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ABSTRACT

It is well known that with observational data, models used in conventional regression analyses are com-
monly misspecified. Yet in practice, one tends to proceed with interpretations and inferences that rely on
correct specification. Even those who invoke Box’s maxim that all models are wrong proceed as if results
were generally useful. Misspecification, however, has implications that affect practice. Regression models
are approximations to a true response surface and should be treated as such. Accordingly, regression param-
eters should be interpreted as statistical functionals. Importantly, the regressor distribution affects targets
of estimation and regressor randomness affects the sampling variability of estimates. As a consequence,
inference should be based on sandwich estimators or the pairs (x-y) bootstrap. Traditional prediction
intervals lose their pointwise coverage guarantees, but empirically calibrated intervals can be justified for
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future populations. We illustrate the key concepts with an empirical application.

1. Introduction

Itis old news that models are approximations and that regression
analyses of real data commonly employ models that are misspec-
ified in various ways. Conventional approaches are laden with
assumptions that are questionable, many of which are effectively
untestable (Box 1976; Leamer 1978; Rubin 1986; Cox 1995; Berk
2003; Freedman 2004, 2009). We discuss here some implications
of an “assumption lean” reinterpretation of regression. In this
reinterpretation, one requires only that the observations are iid,
realized at random according to a joint probability distribution
of the regressor and response variables. If no model assumptions
are made, the parameters of fitted models need to be interpreted
as statistical functionals, here called “regression functionals.”

For ease and clarity of exposition, we begin with linear
regression. Later, we turn to other types of regression and show
how the lessons from linear regression carry forward to the
generalized linear model (GLM) and even more broadly. We
draw heavily on two articles by Buja, Berk, Brown, George,
Pitkin et al. (2018) and Buja, Berk, Brown, George, Kuchibhotla
etal. (2018), a portion of which draws on early insights of White
(1980) and Freedman (1981).

2. The Parent Joint Probability Distribution

For observational data, suppose there is a set of real-valued
random variables that have a joint distribution P, also called the
“population,” that characterizes regressor variables Xi, ..., X,
and a response variable Y. The distinction between regressors
and the response is determined by the data analyst based on
subject matter interest. These designations do not imply any
causal mechanisms and or any particular generative models for
P. Unlike textbook theories of regression, the regressor variables

are not interpreted as fixed; they are as random as the response
and will be treated as such.

We collect the regressor variables in a (p + 1) x 1 col-
umn random vector X = (1,X1,...,Xp) with a leading 1 to
accommodate an intercept in linear models. We write P = P, 3
for the joint probability distribution, B3 for the conditional

distribution of Y given X, and B; for the marginal distribution
of X. The only assumption we make is that the data are realized
iid from P. The separation of the random variables into regres-
sors and a response implies interest in P, 5. Hence, some form of
regression analysis is applied. Yet, the regressors being random
variables, their marginal distribution B; cannot be ignored for
reasons to be explained below.

3. Estimation Targets

As a feature of P or, more precisely, of B3, there is a “true

response surface” denoted by u (5(). Most often, /L(i() is the con-
ditional expectation of Y given X, /L(i() = E[Y|5(], but there are
other possibilities, depending on the context. For example, (X)
might be chosen to be the conditional median or some other
conditional quantile of Y given X. The true response surface
is a common estimation target for conventional regression in
which a data analyst assumes a specific parametric form. We
will not proceed in this manner and will not make assumptions
about what form P, ; actually takes. Yet, we will make use,
for example, of standard ordinary least squares (OLS) fitting of
linear equations. We choose OLS for illustrative purposes and
for the simplicity of the insights gained, but in later sections, we
will consider Poisson regression as an example of GLMs. Using
OLS despite alack of trust in the underlying linear model reflects
ambiguities in many data analytic situations; deviations from
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linearity in w(X) may be difficult to detect with diagnostics,
or the linear fit is known to be a deficient approximation of
1(X) and yet, OLS is employed because of substantive theories,
measurement scales, or considerations of interpretability.
Fitting a linear function l(i) =p X to Y with OLS can be
represented mathematically at the population level P without
assuming that the response surface M(i) is linear in X

B(P) = argmin E[ (Y — B'X)? ]- (1)
ﬂEIRde

The vector B = B(P) is the “population OLS solution” and
contains the “population coefficients” Notationally, when we
write 8, it is understood to be B(P). Similar to finite datasets,
the OLS solution for the population can be obtained by solving
a population version of the normal equations, resulting in

B(P) = E[XX ] 'E[XY]. @)

Thus, one obtains the best linear approximation to Y as well
as to /L(X') in the OLS sense. As such, it can be useful without
(unrealistically) assuming that u(f() is identical to 'X.

We have worked so far with a distribution/population P, not
data. We have, therefore, defined a target of estimation: 8(P)
obtained from (1) and (2) is the estimand of empirical OLS
estimates B obtained from data. This estimand is well-defined
as long as the joint distribution P has second moments and the
regressor distribution B; is not perfectly collinear; that is, the

second moment matrix E [Xi(/] is full rank. There is no need to
assume linearity of 1(X) homoscedasticity or Gaussianity. This
constitutes the “assumption lean” or “model robust” framework.

An important question is why one should settle for the best
linear approximation to the truth? Indeed, those who insist
that models must always be “correctly specified” are likely to
be unreceptive. They will revise models until diagnostics and
goodness-of-fit tests no longer detect deficiencies so the models
can be legitimately treated as correct.

Such thinking warrants careful scrutiny. Data analysis with
a fixed sample size requires decisions about how to balance
the desire for good models against the costs of data dredg-
ing. “Improving” models by searching regressors, trying out
transformations of all variables, inventing new regressors from
existing ones, using model selection algorithms, performing
interactive experiments, applying goodness-of-fit tests and diag-
nostic plots can each invalidate subsequent statistical inference.
The result often is models that not only fit the data well, but fit
them too well (Hong, Kuffner, and Martin 2018).

Research is underway to provide valid post-selection infer-
ence (e.g., Berk etal. 2013; Lee et al. 2016), which is an important
special case. The proposed procedures address solely regres-
sor selection, and their initial justifications make strong Gaus-
sian assumptions. Recent developments, however, indicate that
extensions of Berk et al. (2013) have asymptotic justifications
under misspecification (Bachoc, Preinerstorfer, and Steinberger
2017; Kuchibhotla et al. 2018).

Beyond the costs of data dredging, there can be substantive
reasons for discouraging “model improvement.” Some variables
may express phenomena in “natural” or “conventional” units
that should not be transformed even if model fit is improved.
A substantive theory may require a particular model that does
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Noise: €|z = y|z — p(z)
Nonlinearity: n(z) = u(z) — 3'x
Population residual: d(x) = n(z) + ¢(z) c 5

|
[
X *

Figure 1. A population decomposition of Y|X using the best linear approximation.

not fit the data well. Identifying important variables may be
the primary concern, making quality of the fit less important.
Predictors prescribed by subject-matter theory or past research
may be unavailable so that the model is the best that can be
done. In short, one must consider ways in which valid statistical
inference can be undertaken with models acknowledged to be
approximations.

We are not making an argument for discarding model diag-
nostics. It is always important to learn all that is possible from
the data, including model deficiencies. In fact, in Buja, Berk,
Brown, George, Kuchibhotla et al. (2018) we propose a reweight-
ing diagnostic that is tailored to the regression quantities of
interest.

We also are not simply restating Box’s maxim that models
are always “wrong” in some ways but can be useful despite
their deficiencies. Acknowledging models as approximations is
one thing. Understanding the consequences is another. What
follows, therefore, is a discussion of some of these consequences
and an argument in favor of assumption lean inference employ-
ing model robust standard errors, such as those obtained from
sandwich estimators or the x—y bootstrap.

4. A Population Decomposition of the Conditional
Distribution of Y for OLS Fitting

A first step in understanding the statistical properties of the
best linear approximation is to consider carefully the potential
disparities in the population between w(X) and ﬂ’i. Figure 1
provides a visual representation. There is for the moment a
response variable Y and a single regressor X. The curved line
shows the true response surface ((x). The straight line shows
the best linear approximation Sy + B1x. Both are features of the
joint probability distribution, not a realized dataset.

The figure shows a regressor value x* drawn from PB; and a
response value y drawn from Pyjx—,+. The disparity between
y and the fitted value from the best linear approximation is
denoted as § = y — (Bo + B1x*) and will be called the “19104
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population residual” The value of § at x* can be decomposed
into two components:

o The first component results from the disparity between the
true response surface, ;(x*), and the approximation By +
B1x*. We denote this disparity by n = n(x*) and call it “the
nonlinearity” Because 8p+ f81x* is an approximation, dispar-
ities should be expected. They are the result of mean function
misspecification. As a function of the random variable X, the
nonlinearity 7(X) is a random variable as well.

o The second component of § at x*, denoted by ¢, is random
variation around the true conditional mean p(x*). We prefer
for such variation the term “noise” over “error” Sometimes it
is called “irreducible variation” because it exists even if the
true response surface is known.

The components defined here and shown in Figure 1 generalize
to regression with arbitrary numbers of regressors, in which case
wewrited = Y — B'X,n = u(X) — B’X,and ¢ = Y — u(X).

These random variables should not be confused with error terms
in the sense of generative models. They share some properties
with error terms, but these are not assumptions, rather, they
are consequences of the definitions that constitute the above
OLS-based decompositions. Foremost among properties is that
the population residual, the nonlinearity and the noise are all
“population-orthogonal” to the regressors

E(X}8) = EQX;n(X)) = E(X;) = 0. (3)

As was already noted, these properties (3) are not assumptions.
They derive directly from the decomposition described above
and the fact that B’X is the population OLS approximation of Y
and also of ,u(X) This much holds in an assumption lean frame-
work without making any modeling assumptions whatsoever.

Because we assume an intercept to be part of the regressors
(Xo = 1), the facts (3) imply that all three terms are marginally
population centered

E[§] = E[n(X)] = E[¢] = 0. (4)

However, § is not conditionally centered and not independent
of X as would be the case assuming a conventional error term in
a linear model. We have instead E[8|X] = r](X) which, though
marginally centered, is a function of X and hence, not indepen-
dent of the regressors (unless it vanishes). By comparison, the
noise ¢ is marginally and conditionally centered, E[¢|X] = 0,
but not assumed homoscedastic, and hence, not independent
of X.

We emphasize that in contrast to standard practice, the
regressor variables have been treated as random and not
as fixed. The assumption lean framework has allowed a
constructive decomposition that mimics some of the features
of a linear model but replaces the usual assumptions made
about “error terms” with orthogonality properties associated
with the random regressors. These properties are satisfied
by the population residuals, the nonlinearity and the noise
alike. They are not assumptions. They are consequences of the
decomposition.

5. Regressor Distributions Interacting With
Misspecification

Because in reality regressors are most often random variables
that are as random as the response, it is a peculiarity of com-
mon statistical practice that such regressors are treated as fixed
(Searle 1970, chap. 3). In probabilistic terms, this means that
one conditions on the observed regressors. Under the frequen-
tist paradigm, alternative datasets generated from the same
model leave regressor values unchanged; only the response val-
ues change. Consequently, regression models have nothing to
say about the regressor distribution; they only model the condi-
tional distribution of the response given the observed regressors
values. This alone might be seen by some as sufficient to justify
conditioning on the regressors. There exists, however, a more
formal justification. Drawing on principles of mathematical
statistics, in any regression model regressors are ancillary for
the parameters of the model, and hence, can be conditioned
on and treated as fixed. This principle, however, has no validity
here because it applies only when the model is correct, which
is precisely the assumption discarded by an assumption lean
framework. Thus, we are not constrained by statistical principles
that apply only in a model trusting framework.

Ignoring the marginal distributions of the regressor is per-
ilous under misspecification, and Figure 2 shows why. The left
and right side pictures both compare the effects of different
regressor distributions for a single regressor variable X in two
different population settings. The left plot shows misspecifica-
tion for which the true mean function w(X) is nonlinear. Yet
a linear function is fitted. The best linear approximation to the
nonlinear mean function depends on the regressor distribution
PB;. Therefore, the “true parameters” 8—the slope and intercept
of the best fitting line at the population—will also depend on
the regressor distribution. One can see that for the left marginal
distribution that the intercept is larger and the slope is smaller
than for the right marginal distribution. This implies that under
misspecification the regressor distribution B;, thought of as a
“nonparametric nuisance parameter; is no longer ancillary.

The right side plot of Figure 2 shows a case of correct spec-
ification: the true mean function w(X) (gray line) is linear.
Consequently, the best linear approximation clearly is the same
(black line) for both regressor distributions. In this case, the
population marginal distribution of X does not matter for the
best linear approximation. There is one value for f no matter
where the mass of X falls. This makes the regressor distribution
P; ancillary for the parameters of the best linear fit.

The lessons from Figure 2 generalize to multiple linear
regression with multivariate X, but the effects illustrated by
the figure are magnified. Although diagnosing misspecification
may be easy for a single regressor, it becomes a challenge
for progressively larger numbers of regressors, and nearly
impossible in “modern” settings for which the number of
regressors exceeds the sample size, and data analysts often
gamble on sparsity.

In short, it is the combination of a misspecified working
model and random regressors that produces the complications;
it now matters where the regressor values fall. Three questions
arise immediately. First, one may wonder about the meaning of
slopes when the model is not assumed to be correct. Second,
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Y = p(X)

X

Figure 2. Dependence of the population best linear approximation on the marginal distribution of the regressors.

what is the use of predicted values y = x’#? Third, what form
should statistical inference take when there is no reliance on the
usual assumptions? We will discuss possible answers to these
questions in the sections ahead.

6. The Impact of Regressor Distributions Illustrated

The difficulties illustrated by Figure 2 suggest possibilities that
may occur in various applications, ranging from modeling of
grouped data to meta-analysis. Consider the following hypo-
thetical scenarios that should serve as cautions when interpret-
ing models that are approximations.

Imagine a study of employed females and males in a certain
industry, with income as response and a scale measuring educa-
tional level as regressor. Consider next the possibility that there
is one conditional mean function for income irrespective of gen-
der, but the mean function may be nonlinear in the education
scale, as illustrated by the left side picture in Figure 2. A data
analyst may fit a linear model, perhaps because of convention, a
high level of noise obscuring the nonlinearity, or a lack of graph-
ical data exploration. The analyst may then find that different
slopes are required for males and females and may respond by
including in the regression an interaction term between gender
and education. If, however, the truth is as stipulated, the usual
interpretation of interaction effects would be misleading. The
driver of the gender difference is not how income responds to
education, but the education scale distribution by gender. Put
in different language, one may say that the real story is in the
consequences of an association between gender and education.

Imagine now meta-analysis of randomized clinical trials
(RCTs). RCTs often produce different apparent treatment
effects for the same intervention, sometimes called “parameter
heterogeneity” Suppose the intervention is a subsidy for higher
education, and the response is income at some defined endpoint.
In two different locales, the average education levels may
differ. Consequently, in each setting the interventions work
off different baselines. There can be an appearance of different
treatment effects even though the nonlinear mean returns to
education may be the same in both locales. The issue is, once
again, that the difference in effects on returns to education may
not derive from different conditional mean functions but from
differences between regressor distributions.

Apparent parameter heterogeneity also can materialize in
the choice of covariates in multiple regression. The coefficient
B1 of the regressor X; is not properly interpreted in isolation
because B, generally depends on which other regressors are
included. This is well-known as “confounding” In the simplest
case, a regression on X; alone, differs from a regression on X;
and X, when the two regressors are correlated. In the extreme,
the coefficients B; obtained from the two regressions may have
different signs, suggesting an instance of Simpsons paradox.
(See Berk et al. (2013, sec. 2.1), for a more detailed discussion.)
For present purposes, exclusion versus inclusion of X, can be
interpreted as a difference in regressor distributions.

7. Estimation and Standard Errors

Given iid multivariate data (Y,,Xl) ~P(i=1,..., n) one can
apply OLS and obtain the plug-in estimate }3 B(P,) derived
from (1), where P, denotes the empirical distribution of the
dataset. By multivariate central limit theorems, Bis asymptoti-
cally unbiased and normally distributed, and it is asymptotically
efficient in the sense of semiparametric theory (e.g., Levit 1976,
p- 725, ex. 5; Tsiatis 2006, p. 8 and chap. 4).

7.1. Sandwich Standard Error Estimates

The asymptotic variance-covariance matrix of B in the assump-
tion lean iid sampling framework deviates from that of linear
models theory, which assumes linearity and homoscedasticity.
The appropriate expression has a “sandwich” form (White 1980)

AV[B,P] = E[XX 17" E[s2XX'] E[IXX'1". (5)
A plug-in estimator is obtained as follows

o~ A A 1 - =/ -1 1 2% 2/
AV = AV[B, P,] <nZX,~Xi> <;Zrix,»xi>

i i
Lo o\ !
<—ZX1~X,-> , (6)
n i

=/ A
where r; = Y; — X,f are the sample residuals. Equation (6)
is the simplest form of a sandwich estimator of asymptotic
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variance. More refined forms exist but are outside the scope of
this article. Standard error estimates for OLS slope estimates ,3]-
are obtained from (6) using the asymptotic variance estimate in
the jth diagonal element

1 \1/2
SE; = [ —AV;; .
] <71 JJ)

A connection with linear models theory is as follows. If
the truth is linear and homoscedastic, and hence, the work-
ing model is correctly specified to first- and second-order, the
sandwich formula (5) collapses to the conventional formula
for asymptotic variance due to E[sz{i/] = azE[XX/], which
follows from E[6%|X] = E[€?|X] = o2. Theresultis AV[8, P] =
ozE[XX/]_l, the “assumption laden” form of asymptotic vari-
ance.

7.2. Bootstrap Standard Error Estimates

Alternative standard error estimates can be obtained from the
nonparametric pairwise or x-y bootstrap, which resamples
tuples ( Yi,f(i). It is assumption lean in that it relies for
asymptotic correctness only on iid sampling of the tuples
(Y;,X;) and some moment conditions. The x-y bootstrap,
therefore, applies to all manners of regressions, including GLMs.

In contrast, the residual bootstrap is inappropriate because
it assumes first-order correctness, u(x) = p’x, as well as
exchangeable and hence, homoscedastic population residuals §.
The only step toward assumption leanness is a relaxation of
Gaussianity of the noise distribution. Furthermore, it does not
apply to other forms of regression such as logistic regression.
The residual bootstrap is preferred by those who insist that one
should condition on the regressors because they are ancillary. As
argued in Section 5, however, the ancillarity argument requires
correct specification of the regression model, counter to the idea
that models are just approximations.

Sandwich and bootstrap estimators of standard error are
identical in the asymptotic limit, and for finite data they tend to
be close. Based on either, one may perform conventional statis-
tical tests and form confidence intervals. Although asymptotics
are a justification for either, one of the advantages of the boot-
strap is that it lends itself to a diagnostic for assessing whether
asymptotic normality is a reasonable assumption. One simply
creates normal quantile plots of bootstrap estimates obtained in
the requisite simulations.

Finally, bootstrap confidence intervals have been addressed
in extensive research showing that there are variants that
are higher order correct (see, e.g., Hall 1992; Efron and
Tibshirani 1994; Davison and Hinkley 1997). An elaborate
double-bootstrap procedure for regression is described in
McCarthy et al. (2018).

8. Slopes From Best Approximations

When the estimation target is the best linear approximation,
one can capitalize on desirable model-robust properties not
available from assumption laden linear models theory. The price
is that subject-matter interpretations address features of the best
linear approximation, not that of a “generative truth”; which, as

we have emphasized, is often an unrealistic notion. (Even the
assumption of iid sampling adopted here is often unrealistic.)

The most important interpretive issue concerns the regres-
sion coeflicients of the best linear approximation. The problem
is that the standard interpretation of a regression coefficient is
not strictly applicable anymore. It no longer holds that

Bj is the average difference in Y for a unit difference in X; at
constant levels of all other regressors X.

This statement uses the classical “ceteris paribus” (all things
being equal) clause, which only holds when the response func-
tion is linear. For proper interpretation that accounts for mis-
specification, one needs to reformulate the statement in a way
that clearly refers to differences in the best approximation f'x,
not to differences in the conditional means 1 (x):

Bj is the difference in the best linear approximation to Y for a
unit difference in X at constant levels of all other regressors Xi.

This restatement, unsatisfactory as it may appear at first sight,
implies an appropriate admission that there could exist a dis-
crepancy between B'x and 1 (x). The main point is that interpre-
tations of regression coefficients should refer not to the response
but to the best approximation. This mandate is not particular to
OLS linear regression but applies to all types of regressions, as
will be rehearsed below for Poisson regressions.

9. Predicted Values y From Best Approximations

Also important in regression analysis are the predicted values at

specific locations x in regressor space, estimated as J, = B 'x.In
linear models theory, for which the model is assumed correct,
there is no bias if it is the response surface that is estimated by
predicted values; E[yx] = B'x = u(x) because E[}Ag] = B, where
E[...] refers only to the randomness of the response values y;
with the regressor vectors X; treated as fixed.

When the model is mean-misspecified such that u(x) # B'x,
then Jy is an estimate of the best linear approximation B'x,
not 1u(x), hence, there exists bias u(x) — B'x = n(x) that
does not disappear with increasing sample size n. Insisting on
consistent prediction with linear equations at a specific location
x in regressor space is, therefore, impossible.

To give meaning to predicted values y, under misspecifica-
tion, it is necessary to focus on a population of future observa-
tions (Yeutures ifuture) and to assume that it follo_yvs the same joint
distribution P, j as the past training data (Y}, X;). In particular,
the future regressors are not fixed but random according to
Xfuture ~ B;. If this is a reasonable assumption, then )A/;(fumre

is indeed the best linear prediction of M(ifuture) and Yfurure
for this future population under squared error loss. Averaged
over future regressor vectors, there is no systematic bias because
E[?”](ifuture)] = 0 according to (4) of Section 4.! Asymptotically
correct prediction intervals for Yre do exist and, in fact, one
can use the usual intervals of the form

"When regressors are treated as random, there exists a small estimation
bias, E[B] # B in general, because E[(X Y XX) '(L Y XVl #
E[)?’)?]_1E[)?Y], causing E[yx] # B’x for fixed x. However, this bias is of
small order in n and shrinks rapidly with increasing n.
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However, the usual multiplier K is based on linear models theory
with fixed regressors, and hence, is not robust to misspecifica-
tion. There exists a simple alternative for choosing K that has
asymptotically correct predictive coverage under misspecifica-
tion. It can be obtained by calibrating the multiplier K empiri-
cally on the training sample such that the desired fraction 1 — «
of observations (Y,-,X,-) falls in their respective intervals. One
estimates K by satisfying an approximate equality as follows,
rounded to £1/n

1 L.
—-#{ie{l,...,n}: Y,-ePI(Xi;K)} ~1—a.

n
Under natural conditions, such multipliers yield asymptotically
correct prediction coverage:

P[quture € Pl(ifuturdK)iI — l—a as n— oo,

where PJ...] accounts for randomness in the training data as
well as in the future data. When the ratio p/n is unfavorable,
one may consider a cross-validated version of calibration for K.
Finally, we note that empirical calibration of prediction intervals
generalizes to arbitrary types of regression with a quantitative
response.

10. Causality and Best Approximation

Misspecification creates important challenges for causal infer-
ence (Imbens and Rubin 2015). Consider first a randomized
experiment with potential outcomes Yi,Yy for a binary
treatment/intervention C € {0, 1}. Because of randomization,
the potential outcomes are independent of the intervention:
(Y1,Yy) AL C. Unbiased estimates of the average treatment
effect (ATE) follow. Pretreatment covariates X can be used to
increase precision (reduce standard errors), similar to control
variates in Monte Carlo (MC) experiments. It has been known
for some time that the model including the treatment C and
the pretreatment covariates X does not need to be correctly
specified to provide correct estimation of the ATE and (possibly)
an asymptotic reduction of standard errors. That is, the model
Y ~ 1C+ BX may be arbitrarily misspecified, and yet the
ATE agrees with the treatment coefficient 7. (To yield a benefit,
however, the covariates X must produce a useful increase in R?
or some other appropriate measure of fit, similar to control
variates in MC experiments.)

Now consider observational studies. There can be one or
more variables that are thought of as causal and which can at
least in principle be manipulated independently of the other
covariates. If there is just one causal binary variable C, we are
returned to a model of the form ¥ ~ tC + B'X, where
it would be desirable for t to be interpretable as an average
treatment effect (Angrist and Pischke 2009, sec. 3.2). These are
always very strong claims that often call for special scrutiny. It
is widely known that causal inference can be properly justified
by assuming one of two sufficient conditions, known as “double
robustness” (see, e.g., Bang and Robins 2005; Rotnitzky et al.
2012): (1) either wu(x) is correctly specified, which in practice
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means that there is no “omitted variables” problem for the
response and that the fitted functional form for p(x) is cor-
rect; or (2) the conditional probability of treatment (called the
propensity score) can be correctly modeled, which in practice
means that there is no omitted variables problem for treatment
probabilities and that the (usually logistic) functional form of
the propensity scores is correct. In either case, omitted variable
concerns are substantive and cannot be satisfactorily addressed
by formal statistical methods (Freedman 2004). There exist
diagnostic proposals based on proxies for potentially missing
variables or based on instrumental variables, but their assump-
tions are hardly lean (e.g., Hausman 1978). Misspecification of
the functional form in (1) or (2) is probably more amenable to
formal diagnostics.

In summary, causal inferences based on observational data
are fragile because they depend on one of two kinds of correct
specification. Best approximation under misspecification will
not do. As a consequence, tremendous importance can fall to
misspecification diagnostics. Some useful proposals are given in
Buja, Berk, Brown, George, Kuchibhotla et al. (2018).

11. A Generalization: Assumption-Lean Poisson
Regression

An obvious generalization of assumption lean modeling is to
regressions other than linear OLS, such as GLMs. We mention
here Poisson regression, to be illustrated with an application
in the next section. The response is now a counting variable,
which suggests modeling conditional counts with a suitable link
function and an objective function other than OLS, namely, the
negative log-likelihood of a conditional Poisson model. Inter-
preting the parameters as functionals allows the conditional
distribution of the counting response to be largely arbitrary; the
Poisson model does not need to be correct. The working model
is a mere heuristic that produces a plausible objective function.

For a counting response Y € {0, 1,2,.. .}, one models the log
of the conditional expectations of the counts, p(x) = E[Y|5( =
x], with a linear function of the regressors

log(n(x)) ~ B'x.

3

We use “~” rather than “=" to indicate an approximation that
allows varying degrees of misspecification. The negative log-
likelihood of the model when #n — o0 results in a population
objective function whose minimization produces the statistical
functional, treated as an estimand or “population parameter”

B(P) = argmin E [exp (X/ﬁ) — (i/ﬂ) Y] . (8)

BGIRIHI

The usual estimates B are obtained by plug-in, replacing the
expectation with the mean over the observations and thereby
reverting to the negative log-likelihood of the sample.
Interpretations and practice follow much as earlier, with the
added complication that the best approximation to wu(x) has
the form exp(B’'x). The approximation discrepancy wu(x) —
exp(B’x) does not disappear with more data. For statistical
tests and confidence intervals, one should use standard error
estimates of the appropriate sandwich form or obtained from the
nonparametric x-y bootstrap. Finally, under misspecification
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the regression functional B (P) will generally, as before, depend
on the regressor distribution ;. The regressors should not be
treated as ancillary and not held fixed. The regression functional
B(P) can have different values depending on where in regressor
space the data fall.

12. An Empirical Example Using Poisson Regression

We apply Poisson regression to criminology data where the
response is the number of charges filed by police after an arrest.
One crime event can lead to one charge or many. Each charge
for which there is a guilty plea or guilty verdict will have sanc-
tions specified by statute. For example, an aggravated robbery is
defined by the use of a deadly weapon, or an object that appears
to be a deadly weapon, to take property of value. If that weapon
is a firearm, there can then be a charge of aggravated robbery
and a second charge of illegal use of a firearm with possible
penalties for each. In this illustration, we consider correlates of
the number of charges against an offender filed by the police.

The dataset contains 10,000 offenders arrested between 2007
and 2015 in a particular urban jurisdiction. The data are a
random sample from over 300,000 offenders arrested in the
jurisdiction during those years. This pool is sufficiently large
to make an assumed infinite population and iid sampling good
approximations. During that period, the governing statutes,
administrative procedures, and mix of offenders were effectively
unchanged; there is a form of criminal justice stationarity. We
use as the response variable the number of charges associated
with the most recent arrest. The regression exercise is, therefore,
not about the number of arrests of a person but about a measure
of severity of the alleged crimes that led to the latest arrest.
Several regressors are available, all thought to be related to the
response. Many other relevant regressors are not available, such
as the consequences of the crime for its victims.

We make no claims of correct specification or causal interpre-
tation for the adopted Poisson model. In particular, the binary
events constituting the counts do not need to be independent, an
assumption that would be unrealistic. For example, if the crime
is an armed robbery and the offender struggles with an arresting
officer, the charges could be aggravated robbery and resisting
arrest. Ordinarily, such dependence would be a concern.

The results of the Poisson regression are shown in Table 1.
The columns contain, from left to right, the following quantities:

. the name of the regressor variable;

. the usual Poisson regression coeflicient;

. the conventional standard errors;

. the associated p-values;

. standard errors computed using a nonparametric x-y boot-
strap;

. standard errors computed with the sandwich estimator; and

. the associated sandwich p-values.

U W N —
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Even though the model is likely misspecified by conventional
standards for any number of reasons, the coefficient estimates
for the population approximation are asymptotically unbiased
for the population best approximation. In addition, asymptotic
normality holds and can be leveraged to justify approximate
confidence intervals and p-values based on sandwich or x-y
bootstrap estimators of standard error. With 10,000 observa-

tions, the asymptotic results effectively apply.> None of this
would be true for inferences based on assumption-laden theo-
ries that assume the working model to be correct.

The marginal distribution of the response is skewed upward
with the number of charges ranging from 1 to 40. The mean
is 4.7 and the standard deviation 5.5. Most offenders have rel-
atively few charges, but a few offenders have many.

Table 1 shows that some of the bootstrap and sandwich stan-
dard errors are rather different from the conventional standard
errors, indicating indirectly that the conditional Poisson model
is misspecified (Buja, Berk, Brown, George, Pitkin et al. 2018).
Moreover, there is a reversal of the test’s conclusion for “Age
at First Charge” (i.e., the earliest arrest that led to a charge
as an adult). The null hypothesis is rejected with conventional
standard errors but is not rejected with a bootstrap or sandwich
standard error. This correction is helpful because past research
has often found that the slope of “Age At First Charge” is neg-
ative. Typically, individuals who have an arrest and a charge at
an early age are more likely to commit crimes later on for which
there can be multiple charges.

In the Poisson working model the interpretation of estimated
coeflicients are about the estimated best approximation to the
conditional response mean. Attempting to show full awareness
of this fact when interpreting coefficients makes for clumsy
formulations, hence some simplifications are in order. We will
use the shortened expression response approximation, which in
the current context becomes charge count approximation.

The Poisson model implies that the charge count approxima-
tion has the form jx = exp(}_; ,éjxj). Hence, a unit difference

in x; implies a multiplier of exp(/éj) in the charge count approx-

imation, also equivalent to a percentage difference of (exp(ﬁj)—
1)-100%. Also, for the approximation it is correct to apply the
ceteris paribus clause “at fixed levels of all other regressors” It
will be implicitly assumed but not explicitly repeated in what
follows.

We now interpret each regressor accordingly if the null
hypothesis is rejected based on p-values from sandwich/bootstrap
standard errors.

« Age: Starting at the top of Table 1, a difference of 10 years of
age multiplies the charge count approximation by a factor of
0.86. This suggests that older offenders who commit crimes
tend to have fewer charges, perhaps because their crimes are
different from those of younger offenders.

o Male: According to the approximation, at the same levels of
all other covariates, men on the average have an 8% greater
number of charges than women.

« Number of priors: To get the same 8% difference in the charge
count approximation from the number of all prior arrests
takes an increment of about 25 priors. Such increments are
common in the data: about 25% of the cases are first offenders
(i.e., no prior arrests), and another 30% have 25 or more prior
arrests.

o Number of drug priors: According to the approximation,
a greater number of prior arrests for drug offenses implies

2QQ plots of the bootstrap empirical sampling distributions showed close
approximations to normality.



Table 1. Poisson regression results for the number of crime charges (n = 10,000).
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Coeff SE p-value Boot.SE Sand.SE Sand-p
(Intercept) 1.8802 0.0205 0.0000 0.0522 0.0526 0.0000
Age —0.0147 0.0006 0.0000 0.0016 0.0016 0.0000
Male 0.0823 0.0127 0.0000 0.0284 0.0299 0.0058
Number of priors 0.0031 0.0002 0.0000 0.0005 0.0005 0.0000
Number of prior sentences 0.0002 0.0016 0.8868 0.0040 0.0039 0.9519
Number of drug priors —0.0138 0.0008 0.0000 0.0021 0.0020 0.0000
Age at first charge 0.0028 0.0009 0.0012 0.0022 0.0021 0.1935

on average fewer charges after controlling for the other
covariates. Drug offenders often have a large number of
such arrests, so the small coefficient of —0.0138 matters: for
20 additional prior drug arrests, there is a 24% reduction
in the charge count approximation. This agrees with the
expectation that a long history of drug abuse can be
debilitating so that the crimes committed are less likely
to involve violence and often entail little more than drug
possession.

In summary, the model approximation suggests that offenders
who are young males with many prior arrests not for drug pos-
session tend to have substantially more criminal charges. Such
offenders perhaps are disproportionately arrested for crimes of
violence in which other felonies are committed as well. A larger
number of charges would then be expected.

Questions of causality must be left without answers for sev-
eral reasons. The regressors represent variables that are not
subject to intervention. If some of the regressors were causally
interpreted, they would affect other regressors downstream.
Most importantly, however, the data are missing essential causal
factors such as gang membership.

If causal inference is off the table, what have we gained?
Though not literally a replication, we reproduced several asso-
ciations consistent with past research. In an era when the repro-
ducibility of scientific research is being questioned, consistent
findings across studies are encouraging. Equally important, the
findings can inform the introduction of real interventions that
could be beneficial. For example, our replication of the impor-
tance of age underscores the relevance of questions about the
cost-effectiveness of very long prison sentences and reminds us
that the peak crime years are usually during the late teens and
early 20s. Priority might be given to beneficial interventions
in early childhood, for which there exists strong experimental
evidence (e.g., Olds 2008). On the other hand, if the goal is
risk assessment in criminal justice (Berk 2012), the associations
reported here may point to predictors that could help improve
existing risk assessment instruments.

There are also statistical lessons. We have seen indirect indi-
cations of model misspecification in part because traditional
model-trusting standard errors differ from assumption lean
sandwich and x-y bootstrap standard errors. As a consequence
of model misspecification, it is likely that the parameters of the
best fitting model depend on where in regressor space the mass
of the regressor distribution falls. This raises concerns about the
performance of out-of-sample prediction. If the out-of-sample
data are not derived from a source stochastically similar to
that of the analyzed sample, such predictions may be wildly
inaccurate.

13. Conclusions

Treating models as best approximations should replace treating
models as if they were correct. By using best approximations
of a fixed model, we explicitly acknowledge approximation dis-
crepancies, sometimes called “model bias,” which do not disap-
pear with more data. Contrary to a common misunderstand-
ing, model bias does not create asymptotic bias in parameter
estimates of best approximations. Rather, parameters of best
approximations are estimated with bias that disappears at the
usual rapid rate.

In regression, a fundamental feature of best approximations
is that they depend on regressor distributions. Two conse-
quences follow immediately. First, the target of estimation
depends on where the regressor distribution falls. Second,
one cannot condition on regressors and treat regressors as
fixed. Regressor variability must be included in treatments
of the sampling variability for any estimates. This can be
achieved by using model robust standard error estimates in
statistical tests and confidence intervals. Two choices are readily
available: sandwich estimators and bootstrap-based estimators
of standard errors. In addition, a strong argument can be made
in favor of the nonparametric x—y bootstrap over the residual
bootstrap, because conditioning on the regressors and treating
them as fixed is incorrect when there is model misspecification.

We also described some ways in which the idea of models as
approximations requires reinterpretations in practice: (1) model
parameters need to be reinterpreted as regression functionals,
characterizing best approximations; (2) predictions are for pop-
ulations rather than at fixed regressor locations and need to be
calibrated empirically, not relying on model-based multipliers of
pointwise prediction error; and (3) estimation of causal effects
from observational data is fragile because it depends critically
on correct specification of either response means or treatment
probabilities.

In summary, it is easy to agree with G.E.P. Box’s famous dic-
tum, but there are real consequences that cannot be ignored or
minimized by hand waving. Realizing that models are approx-
imations affects how we interpret estimates and how we obtain
valid statistical inferences and predictions.
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