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Aligning Patient Acuity With Resource Intensity After
Major Surgery

A Scoping Review

Tyler J. Loftus, MD,��Y Jeremy A. Balch, MD,� Matthew M. Ruppert, BS,y� Patrick J. Tighe, MD,z
William R. Hogan, MD,§ Parisa Rashidi, PhD,jj� Gilbert R. Upchurch Jr., MD,� and Azra Bihorac, MDy�

Objective: Develop unifying definitions and paradigms for data-driven

methods to augment postoperative resource intensity decisions.

Summary Background Data: Postoperative level-of-care assignments and

frequency of vital sign and laboratory measurements (ie, resource intensity)

should align with patient acuity. Effective, data-driven decision-support

platforms could improve value of care for millions of patients annually,

but their development is hindered by the lack of salient definitions and

paradigms.

Methods: Embase, PubMed, and Web of Science were searched for articles

describing patient acuity and resource intensity after inpatient surgery. Study

quality was assessed using validated tools. Thirty-five studies were included

and assimilated according to PRISMA guidelines.

Results: Perioperative patient acuity is accurately represented by combina-

tions of demographic, physiologic, and hospital-system variables as input

features in models that capture complex, non-linear relationships. Intraoper-

ative physiologic data enriche these representations. Triaging high-acuity

patients to low-intensity care is associated with increased risk for mortality;

triaging low-acuity patients to intensive care units (ICUs) has low value and

imparts harm when other, valid requests for ICU admission are denied due to

resource limitations, increasing their risk for unrecognized decompensation

and failure-to-rescue. Providing high-intensity care for low-acuity patients

may also confer harm through unnecessary testing and subsequent treatment

of incidental findings, but there is insufficient evidence to evaluate this

hypothesis. Compared with data-driven models, clinicians exhibit volatile

performance in predicting complications and making postoperative resource

intensity decisions.

Conclusion: To optimize value, postoperative resource intensity decisions

should align with precise, data-driven patient acuity assessments augmented

by models that accurately represent complex, non-linear relationships among

risk factors.

Keywords: ICU, illness severity, level-of-care, monitoring, mortality,

postoperative

(Ann Surg 2022;275:332–339)

M ore than 15 million major, inpatient surgeries are performed
each year in the United States. Complications occur in as many

as 32% of these surgeries, increasing cost by approximately $11,000
per major complication.1–3 According to surgeons, judgment errors
are the most common cause of major complications.4 When surgeons
rely on hypothetical-deductive reasoning and heuristics to make
time-sensitive decisions, judgment errors are expected and extend
beyond the operating room.5,6 Immediately after major surgery, risk
for adverse events and death (patient acuity) should align with level-
of-care assignments and the frequency of vital sign and laboratory
measurements (resource intensity). When high-acuity patients
receive low-intensity care, postoperative complications can progress
to critical illness and cardiac arrest.7–11 Providing high-intensity care
to low-acuity patients increases costs and may impart harm from
unnecessary treatments.12–15

Most data regarding resource intensity decisions describe
medical or mixed medical-surgical populations, limiting their gen-
eralizability to surgical patients: a population uniquely vulnerable to
postoperative hemorrhage, respiratory failure, opioid-related adverse
drug events, and hospital-acquired sepsis.16–18 Surgical literature is
rife with prediction models that forecast postoperative outcomes, but
lack of workflow integration impairs clinical adaptation, especially
when busy clinicians face time constraints.19 Furthermore, associ-
ations between predictions and resource intensity decisions are rarely
reported.19 Surgeons can easily infer relevant associations for
extreme scenarios, but for common, daily resource intensity deci-
sions, the absence of data-driven decision-making yields high vari-
ability and poor outcomes.5,6 Finally, there are no consensus
definitions for level-of-care that apply at national or international
levels, which hinders systematic, hypothesis-driven investigation.

Toward the goal of developing data-driven methods to aug-
ment postoperative resource intensity decisions, this review distills
existing surgical literature to develop validated, unifying definitions
and paradigms. Given the substantial methodologic heterogeneity of
relevant studies, a scoping review was performed to systematically
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map and critically evaluate available evidence. Major themes, sup-
ported by high-quality data, were united in proposing a conceptual
framework to align postoperative resource intensity with patient
acuity.

METHODS

Embase, PubMed, and Web of Science databases were
searched from their inception to September 22, 2020 for relevant
articles (see figure, Supplemental Digital Content 1, http://link-
s.lww.com/SLA/D265) published in English. Titles and abstracts
were searched for specific terms and keywords to identify articles
describing major, inpatient surgery and concepts relating to patient
acuity and resource intensity. Reviews, editorials, letters, and con-
ference abstracts were excluded by screening criteria. Seventy
articles were identified. The article search filter could not identify
case reports, case series, and other articles featuring low grade
evidence; these article types were excluded by study quality assess-
ments. Study quality was independently rated by two investigators
using quality assessment tools specific to the design of the study in
question (available at: https://www.nhlbi.nih.gov/health-topics/
study-quality-assessment-tools, accessed 9/22/2020). Studies rated
‘‘poor’’ or deemed not relevant to review objectives were recom-
mended for exclusion. There were disagreements between the 2
investigators regarding the exclusion of 6 articles; disagreements
were resolved via adjudication by a third investigator (see table,
Supplemental Digital Content 2, http://links.lww.com/SLA/D266).
Cohen kappa statistic summarizing interrater agreement regarding
article inclusion was 0.802 (observed agreement ¼ 0.914, expected
agreement ¼ 0.566), suggesting that agreement between reviewers
was substantial.20,21 Fifty-one articles were excluded. Works cited by
the remaining 19 articles were reviewed to identify other relevant
articles, using the same inclusion and exclusion criteria. Another 16
articles were included in this manner. In total, 35 total studies were
included and assimilated into relevant categories according to Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews (PRISMA-ScR) guidelines (see table,
Supplemental Digital Content 3, http://links.lww.com/SLA/D267).

RESULTS

A conceptual framework for aligning patient acuity
and resource intensity is proposed in Figure 1. This framework is
applied to illustrate major findings from each study in Figure 2. The

design, population, analytic approach, and major findings for each
study are listed in the Supplemental Digital Content 4, http://links.
lww.com/SLA/D268 table and described in detail with context
below.

Classifying Patient Acuity

Risk for Mortality
Seven studies classified patient acuity according to risk for

mortality (see table, Supplemental Digital Content 4, http://link-
s.lww.com/SLA/D268). All were retrospective, with population sizes
ranging from 825 to 1.2 million patients, and a median of 46 thousand
patients per study. These studies demonstrated that risk for death after
major, inpatient surgery was associated with, or predicted by, several
factors: advanced age,22,23 severe co-morbidities,24 mixed subjective
and objective patient classification models [ie, American Society of
Anesthesiologists (ASA) physical status classification),23,25 laboratory
or vital sign abnormalities,26 organ dysfunction and failure,23,25

surgery performed at low-volume hospitals,26 and readmission to a
different hospital.27 Collectively, findings from included studies dem-
onstrated that postoperative patient acuity can be accurately repre-
sented by risk for mortality, with the strongest associations—and most
accurate predictions—obtained when incorporating multiple demo-
graphic, physiologic, and hospital characteristic variables.

Several other key findings emerged from articles that classify
patient acuity by risk for mortality. Regarding the optimization of
physiologic input features, Korenkevych et al28 demonstrated that
probabilistic modeling of non-linear creatinine time-series can
improve model discrimination in predicting 90-day mortality
(AUROC 0.87) compared with using static input features. Regarding
hospital and health care delivery factors, Brooke et al27 found that
when managing post-discharge complications, the odds of death
were lowest for patients being readmitted to the index hospital (odds
ratio 0.74). The authors note that readmission to the index hospital
may represent a surrogate for geographic location, access to health
care resources, and care fragmentation in which data and knowledge
regarding the patient’s care are not shared between institutions.
These variables have known, significant effects on patient out-
comes.24 Finally, readmission to a different hospital that is closer
to home often equates to receiving care at a low-volume hospital; a
risk factor for postoperative mortality (relative risk 1.20 vs the top
volume quartile of hospitals), as identified by Forte et al.26 Therefore,

FIGURE 1. Conceptual framework
for aligning patient acuity with
resource intensity.
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continuously resampled physiologic variables and careful interpre-
tation of hospital and health care delivery factors have the potential to
optimize patient mortality predictions and acuity assessments after
major surgery.

Risk for Multiple Complication Endpoints
Sixteen studies classified patient acuity according to risk for

multiple complication endpoints (see table, Supplemental Digital
Content 4, http://links.lww.com/SLA/D268). Two had prospective,
observational designs; the rest were retrospective. Population sizes
ranged from 150 patients to 1.4 million inpatient surgeries, with a
median of 42,533 inpatient surgeries per study. Compared with
studies analyzing risk for mortality, these 16 studies had an expanded
list of factors that include: laboratory values,29,30 early warning
scores,31 organ dysfunction and failure,32 comorbidities,33 frailty,34

mixed subjective and objective patient classification models (ie, ASA
physical status classification),35 combinations of clinical, demo-
graphic, and administrative variables,36–39 hospital volume,40–42

and system factors that potentiate failure-to-rescue.43 Associations
and predictions were strongest when incorporating multiple demo-
graphic, physiologic, and hospital-level variables.

Several other key findings emerged from articles that classify
patient acuity by risk for complications. Bartkowiak et al31 and
Bertsimas et al44 each compared predictive performance across
multiple analytic methods; in both studies, methods with greatest
discrimination used larger input feature sets and had greater ability to
capture complex, non-linear relationships among input variables

(AUROC 0.79–0.91). Several studies found it advantageous to
incorporate both preoperative and intraoperative variables.36–39 In
a prospective, observational study of 150 patients undergoing inpa-
tient surgery, Brennan et al37 reported that discrimination in predict-
ing postoperative complications was significantly greater for a
machine learning model using automated electronic health record
data (AUROC 0.73-0.85) than for clinicians, whose predictions were
slightly better than chance (AUROC 0.47–0.69).

Hospital characteristics had significant associations with fail-
ure-to-rescue (ie, death after a complication). Analyzing>1.8 million
total surgeries, Eggli et al41 and Silber et al42 each found that higher
hospital volume was associated with lower incidence of failure-to-
rescue. The importance of failure-to-rescue as a quality metric was
substantiated by Fry et al43 in a large, multicenter study demonstrating
that hospitals with improving mortality rates achieved better outcomes
primarily by decreasing the incidence of failure-to-rescue, not by
decreasing the incidence of complications themselves. A critically
ill, postoperative patient admitted to a high-performance hospital
seems to have a lower risk for death than a similar patient admitted
to low-performance hospital; therefore, hospital characteristics should
be considered in models that represent and classify patient acuity.

Classifying Resource Intensity

Level-of-Care Assignments
Six studies classified resource intensity according to postop-

erative level-of-care assignments (see table, Supplemental Digital

FIGURE 2. Published literature describes postoperative patient acuity and resource intensity, but rarely establishes alignment
between them. AUC indicates area under the receiver-operating characteristic curve; DVT, deep vein thrombosis; eCART, Electronic-
Cardiac Arrest Risk Triage; E-PASS, estimation of physiologic ability and surgical stress; EWS, early warning score; HR, hazard ratio;
MELD, model for end-stage liver disease; OR, odds ratio; PE, pulmonary embolism; qSOFA, quick sequential organ failure
assessment score; RR, relative risk.
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Content 4, http://links.lww.com/SLA/D268). Two of these studies
had prospective, observational designs; 4 were retrospective. Popu-
lation sizes ranged from 20 to 2000 patients, with a median of 256
patients per study. Findings of these studies include: a substantial
proportion of decompensation events occur after transfer out of the
intensive care unit (ICU) at a median of two days after surgery;16

unmet requests for postoperative ICU care are associated with
increased mortality (3.1% vs 1.2%)44; surgeon predictions of post-
operative level-of-care requirements are highly variable and incor-
rect in approximately one-third of all cases45,46; and machine
learning techniques can predict the need for ICU resources after
major surgery with 86% accuracy.46 Overall, postoperative level-of-
care assignments were highly variable, often suboptimal, and likely
to the detriment of patients. However, the reported associations
between level-of-care assignments and outcomes do not imply
causality. Therefore, it remains unknown whether a patient who is
triaged to an ICU and does well received excessive care (poor
decision) or appropriate care that prevented complications (good
decision).

Several other key findings emerged from articles that classify
resource intensity by postoperative triage assignments. Guidelines
for appropriate ICU admission lack objectivity, rendering them
difficult to apply in quantitative research.47,48 Systematic, hypothe-
sis-driven investigation is particularly difficult in the absence of
adequate documentation in electronic health records. In 1 study of
patients undergoing major surgery, level-of-care documentation met
quality metrics for 0.7% of the study population.49 As an alternative
to adequate level-of-care documentation, Wang et al46 proposed a list
of index events that suggest appropriate ICU admission, though some
events generate tautology; it remains plausible that patients with
uneventful ICU stays simply received appropriate ICU-level care that
prevented index events. However, the list of index events allowed the
authors to perform decision tree modeling to predict the need for
intensive care resources after major surgery. This method outper-
formed standard clinical practice (86% vs 37% accuracy), suggesting
that modeling risk for ICU admission on index events has the
potential to augment clinical decision-making regarding postopera-
tive level-of-care.

Frequency of Vital Sign Monitoring
Two studies assessed associations between postoperative vital

sign monitoring and postoperative complications (see table, Supple-
mental Digital Content 4, http://links.lww.com/SLA/D268). Kyria-
cos et al50performed a retrospective review of 11 patients who died
on hospital wards after surgery, matching each decedent with 4
survivors that had similar characteristics, thus forming a control
cohort. Among the 11 patients who died on surgical wards, 55% had
missing oxygen saturation records, compared with 7% among sur-
vivors. Taenzer et al51 prospectively investigated the impact of
routine continuous pulse oximetry among 2841 surgical ward
patients, integrated with a system for managing etiologies of respi-
ratory dysfunction. During the intervention period, all patients had
continuous pulse oximetry. Rapid response teams were activated by a
respiratory rate of <8 or >30 breaths per minute or blood oxygen
saturation <90% while receiving supplemental oxygen. The fre-
quency of rescue events decreased from 3.4 to 1.2 per 1000 patient
discharges (P¼ 0.01); the frequency of ICU transfers decreased from
5.6 to 2.9 per 1000 patient days (P ¼ 0.02) after routine continuous
pulse oximetry. In 2 control units using standard monitoring during
the same period, rescue events and ICU transfers were unchanged.
These studies suggest that infrequent postoperative oxygen satura-
tion measurements are associated with increased risk for rescue
events and death after surgery, and that vital sign frequency is an
important aspect of postoperative resource intensity. Although there

is a lack of level 1 evidence supporting routine continuous postoper-
ative monitoring, it remains plausible that maintaining a certain
baseline level of continuous monitoring for all patients may preserve
intensive care resources for critically ill patients by decreasing the
incidence of unplanned ICU transfers from wards.52,53

Frequency of Laboratory Measurements
Associations among frequency of laboratory measurements,

patient outcomes, and level-of-care assignments are less clear. Two
studies assessed these associations (see table, Supplemental Digital
Content 4, http://links.lww.com/SLA/D268). In a retrospective
review of 1894 patients undergoing cardiac surgery, Koch et al54

found that patients who underwent complex procedures had the
greatest postoperative phlebotomy volumes. Median phlebotomy
volume for an ICU patient was 116 mL per day, compared with
approximately 18 mL per day on hospital wards. The reported
median phlebotomy volumes for cardiac surgical ICU patients
was substantially greater than volumes reported for mixed medi-
cal-surgical populations, which has been estimated at 40 mL/day.55

Ko et al56 implemented a daily checklist and staff education to
promote judicious phlebotomy and assessed the efficacy of this
program in a retrospective review of approximately 5465 patient
days in a surgical ICU. The program was associated with a 51%
reduction in laboratory tests with no difference in patient illness
severity or mortality, indicating that a substantial proportion of
laboratory measurements performed for surgical ICU patients was
not associated with outcomes and may have been unnecessary.
Together, these studies suggest that although laboratory measure-
ment frequency corresponds to operative complexity and postopera-
tive level-of-care assignments, there is no evidence demonstrating
that laboratory frequency affects clinical outcomes across low- or
high-patient acuity or resource intensity.

Aligning Patient Acuity With Resource Intensity
Two studies classified both patient acuity and resource inten-

sity after inpatient surgery. Pearse et al7 defined high-risk procedures
as those with mortality rate �5% (timeframe not specified). This
definition allows identification of high-acuity patients via procedural
codes. In an analysis of 4.1 million hospital admissions involving a
general surgical procedure in the United Kingdom, high-risk proce-
dures accounted for 13% of all procedures and 84% of all postopera-
tive deaths. Less than 15% of the high-risk cohort was admitted to the
ICU postoperatively. Among patients who were admitted to the ICU
after initial triage to a general ward, mortality was 37%. In a similar
analysis using the same high-risk procedure definition, Jhangji et al8

reported that high-risk patients had 12% overall in-hospital mortal-
ity; among patients who died, only 49% were admitted to an ICU at
any time and 74% of deaths occurred outside the ICU. These findings
demonstrate that in a single large health care system, postoperative
patient acuity and resource intensity are often misaligned, and
insufficient resource intensity is associated with increased in-hospital
mortality.

Beyond simple classification of patient acuity and resource
intensity, it may be possible to align these elements by predicting risk
for postoperative ICU admission. This approach introduces some
bias by incorporating triage decisions in outcome modeling, but
offers the potential advantage of accounting for real-world, inherent
variability in decision-making. Risk for postoperative ICU admission
has been modeled accurately by Kongkaewpaisan et al57 for patients
undergoing emergency surgery, by Sobol et al58 for patients under-
going major intraabdominal surgery, and by Glass et al59 for patients
undergoing non-trauma surgery at a Veterans Affairs hospital. Fur-
ther investigation is needed to determine whether such models
improve triage decisions and patient outcomes.
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Recommendations
Collectively, results from this review suggest that postopera-

tive patient acuity should be classified using a combination of
demographic, physiologic, and hospital system variables as inputs
for models that accurately represent complex, non-linear relation-
ships among risk factors for morbidity and mortality. Intraoperative
physiologic data enriches these representations and should be used to
update patient acuity assessments immediately after surgery. High-
acuity patients benefit from close surveillance with continuous vital
sign monitoring and the immediate availability of critical care
resources and personnel for preventing and treating organ dysfunc-
tion and postoperative complications. Low-acuity patients garner
little or no clinical benefit from high-intensity care, but can displace
critically ill patients to hospital wards, increasing their risk for
unrecognized decompensation and failure-to-rescue. To promote
high-value care after major surgery, clinicians’ resource intensity
decisions should be augmented by data-driven patient acuity clas-
sifications that are integrated with clinical workflows, as illustrated
in Figure 3.

DISCUSSION

This review found substantial evidence that postoperative
patient acuity is most accurately classified by combinations of
demographic, physiologic, and hospital system variables. Classifi-
cations were most accurate when using machine learning models that
accurately represent complex, non-linear relationships among inputs.
Several studies support the hypothesis that data-driven methods to
augment postoperative resource intensity decisions are enriched by
data representing intraoperative physiologic changes. There is a
paucity of literature classifying postoperative resource intensity,
most of which focuses on level-of-care assignments. These classi-
fications are limited by the lack of consensus definitions or standards
for level-of-care that apply at the national or international level,
much less the inter-institutional level. Clinicians exhibited volatile
performance in predicting complications and making postoperative
resource intensity decisions. In 2 direct comparisons between clini-
cians and machine learning algorithms, the algorithms performed
best.37,46 Suboptimal postoperative triage was associated with low-
value care and adverse outcomes, especially when high-acuity

patients were triaged to wards. This is consistent with a Delphi
Consensus in which there was 100% agreement that inadequate
staffing levels threaten surgical ward safety.60 Conversely, triaging
low-acuity patients to ICUs may impart population-level harm
through increased systemic costs or the occupation of limited beds
that are better suited for higher-acuity patients. ICU bed stewardship
mimics antibiotic stewardship in that excessive treatment of one
patient can harm another. Although it seems plausible that providing
high-intensity care for a low-acuity patient may confer harm through
unnecessary testing and subsequent treatment of incidental findings,
there is insufficient evidence to support this hypothesis. Regardless,
excessive resource intensity is expensive; surgical ICU admission
costs range from $2000 to >$10,000 per day.14,15 The weight of
evidence suggests that mismatched patient acuity and resource
intensity leads to decreased value and increased morbidity and
mortality.

The present review focuses on major, inpatient surgery;
similar themes and concepts emerge for outpatient surgery and
mixed analyses of inpatient and outpatient surgery. This is fortunate
because unexpected hospital admission after ambulatory surgery is
not rare. The National Surgical Quality Improvement Program
Surgical Risk Calculator is the most prominent and well-validated
method for predicting postoperative complications and death.61,62 It
is constructed from massive volumes of patient-level input varia-
bles—including procedure type, demographics, and physiology—
and conveys risks through regression cutoff values. Yet, the ability
of regression coefficients to represent complex, non-linear associ-
ations among correlated, interacting, and nested input variables is
questionable, especially when applied to atypical patient presenta-
tions and non-elective operations.63–66 In such instances, it may be
advantageous to leverage analytic techniques that learn from data
rather than conforming to rules and static variable thresholds. For
example, Bertsimas et al67 developed a machine learning model to
predict morbidity and mortality after emergency surgery. This
method achieved predictive discrimination that was greater than
that of the ACS NSQIP calculator, though both methods were
effective (AUROC 0.92 vs 0.90). Although existing methods for
measuring and predicting patient acuity are strong, methods for
classifying resource intensity are comparatively weak.

FIGURE 3. After major surgery, clinicians’ resource intensity decisions should be augmented by data-driven patient acuity
classifications.
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Previous work describing alignment between patient acuity
and resource intensity has focused primarily on medical and medical-
surgical populations. Moorman et al68 have demonstrated that poten-
tially catastrophic respiratory, hemorrhagic, and sepsis events are
often preceded by physiological signatures of adaptive regulation.
Multivariable regression can predict these events up to 24 hours in
advance with reasonable accuracy (AUROC 0.61–0.88).69 In pre-
dicting more general adverse events in mixed medical-surgical
populations, other high-performing methods include Electronic-Car-
diac Arrest Risk Triage70 and the Rothman Index,71 which leverage
multi-source, patient-level variables. Predictive accuracy is further
enhanced when physiologic data are represented by continuous,
time-series inputs to deep learning models.72 Medical and mixed
medical–surgical literature features a relative paucity of evidence
regarding resource intensity, most of which supports the postopera-
tive resource intensity concepts presented in Figure 1. For example,
routine chest radiographs increase the probability of false-positive
results, thus leading to potentially harmful treatments; false alarms
from continuous vital sign monitoring beget alarm fatigue; and
denied requests for ICU admission are associated with increased
mortality.73–77 Literature from medical populations corroborates
findings from surgical literature regarding patient acuity assess-
ments, despite fundamental differences in the etiologies of adverse
events between medical and surgical patients.

This study was limited by heterogeneity in available literature
regarding study populations and methods for classifying patient acuity
and resource intensity. The article screening and inclusion criteria
sought to establish balance between homogeneity of study populations
and generalizability to all patients undergoing major, inpatient surgery.
This approach, although optimal for addressing review objectives,
introduces selection bias because all patients and operations repre-
sented in the main analysis were subject to one, common resource
intensity decision: hospital admission rather than discharge home. In
the absence of trials randomizing postoperative patients to admission
or discharge, this element of selection bias was unavoidable. The
diffuse methods for classifying patient acuity and resource intensity
precluded a pooled analysis of results and strengthened the rationale
for performing this scoping review. Finally, this review does not
include intermediate care and high-dependency units, which offer
greater patient surveillance compared with general wards, but use
fewer overall resources compared with ICUs. These intermediate units,
in combination with initial postoperative observation in a post-anes-
thesia care unit, have been associated with decreased use of ICU
resources without significantly increasing risk for postoperative mor-
bidity and mortality.78,79 This approach introduces a third layer for
triage decisions and warrants further investigation in prospective
studies. Future research should also quantify potential gains in mor-
tality, morbidity, and health care costs for appropriate alignment of
patient acuity with postoperative resource intensity. Associations
between patient acuity and resource intensity should be investigated
with causal inference methods to determine whether a patient who is
triaged to an ICU, and has favorable outcomes, received excessive care
that consumed resources unnecessarily versus appropriate care that
prevented complications. To ensure generalizability of results and
determine whether hospital characteristics (eg, ICU bed capacity)
affect postoperative triage patterns and outcomes, future research
should incorporate multiple practice settings (ie, high- and low-volume
academic and non-academic hospitals) and patient populations (ie,
urban and rural areas with varied race and ethnicity distributions).
Finally, developing international consensus definitions for level-of-
care would promote systematic, hypothesis-driven investigation that is
generalizable across practice settings.

CONCLUSIONS

Postoperative patient acuity can be classified using a combi-
nation of demographic, physiologic, and hospital system variables in
models that accurately represent complex, non-linear relationships
among risk factors for morbidity and mortality. Among the few
studies classifying postoperative resource intensity, the predominant
representation is level-of-care assignment. Triaging high-acuity
patients to hospital wards is associated with increased risk for
mortality; further studies are needed to determine whether triaging
low-acuity patients to ICUs imparts harm to other patients via
unwarranted occupation of ICU beds. Clinicians exhibited volatile
performance in estimating both risk for complications and assigning
postoperative resource intensity, whereas machine learning algo-
rithms consistently demonstrated superior performance. Future
research should quantify potential gains in mortality, morbidity,
and health care costs for appropriate alignment of patient acuity
with postoperative resource intensity and develop data-driven plat-
forms that augment clinicians’ decisions.
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