle is a platoon member and the platoon splitting time has not 

been reached (i.e., 𝑙𝑖 ≠ 𝑙𝑑 , when 𝜙𝑙 = 𝐿𝑒, 𝜙𝑝 = 1, 𝑑 > 0), the minimum expected discounted cost 

is given by 

 𝑉(𝜇, 𝐿𝑒, 1, 𝑑) =

min𝑎∈𝐴

{
 
 
 
 
 

 
 
 
 
 
𝛬𝐶𝐿𝑒,1,𝑑

𝐿𝑒,0,−1 +𝑈(𝜇′, 𝐿𝑒, 0,−1) 𝑎𝑙 = 𝐿𝑒, 𝑎𝑝 = 0

𝛬𝐶𝐿𝑒,1,𝑑
𝐿𝑒,1,𝑑−1 +𝑈(𝜇′, 𝐿𝑒, 1, 𝑑 − 1) 𝑎𝑙 = 𝐿𝑒, 𝑎𝑝 = 1

𝑞𝜙
𝑓(𝜇){𝛬𝐶𝐿𝑒,1,𝑑

𝐿𝑒,1,𝑑−1 + 𝑈(𝜇′, 𝐿𝑒, 1, 𝑑 − 1)} +

(1 − 𝑞𝜙
𝑓(𝜇)) {𝛬𝐶𝐿𝑒,1,𝑑

𝑅𝑖,0,−1 +𝑈(𝜇′, 𝑅𝑖, 0,−1)} 𝑎𝑙 = 𝑅𝑖, 𝑎𝑝 = 0

(1 − 𝑔𝑙
1(𝜉𝑝) (1 − 𝑞𝜙

𝑓(𝜇))){𝛬𝐶𝐿𝑒,1,𝑑
𝐿𝑒,1,𝑑−1 +𝑈(𝜇′, 𝐿𝑒, 1, 𝑑 − 1)}

+𝑔𝑙
1(𝜉𝑝) (1 − 𝑞𝜙

𝑓(𝜇)) {𝛬𝐶𝐿𝑒,1,𝑑
𝑅𝑖,1,𝑘−1 +𝑊(𝜇′, 𝑅𝑖, 1, 𝑘 − 1)} 𝑎𝑙 = 𝑅𝑖, 𝑎𝑝 = 1

 (8) 

The first expression in the min function in Equation (8) refers to the case that the subject vehicle 
splits from its platoon without changing lanes. Since this can always be achieved, the expected 
discounted cost of this action is the cost of the subject vehicle traveling on its current road piece as a 
free agent, plus its expected discounted cost of continuing to travel as a free agent starting from the 
next road piece.  
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The second expression in Equation (8) describes the scenario where the subject vehicle maintains 
its current state. Under this scenario, the subject vehicle traverses its current road piece while 
maintaining its state, and continues the rest of its trip with the platoon splitting time reduced by one 
unit.  

The third expression in Equation (8) has the subject vehicle splitting from the platoon and 
changing lanes. When the subject vehicle decides to change lanes while in a platoon, it has to split 
from its platoon first. The first term here captures the scenario where the subject vehicle is not able 
to change lanes, under which case it will continue in its current platoon. Note that the OC model 
will inform the subject vehicle whether it can successfully change lanes. As such, if OC determines 
that changing lanes cannot take place safely, the subject vehicle will not split from its platoon. If the 
subject vehicle can change lanes, it will split from its platoon and continue the rest of the trip on the 
right lane as a free agent.  

Finally, the fourth expression in Equation (8) has the subject vehicle changing lanes and traveling 
on the right lane in a platoon. For this action to take place, the subject vehicle should split from its 
current platoon, change lanes, and join a platoon on the right lane. Since we are assuming that the 
subject vehicle is always able to split from its current platoon, the probability of completing this 
action is the probability of successfully changing lanes and joining a platoon in the new lane. The 
first term here captures the cost of this action failing, in which case the subject vehicle would 
continue on the left lane in its current platoon. The second term captures the cost of the action 
being completed successfully. 

For the case where the vehicle is a platoon member on the left lane and the platoon splitting time 

has arrived (i.e., 𝑙𝑖 ≠ 𝑙𝑑 , when 𝜙𝑙 = 𝐿𝑒, 𝜙𝑝 = 1, 𝑑 = 0), the minimum expected discounted cost is 

given by 

 𝑉(𝜇, 𝐿𝑒, 1,0) =

min𝑎∈𝐴

{
 
 
 
 
 
 

 
 
 
 
 
 
𝛬𝐶𝐿𝑒,1,0

𝐿𝑒,0,−1 + 𝑈(𝜇′, 𝐿𝑒, 0, −1) 𝑎𝑙 = 𝐿𝑒, 𝑎𝑝 = 0

𝑔𝑙
0(𝜉𝑝){𝛬𝐶𝐿𝑒,1,0

𝐿𝑒,1,𝑘−1 +𝑊(𝜇′, 𝐿𝑒, 1, 𝑘 − 1)} +

(1 − 𝑔𝑙
0(𝜉𝑝)) {𝛬𝐶𝐿𝑒,1,0

𝐿𝑒,0,−1 +𝑈(𝜇′, 𝐿𝑒, 0, −1)} 𝑎𝑙 = 𝐿𝑒, 𝑎𝑝 = 1

𝑞𝜙
𝑓(𝜇){𝛬𝐶𝐿𝑒,1,0

𝐿𝑒,0,−1 +𝑈(𝜇′, 𝐿𝑒, 0, −1)} +

(1 − 𝑞𝜙
𝑓(𝜇)) {𝛬𝐶𝐿𝑒,1,0

𝑅𝑖,0,−1 + 𝑈(𝜇′, 𝑅𝑖, 0, −1)} 𝑎𝑙 = 𝑅𝑖, 𝑎𝑝 = 0

𝑔𝑙
1(𝜉𝑝) (1 − 𝑞𝜙

𝑓(𝜇)) {𝛬𝐶𝐿𝑒,1,0
𝑅𝑖,1,𝑘−1 +𝑊(𝜇′, 𝑅𝑖, 1, 𝑘 − 1)}

+(1 − 𝑔𝑙
1(𝜉𝑝) (1 − 𝑞𝜙

𝑓(𝜇))){𝛬𝐶𝐿𝑒,1,0
𝐿𝑒,0,−1 + 𝑈(𝜇′, 𝐿𝑒, 0, −1)} 𝑎𝑙 = 𝑅𝑖, 𝑎𝑝 = 1

 (9) 

In Equation (9), 𝑑 = 0 indicates that the platoon is dissolving and the subject vehicle has to split 
from it in the current road piece. The first expression in Equation (9) captures the scenario where 
the subject vehicle continues to travel on the left lane as a free agent after splitting from its current 
platoon.  
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The second expression in Equation (9) captures the case where the subject vehicle decides to join 
another platoon in the left lane, which may fail due to the absence of platoon-enabled vehicles in the 
left lane (second term).  

The third expression in Equation (9) indicates that the subject vehicle plans to change lanes and 
continue to travel as a free agent. This action may fail if the subject vehicle cannot change lanes (first 
term), in which case the subject vehicle continues to travel on the left lane as a free agent. 
Otherwise, the subject vehicle travels on the right lane as a free agent.  

The fourth expression in Equation (9) captures the scenario where the subject vehicle switches to 
the right lane and joins a platoon. The first term is the cost of the case where this action can be 
completed successfully, and the second term captures the case where this action fails. 

For other cases that the vehicle is on the right lane (i.e., 𝜙𝑙 = 𝑅𝑖), the minimum expected 
discounted cost has similar formulas as above. Refer to 7 for details. 

4.3. The Optimal Control (OC) Model 

The MDP model creates a policy that advises the set of coarse actions the vehicle needs to take in 
order to complete its trip in the most cost-effective way. However, the MDP model cannot provide 
a full, implementable trajectory for the subject vehicle that includes its target acceleration profile. As 
such, the MDP framework utilizes an optimal control (OC) model to bridge this gap. The role of the 
OC model is two-fold: First, it devises an acceleration profile for the subject vehicle to complete 
coarse actions (or determines the infeasibility of completing the coarse actions) following a quintic 
trajectory function and subject to collision avoidance and bounds on the vehicle’s speed, 
acceleration, and jerk (X. Liu et al. 2021, in press). The quintic trajectory function is selected due to 
its ability to provide a smooth trajectory. This function is demonstrated in Equation (10). In this 

equation, 𝑥(𝑡) and 𝑦(𝑡) indicate the longitudinal and lateral positions of the vehicle at time 𝑡, 

respectively, Coefficients 𝑎0
𝑖  through 𝑎5

𝑖  and 𝑏0
𝑖  through 𝑎5

𝑖  are decision variables that determine the 
optimal solution. 

 
{
𝑥(𝑡) = 𝑎5

𝑖 𝑡5 + 𝑎4
𝑖 𝑡4 + 𝑎3

𝑖 𝑡3 + 𝑎2
𝑖 𝑡2 + 𝑎1

𝑖 𝑡 + 𝑎0
𝑖

𝑦(𝑡) = 𝑏5
𝑖 𝑡5 + 𝑏4

𝑖 𝑡4 + 𝑏3
𝑖 𝑡3 + 𝑏2

𝑖 𝑡2 + 𝑏1
𝑖 𝑡 + 𝑏0

𝑖
. (10) 

Additionally, the OC model quantifies the short-term cost of completing the coarse actions based 
on the acceleration profile of the vehicle (X. Liu et al. 2021, in press). More specifically, given the 

action 𝑎 = {𝑎𝑙 , 𝑎𝑝, 𝑎𝑟}, the OC model plans a trajectory that minimizes a convex combination of 

fuel and time costs, subject to safety and comfort guarantees. The details on the OC model can be 
found in (X. Liu et al. 2021, in press). 

For each action 𝑎 ∈ 𝐴, this short term cost 𝐶𝑜𝑐 is then combined with the expected long-term 

cost 𝑉(𝜇, 𝜙) in the MDP framework. The MDP framework enumerates all coarse actions 𝑎 ∈ 𝐴, 
and selects the action that minimizes the total cost by the OC and MDP models. 

5. Experiments and Analysis 

In this section, we will conduct simulations in three experimental settings, namely a circular track, a 
straight highway, and a small network with route choice. We compare the performance of the local 
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OC model and the MDP framework, in which the OC and MDP models are combined, under 
different traffic states in all three experimental settings. Our simulations are based on a previously 
built simulation platform in (X. Liu et al. 2021, in press), in which surrounding vehicles follow the 
Intelligent Driver Model (Jin and Orosz 2016). We consider aerodynamic, rolling, grade, and inertial 
resistance forces for fuel cost computation (Gillespie 1992), and set the value of time (VoT) to 10 
dollars per hour. 

5.1. Model Calibration 

In a future connected and automated vehicle system, parameters of the MDP framework can be 
calibrated using historical data. Note that even when abundant CAV data becomes available, it could 
still be a difficult task to fully and precisely represent every single driving scenario due to the 
complexity of human behavior, non-linearity of interactions between vehicles, and the dynamic 
nature of the transportation network. Therefore, a more practical approach would be to use 

historical data to partition 𝜉tr
𝐿𝑒 , 𝜉tr

𝑅𝑖 , 𝜉𝑝
𝐿𝑒 and 𝜉𝑝

𝑅𝑖  into different clusters, representing different traffic 

states and platoon intensities in the left and right lanes, respectively. The transition probabilities can 
then be estimated using the maximum likelihood principle, based on the occurrence percentages of 
the corresponding state transitions in historical records. Furthermore, once data is available, we can 

use it in a maximum likelihood estimation framework to calibrate functions 𝑞𝜙
𝑓(𝜇), 𝑔𝑙

1(𝜉𝑝) and 

𝑔𝑙
0(𝜉𝑝), and 𝑤(𝑘). 

For the current study, since historical data does not exist, we use simulations to create CAV 
driving scenarios, and treat observations within simulations as historical data. We conduct 
simulations using the OC model proposed in (X. Liu et al. 2021, in press), in which a mixed traffic 
of CAVs and legacy vehicle can travel in a traffic stream. The parameter values used in these 
simulations are specified in 8. After a warm-up period of about 20 minutes, we estimate the required 
parameters for this study using the maximum likelihood principle. 

 In this work, we assume that only the subject vehicle is adopting the MDP framework, and thus 
the actions taken by a single vehicle do not change the macroscopic traffic state of the system. If the 
penetration rate of vehicles that adopt the MDP framework is high, actions taken by these vehicles 
could change the state. In this case, model parameters and the optimal MDP policy can be updated 
periodically to capture such changes. 

5.2. A Circular Track Scenario  
Circular track is a great experimental setting as it can demonstrate the impact of the proposed 
methodology not only on the generalized cost of a trip, but also on the properties of traffic wave 
propagation (Sugiyama et al. 2008; Tadaki et al. 2013). Stern et al. (2018) demonstrate that a low 
penetration of autonomous vehicles can effectively dampen the stop-and-go wave using a circular 
track. Here, we conduct our simulations in a circular track, where the surrounding vehicles can 
merge into platoons, but cannot change lanes, enter through on-ramps, or exit from off-ramps. In 
these simulations, the subject vehicle will have a trip of 10.8 kilometers in length, and different 
traffic states (e.g., free-flow, onset-of-congestion and congested) are generated similar to (X. Liu et 
al. 2021, in press), by utilizing a fundamental diagram of traffic flow. 

In figures presented in this paper, OC and MDP refer to the local optimal controller and the 
MDP framework (also referred to as the MDP controller), respectively. The suffix _xK indicates that 
the circle length is x kilometers. The suffix _low, _medium and _high represent the penetration of 
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platoon-enabled vehicles. Specifically, _low indicates that all surrounding vehicles are non-platoon-
enabled, _medium indicates a subset (about 30%) of surrounding vehicles are platoon-enabled, and 
_high indicates that all surrounding vehicles are platoon-enabled. 

Figure (3) shows the generalized cost incurred by the subject vehicle under the OC and MDP 
controllers when the circular track is 2, 5 and 10 km in perimeter, respectively. This figure indicates 
that the circle perimeter does not significantly affect the subject vehicle’s generalized cost. In the 
free-flow and onset-of-congestion states, the MDP controller provides statistically significant (at the 
5% significance level) lower costs. In the congested traffic state, no statistically significant difference 
in cost is observed between the MDP and OC controllers, although the variance of cost is lower 
under the MDP controller. 

Figure (4) shows the generalized cost for the subject vehicle under different controllers and a 
track perimeter of 5km, as the penetration rate of platoon-enabled vehicles in the surrounding traffic 
changes. In the free-flow state, it is only under a high penetration rate that the MDP controller 
results in a significantly smaller cost compared with the OC controller, and there is no significant 
difference when penetration rate is low or medium. In onset-of-congestion traffic state, the MDP 
controller has significantly smaller costs than the OC controller at all penetration rates. In congested 
traffic, the MDP and OC controllers are not different in a statistically significant manner, although 
the generalized cost is much lower under a high penetration rate of platoon-enabled vehicles. 
Generally, higher intensity of platoon-enabled vehicles gives rise to more opportunities for the 
subject vehicle to join a platoon, thereby resulting in less cost.  

Figure 3: The simulation environment is a circular track. The top, middle and bottom sub-figures represent 
the free-flow, onset-of-congestion, and congested traffic states, respectively. The vertical axes show the 
generalized costs with VoT set to 10 dollars per hour. Along the horizontal axes, the generalized costs of 
the subject vehicle under different controllers in circular tracks of different lengths are compared. Here ‘OC’ 
and ‘MDP’ denote local optimal and the MDP controllers, respectively. The suffix ‘ xK’ indicates that the 
length of the circular track is x kilometers. 
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Figure 4: The suffixes ‘ low’, ‘ medium’ and ‘ high’ represent different levels of intensities of platoon-enabled 
vehicles in the environment. Specifically, ‘ low’ indicates that all surrounding vehicles are non-platoon- 
enabled, ‘ medium’ indicates that a proportion (about 30%) of the surrounding vehicles are platoon-enabled, 
and ‘ high’ indicates that all surrounding vehicles are platoon-enabled. Other settings are the same as Figure 
3. 

 
Figure 5: Differences in average time, fuel, and generalized costs of the vehicles upstream to the subject 
vehicle for different track lengths. A positive value indicates that MDP results in a higher cost than OC, 
while a negative value indicates that MDP brings more cost savings than OC. The simulation settings are 
similar to those in Figure 3. 
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Figure 6: Differences in average time, fuel, and generalized costs of the vehicles upstream to the subject 
vehicle under different penetration rates of platoon-enabled vehicles. A positive value indicates that MDP 
results in a higher cost than OC, while a negative value indicates that MDP brings more cost savings than 
OC. The simulation settings are similar to those in Figure 4. 

5.3. A Two-lane Highway Scenario 

In this highway scenario, we adopt the same surrounding environment setting as in (X. Liu et al. 
2021, in press). Surrounding vehicles can change lanes, merge/exit from the highway, and join 
into/split from a platoon. Figure (7) demonstrates the generalized costs of different controllers, 

where the number in the controller name is the value of 𝛼, i.e., the discount factor used in the MDP 
model. This figure shows that in all traffic states, the larger the discount factor (i.e., the more weight 
on the expectation of the long term cost), the smaller the cost for the subject vehicle along the entire 
trip, which highlights the importance of accounting for the long-term trip cost. Figure (8) shows the 
generalized cost of the surrounding vehicles. In the free-flow traffic state, the MDP controller 
results in significantly smaller cost for the surrounding vehicles, and these savings grow as the MDP 
discount factor increases. However, under the onset-of-congestion and congested traffic states, the 
OC and MDP controllers do not show significant differences in cost. 

Figure (9) shows the generalized costs incurred by the subject vehicle and its immediate 
downstream vehicles for an example trip in the onset-of-congestion traffic state, as well as the lateral 
position and platoon membership status of the subject vehicle. The top plot in this figure pertains to 
the trajectory formed by the OC model, and the bottom plot demonstrates the trajectory devised by 
the MDP controller. In the top plot, the subject vehicle makes decisions based solely on local 
information; as such, its trajectory tends to closely follow the trajectory of its downstream vehicle. 
This figure shows that under the OC controller, the subject vehicle changes to the left lane at about 
2950 time steps, and then returns to its original lane at about 3750 time steps, an indicator of short-
sighted decisions. The subject vehicle’s platoon membership status also changes frequently starting 
at about 4600 time steps. These actions disturb the traffic stream and increase the generalized cost 
of the subject vehicle and its surrounding vehicles. In the bottom plot, the subject vehicle changes to 
the left lane at an early time, in which it travels for the rest of its trip. The subject vehicle also joins 



 
19 

platoons twice during its trips, but for longer periods of time. In general, the cost of the subject 
vehicle under the OC controller is much higher than that of the MDP controller. 

 

 

 

 

Figure 7: The simulation environment is a highway with on- and off-ramps. The value following ‘MDP ’ in 
the name of the controller specifies the discount factor, α in the MDP model. Other settings are similar to 
those in Figure 3. 
 

Figure 8: The average generalized cost of the surrounding vehicles. The value following MDP in the name 
of the controller specifies the discount factor, α in the MDP model. Other settings are similar to those in 
Figure 7. 
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Figure 9: The vertical axis shows the generalized cost, with the unit of dollars per 10 km. The horizontal 
axis is time, with the unit of 0.1 second. Generalized cost of the subject vehicle and its immediate upstream 
vehicles, as well as its lane position and platoon membership status are shown. In the top plot, the subject 
vehicle is traveling under the OC controller, while in the bottom plot, the subject vehicle is traveling under 
the MDP controller. 

 

5.4. A Network-level Scenario with Route Choice 

In these experiments, we show the extensibility of the MDP framework in a joint decision making 
scenario, in which the framework makes routing, lane-changing, and platoon-merging decisions. In 
the scenario shown in Figure 10, the subject vehicle has two possible routes to the destination, 
namely ‘Route1’ and ‘Route2’. Figure 11 shows the results under three scenarios. Under Route1 and 
Route2, the traveling route is fixed, and the OC model determines the lane changing and platoon 
merging decisions. Under MDP, the MDP framework makes all three sets of decisions. This figure 
demonstrates that under all traffic states, the MDP model results in statistically significant savings in 
the generalized cost compared to the OC model with a fixed route. 

 

Figure 10: The subject vehicle has two available routes from the origin (blue point) to the destination (red 
point). Route 1 has a slightly shorter distance, but it is more congested compared with route 2. 
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Figure 11: ‘Route1’ and ‘Route2’ refer to scenarios where the subject vehicle will take routes 1 and 2, 
respectively. In these two scenarios, the OC controller is applied. The ‘MDP’ label refers to the case where 
the MDP framework selects the adopted route. Other settings are the same as Figure 3. 

6. Conclusion 

In this paper we proposed a motion planning framework for a CAV in a mixed traffic environment. 
The framework design leverages an optimal control model to quantify the short-term cost of a trip 
and an MDP model to capture its long-term cost. This general framework outputs the target 
acceleration profile of the vehicle as well as routing, platooning and lane changing decisions in a 
dynamic traffic environment. We implemented this motion planning framework in three 
experimental scenarios including a highway section with multiple on- and off-ramps, a circular track, 
and an urban network with route choice, and conducted a comprehensive set of simulations to 
quantify the long-term benefits the subject vehicle and its surrounding vehicles may experience as a 
result of incorporating network-level information into the decision-making process. Our 
experiments indicate that, generally speaking, the MDP framework outperforms a local OC 
controller in reducing the generalized trip cost. With higher intensity of platoon-enabled vehicles or 
higher weight on long-term cost (larger discounting factor), the reduction in generalized cost for 
both the subject vehicle and its upstream vehicles is statistically significant. This significant cost 
saving, which originates from accounting for network-level conditions, exists in all simulated 
environments, under various traffic states. 
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Appendix A.    Expected Discounted Cost in Right Lane 

For 𝑙𝑖 ≠ 𝑙𝑑 , when 𝜙𝑙 = 𝑅𝑖, 𝜙𝑝 = 0, and 𝑑 = −1, the minimum expected discounted cost is given 

by 

 𝑉(𝜇, 𝑅𝑖, 0, −1) =

min𝑎∈𝐴

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝛬𝐶𝑅𝑖,0,−1

𝑅𝑖,0,−1 + 𝑈(𝜇′, 𝑅𝑖, 0,−1) 𝑎𝑙 = 𝑅𝑖, 𝑎𝑝 = 0

𝑔𝑙
0(𝜉𝑝){𝛬𝐶𝑅𝑖,0,−1

𝑅𝑖,1,𝑘−1 +𝑊(𝜇′, 𝑅𝑖, 1, 𝑘 − 1)} +

(1 − 𝑔𝑙
0(𝜉𝑝)) {𝛬𝐶𝑅𝑖,0,−1

𝑅𝑖,0,−1 + 𝑈(𝜇′, 𝑅𝑖, 0,−1)} 𝑎𝑙 = 𝑅𝑖, 𝑎𝑝 = 1

𝑞𝜙
𝑓(𝜇){𝛬𝐶𝑅𝑖,0,−1

𝑅𝑖,0,−1 +𝑈(𝜇′, 𝑅𝑖, 0,−1)} +

(1 − 𝑞𝜙
𝑓(𝜇)) {𝛬𝐶𝑅𝑖,0,−1

𝐿𝑒,0,−1 +𝑈(𝜇′, 𝐿𝑒, 0,−1)} 𝑎𝑙 = 𝐿𝑒, 𝑎𝑝 = 0

𝑔𝑙
1(𝜉𝑝) (1 − 𝑞𝜙

𝑓(𝜇)) {𝛬𝐶𝑅𝑖,0,−1
𝐿𝑒,1,𝑘−1 +𝑊(𝜇′, 𝐿𝑒, 1, 𝑘 − 1)}

+ (1 − 𝑔𝑙
1(𝜉𝑝) (1 − 𝑞𝜙

𝑓(𝜇))) {𝛬𝐶𝑅𝑖,0,−1
𝑅𝑖,0,−1 +𝑈(𝜇′, 𝑅𝑖, 0,−1)} 𝑎𝑙 = 𝐿𝑒, 𝑎𝑝 = 1

 

(A. 1) 

 

The explanation for the case that the subject vehicle is a free agent in the right lane is similar to 
that in the left lane. 

For 𝑙𝑖 ≠ 𝑙𝑑 , when 𝜙𝑙 = 𝑅𝑖, 𝜙𝑝 = 1, 𝑑 > 0, the minimum expected discounted cost is given by 

 𝑉(𝜇, 𝑅𝑖, 1, 𝑑) =

min𝑎∈𝐴

{
 
 
 
 
 
 

 
 
 
 
 
 𝛬𝐶𝑅𝑖,1,𝑑

𝑅𝑖,0,−1 +𝑈(𝜇′, 𝑅𝑖, 0,−1) 𝑎𝑙 = 𝑅𝑖, 𝑎𝑝 = 0

𝛬𝐶𝑅𝑖,1,𝑑
𝑅𝑖,1,𝑑−1 + 𝑈(𝜇′, 𝑅𝑖, 1, 𝑑 − 1) 𝑎𝑙 = 𝑅𝑖, 𝑎𝑝 = 1

𝑞𝜙
𝑓(𝜇){𝛬𝐶𝑅𝑖,1,𝑑

𝑅𝑖,1,𝑑−1 +𝑈(𝜇′, 𝑅𝑖, 1, 𝑑 − 1)} +

(1 − 𝑞𝜙
𝑓(𝜇)) {𝛬𝐶𝑅𝑖,1,𝑑

𝐿𝑒,0,−1 + 𝑈(𝜇′, 𝐿𝑒, 0, −1)} 𝑎𝑙 = 𝐿𝑒, 𝑎𝑝 = 0

(1 − 𝑔𝑙
1(𝜉𝑝) (1 − 𝑞𝜙

𝑓(𝜇))){𝛬𝐶𝑅𝑖,1,𝑑
𝑅𝑖,1,𝑑−1 + 𝑈(𝜇′, 𝑅𝑖, 1, 𝑑 − 1)}

+𝑔𝑙
1(𝜉𝑝) (1 − 𝑞𝜙

𝑓(𝜇)) {𝛬𝐶𝑅𝑖,1,𝑑
𝐿𝑒,1,𝑘−1 +𝑊(𝜇′, 𝐿𝑒, 1, 𝑘 − 1)} 𝑎𝑙 = 𝐿𝑒, 𝑎𝑝 = 1

 

(A. 2) 

 

The explanation for the case that the subject vehicle is a member of platoon in the right lane is 
similar to the case that in the left lane. 

For 𝑙𝑖 ≠ 𝑙𝑑 , when 𝜙𝑙 = 𝑅𝑖, 𝜙𝑝 = 1, 𝑑 = 0, the minimum expected discounted cost is given by 
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 𝑉(𝜇, 𝑅𝑖, 1,0) =

min𝑎∈𝐴

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝛬𝐶𝑅𝑖,1,0

𝑅𝑖,0,−1 +𝑈(𝜇′, 𝑅𝑖, 0,−1) 𝑎𝑙 = 𝑅𝑖, 𝑎𝑝 = 0

𝑔𝑙
0(𝜉𝑝){𝛬𝐶𝑅𝑖,1,0

𝑅𝑖,1,𝑘−1 +𝑊(𝜇′, 𝑅𝑖, 1, 𝑘 − 1)} +

(1 − 𝑔𝑙
0(𝜉𝑝)) {𝛬𝐶𝑅𝑖,1,0

𝑅𝑖,0,−1 +𝑈(𝜇′, 𝑅𝑖, 0,−1)} 𝑎𝑙 = 𝑅𝑖, 𝑎𝑝 = 1

𝑞𝜙
𝑓(𝜇){𝛬𝐶𝑅𝑖,1,0

𝑅𝑖,0,−1 +𝑈(𝜇′, 𝑅𝑖, 0,−1)} +

(1 − 𝑞𝜙
𝑓(𝜇)) {𝛬𝐶𝑅𝑖,1,0

𝐿𝑒,0,−1 +𝑈(𝜇′, 𝐿𝑒, 0, −1)} 𝑎𝑙 = 𝐿𝑒, 𝑎𝑝 = 0

𝑔𝑙
1(𝜉𝑝) (1 − 𝑞𝜙

𝑓(𝜇)) {𝛬𝐶𝑅𝑖,1,0
𝐿𝑒,1,𝑘−1 +𝑊(𝜇′, 𝐿𝑒, 1, 𝑘 − 1)}

+(1 − 𝑔𝑙
1(𝜉𝑝) (1 − 𝑞𝜙

𝑓(𝜇))) {𝛬𝐶𝑅𝑖,1,0
𝑅𝑖,0,−1 +𝑈(𝜇′, 𝑅𝑖, 0,−1)} 𝑎𝑙 = 𝐿𝑒, 𝑎𝑝 = 1

 

(A. 3) 

 

The explanation for the case that the subject vehicle is in the right lane is similar to the last case 
that it is in the left lane. 

Appendix B.    Parameters for Generating Simulations 

Table B.1: Summary of parameters 

Parameter Value Definition 

𝑡upd   0.4 secs the updating period of the trajectory of the subject vehicle 

𝑝on 0.6 the probability that a vehicle is interested in joining the freeway 

from an on-ramp 

𝑝off 0.6  the probability that a vehicle is interested in taking an off-ramp 

𝑝npe 0.5  the probability that the vehicle is not platoon-enabled 

𝑝merge 0.6 the probability of that a vehicle intends to merge 

𝑝change 0.1 the probability of that the vehicle intends to change lane 

𝑡𝑝 3.5 secs the time gap between two successive vehicles not in a platoon 

𝑡𝑔 0.55 secs the time gap between two successive vehicles in a platoon 

𝑡lcp 3.6 secs the period of time within which the surrounding vehicles 

complete changing lanes 

𝑡lc 5 secs  the minimum time interval between two successive lane changes 

by two successive vehicles in the same lane 

𝜏𝑠 0.4 secs the reaction time delay in the car-following model 

𝜏𝑁act  10 secs the prediction horizon in the optimal control model 

𝑣m
le 20 m/s the velocity in the left lane at the maximum flow rate 

𝑣m
ri 14 m/s the velocity in the right lane at the maximum flow rate 

𝑣max
le  30 m/s maximum velocity in left lane 
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Parameter Value Definition 

𝑎max 2 m/s2 maximum acceleration for the subject vehicle 

𝑗max 3.5 m/s3 maximum jerk for the subject vehicle 

𝑑cg 50 m critical gap to decide whether it is feasible to change lanes 

𝑙car 5 m length of a vehicle 

ℎst 5 m vehicle would stop at headway of this value 

𝑎 2 m/s2 the maximum desired acceleration 

𝑏 3 m/s2 the comfortable deceleration 

𝛾AR 0.3987 coefficient for air resistance force 

𝛾RR 281.547 coefficient for rolling resistance force 

𝛾GR 0 coefficient for grade resistance force 

𝛾IR 1750 coefficient for inertial resistance force 

𝜂𝑓 5.98×10-8  fuel cost for a unit energy consumed by the vehicle (dollars/Joule) 

𝑃sch {2, 10, 50} the scheduled splitting position can be in 2, 10 or 50 road pieces 

𝑁(𝜇sch,  𝜎sch)  

 
𝑁(2, 5), left, 

𝑁(−1, 5), right 

the normal distribution of the scheduled splitting position in the 

left and right lanes 

 

Appendix C.    Sensitivity Analysis over Parameters in Traffic Environment 

To demonstrate the performance of our method under various settings, we conduct sensitivity 

analysis over parameters 𝑝𝑜𝑛, 𝑝𝑜𝑓𝑓 , 𝑝𝑛𝑝𝑒 , 𝑝𝑚𝑒𝑟𝑔𝑒  and 𝑝𝑐ℎ𝑎𝑛𝑔𝑒 in the two-lane highway scenario. 

Under univariate analysis, we adjust the value of one parameter at a time while keeping the values 
of other parameters unchanged. To maintain a relatively steady traffic environment, i.e., to avoid 

changes in traffic state, we use the same value for 𝑝𝑜𝑛 and 𝑝𝑜𝑓𝑓  to balance the number of vehicles 

entering and exiting the highway. 

Figures C.1 and C.2 display the generalized cost when 𝑝𝑜𝑛 = 𝑝𝑜𝑓𝑓 = 0.4 and 𝑝𝑜𝑛 = 𝑝𝑜𝑓𝑓 = 0.8 

for the subject vehicle and surrounding vehicles, respectively. Figures C.3 and C.4 demonstrate the 

generalized costs when 𝑝𝑛𝑝𝑒 = 0.1 and 𝑝𝑛𝑝𝑒 = 0.9, respectively. Figures C.5 and C.6 correspond to 

the cases where 𝑝𝑚𝑒𝑟𝑔𝑒 = 0.4 and 𝑝𝑚𝑒𝑟𝑔𝑒 = 0.8. Figures C.7 and C.8 show the cost when 

𝑝𝑐ℎ𝑎𝑛𝑔𝑒 = 0.05 and 𝑝𝑐ℎ𝑎𝑛𝑔𝑒 = 0.3. 

Under all these settings, our MDP framework generally results in statistically significant cost 
savings for subject vehicle and its surrounding vehicles in free-flow and onset-of-congestion states, 
and there is no significant difference in the congested state. 
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Figure C. 1: The value following ‘OC_’ or ‘MDP_’ in the name of the controller specifies the value of  
𝑝onand 𝑝off. Other settings are similar to those in Figure 7. 

 

 

Figure C. 2: The value following ‘OC_’ or ‘MDP_’ in the name of the controller specifies the value of  
𝑝on and 𝑝off. Other settings are similar to those in Figure 8. 
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Figure C. 3: The value following ‘OC_’ or ‘MDP_’ in the name of the controller specifies the value of 𝑝npe. 

Other settings are similar to those in Figure 7. 

 

 

Figure C. 4: The value following ‘OC_’ or ‘MDP_’ in the name of the controller specifies the value of 𝑝npe. 

Other settings are similar to those in Figure 8. 
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Figure C. 5: The value following ‘OC_’ or ‘MDP_’ in the name of the controller specifies the value of  𝑝merge. 
Other settings are similar to those in Figure 7. 

 

 

Figure C. 6: The value following ‘OC_’ or ‘MDP_’ in the name of the controller specifies the value of  𝑝merge. 
Other settings are similar to those in Figure 8. 
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Figure C. 7: The value following ‘OC_’ or ‘MDP_’ in the name of the controller specifies the value of 𝑝change. 
Other settings are similar to those in Figure 7. 

 

 

 

Figure C. 8: The value following ‘OC_’ or ‘MDP_’ in the name of the controller specifies the value of 𝑝change. 
Other settings are similar to those in Figure 8. 
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