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ABSTRACT
It is well known that with observational data, models used in conventional regression analyses are com-
monly misspeci!ed. Yet in practice, one tends to proceed with interpretations and inferences that rely on
correct speci!cation. Even those who invoke Box’s maxim that all models are wrong proceed as if results
were generally useful. Misspeci!cation, however, has implications that a"ect practice. Regression models
are approximations to a true response surface and should be treated as such. Accordingly, regression param-
eters should be interpreted as statistical functionals. Importantly, the regressor distribution a"ects targets
of estimation and regressor randomness a"ects the sampling variability of estimates. As a consequence,
inference should be based on sandwich estimators or the pairs (x–y) bootstrap. Traditional prediction
intervals lose their pointwise coverage guarantees, but empirically calibrated intervals can be justi!ed for
future populations. We illustrate the key concepts with an empirical application.
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1. Introduction

It is old news that models are approximations and that regression
analyses of real data commonly employ models that are misspec-
i!ed in various ways. Conventional approaches are laden with
assumptions that are questionable, many of which are e"ectively
untestable (Box 1976; Leamer 1978; Rubin 1986; Cox 1995; Berk
2003; Freedman 2004, 2009). We discuss here some implications
of an “assumption lean” reinterpretation of regression. In this
reinterpretation, one requires only that the observations are iid,
realized at random according to a joint probability distribution
of the regressor and response variables. If no model assumptions
are made, the parameters of !tted models need to be interpreted
as statistical functionals, here called “regression functionals.”

For ease and clarity of exposition, we begin with linear
regression. Later, we turn to other types of regression and show
how the lessons from linear regression carry forward to the
generalized linear model (GLM) and even more broadly. We
draw heavily on two articles by Buja, Berk, Brown, George,
Pitkin et al. (2018) and Buja, Berk, Brown, George, Kuchibhotla
et al. (2018), a portion of which draws on early insights of White
(1980) and Freedman (1981).

2. The Parent Joint Probability Distribution

For observational data, suppose there is a set of real-valued
random variables that have a joint distribution P, also called the
“population,” that characterizes regressor variables X1, . . . , Xp
and a response variable Y . The distinction between regressors
and the response is determined by the data analyst based on
subject matter interest. These designations do not imply any
causal mechanisms and or any particular generative models for
P. Unlike textbook theories of regression, the regressor variables

CONTACT Richard Berk berkr@sas.upenn.edu Department of Criminology, University of Pennsylvania, Philadelphia, PA, 19104.

are not interpreted as !xed; they are as random as the response
and will be treated as such.

We collect the regressor variables in a (p + 1) × 1 col-
umn random vector "X = (1, X1, . . . , Xp)′ with a leading 1 to
accommodate an intercept in linear models. We write P = PY ,"X
for the joint probability distribution, PY|"X for the conditional
distribution of Y given "X, and P"X for the marginal distribution
of "X. The only assumption we make is that the data are realized
iid from P. The separation of the random variables into regres-
sors and a response implies interest in PY|"X . Hence, some form of
regression analysis is applied. Yet, the regressors being random
variables, their marginal distribution P"X cannot be ignored for
reasons to be explained below.

3. Estimation Targets

As a feature of P or, more precisely, of PY|"X , there is a “true
response surface” denoted by µ("X). Most o#en, µ("X) is the con-
ditional expectation of Y given "X, µ("X) = E[Y|"X], but there are
other possibilities, depending on the context. For example, µ("X)

might be chosen to be the conditional median or some other
conditional quantile of Y given "X. The true response surface
is a common estimation target for conventional regression in
which a data analyst assumes a speci!c parametric form. We
will not proceed in this manner and will not make assumptions
about what form PY|"X actually takes. Yet, we will make use,
for example, of standard ordinary least squares (OLS) !tting of
linear equations. We choose OLS for illustrative purposes and
for the simplicity of the insights gained, but in later sections, we
will consider Poisson regression as an example of GLMs. Using
OLS despite a lack of trust in the underlying linear model re$ects
ambiguities in many data analytic situations; deviations from

© 2019 American Statistical Association
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linearity in µ("X) may be di%cult to detect with diagnostics,
or the linear !t is known to be a de!cient approximation of
µ("X) and yet, OLS is employed because of substantive theories,
measurement scales, or considerations of interpretability.

Fitting a linear function l("X) = β ′ "X to Y with OLS can be
represented mathematically at the population level P without
assuming that the response surface µ("X) is linear in "X

β(P) = argmin
β∈IRp+1

E
[
(Y − β ′ "X)2 ]

. (1)

The vector β = β(P) is the “population OLS solution” and
contains the “population coe%cients.” Notationally, when we
write β , it is understood to be β(P). Similar to !nite datasets,
the OLS solution for the population can be obtained by solving
a population version of the normal equations, resulting in

β(P) = E["X "X′]−1E["XY]. (2)

Thus, one obtains the best linear approximation to Y as well
as to µ("X) in the OLS sense. As such, it can be useful without
(unrealistically) assuming that µ("X) is identical to β ′ "X.

We have worked so far with a distribution/population P, not
data. We have, therefore, de!ned a target of estimation: β(P)

obtained from (1) and (2) is the estimand of empirical OLS
estimates β̂ obtained from data. This estimand is well-de!ned
as long as the joint distribution P has second moments and the
regressor distribution P"X is not perfectly collinear; that is, the
second moment matrix E["X "X′] is full rank. There is no need to
assume linearity of µ("X) homoscedasticity or Gaussianity. This
constitutes the “assumption lean” or “model robust” framework.

An important question is why one should settle for the best
linear approximation to the truth? Indeed, those who insist
that models must always be “correctly speci!ed” are likely to
be unreceptive. They will revise models until diagnostics and
goodness-of-!t tests no longer detect de!ciencies so the models
can be legitimately treated as correct.

Such thinking warrants careful scrutiny. Data analysis with
a !xed sample size requires decisions about how to balance
the desire for good models against the costs of data dredg-
ing. “Improving” models by searching regressors, trying out
transformations of all variables, inventing new regressors from
existing ones, using model selection algorithms, performing
interactive experiments, applying goodness-of-!t tests and diag-
nostic plots can each invalidate subsequent statistical inference.
The result o#en is models that not only !t the data well, but !t
them too well (Hong, Ku"ner, and Martin 2018).

Research is underway to provide valid post-selection infer-
ence (e.g., Berk et al. 2013; Lee et al. 2016), which is an important
special case. The proposed procedures address solely regres-
sor selection, and their initial justi!cations make strong Gaus-
sian assumptions. Recent developments, however, indicate that
extensions of Berk et al. (2013) have asymptotic justi!cations
under misspeci!cation (Bachoc, Preinerstorfer, and Steinberger
2017; Kuchibhotla et al. 2018).

Beyond the costs of data dredging, there can be substantive
reasons for discouraging “model improvement.” Some variables
may express phenomena in “natural” or “conventional” units
that should not be transformed even if model !t is improved.
A substantive theory may require a particular model that does

x

y

y

µ(x)

ε
η

δ}
ε|x = y|x − µ(x)

δ(x) = η(x) + ε(x)

Noise:
Nonlinearity:
Population residual:

η(x) = µ(x) − β x

β x

x∗

Figure 1. A population decomposition of Y|X using the best linear approximation.

not !t the data well. Identifying important variables may be
the primary concern, making quality of the !t less important.
Predictors prescribed by subject-matter theory or past research
may be unavailable so that the model is the best that can be
done. In short, one must consider ways in which valid statistical
inference can be undertaken with models acknowledged to be
approximations.

We are not making an argument for discarding model diag-
nostics. It is always important to learn all that is possible from
the data, including model de!ciencies. In fact, in Buja, Berk,
Brown, George, Kuchibhotla et al. (2018) we propose a reweight-
ing diagnostic that is tailored to the regression quantities of
interest.

We also are not simply restating Box’s maxim that models
are always “wrong” in some ways but can be useful despite
their de!ciencies. Acknowledging models as approximations is
one thing. Understanding the consequences is another. What
follows, therefore, is a discussion of some of these consequences
and an argument in favor of assumption lean inference employ-
ing model robust standard errors, such as those obtained from
sandwich estimators or the x–y bootstrap.

4. A Population Decomposition of the Conditional
Distribution of Y for OLS Fitting

A !rst step in understanding the statistical properties of the
best linear approximation is to consider carefully the potential
disparities in the population between µ("X) and β ′ "X. Figure 1
provides a visual representation. There is for the moment a
response variable Y and a single regressor X. The curved line
shows the true response surface µ(x). The straight line shows
the best linear approximation β0 + β1x. Both are features of the
joint probability distribution, not a realized dataset.

The !gure shows a regressor value x∗ drawn from P"X and a
response value y drawn from PY|X=x∗ . The disparity between
y and the !tted value from the best linear approximation is
denoted as δ = y − (β0 + β1x∗) and will be called the “19104
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population residual.” The value of δ at x∗ can be decomposed
into two components:

• The !rst component results from the disparity between the
true response surface, µ(x∗), and the approximation β0 +
β1x∗. We denote this disparity by η = η(x∗) and call it “the
nonlinearity.” Because β0+β1x∗ is an approximation, dispar-
ities should be expected. They are the result of mean function
misspeci!cation. As a function of the random variable X, the
nonlinearity η(X) is a random variable as well.

• The second component of δ at x∗, denoted by ε, is random
variation around the true conditional mean µ(x∗). We prefer
for such variation the term “noise” over “error.” Sometimes it
is called “irreducible variation” because it exists even if the
true response surface is known.

The components de!ned here and shown in Figure 1 generalize
to regression with arbitrary numbers of regressors, in which case
we write δ = Y − β ′ "X, η = µ("X) − β ′ "X, and ε = Y − µ("X).
These random variables should not be confused with error terms
in the sense of generative models. They share some properties
with error terms, but these are not assumptions, rather, they
are consequences of the de!nitions that constitute the above
OLS-based decompositions. Foremost among properties is that
the population residual, the nonlinearity and the noise are all
“population-orthogonal” to the regressors

E(Xj δ) = E(Xj η("X)) = E(Xj ε) = 0. (3)

As was already noted, these properties (3) are not assumptions.
They derive directly from the decomposition described above
and the fact that β ′ "X is the population OLS approximation of Y
and also of µ("X). This much holds in an assumption lean frame-
work without making any modeling assumptions whatsoever.

Because we assume an intercept to be part of the regressors
(X0 = 1), the facts (3) imply that all three terms are marginally
population centered

E[δ] = E[η("X)] = E[ε] = 0. (4)

However, δ is not conditionally centered and not independent
of "X as would be the case assuming a conventional error term in
a linear model. We have instead E[δ|"X] = η("X), which, though
marginally centered, is a function of "X and hence, not indepen-
dent of the regressors (unless it vanishes). By comparison, the
noise ε is marginally and conditionally centered, E[ε|"X] = 0,
but not assumed homoscedastic, and hence, not independent
of "X.

We emphasize that in contrast to standard practice, the
regressor variables have been treated as random and not
as !xed. The assumption lean framework has allowed a
constructive decomposition that mimics some of the features
of a linear model but replaces the usual assumptions made
about “error terms” with orthogonality properties associated
with the random regressors. These properties are satis!ed
by the population residuals, the nonlinearity and the noise
alike. They are not assumptions. They are consequences of the
decomposition.

5. Regressor Distributions Interacting With
Misspeci!cation

Because in reality regressors are most o#en random variables
that are as random as the response, it is a peculiarity of com-
mon statistical practice that such regressors are treated as !xed
(Searle 1970, chap. 3). In probabilistic terms, this means that
one conditions on the observed regressors. Under the frequen-
tist paradigm, alternative datasets generated from the same
model leave regressor values unchanged; only the response val-
ues change. Consequently, regression models have nothing to
say about the regressor distribution; they only model the condi-
tional distribution of the response given the observed regressors
values. This alone might be seen by some as su%cient to justify
conditioning on the regressors. There exists, however, a more
formal justi!cation. Drawing on principles of mathematical
statistics, in any regression model regressors are ancillary for
the parameters of the model, and hence, can be conditioned
on and treated as !xed. This principle, however, has no validity
here because it applies only when the model is correct, which
is precisely the assumption discarded by an assumption lean
framework. Thus, we are not constrained by statistical principles
that apply only in a model trusting framework.

Ignoring the marginal distributions of the regressor is per-
ilous under misspeci!cation, and Figure 2 shows why. The le#
and right side pictures both compare the e"ects of di"erent
regressor distributions for a single regressor variable X in two
di"erent population settings. The le# plot shows misspeci!ca-
tion for which the true mean function µ(X) is nonlinear. Yet
a linear function is !tted. The best linear approximation to the
nonlinear mean function depends on the regressor distribution
P"X . Therefore, the “true parameters” β—the slope and intercept
of the best !tting line at the population—will also depend on
the regressor distribution. One can see that for the le# marginal
distribution that the intercept is larger and the slope is smaller
than for the right marginal distribution. This implies that under
misspeci!cation the regressor distribution P"X , thought of as a
“nonparametric nuisance parameter,” is no longer ancillary.

The right side plot of Figure 2 shows a case of correct spec-
i!cation: the true mean function µ(X) (gray line) is linear.
Consequently, the best linear approximation clearly is the same
(black line) for both regressor distributions. In this case, the
population marginal distribution of X does not matter for the
best linear approximation. There is one value for β no matter
where the mass of X falls. This makes the regressor distribution
P"X ancillary for the parameters of the best linear !t.

The lessons from Figure 2 generalize to multiple linear
regression with multivariate "X, but the e"ects illustrated by
the !gure are magni!ed. Although diagnosing misspeci!cation
may be easy for a single regressor, it becomes a challenge
for progressively larger numbers of regressors, and nearly
impossible in “modern” settings for which the number of
regressors exceeds the sample size, and data analysts o#en
gamble on sparsity.

In short, it is the combination of a misspeci!ed working
model and random regressors that produces the complications;
it now matters where the regressor values fall. Three questions
arise immediately. First, one may wonder about the meaning of
slopes when the model is not assumed to be correct. Second,
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Figure 2. Dependence of the population best linear approximation on the marginal distribution of the regressors.

what is the use of predicted values ŷ = x′β? Third, what form
should statistical inference take when there is no reliance on the
usual assumptions? We will discuss possible answers to these
questions in the sections ahead.

6. The Impact of Regressor Distributions Illustrated

The di%culties illustrated by Figure 2 suggest possibilities that
may occur in various applications, ranging from modeling of
grouped data to meta-analysis. Consider the following hypo-
thetical scenarios that should serve as cautions when interpret-
ing models that are approximations.

Imagine a study of employed females and males in a certain
industry, with income as response and a scale measuring educa-
tional level as regressor. Consider next the possibility that there
is one conditional mean function for income irrespective of gen-
der, but the mean function may be nonlinear in the education
scale, as illustrated by the le# side picture in Figure 2. A data
analyst may !t a linear model, perhaps because of convention, a
high level of noise obscuring the nonlinearity, or a lack of graph-
ical data exploration. The analyst may then !nd that di"erent
slopes are required for males and females and may respond by
including in the regression an interaction term between gender
and education. If, however, the truth is as stipulated, the usual
interpretation of interaction e"ects would be misleading. The
driver of the gender di"erence is not how income responds to
education, but the education scale distribution by gender. Put
in di"erent language, one may say that the real story is in the
consequences of an association between gender and education.

Imagine now meta-analysis of randomized clinical trials
(RCTs). RCTs o#en produce di"erent apparent treatment
e"ects for the same intervention, sometimes called “parameter
heterogeneity.” Suppose the intervention is a subsidy for higher
education, and the response is income at some de!ned endpoint.
In two di"erent locales, the average education levels may
di"er. Consequently, in each setting the interventions work
o" di"erent baselines. There can be an appearance of di"erent
treatment e"ects even though the nonlinear mean returns to
education may be the same in both locales. The issue is, once
again, that the di"erence in e"ects on returns to education may
not derive from di"erent conditional mean functions but from
di"erences between regressor distributions.

Apparent parameter heterogeneity also can materialize in
the choice of covariates in multiple regression. The coe%cient
β1 of the regressor X1 is not properly interpreted in isolation
because β1 generally depends on which other regressors are
included. This is well-known as “confounding.” In the simplest
case, a regression on X1 alone, di"ers from a regression on X1
and X2 when the two regressors are correlated. In the extreme,
the coe%cients β1 obtained from the two regressions may have
di"erent signs, suggesting an instance of Simpson’s paradox.
(See Berk et al. (2013, sec. 2.1), for a more detailed discussion.)
For present purposes, exclusion versus inclusion of X2 can be
interpreted as a di"erence in regressor distributions.

7. Estimation and Standard Errors

Given iid multivariate data (Yi, "Xi) ∼ P (i = 1, . . . , n), one can
apply OLS and obtain the plug-in estimate β̂ = β(P̂n) derived
from (1), where P̂n denotes the empirical distribution of the
dataset. By multivariate central limit theorems, β̂ is asymptoti-
cally unbiased and normally distributed, and it is asymptotically
e%cient in the sense of semiparametric theory (e.g., Levit 1976,
p. 725, ex. 5; Tsiatis 2006, p. 8 and chap. 4).

7.1. Sandwich Standard Error Estimates

The asymptotic variance-covariance matrix of β̂ in the assump-
tion lean iid sampling framework deviates from that of linear
models theory, which assumes linearity and homoscedasticity.
The appropriate expression has a “sandwich” form (White 1980)

AV[β , P] = E["X "X′]−1 E[δ2 "X "X′] E["X "X′]−1. (5)

A plug-in estimator is obtained as follows

ÂV = AV[β̂ , P̂n] =
( 1

n
∑

i

"Xi "X′
i

)−1 ( 1
n

∑

i
r2

i "Xi "X′
i

)

( 1
n

∑

i

"Xi "X′
i

)−1
, (6)

where ri = Yi − "X′
iβ̂ are the sample residuals. Equation (6)

is the simplest form of a sandwich estimator of asymptotic
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variance. More re!ned forms exist but are outside the scope of
this article. Standard error estimates for OLS slope estimates β̂j
are obtained from (6) using the asymptotic variance estimate in
the jth diagonal element

SEj =
( 1

n ÂVj,j

)1/2
.

A connection with linear models theory is as follows. If
the truth is linear and homoscedastic, and hence, the work-
ing model is correctly speci!ed to !rst- and second-order, the
sandwich formula (5) collapses to the conventional formula
for asymptotic variance due to E[δ2 "X "X′] = σ 2E["X "X′], which
follows from E[δ2|"X] = E[ε2|"X] = σ 2. The result is AV[β , P] =
σ 2E["X "X′]−1, the “assumption laden” form of asymptotic vari-
ance.

7.2. Bootstrap Standard Error Estimates

Alternative standard error estimates can be obtained from the
nonparametric pairwise or x–y bootstrap, which resamples
tuples (Yi, "Xi). It is assumption lean in that it relies for
asymptotic correctness only on iid sampling of the tuples
(Yi, "Xi) and some moment conditions. The x–y bootstrap,
therefore, applies to all manners of regressions, including GLMs.

In contrast, the residual bootstrap is inappropriate because
it assumes !rst-order correctness, µ(x) = β ′x, as well as
exchangeable and hence, homoscedastic population residuals δ.
The only step toward assumption leanness is a relaxation of
Gaussianity of the noise distribution. Furthermore, it does not
apply to other forms of regression such as logistic regression.
The residual bootstrap is preferred by those who insist that one
should condition on the regressors because they are ancillary. As
argued in Section 5, however, the ancillarity argument requires
correct speci!cation of the regression model, counter to the idea
that models are just approximations.

Sandwich and bootstrap estimators of standard error are
identical in the asymptotic limit, and for !nite data they tend to
be close. Based on either, one may perform conventional statis-
tical tests and form con!dence intervals. Although asymptotics
are a justi!cation for either, one of the advantages of the boot-
strap is that it lends itself to a diagnostic for assessing whether
asymptotic normality is a reasonable assumption. One simply
creates normal quantile plots of bootstrap estimates obtained in
the requisite simulations.

Finally, bootstrap con!dence intervals have been addressed
in extensive research showing that there are variants that
are higher order correct (see, e.g., Hall 1992; Efron and
Tibshirani 1994; Davison and Hinkley 1997). An elaborate
double-bootstrap procedure for regression is described in
McCarthy et al. (2018).

8. Slopes From Best Approximations

When the estimation target is the best linear approximation,
one can capitalize on desirable model-robust properties not
available from assumption laden linear models theory. The price
is that subject-matter interpretations address features of the best
linear approximation, not that of a “generative truth”; which, as

we have emphasized, is o#en an unrealistic notion. (Even the
assumption of iid sampling adopted here is o#en unrealistic.)

The most important interpretive issue concerns the regres-
sion coe%cients of the best linear approximation. The problem
is that the standard interpretation of a regression coe%cient is
not strictly applicable anymore. It no longer holds that

βj is the average di!erence in Y for a unit di!erence in Xj at
constant levels of all other regressors Xk.

This statement uses the classical “ceteris paribus” (all things
being equal) clause, which only holds when the response func-
tion is linear. For proper interpretation that accounts for mis-
speci!cation, one needs to reformulate the statement in a way
that clearly refers to di"erences in the best approximation β ′x,
not to di"erences in the conditional means µ(x):

βj is the di!erence in the best linear approximation to Y for a
unit di!erence in Xj at constant levels of all other regressors Xk.

This restatement, unsatisfactory as it may appear at !rst sight,
implies an appropriate admission that there could exist a dis-
crepancy between β ′x and µ(x). The main point is that interpre-
tations of regression coe%cients should refer not to the response
but to the best approximation. This mandate is not particular to
OLS linear regression but applies to all types of regressions, as
will be rehearsed below for Poisson regressions.

9. Predicted Values ŷ From Best Approximations

Also important in regression analysis are the predicted values at
speci!c locations x in regressor space, estimated as ŷx = β̂

′x. In
linear models theory, for which the model is assumed correct,
there is no bias if it is the response surface that is estimated by
predicted values; E[ŷx] = β ′x = µ(x) because E[β̂] = β , where
E[. . .] refers only to the randomness of the response values yi
with the regressor vectors "Xi treated as !xed.

When the model is mean-misspeci!ed such that µ(x) (= β ′x,
then ŷx is an estimate of the best linear approximation β ′x,
not µ(x), hence, there exists bias µ(x) − β ′x = η(x) that
does not disappear with increasing sample size n. Insisting on
consistent prediction with linear equations at a speci!c location
x in regressor space is, therefore, impossible.

To give meaning to predicted values ŷx under misspeci!ca-
tion, it is necessary to focus on a population of future observa-
tions (Yfuture, "Xfuture) and to assume that it follows the same joint
distribution PY ,"X as the past training data (Yi, "Xi). In particular,
the future regressors are not !xed but random according to
"Xfuture ∼ P"X . If this is a reasonable assumption, then ŷ"Xfuture
is indeed the best linear prediction of µ("Xfuture) and Yfuture
for this future population under squared error loss. Averaged
over future regressor vectors, there is no systematic bias because
E[η("Xfuture)] = 0 according to (4) of Section 4.1 Asymptotically
correct prediction intervals for Yfuture do exist and, in fact, one
can use the usual intervals of the form

1When regressors are treated as random, there exists a small estimation
bias, E[β̂] (= β in general, because E[( 1

n
∑ "X′

i "X i)
−1( 1

n
∑ "X iYi)] (=

E["X′ "X]−1E["XY], causing E[ŷx] (= β ′x for !xed x. However, this bias is of
small order in n and shrinks rapidly with increasing n.
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PIn(x; K) =
[

ŷx ± K · σ̂ ·
(

1 + x′( ∑ "X′
i "Xi

)−1x
)]

. (7)

However, the usual multiplier K is based on linear models theory
with !xed regressors, and hence, is not robust to misspeci!ca-
tion. There exists a simple alternative for choosing K that has
asymptotically correct predictive coverage under misspeci!ca-
tion. It can be obtained by calibrating the multiplier K empiri-
cally on the training sample such that the desired fraction 1 −α

of observations (Yi, "Xi) falls in their respective intervals. One
estimates K̂ by satisfying an approximate equality as follows,
rounded to ±1/n

1
n · #

{
i ∈ {1, . . . , n} : Yi ∈ PI("Xi; K̂)

}
≈ 1 − α.

Under natural conditions, such multipliers yield asymptotically
correct prediction coverage:

P
[

Yfuture ∈ PI("Xfuture; K)
]

→ 1 − α as n → ∞,

where P[. . .] accounts for randomness in the training data as
well as in the future data. When the ratio p/n is unfavorable,
one may consider a cross-validated version of calibration for K̂.
Finally, we note that empirical calibration of prediction intervals
generalizes to arbitrary types of regression with a quantitative
response.

10. Causality and Best Approximation

Misspeci!cation creates important challenges for causal infer-
ence (Imbens and Rubin 2015). Consider !rst a randomized
experiment with potential outcomes Y1, Y0 for a binary
treatment/intervention C ∈ {0, 1}. Because of randomization,
the potential outcomes are independent of the intervention:
(Y1, Y0) ⊥⊥ C. Unbiased estimates of the average treatment
e!ect (ATE) follow. Pretreatment covariates "X can be used to
increase precision (reduce standard errors), similar to control
variates in Monte Carlo (MC) experiments. It has been known
for some time that the model including the treatment C and
the pretreatment covariates "X does not need to be correctly
speci!ed to provide correct estimation of the ATE and (possibly)
an asymptotic reduction of standard errors. That is, the model
Y ∼ τC + β ′ "X may be arbitrarily misspeci!ed, and yet the
ATE agrees with the treatment coe%cient τ . (To yield a bene!t,
however, the covariates "X must produce a useful increase in R2

or some other appropriate measure of !t, similar to control
variates in MC experiments.)

Now consider observational studies. There can be one or
more variables that are thought of as causal and which can at
least in principle be manipulated independently of the other
covariates. If there is just one causal binary variable C, we are
returned to a model of the form Y ∼ τC + β ′ "X, where
it would be desirable for τ to be interpretable as an average
treatment e"ect (Angrist and Pischke 2009, sec. 3.2). These are
always very strong claims that o#en call for special scrutiny. It
is widely known that causal inference can be properly justi!ed
by assuming one of two su%cient conditions, known as “double
robustness” (see, e.g., Bang and Robins 2005; Rotnitzky et al.
2012): (1) either µ(x) is correctly speci!ed, which in practice

means that there is no “omitted variables” problem for the
response and that the !tted functional form for µ(x) is cor-
rect; or (2) the conditional probability of treatment (called the
propensity score) can be correctly modeled, which in practice
means that there is no omitted variables problem for treatment
probabilities and that the (usually logistic) functional form of
the propensity scores is correct. In either case, omitted variable
concerns are substantive and cannot be satisfactorily addressed
by formal statistical methods (Freedman 2004). There exist
diagnostic proposals based on proxies for potentially missing
variables or based on instrumental variables, but their assump-
tions are hardly lean (e.g., Hausman 1978). Misspeci!cation of
the functional form in (1) or (2) is probably more amenable to
formal diagnostics.

In summary, causal inferences based on observational data
are fragile because they depend on one of two kinds of correct
speci!cation. Best approximation under misspeci!cation will
not do. As a consequence, tremendous importance can fall to
misspeci!cation diagnostics. Some useful proposals are given in
Buja, Berk, Brown, George, Kuchibhotla et al. (2018).

11. A Generalization: Assumption-Lean Poisson
Regression

An obvious generalization of assumption lean modeling is to
regressions other than linear OLS, such as GLMs. We mention
here Poisson regression, to be illustrated with an application
in the next section. The response is now a counting variable,
which suggests modeling conditional counts with a suitable link
function and an objective function other than OLS, namely, the
negative log-likelihood of a conditional Poisson model. Inter-
preting the parameters as functionals allows the conditional
distribution of the counting response to be largely arbitrary; the
Poisson model does not need to be correct. The working model
is a mere heuristic that produces a plausible objective function.

For a counting response Y ∈ {0, 1, 2, . . .}, one models the log
of the conditional expectations of the counts, µ(x) = E[Y|"X =
x], with a linear function of the regressors

log(µ(x)) ≈ β ′x.

We use “≈” rather than “=” to indicate an approximation that
allows varying degrees of misspeci!cation. The negative log-
likelihood of the model when n → ∞ results in a population
objective function whose minimization produces the statistical
functional, treated as an estimand or “population parameter”

β(P) = argmin
β∈IRp+1

E
[

exp
("X′

β
)
−

("X′
β
)

Y
]

. (8)

The usual estimates β̂ are obtained by plug-in, replacing the
expectation with the mean over the observations and thereby
reverting to the negative log-likelihood of the sample.

Interpretations and practice follow much as earlier, with the
added complication that the best approximation to µ(x) has
the form exp(β ′x). The approximation discrepancy µ(x) −
exp(β ′x) does not disappear with more data. For statistical
tests and con!dence intervals, one should use standard error
estimates of the appropriate sandwich form or obtained from the
nonparametric x–y bootstrap. Finally, under misspeci!cation
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the regression functional β(P) will generally, as before, depend
on the regressor distribution P"X . The regressors should not be
treated as ancillary and not held !xed. The regression functional
β(P) can have di"erent values depending on where in regressor
space the data fall.

12. An Empirical Example Using Poisson Regression

We apply Poisson regression to criminology data where the
response is the number of charges !led by police a#er an arrest.
One crime event can lead to one charge or many. Each charge
for which there is a guilty plea or guilty verdict will have sanc-
tions speci!ed by statute. For example, an aggravated robbery is
de!ned by the use of a deadly weapon, or an object that appears
to be a deadly weapon, to take property of value. If that weapon
is a !rearm, there can then be a charge of aggravated robbery
and a second charge of illegal use of a !rearm with possible
penalties for each. In this illustration, we consider correlates of
the number of charges against an o"ender !led by the police.

The dataset contains 10,000 o"enders arrested between 2007
and 2015 in a particular urban jurisdiction. The data are a
random sample from over 300,000 o"enders arrested in the
jurisdiction during those years. This pool is su%ciently large
to make an assumed in!nite population and iid sampling good
approximations. During that period, the governing statutes,
administrative procedures, and mix of o"enders were e"ectively
unchanged; there is a form of criminal justice stationarity. We
use as the response variable the number of charges associated
with the most recent arrest. The regression exercise is, therefore,
not about the number of arrests of a person but about a measure
of severity of the alleged crimes that led to the latest arrest.
Several regressors are available, all thought to be related to the
response. Many other relevant regressors are not available, such
as the consequences of the crime for its victims.

We make no claims of correct speci!cation or causal interpre-
tation for the adopted Poisson model. In particular, the binary
events constituting the counts do not need to be independent, an
assumption that would be unrealistic. For example, if the crime
is an armed robbery and the o"ender struggles with an arresting
o%cer, the charges could be aggravated robbery and resisting
arrest. Ordinarily, such dependence would be a concern.

The results of the Poisson regression are shown in Table 1.
The columns contain, from le# to right, the following quantities:

1. the name of the regressor variable;
2. the usual Poisson regression coe%cient;
3. the conventional standard errors;
4. the associated p-values;
5. standard errors computed using a nonparametric x–y boot-

strap;
6. standard errors computed with the sandwich estimator; and
7. the associated sandwich p-values.

Even though the model is likely misspeci!ed by conventional
standards for any number of reasons, the coe%cient estimates
for the population approximation are asymptotically unbiased
for the population best approximation. In addition, asymptotic
normality holds and can be leveraged to justify approximate
con!dence intervals and p-values based on sandwich or x–y
bootstrap estimators of standard error. With 10,000 observa-

tions, the asymptotic results e"ectively apply.2 None of this
would be true for inferences based on assumption-laden theo-
ries that assume the working model to be correct.

The marginal distribution of the response is skewed upward
with the number of charges ranging from 1 to 40. The mean
is 4.7 and the standard deviation 5.5. Most o"enders have rel-
atively few charges, but a few o"enders have many.

Table 1 shows that some of the bootstrap and sandwich stan-
dard errors are rather di"erent from the conventional standard
errors, indicating indirectly that the conditional Poisson model
is misspeci!ed (Buja, Berk, Brown, George, Pitkin et al. 2018).
Moreover, there is a reversal of the test’s conclusion for “Age
at First Charge” (i.e., the earliest arrest that led to a charge
as an adult). The null hypothesis is rejected with conventional
standard errors but is not rejected with a bootstrap or sandwich
standard error. This correction is helpful because past research
has o#en found that the slope of “Age At First Charge” is neg-
ative. Typically, individuals who have an arrest and a charge at
an early age are more likely to commit crimes later on for which
there can be multiple charges.

In the Poisson working model the interpretation of estimated
coe%cients are about the estimated best approximation to the
conditional response mean. Attempting to show full awareness
of this fact when interpreting coe%cients makes for clumsy
formulations, hence some simpli!cations are in order. We will
use the shortened expression response approximation, which in
the current context becomes charge count approximation.

The Poisson model implies that the charge count approxima-
tion has the form ŷx = exp(

∑
j β̂jxj). Hence, a unit di"erence

in xj implies a multiplier of exp(β̂j) in the charge count approx-
imation, also equivalent to a percentage di"erence of (exp(β̂j)−
1) ·100%. Also, for the approximation it is correct to apply the
ceteris paribus clause “at !xed levels of all other regressors.” It
will be implicitly assumed but not explicitly repeated in what
follows.

We now interpret each regressor accordingly if the null
hypothesis is rejected based on p-values from sandwich/bootstrap
standard errors.

• Age: Starting at the top of Table 1, a di"erence of 10 years of
age multiplies the charge count approximation by a factor of
0.86. This suggests that older o"enders who commit crimes
tend to have fewer charges, perhaps because their crimes are
di"erent from those of younger o"enders.

• Male: According to the approximation, at the same levels of
all other covariates, men on the average have an 8% greater
number of charges than women.

• Number of priors: To get the same 8% di"erence in the charge
count approximation from the number of all prior arrests
takes an increment of about 25 priors. Such increments are
common in the data: about 25% of the cases are !rst o"enders
(i.e., no prior arrests), and another 30% have 25 or more prior
arrests.

• Number of drug priors: According to the approximation,
a greater number of prior arrests for drug o"enses implies

2QQ plots of the bootstrap empirical sampling distributions showed close
approximations to normality.
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Table 1. Poisson regression results for the number of crime charges (n = 10,000).

Coe" SE p-value Boot.SE Sand.SE Sand-p

(Intercept) 1.8802 0.0205 0.0000 0.0522 0.0526 0.0000
Age −0.0147 0.0006 0.0000 0.0016 0.0016 0.0000
Male 0.0823 0.0127 0.0000 0.0284 0.0299 0.0058
Number of priors 0.0031 0.0002 0.0000 0.0005 0.0005 0.0000
Number of prior sentences 0.0002 0.0016 0.8868 0.0040 0.0039 0.9519
Number of drug priors −0.0138 0.0008 0.0000 0.0021 0.0020 0.0000
Age at !rst charge 0.0028 0.0009 0.0012 0.0022 0.0021 0.1935

on average fewer charges a#er controlling for the other
covariates. Drug o"enders o#en have a large number of
such arrests, so the small coe%cient of −0.0138 matters: for
20 additional prior drug arrests, there is a 24% reduction
in the charge count approximation. This agrees with the
expectation that a long history of drug abuse can be
debilitating so that the crimes committed are less likely
to involve violence and o#en entail little more than drug
possession.

In summary, the model approximation suggests that o"enders
who are young males with many prior arrests not for drug pos-
session tend to have substantially more criminal charges. Such
o"enders perhaps are disproportionately arrested for crimes of
violence in which other felonies are committed as well. A larger
number of charges would then be expected.

Questions of causality must be le# without answers for sev-
eral reasons. The regressors represent variables that are not
subject to intervention. If some of the regressors were causally
interpreted, they would a"ect other regressors downstream.
Most importantly, however, the data are missing essential causal
factors such as gang membership.

If causal inference is o" the table, what have we gained?
Though not literally a replication, we reproduced several asso-
ciations consistent with past research. In an era when the repro-
ducibility of scienti!c research is being questioned, consistent
!ndings across studies are encouraging. Equally important, the
!ndings can inform the introduction of real interventions that
could be bene!cial. For example, our replication of the impor-
tance of age underscores the relevance of questions about the
cost-e"ectiveness of very long prison sentences and reminds us
that the peak crime years are usually during the late teens and
early 20s. Priority might be given to bene!cial interventions
in early childhood, for which there exists strong experimental
evidence (e.g., Olds 2008). On the other hand, if the goal is
risk assessment in criminal justice (Berk 2012), the associations
reported here may point to predictors that could help improve
existing risk assessment instruments.

There are also statistical lessons. We have seen indirect indi-
cations of model misspeci!cation in part because traditional
model-trusting standard errors di"er from assumption lean
sandwich and x–y bootstrap standard errors. As a consequence
of model misspeci!cation, it is likely that the parameters of the
best !tting model depend on where in regressor space the mass
of the regressor distribution falls. This raises concerns about the
performance of out-of-sample prediction. If the out-of-sample
data are not derived from a source stochastically similar to
that of the analyzed sample, such predictions may be wildly
inaccurate.

13. Conclusions

Treating models as best approximations should replace treating
models as if they were correct. By using best approximations
of a !xed model, we explicitly acknowledge approximation dis-
crepancies, sometimes called “model bias,” which do not disap-
pear with more data. Contrary to a common misunderstand-
ing, model bias does not create asymptotic bias in parameter
estimates of best approximations. Rather, parameters of best
approximations are estimated with bias that disappears at the
usual rapid rate.

In regression, a fundamental feature of best approximations
is that they depend on regressor distributions. Two conse-
quences follow immediately. First, the target of estimation
depends on where the regressor distribution falls. Second,
one cannot condition on regressors and treat regressors as
!xed. Regressor variability must be included in treatments
of the sampling variability for any estimates. This can be
achieved by using model robust standard error estimates in
statistical tests and con!dence intervals. Two choices are readily
available: sandwich estimators and bootstrap-based estimators
of standard errors. In addition, a strong argument can be made
in favor of the nonparametric x–y bootstrap over the residual
bootstrap, because conditioning on the regressors and treating
them as !xed is incorrect when there is model misspeci!cation.

We also described some ways in which the idea of models as
approximations requires reinterpretations in practice: (1) model
parameters need to be reinterpreted as regression functionals,
characterizing best approximations; (2) predictions are for pop-
ulations rather than at !xed regressor locations and need to be
calibrated empirically, not relying on model-based multipliers of
pointwise prediction error; and (3) estimation of causal e"ects
from observational data is fragile because it depends critically
on correct speci!cation of either response means or treatment
probabilities.

In summary, it is easy to agree with G.E.P. Box’s famous dic-
tum, but there are real consequences that cannot be ignored or
minimized by hand waving. Realizing that models are approx-
imations a"ects how we interpret estimates and how we obtain
valid statistical inferences and predictions.

References

Angrist, J. D., and Pischke, J.-S. (2009), Mostly Harmless Econometrics: An
Empiricist’s Companion, London, UK: Princeton University Press. [81]

Bang, H., and Robins, J. M. (2005), “Doubly Robust Estimation in Missing
Data and Causal Inference,” Biometrics, 61, 962–972. [81]

Bachoc, F., Preinerstorfer, D., and Steinberger, L. (2017), “Uniformly Valid
Con!dence Intervals Post-Model-Selection,” arXiv no. 1611.01043. [77]



84 R. BERK ET AL.

Berk, R. A. (2003), Regression Analysis: A Constructive Critique, Newbury
Park, CA: Sage. [76]

(2012), Criminal Justice Forecasts of Risk: A Machine Learning
Approach, New York: Springer. [83]

Berk, R. A., Brown, L., Buja, A., Zhang, K., and Zhao, L. (2013), “Valid Post-
Selection Inference,” The Annals of Statistics, 41, 802–837. [77,79]

Box, G. E. P. (1976), “Science and Statistics,” Journal of the American
Statistical Association, 71, 791–799. [76]

Buja, A., Berk, R., Brown, L., George, E., Kuchibhotla, A. K., and Zhao,
L. (2018), “Models as Approximations—Part II: A General Theory of
Model-Robust Regression,” arXiv no. 1612.03257. [76,77,81]

Buja, A., Berk, R., Brown, L., George, E., Pitkin, E., Traskin, M., Zhan, K.,
and Zhao, L. (2018), “Models as Approximations—Part I: A Conspiracy
of Nonlinearity and Random Regressors in Linear Regression,” arXiv no.
1404.1578. [76,82]

Cox, D. R. (1995), “Discussion of Chat!eld (1995),” Journal of the Royal
Statistical Society, Series A, 158, 455–456. [76]

Davison, A. C., and Hinkley, D. V. (1997), Bootstrap Methods and Their
Application, New York: Cambridge University Press. [80]

Efron, B., and Tibshirani, R. J. (1994), An Introduction to the Bootstrap, Boca
Raton, FL: CRC Press. [80]

Freedman, D. A. (1981), “Bootstrapping Regression Models,” Annals of
Statistics, 9, 1218–1228. [76]

(2004), “Graphical Models for Causation and the Identi!cation
Problem,” Evaluation Review, 28, 267–293. [76,81]

(2009), Statistical Models, Cambridge, UK: Cambridge University
Press. [76]

Hall, P. (1992), The Bootstrap and Edgeworth Expansion, Springer Series in
Statistics, New York, NY: Springer Verlag. [80]

Hausman, J. A. (1978), “Speci!cation Tests in Econometrics,” Econometrica,
46, 1251–1271. [81]

Hong, L., Ku"ner, T. A., and Martin R. (2018), “On Over!tting and Post-
Selection Uncertainty Assessments,” Biometrika, 105, 221–224. [77]

Imbens, G. W., and Rubin, D. B. (2015), Causal Inference Statistics, Social,
and Biomedical Sciences: An Introduction, Cambridge: Cambridge Uni-
versity Press. [81]

Kuchibhotla, A. K., Brown L. D., Buja, A., George, E., and Zhao, L. (2018),
“A Model Free Perspective for Linear Regression: Uniform-in-Model
Bounds for Post Selection Inference,” arXiv no. 1802.05801. [77]

Leamer, E. E. (1978), Speci"cation Searches: Ad Hoc Inference With Non-
experimental Data, New York: Wiley. [76]

Lee, J. D., Sun, D. L., Sun, Y., and Taylor, J. E. (2016), “Exact Post-Selection
Inference, With Application to the Lasso,” The Annals of Statistics, 44,
907–927. [77]

Levit, B. Y. (1976), “On the E%ciency of a Class of Non-
Parametric Estimates,” Theory of Probability & Its Applications, 20,
723–740. [79]

McCarthy, D., Zhang, K., Berk, R. A., Brown, L., Buja, A., George,
E., and Zhao, L. (2018), “Calibrated Percentile Double Bootstrap
for Robust Linear Regression Inference,” Statistica Sinica, 28,
2565–2589. [80]

Olds, D. L. (2008), “Preventing Child Maltreatment and Crime With Pre-
natal and Infancy Support of Parents: The Nurse-Family Partnership,”
Journal of Scandinavian Studies of Criminology and Crime Prevention, 9,
2–24. [83]

Rotnitzky, A., Lei, Q., Sued, M., and Robins, J. M. (2012). “Improved
Double-Robust Estimation in Missing Data and Causal Inference Mod-
els,”Biometrika, 99, 439–456. [81]

Rubin, D. B. (1986), “Which Ifs Have Causal Answers,” Journal of the
American Statistical Association, 81, 961–962. [76]

Searle, S. R. (1970), Linear Models, New York: Wiley. [78]
Tsiatis, A. A. (2006), Semiparametric Theory and Missing Data, New York:

Springer. [79]
White, H. (1980), “Using Least Squares to Approximate Unknown

Regression Functions,” International Economic Review, 21,
149–170. [76,79]


	Abstract
	1.  Introduction
	2.  The Parent Joint Probability Distribution
	3.  Estimation Targets
	4.  A Population Decomposition of the Conditional Distribution of Y for OLS Fitting
	5.  Regressor Distributions Interacting With Misspecification
	6.  The Impact of Regressor Distributions Illustrated
	7.  Estimation and Standard Errors
	7.1.  Sandwich Standard Error Estimates
	7.2.  Bootstrap Standard Error Estimates

	8.  Slopes From Best Approximations
	9.  Predicted Values  From Best Approximations
	10.  Causality and Best Approximation
	11.  A Generalization: Assumption-Lean Poisson Regression
	12.  An Empirical Example Using Poisson Regression
	13.  Conclusions
	References


