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The Median Probability Model and
Correlated Variables

Maria M. Barbieri∗, James O. Berger†, Edward I. George‡, and Veronika Ročková§,¶

Abstract. The median probability model (MPM) (Barbieri and Berger, 2004) is
defined as the model consisting of those variables whose marginal posterior prob-
ability of inclusion is at least 0.5. The MPM rule yields the best single model
for prediction in orthogonal and nested correlated designs. This result was origi-
nally conceived under a specific class of priors, such as the point mass mixtures
of non-informative and g-type priors. The MPM rule, however, has become so
very popular that it is now being deployed for a wider variety of priors and under
correlated designs, where the properties of MPM are not yet completely under-
stood. The main thrust of this work is to shed light on properties of MPM in these
contexts by (a) characterizing situations when MPM is still safe under correlated
designs, (b) providing significant generalizations of MPM to a broader class of
priors (such as continuous spike-and-slab priors). We also provide new supporting
evidence for the suitability of g-priors, as opposed to independent product priors,
using new predictive matching arguments. Furthermore, we emphasize the impor-
tance of prior model probabilities and highlight the merits of non-uniform prior
probability assignments using the notion of model aggregates.

Keywords: Bayesian variable selection, median probability model,
multicollinearity, spike and slab.
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1 Introduction

This paper investigates the extent to which the median probability model rule of Barbieri
and Berger (2004) can be used for variable selection when the covariates are correlated.
To this end, we consider the usual linear model

Y n×1 ∼ Nn

(
Xβ,σ2I

)
, (1.1)

where Y is the n × 1 vector of responses, X is the n × q design matrix of covariates,
β is a q × 1 vector of unknown coefficients, and σ2 is a known or unknown scalar.
The equation (1.1) corresponds to the full model and we are interested in selecting a
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submodel indexed by γ = (γ1, . . . , γq)′, where γi ∈ {1, 0} for whether the ith covariate
is in or out of the model. We tacitly assume that the response and predictors have been
centered and thereby omit the intercept term.

For prediction of a new observation y! from x! under squared error loss, the optimal
model γo is known to satisfy (Lemma 1 of Barbieri and Berger (2004))

γo = arg min
γ

R(γ) with R(γ) ≡
(
Hγ β̃γ − β̄

)′
Q

(
Hγ β̃γ − β̄

)
, (1.2)

where β̄ = E [β | Y ]=
∑

γ π(γ | Y )Hγ β̃γ is the overall posterior mean of β under the

hierarchical prior π(γ) and π(β | γ); β̃γ is the conditional posterior mean under γ;
π(γ | Y ) is the posterior probability of model Mγ ; Q = E [x!x!′] = X ′X, essentially
the assumption that random covariates in the future will be like those arising in the
data; and Hγ the q×|γ| stretching matrix (defined in Section 2.2 of Barbieri and Berger
(2004)) which satisfies

Hγ = (hij)
q,|γ|
ij=1 where hij equals 1 if γi = 1 and j =

i∑

r=1

γr, and 0 otherwise. (1.3)

As (1.2) reveals, γo can be regarded as the best single-model approximation to model
averaging.

Contrary to what might be commonly conceived as an optimal predictive model,
γo is not necessarily the modal highest posterior probability model. In orthogonal and
nested correlated designs, Barbieri and Berger (2004) show that the optimal model γo is
also the median probability model γMP , namely the model consisting of variables whose
marginal inclusion probability π(γi = 1 | Y ) is at least 0.5. Furthermore, compared to
the maximum-a-posteriori model (MAP), a major attraction of the median probability
model (MPM) is the speed with which it can be well approximated via Markov chain
Monte Carlo (MCMC) methods. Whereas the MAP must be approximated by a single
high probability model among the 2p possible models, approximating the MPM only
requires estimates of the p marginal inclusion probabilities, each of which can be quickly
and more accurately estimated from MCMC sampled binary inclusion indicators. Thus
even when the MAP and MPM are identical, which may often be the case, the MPM
offers a much faster route to computing them both.

The MPM is now routinely used for distilling posterior evidence towards variable
selection; Clyde et al. (2011); Feldkircher (2012); Garcia-Donato and Martinez-Beneito
(2013); Ghosh (2015); Piironen and Vehtari (2017) and Drachal (2018) are some of
the articles that have used and discussed the performance of the MPM. Despite its
widespread use in practice, however, the optimality of MPM has so far been shown
under comparatively limited circumstances. In particular, the priors π(β |γ) are required

to be such that the MPM estimator β̃γ is proportional to the maximum likelihood
estimator (MLE) under γ. This property will be satisfied by e.g. the point-mass spike-
and-slab g-type priors (Zellner, 1986; Liang et al., 2008). However, the also very popular
continuous spike-and-slab mixtures (George and McCulloch, 1993; Ishwaran and Rao,
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2003; Ročková and George, 2014; Ročková, 2018) will fail to satisfy this requirement.
Here, we will show that this condition is not necessary for MPM to be predictive optimal.
In particular, we provide significant generalizations of the existing MPM optimality
results for a wider range of priors such as the continuous spike-and-slab mixtures and,
more generally, independent product priors.

Barbieri and Berger (2004) presented a situation with correlated covariates (due
to Merlise Clyde) in which the MPM was clearly not optimal. Thus there has been a
concern that correlated covariates (reality) might make the MPM practically irrelevant.
Hence another purpose of this paper is to explore the extent to which correlated covari-
ates can degrade the performance of the MPM. We address this with theoretical studies
concerning the impact of correlated covariates, and numerical studies; the magnitude of
the scientific domain here limits us (in the numerical studies) to consider a relatively ex-
haustive study of the two variable case, made possible by geometric considerations. The
overall conclusion is that (in reality) there can be a small degradation of performance,
but the degradation is less than that experienced by the MAP in correlated scenarios.

First, using predictive matching arguments (Berger and Pericchi, 2001; Bayarri et al.,
2012; Fouskakis et al., 2018), we provide new arguments for the suitability of g-type
priors as opposed to independent product priors. Going further, we highlight the im-
portance of prior model probabilities assignments and discuss their “dilution” issues
(George, 2010) in highly collinear designs. Introducing the notion of model aggregates,
we showcase the somewhat peculiar behavior of separable model priors obtained with
a fixed prior inclusion probability. We show that the beta-binomial prior copes far bet-
ter with variable redundancy. We also characterize the optimal predictive model and
relate it to the MPM through relative risk comparisons. We also provide several “mini-
theorems” showing predictive (sub)optimality of the MPM when q = 2.

The paper is structured as follows. Section 2 introduces the notion of model collec-
tives and looks into some interesting limiting behaviors of the MPM when the predictors
are correlated. Section 3 delves into a special case with 2 collinear predictors. Section
4 generalizes the optimality of the MPM to other priors and Section 5 wraps up with a
discussion.

2 Highly Correlated Variables, g-Priors and MPM

2.1 The Marginal Likelihood Under Many Highly Correlated
Variables

One reasonable requirement for objective model selection priors is that they be properly
matched across models that are indistinguishable from a predictive point of view. Recall
that two models are regarded as predictive matching (Bayarri et al., 2012) if their
marginal likelihoods are close in terms of some distance. In this section, we take a
closer look at the marginal likelihood for the model (1.1) under the celebrated g-priors
(Zellner, 1986), assuming that the n × (p + k) design matrix Xε satisfies

Xε = [Bn×p, x + ε δ1, · · · , x + ε δk] (2.1)
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for some ε > 0, where B consists of p possibly correlated regressors and where δ1, . . . , δk

are (n×1) perturbation vectors. For clarity of exposition, we first assume that σ2 > 0 is
fixed and later extend our considerations to the random case. We assume that δ1, . . . , δk

are orthonormal and orthogonal to an (n× 1) vector x and B,1 while x and B are not
necessarily orthogonal. We will be letting ε be very small to model the situation of
having k highly correlated variables. For the full model (1.1), the g-prior is

β(p+k)×1 ∼ Np+k

(
0, g σ2(X ′

εXε)
−1

)
(2.2)

for some g > 0 (typically n). Assuming, for now, that σ2 is fixed the corresponding
marginal likelihood is

Y ∼ Nn

(
0,σ2I + g σ2Xε(X

′
εXε)

−1X ′
ε

)
.

Note that Xε(X
′
εXε)−1X ′

ε is the projection matrix onto the column space of Xε.
Hence, having near duplicate columns in Xε should not change this matrix much at all.
Indeed, the following Lemma shows that, as ε → 0, this is a fixed matrix (depending
only on B and x).

Lemma 1. Denote with P = limε→0 Xε(X
′
εXε)−1X ′

ε. Then

P = P B +
(I − P B)xx′(I − P B)

x′(I − P B)x
, (2.3)

where P B = B(B′B)−1B′.

Proof. Let 1 be the k-column vector of ones, so that 11′ is the k × k matrix of ones,
and let v = B′x. Note first that

X ′
εXε =

(
B′B v1′

1v′ ‖x‖211′ + ε2I

)

and, letting C = (‖x‖2 − v′(B′B)−1v),

(X ′
εXε)

−1 =





(
(B′B)−1 + k

ε2+kC (B′B)−1vv′(B′B)−1
)

−(ε2 + kC)−1(B′B)−1v1′

−(ε2 + kC)−11v′(B′B)−1 1
ε2

(
I − C

ε2+kC 11′
)



.

The result follows by multiplying this matrix with Xε and X ′
ε, and taking the limit as

ε → 0.

Lemma 1 can perhaps be more readily understood using the following intuitive
explanation. With k = 1, the limiting design matrix limε→0 Xε = [B | x] is full rank
and yields the projection matrix P in (2.3). While with k > 1 the limiting matrix of
Xε is no longer full rank, its columns [B |x | . . . |x] span the same space as [B |x] and
so it is expected that the limiting projection matrix be the same as for the case [B | x].

1This assumption is not necessary, but greatly simplifies the illustration.
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One important conclusion from Lemma 1 is that no matter how many columns of
highly correlated variables are present in the model, the marginal likelihood under the
g-prior will essentially be

Y ∼ Nn

(
0,σ2I + g σ2P

)

as ε → 0. Thereby all models including all predictors in B and at least one replicate of
x can be essentially regarded as predictive matching.

We let γ = (γ′
1,γ

′
2)

′ denote the global vector of inclusion indicators, where γ1 is
associated with B and γ2 is associated with the k near duplicates. The same analysis
holds for any sub-model γ1 ∈ {0, 1}p, defined by the design matrix Bγ1

consisting of
the active variables corresponding to the 1’s in γ1. Before proceeding, we introduce the
notion of a model collective which will be useful for characterizing the properties of
g-priors and the median probability model in collinear designs.

Definition 1 (A Model Collective). Let γ1 ∈ {0, 1}p be a vector of inclusion indicators
associated with the p variables in B. Denote by Mγ1,x the model collective comprising all
models consisting of the γ1 variables together with one or more of the (near) duplicates
of x.

Let P γ1
be the limiting projection matrix corresponding to any of the models inside

the model collective Mγ1,x. The limiting marginal likelihood of such models under the
g-prior is

m(y | γ1, x) = φ
(
y | 0,σ2I + gσ2P γ1

)
, (2.4)

where φ(y | µ,Σ) denotes a multivariate Gaussian density with mean vector µ and
covariance matrix Σ.

Lemma 2. Let m(y | γ1) denote the marginal likelihood under the model γ1. Then we
have

m(y | γ1, x) = ψ(y, x,γ1) × m(y | γ1), (2.5)

where

ψ(y, x,γ1) =
1√

1 + g
exp

{
g

2σ2(1 + g)
×

[y′(I − P Bγ1
)x]2

x′(I − P Bγ1
)x

}
(2.6)

and P Bγ1
= Bγ1(B

′
γ1

Bγ1)
−1B′

γ1
. Note that, if x is orthogonal to B, then

ψ(y, x,γ1) = ψ(y, x) ≡ 1√
1 + g

exp

{
g

2σ2(1 + g)
×
[
y′ x

‖x‖

]2
}

. (2.7)

Proof. We denote with P the projection matrix P Bγ and z = (I−P )x/
√

x′(I − P )x.
We use the fact that (I+gP )(I−P ) = (I−P ) and therefore (I+gP )−1(I−P ) = (I−P )
to find that

(I + gP + gzz′)−1 = (I + gP )−1 − (I + gP )−1zz′(I + gP )−1

g−1 + z′(I + gP )−1z

= (I + gP )−1 − g(I − P )−1xx′(I − P )−1

1 + g
.
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The statement then follows from (2.4) using the fact

|I + gP + gzz′| = |I + gP | (1 + gz′(I + gP )−1z) = |I + gP |(1 + g).

Remark 1. Note that the quantity (2.7) is proportional to the marginal likelihood
m(y | x) of a model including only a covariate x. Indeed,

ψ(y, x) = (2π)n/2σne
1

2σ2 y′ym(y | x).

Remark 2. If x is orthogonal to B, the corresponding Bayes estimates are just the
usual g-prior posterior means

g

1 + g

(
β̂

MLE

γ1
,

x′y

‖x‖2

)
. (2.8)

Moreover, adding at least one of the near-identical predictors multiplies the limiting
marginal likelihood by a constant factor that does not depend on the number of copies.
The same conclusion applies also to the case when σ2 is random (Remark 3).

Remark 3 (The Case of Unknown Variance). Consider a conjugate prior form (2.2)
with σ2 having an inverse gamma distribution

σ2 ∼ IG(η/2, ηλ/2). (2.9)

The limiting marginal likelihood of each model in the model collective Mγ1,x and a model
γ1 satisfy (Section 4.2 of George and McCulloch (1997))

m(y | γ1, x) ∝ 1√
g + 1

(ηλ + S2
γ1,x)−

n+η
2 and m(y | γ1) ∝

1√
g + 1

(ηλ + S2
γ1

)−
n+η

2 ,

where, using Lemma 1,

S2
γ1,x = y′

(
I − g

g + 1
P Bγ1

)
y

︸ ︷︷ ︸
S2
γ1

− g

g + 1

[y(I − P Bγ1
)x]2

x′(I − P Bγ1
)x

︸ ︷︷ ︸
C(γ1,y,x,g)

.

The limiting marginal likelihood satisfies (2.5) with

ψ(y, x,γ1) =

(
1 − C(γ1, y, x, g)

ηλ + S2
γ1

)−n+η
2

.

For the orthogonal case (when x is orthogonal to B), we have

ψ(y, x,γ1) =

(
1 − g/(g + 1)[y′x/‖x‖]2

ηλ + S2
γ1

)−n+η
2

.

Including at least one copy of the covariate x in a model γ1 still inflates the marginal
likelihood, where now the inflation factor ψ(y, x,γ1) depends on γ1. However, ψ(y, x,γ1)
still does not depend on the number of copies.
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2.2 Dimensional Predictive Matching

As a first application of Lemma 2, we note that the (limiting) marginal likelihood under
the g-prior is the same, no matter how many replicates of x are in the model. This
property can be regarded as a variant of dimensional predictive matching, one of the
desiderata relevant for the development of objective model selection priors (Bayarri
et al. (2012)). This type of predictive matching across dimensions is, however, new in
the sense that the matching holds for all training samples, not only the minimal ones.

Corollary 2.1. Mixtures of g-priors are dimensional predictive matching in the sense
that the limiting marginal likelihood of all models within the model collective is the same,
provided that the mixing distribution over g is the same across all models.

Proof. Follows directly from Lemma 2.

Remark 4. According to Remark 3, Corollary 2.1 applies to both fixed and random σ2

with a prior (2.9). Note that a similar conclusion also holds for the usual objective prior
1/σ2 which is obtained as the limiting case as η → 0. Throughout the rest of the paper,
we implicitly assume the prior (2.9) and/or the objective prior 1/σ2 whenever we refer
to random σ2.

In contrast, it is of interest to look at what happens with an alternative prior for β
such as a N(0, I) prior. If a model has j near-replicates of x, the effective parameter
for x in that model is the sum of the j β’s, which will each have a N(0, j) prior. So
the marginal likelihoods will depend strongly on the number of replicates, even though
there is no difference in the models.

2.3 When all Non-Duplicated Covariates are Orthogonal

To get insights into the behavior of the median probability model for correlated pre-
dictors, we consider an instructive example obtained by setting ε = 0 and B′B = n I
in (2.1). In particular, we will be working with an orthogonal design that has been
augmented with multiple copies of one predictor

Xn×(p+k) = [x1, . . . , xp, x, . . . , x︸ ︷︷ ︸
k

], (2.10)

where x1, . . . , xp, x are orthogonal and standardized so that ‖xi‖2 = ‖x‖2 = n. There is
no qualitative difference between this and the previous assumption of highly correlated
covariate vectors; going directly to the limiting case of replicate covariate vectors makes
matters pedagogically easier to understand.

A few points are made with this toy example. First, we want to characterize the
optimal predictive model and generalize the MPM rule when the designs have blocks of
(nearly) identical predictors. Second, we want to understand how close to the optimal
predictive model the MPM actually is in this limiting case. Third, we want to highlight
the benefits of the g-prior correlation structure. We denote by z = x′y, zi = x′

iy for
i = 1, . . . , p and z = (z′

1, z
′
2)

′, where z1 = (z1, . . . , zp)′ and z2 = z1k. We will again
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split the variable inclusion indicators into two groups γ = (γ′
1,γ

′
2)

′ ∈ {0, 1}p+k, where
γ1 is attached to the first p and γ2 to the last k predictors. To begin, we assume the
generalized g-prior on regression coefficients, given the model γ,

βγ ∼ N|γ|
(
0, g σ2(X ′

γXγ)+
)
, (2.11)

where (X ′
γXγ)+ is the Moore-Penrose pseudo-inverse and where Xγ denotes the subset

of X with active indicators γ. The following lemma characterizes the optimal predictive
model under (2.11) and (2.10).

Lemma 3. Consider the model (1.1) where X satisfies (2.10) and where x1, . . . , xp, x
are orthogonal with ‖xi‖2 = ‖x‖2 = n. Under the prior (2.11) and fixed or random σ2

any model γo = (γo′
1 ,γo′

2 )′ that satisfies

γo
1i = 1 iff π(γ1i = 1 | Y ) > 0.5, i = 1, . . . , p, (2.12)

|γo
2| ≥ 1 iff π(γ2 += 0 | Y ) > 0.5 (2.13)

is predictive optimal.

Proof. Due to the block-diagonal nature of the matrix X ′X = n
(

Ip 0p×k

0k×p 1k1′
k

)
, the

posterior mean under the non-null model γ satisfies

Hγ β̃γ =
g/n

1 + g

(
diag{γ1} 0

0 1
|γ2|diag{γ2}

)
z .

The overall posterior mean β̄ = E (β | Y ) =
∑

γ π(γ | Y )Hγ β̃γ then satisfies

Hγ β̃γ − β̄ =

=
g/n

(1 + g)

(
diag{γ1 − E[γ1 | Y ]} 0

0 diag
{

γ2
|γ2| − E

[
γ2

|γ2| | Y ,γ2 += 0
]
π(γ2 += 0 | Y )

}
)

z .

The optimal predictive model minimizes R(γ) defined in (1.2). Due to the fact that Q
is block-diagonal, the criterion R(γ) separates into two parts, one involving the first
p independent variables and the second involving the k identical copies. In particular,
R(γ) = R1(γ1) + R2(γ2) where

R1(γ1) =
g2/n

(1 + g)2

p∑

i=1

z2
i (γ1i − E [γ1i | Y ])2, (2.14)

R2(γ2) =
g2z2/n

(1 + g)2

{
[1 − π(γ2 += 0 | Y )]2 I(γ2 += 0)

+π(γ2 += 0 | Y )2I(γ2 = 0)
}

. (2.15)

The statement then follows from (2.14) and (2.15). With duplicate columns, the optimal
predictive model γo ≡ arg minγ R(γ) is not unique. Any model γo = (γo′

1 ,γo′
2 )′ defined

through (2.12) and (2.13) will minimize the criterion R(γ).

The last k variables in the optimal predictive model thus act jointly as one variable,
where the decision to include x is based on a joint posterior probability π(γ2 += 0 | Y ).
This intuitively appealing treatment of x is an elegant byproduct of the g-prior. We
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will see in the next section that such clustered inclusion no longer occurs in the optimal
predictive model under independent product priors. The risk of the optimal model is

R(γo) =
g2/n

(1 + g)2

p∑

i=1

z2
i min{E [γ1i | Y ], 1 − E [γ1i | Y ]}2

+
g2z2/n

(1 + g)2
min{π[γ2 += 0 | Y ], 1 − π[γ2 += 0 | Y ]}2.

Contrastingly, recall that the median probability model γMP = (γMP ′
1 ,γMP ′

2 ) is defined
through

γMP
i = 1 iff π(γi = 1 | Y ) > 0.5 for i = 1, . . . , p + k.

The median probability model γMP thus behaves as the optimal model γo for the first
p variables. For the k duplicate copies, however, γMP

2 consists of either all ones or all
zeros. The MP rule correctly recognizes that the decision to include x is ultimately
dichotomous: either all x’s in or all x’s out. Moreover, when the median model decides
“all in”, it will be predictive optimal. Indeed, π(γMP

2i = 1 | Y ) > 1/2 for i ∈ {1, . . . , k}
implies π(γ2 = 0 | Y ) < 1/2. The MP model will deviate from the optimal model only
when π(γMP

2i = 1 | Y ) < 1/2 and π(γ2 += 0 | Y ) > 1/2 in which case

R(γMP ) − R(γo)

R(γo)
=

R2(γMP
2 ) − R2(γo

2)

R(γo)
=

g2z2[1 − 2π(γ2 += 0 | Y )]

(1 + g)2[R1(γo
1) + R2(γo

2)]
.

The term R1(γo
1) in (2.14) can be quite large when p is large, implying that the relative

risk can be quite small. The MP model is thus not too far away from the optimal
predictive model in this scenario.

Several conclusions can be drawn from our analysis of this toy example. First, Lemma
3 shows that, in the presence of perfect correlation, it is the joint inclusion rather than
marginal inclusion probabilities that guide the optimal predictive model selection. Sec-
ond, the clone variables ultimately act collectively as one variable, which has important
implications on the assignment of prior model probabilities. We will elaborate on this
important issue in Section 2.4, 2.5 and 2.6. Third, purely from a predictive point of
view, all models in the model collective (including at least one x) are equivalent. The
g-prior here appears to be egalitarian in the sense that it (rightly) treats all these models
equally. This property is not retained under independent product priors, as shown below.

Remark 5 (Independent Product Priors). Let us replace (2.11) with an independent
prior covariance structure

βγ ∼ N|γ|
(
0,σ2g/n I|γ|

)
(2.16)

for g = n, which corresponds to the usual scaling when the predictors are centered and
standardized so that ‖xi‖2 = n. The posterior mean β̄ then satisfies

Hγ β̃γ − β̄ =

=




1

n+1diag{γ1−E[γ1|Y ]} 0

0 diag{γ2−E[γ2|Y ]}− n
1+n|γ2|γ2γ

′
2+E

[
n

1+n|γ2|γ2γ
′
2

∣∣∣∣Y
]


z .
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The criterion R(γ) = R!
1(γ1) + R!

2(γ2) again separates into two parts, where

R!
1(γ1) =

1

n + 1

p∑

i=1

z2
i (γ1i − E [γ1i | Y ])2, (2.17)

R!
2(γ2) = z2

[
|γ2| − E (|γ2| | Y ) − n|γ2|

1 + n|γ2|
+ E

(
n|γ2|

1 + n|γ2|

∣∣∣∣Y
)]2

. (2.18)

The optimal predictive model for the last k variables now has a bit less intuitive expla-
nation. Denote with c(|γ|) = |γ|− n|γ|

1+n|γ| . The optimal predictive model now consists of

any collection of variables of size |γo
2| for which c(|γo

2|) is as close as possible to the pos-
terior mean of c(|γ2|). It is worthwhile to note that this does not need to be the null or
the full model. For instance, γo

2 = 0 when E [c(|γ2|) |Y ] < 0.5/(1+n) and γo
2 = 1 when

c(|γ2|) > 0.5E [c(k − 1) + c(k) | Y ]. Besides these narrow situations, the optimal model
γo

2 will have a nontrivial size (other than 0 or k). The median probability model will still
maintain the dichotomy by either including all or none of the x’s. However, contrary to
the g-prior it is not guaranteed to be “optimal” when, for instance, γMP

2 = 1. It seems
that the mission of the optimal model under the independent prior is a bit obscured. It is
not obvious why models in the same model collective should be treated differentially and
ranked based on their size. The independence prior correlation structure thus induces
what seems as an arbitrary identifiability constraint.

2.4 Prior Probabilities on Model Collectives

It has been now standard to assume that each model of dimension |γ| has an equal prior
probability

π(γ) = π(|γ|)/
(

p + k

|γ|

)
, (2.19)

with π(|γ|) being the prior probability (usually 1/(p+k+1)) of the collection of models of
dimension |γ|. One of the observations from Lemma 3 is that it is the aggregate posterior
probability π(γ2 += 0 | Y ) rather than individual inclusion probabilities π(γ2i = 1 | Y )
that drive the optimal predictive model γo

2 in our collinear design. Thereby, it is natural
to inspect the aggregate prior probability π(γ2 += 0). We will be using the notion
of model collectives introduced earlier in Definition 1. The number of models of size
j > |γ1| in the model collective Mγ1,x is

( k
j−|γ1|

)
, so that the prior probability of the

model collective Mγ1,x is

π(Mγ1,x) =

|γ1|+k∑

j=|γ1|+1

π(j)
(p+k

j

)
(

k

j − |γ1|

)
. (2.20)

We investigate the prior probability of the model collective under two usual choices:
fixed prior inclusion probability (the separable case) and the random (non-separable)
case.
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The Separable Case Suppose that all variables have a known and equal prior inclusion
probability θ = π(γj = 1 | θ) for j = 1, . . . , p + k. Then the probability of the model
aggregate, given θ, is

π(Mγ1,x; θ) = θ|γ1|(1 − θ)p−|γ1|
k∑

j=1

θj(1 − θ)k−j

(
k

j

)

= θ|γ1|(1 − θ)p−|γ1| [1 − (1 − θ)k
]

and the prior probability of the “null model” Mγ1,0 (not including any of the correlated
variables) is

π(Mγ1,0; θ) = θ|γ1|(1 − θ)p−|γ1|(1 − θ)k.

The ratio satisfies
π(Mγ1,x; θ)

π(Mγ1,0; θ)
=

[(
1

1 − θ

)k

− 1

]
. (2.21)

This analysis reveals a rather spurious property of the separable prior: regardless of the
choice θ ∈ (0, 1), the model aggregate Mγ1,x will always have a higher prior probability
than the model Mγ1,0 without any x in it. Such a preferential treatment for x is generally
unwanted. We illustrate this issue with the uniform model prior (obtained with θ = 0.5)
which is still widely used in practice.

With fixed θ = 0.5, all models have an equal prior probability of 2−(p+k). The
number of models in the collective Mγ1,x is 2k − 1, and so

π(Mγ1,x; 1/2) = (2k − 1)2−(p+k) = (2k − 1)π(Mγ1,0; 1/2). (2.22)

The collective can thus have much more prior probability than Mγ1,0. Furthermore, the
marginal prior probability of inclusion of x is

∑
γ1

π(Mγ1,x; 1/2) = 1 − 2−k. Hence, if
k is even moderately large, the prior mass is concentrated on the models which include
x as a covariate, and the posterior mass will almost certainly also be concentrated on
those models. The model-averaged β̄ will reflect this, essentially only including models
that have x as a covariate.

Beta-Binomial Prior It is generally acknowledged (Cui and George, 2008; Ley and
Steel, 2009; Scott and Berger, 2010) that assigning equal prior probability to all models
is a poor choice, since it does not adjust for the multiple testing that is effectively being
done in variable selection. The common alternative (which does adjust for multiple
testing), is replace the separable prior with θ ∼ B(a, b). Then the prior probability of
the model aggregate satisfies

π(Mγ1,x) =

∫ 1

0
π(Mγ1,x; θ)dπ(θ) =

∫ 1

0
θ|γ1|+a−1(1 − θ)p−|γ1|+b−1

[
1 − (1 − θ)k

]
d θ

= B(|γ1| + a, p − |γ1| + b) − B(|γ1| + a, p + k − |γ1| + b)

= B(|γ1| + a, p + k − |γ1| + b)




k∏

j=1

a + b + p + j − 1

p + b − |γ1| + j − 1
− 1







1096 The Median Probability Model and Correlated Variables

and
π(Mγ1,0) = B(|γ1| + a, p + k − |γ1| + b). (2.23)

Then

π(Mγ1,x)

π(Mγ1,0)
=




k∏

j=1

(
1 +

|γ1| + a

p + b − |γ1| + j − 1

)
− 1



 . (2.24)

This ratio is guaranteed to be smaller than under the separable case with a fixed θ when
|γ1| < (p + a + b)

(
θ − a

a+b+p

)
. With the usual choice a = b = 1, the ratio in (2.24) will

be smaller than the one in (2.21) when |γ1| is smaller than (p + 2)θ − 1, i.e. when the
number |γ1| of non-duplicated variables is roughly smaller than its expectation under
the fixed prior case with a probability θ. This suggests that the beta-binomial prior
can potentially cope better with variable redundancy. We elaborate on this point in the
next section. In the forthcoming Lemma 5, we provide an approximation to (2.24) as p
gets large.

2.5 Posterior Inclusion Probabilities

In the previous section, we have shown that equal prior model probabilities can be
problematic because each model collective Mγ1,x receives much more prior mass relative
to Mγ1,0, essentially forcing the inclusion of x. Going further, we show how this is
reflected in the posterior inclusion probabilities. We first focus on the case when σ2 is
known.

Lemma 4. Consider the model (1.1), where X satisfies (2.10) and where x1, . . . , xp, x
are orthogonal with ‖xi‖2 = ‖x‖2 = n. Denote by z = y′x/

√
n and consider the prior

(2.11) with g = n, known σ2 and equal prior model probabilities π(γ) = 1/2p+k. Then
we have

π(γ2 += 0 | Y ) > 1/2 iff z2 > log

(√
1 + n

2k − 1

)
2σ2

(
1 +

1

n

)
. (2.25)

Proof. We will be relying on the notation m(y | γ1, x), m(y | γ1) and ψ(y, x,γ1) intro-
duced in (2.4) and Lemma 2. Using the fact that m(y | γ1, x) = m(y | γ1)ψ(y, x,γ1)
(from Lemma 2), the posterior probability of joint inclusion π(γ2 += 0 | Y ) (noting that
π(Mγ1,x) and π(Mγ1,0) depend only on |γ1|) equals

π(γ2 += 0 | Y ) =

∑
γ1

π(Mγ1,x)m(y | γ1, x)
∑

γ1
π(Mγ1,x)m(y | γ1, x) +

∑
γ1

π(Mγ1,0)m(y | γ1)

=

∑
γ1

π(Mγ1,x)m(y | γ1)ψ(y, x,γ1)∑
γ1

π(Mγ1,x)m(y | γ1)ψ(y, x,γ1) +
∑

γ1
π(Mγ1,0)m(y | γ1)

=
ψ(y, x)

∑p
i=0 π

!
i,x∑p

i=0

[
ψ(y, x)π!

i,x + π!
i,0

] , (2.26)

with

π!
i,x =

∑

γ1:|γ1|=i

m(y | γ1) π(Mγ1,x) and π!
i,0 =

∑

γ1:|γ1|=i

m(y | γ1) π(Mγ1,0), (2.27)
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and where

ψ(y, x,γ1) = ψ(y, x) =
1√

1 + g
exp

{
g

2σ2(1 + g)
× [y′x]

2
/n

}

was introduced earlier in (2.7). Note that this quantity does not depend on γ1 since
we assumed that x1, . . . , xp and x are orthogonal. When all models have equal prior
probabilities, we can evoke the identity (2.22) to find that

π(γ2 += 0 | Y ) =
(2k − 1)ψ(y, x)

1 + (2k − 1)ψ(y, x)
.

With the usual choice g = n, it follows that π(γ2 += 0 | Y ) > 0.5 if and only if z2 >

log
(√

1+n
2k−1

)
2σ2(1 + 1

n ).

From Lemma 4 it follows that the optimal predictive model (characterized in Lem-
ma 3) will include x if the number of duplicates k is large enough, even when x has a
small effect (z is small). Thus, the choice of equal prior model probabilities for optimal
predictive model, in the face of replicate covariates, is potentially quite problematic. If
one is only developing a model for prediction in such a situation, such forced inclusion
of x is probably suboptimal, but it is only one covariate and so will not typically have
a large effect, unless only very small models have significant posterior probability. For
prediction, one could presumably do somewhat better by only considering the first p+1
variables in the model uncertainty problem, finding the model averaged β̄ for this subset
of variables.

This statement at first seems odd, because we ‘know’ the model averaged answer in
the original problem is optimal from a Bayesian perspective. But that optimality is from
the internal Bayesian perspective, assuming we believe that the original model space
and assignment of prior probabilities is correct. If we really believed – e.g., that any of
k highly correlated genes could be in the model with prior inclusion probabilities each
equal to 1/2 (equivalent to the assumption that all models have equal prior probability)
– then the original model averaged answer would be correct and we should include x
in the prediction. At the other extreme, if we felt that only the collection of all k genes
has prior inclusion probability of 1/2, then the result will be like the model averaged
answer for the first p + 1 variables.

To get some feel for things in the general case (non-uniform model prior), suppose
π!

i,x for some 0 ≤ i ≤ p is much bigger than the others, so that (2.26) becomes

π(γ2 += 0 | Y ) ≈
π!

i,xψ(y, x)

π!
i,xψ(y, x) + π!

i,0

.

Using (2.24), it is immediate that this is bigger than 0.5 if

1 <
π!

i,x

π!
i,0

ψ(y, x) =




k∏

j=1

(
1 +

i + a

p + b − i + j − 1

)
− 1



ψ(y, x) . (2.28)

The following Lemma characterizes the behavior of
π$

i,x

π$
i,0

when p gets large.
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Lemma 5. Suppose a and b are integers. As p gets large with i fixed,

k∏

j=1

(
1 +

i + a

p + b − i + j − 1

)
=

(
1 +

k

p

)i+a (
1 +

Ck

p(p + k)

)(
1 + O

(
1

p2

))
,

where C = −(i + a)[b− 1− i + (i + a + 1)/2] (C = (i2 − i− 2)/2 if a = b = 1). To first
order,

k∏

j=1

(
1 +

i + a

p + b − i + j − 1

)
=

(
1 +

k

p

)i+a (
1 + O

(
1

p

))
.

Proof. Defining d = b − 1 and c = d + a,

k∏

j=1

(
1 +

i + a

p + b − i + j − 1

)
=

k∏

j=1

p + c + j

p + d − i + j
=

(p + c + k)!/(p + c)!

(p + d + k − i)!/(p + d − i)!

=
(p + c + k)!/(p + d + k − i)!

(p + c)!/(p + d − i)!
=

i+a∏

j=1

p + d + k − i + j

p + d − i + j

=

(
p + k

p

)i+a i+a∏

j=1

(
1 + d−i+j

p+k

)

(
1 + d−i+j

p

) .

The first order result follows immediately and the second order result follows from
expanding the products in the last term above.

Utilization of the first order term in (2.28), and again choosing g = n and assuming
‖x‖ =

√
n, yields that the collective has posterior inclusion probability greater than 0.5

if

z2 > log

( √
1 + n

(1 + k/p)[i+a] − 1

)
2σ2

(
1 +

1

n

)
.

Note that this is much less likely to be satisfied than (2.25), when k grows, since (1 +
k/p)[i+a] is then much smaller than 2k; thus having many duplicate x’s does not ensure
that x will be included in the model, as it was in the equal model probability case.

Remark 6 (The Case of Unknown Variance). Lemma 4 was postulated for the simpler
case when the variance σ2 is known. We have seen in Remark 3 that the inflation factor
ψ(y, x,γ1) depends on γ1 even when x and B are orthogonal, which complicates the
analysis. Sufficient characterizations can be obtained from

ψmin(2k − 1)

1 + (2k − 1)ψmax
≤ π(γ2 += 0 | Y ) ≤ ψmax(2k − 1)

1 + (2k − 1)ψmin
,

where ψmin = minγ1
ψ(y, x,γ1) and ψmax = maxγ1

ψ(y, x,γ1).
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While the assumption of having duplicated predictors (used throughout this section)
is somewhat theoretical, it sheds light on the most extreme case of correlation where
one would expect the median probability model to fail. The performance of the median
probability model in the more optimistic and realistic scenarios of near-correlation is
shown through simulations in Section 3.4.

2.6 The Dilution Problem

Sets of predictors which are highly correlated with each other become proxies for one
another in our linear model (1). This quickly leads to an excess of redundant models,
each of which is distinguished only by including a different subset of these. To pre-
vent such redundant models from accumulating too much posterior probability, dilution
priors may be considered (George, 2010). Such priors downweigh individual model prob-
abilities based on their proximity to one another, and a variety of strategies to do this
may be considered.

When faced with a single identifiable cluster of highly correlated predictors such as
our k clones of x, a simple dilution strategy would be to first assign a reasonable amount
of prior mass to the entire cluster, and then dilute this mass uniformly across all subset
models within this cluster. More precisely, to smear out the prior aggregation on Mγ1,x,
one might like to consider different inclusion probabilities. Let [x1, . . . , xp] have a prior
inclusion probability θ1 and each of the x clones have a prior inclusion probability θ2.
With

θ2 = 1 − (1 − θ1)
1/k (2.29)

we have

π(Mγ1,x) = θ
|γ1|
1 (1 − θ1)

p−|γ1| [1 − (1 − θ2)
k
]

= θ
|γ1|+1
1 (1 − θ1)

p−|γ1| (2.30)

and
π(Mγ1,0) = θ

|γ1|
1 (1 − θ1)

p−|γ1|+1.

Assuming (2.29), variables with correlated copies have smaller inclusion probabilities
(the more copies, the smaller the probability). This may correct the imbalance between
π(Mγ1,x) and π(Mγ1,0) by treating the multiple copies of x essentially as one variable.
This prior allocation would put x on an equal footing with x1, . . . , xp in the optimal
predictive model rule (based on π(γ2 += 0 |Y )), but would disadvantage x in the median
probability model. From our considerations above, it would seem that there is a fix
to the dilution problem in our synthetic example (with clone x’s). However, general
recommendations for other correlation patterns are far less clear.

3 The Case of Two Covariates

3.1 The Geometric Representation

The situations analyzed in previous sections may also be considered from a geometric
perspective. Using the definition of Hγ from (1.3), we define

αγ = XHγ β̃γ (3.1)
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and denote with ᾱ =
∑

γ π(γ | Y )XHγ β̃γ the overall posterior mean. Under this
transformation, the expected posterior loss (1.2) to be minimized may be written as

R(γ) = (αγ − ᾱ)′ (αγ − ᾱ) .

This implies that the preferred model will be the one whose corresponding αγ is nearest
to ᾱ in terms of the Euclidean distance.

To geometrically formulate the predictive problem, each model Mγ may be rep-
resented by the point αγ and the set of models becomes a collection of points in p-
dimensional space. The convex hull of these points is a polygon representing the set of
possible model averaged estimates ᾱ, as the π(γ |Y ) vary over their range. Any point in
this polygon is a possible optimal predictive model, depending on π(γ | Y )’s. The goal
is to geometrically characterize when each single model is optimal, given that a single
model must be used.

In what follows we will refer to circumstances where β̃γ is equal (up to a constant)
to β̂γ = (X ′

γXγ)−1X ′
γY , as it happens under a non-informative prior or a g-prior on

model parameters (see Barbieri and Berger (2004) for a discussion on the use of mixed
default strategies to determine the posterior probability of each model and the posterior
distribution of the parameters). In this context αγ is (proportional to) the projection
of Y onto the space spanned by the columns of Xγ .

Consider the simple situation in which we have two covariates x1 and x2 and four
possible models:

M10 : {x1} M01 : {x2} M11 : {x1, x2},

and the null model M00. These can be represented as four points in the plane.

Depending on the sample correlation structure, the polygon region, whose vertices
are α00, α10, α01 and α11 (i.e. the convex hull of all possible posterior means ᾱ), can
have four distinct forms. Each situation may be characterized in terms of the correlations
between the variables involved, as summarized in Table 1, where r12 = Corr(x1, x2),
r1y = Corr(x1, Y ) and r2y = Corr(x2, Y ).

r12 = 0 r12
r1y

r2y
< 0 r12

r1y

r2y
> 0

|r12| < min{| r1y

r2y
|, | r2y

r1y
|} | r1y

r2y
| < |r12|

orthogonal case 1 case 2 case 3

Table 1: Possible scenarios in terms of r12 and the ratio r1y

r2y
.

In Figure 1 the four forms are plotted for the case |r12| = 0.5. (Ignore the colors for
now.) In particular, the values of the correlations here are:

Case 1 r12 = −0.5 r1y = 0.3 r2y = 0.4
Case 2 r12 = 0.5 r1y = 0.3 r2y = 0.4
Case 3 r12 = 0.5 r1y = 0.1 r2y = 0.3
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Figure 1: Four possible scenarios for the graphical representation of predictive model
selection from among γ ∈ {(0, 0)′, (1, 0)′, (0, 1)′, (1, 1)′}. The coordinate axes correspond
to αγ ∈ R2 in (3.1), where α00 = (0, 0)′.

The angles α00α10α11 and α00α01α11 are always right angles, since (α10−α00)
′
(α11−

α10) = 0 and (α01 −α00)
′
(α11 −α01) = 0 [the projection of α11 on the line spanned by

α10 is α10 itself and similarly for α01].

The solid lines divide the figures into the four optimality subregions associated with
the four models, namely the sets of those ᾱ which are closer to one of the αγ .

The colors in Figure 1 indicate the regions where the average model point (the
best model averaged answer) could lie if the model with the corresponding color is
the median posterior probability. In the orthogonal case, the model averaged answer
and model optimality regions always coincide, i.e., the MPM is always optimal. In the
other cases, this need not be so. In Case 1, for instance, the red region extends into
the (blue) null model’s optimality region; thus M01 could be the MPM, even when the
null model is optimal. Likewise the green region extends into the optimality region of
the null model, and the grey region (corresponding to the full model) extends into the
optimality regions of all other models. Only the null model is fine here; if the null model
is the MPM, it is guaranteed to be optimal.

3.2 Characterizations of the Optimal Model

For the case of two correlated covariates, we obtained partial characterizations of the
optimal predictive model and the median probability model. These are summarized by
the “mini-theorems” below, whose proofs can be found in the Supplementary Material
(Barbieri et al., 2020).

Theorem 1 (“Mini-Theorems”). Consider the model (1.1) with q = 2 and the three
cases described in Table 1. Then the following statements hold.

1. In Case 1, if M00 is the median, it is optimal.

2. In Case 2, if M11 is the median, it is optimal.
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3. In Case 1 and 3, if at most one variable has posterior inclusion probability larger
than 1/2, M11 cannot be optimal.

4. In Case 2 and 3, if at least one variable has posterior inclusion probability larger
than 1/2, M00 cannot be optimal.

5. In Cases 1 and 2, if M00 or M11 has posterior probability larger than 0.5, it is
optimal.

6. In any case, if M00 or M11 has posterior probability larger than 0.5, the other
cannot be optimal.

7. In Case 3, if M00 or M11 has posterior probability smaller than 0.5 it cannot be
optimal.

The motivation for developing these mini-theorems was to generate possible the-
orems that might hold in general. Unfortunately, in going to the three-dimensional
problem, we were able to develop counterexamples (not shown here) to each of the
mini-theorems.

3.3 Numerical Study of the Performance of the MPM

We present a numerical study that investigates the extent to which the MPM and MAP
agree, and how often they differ from the optimal predictive model. The goal was to
devise a study that effectively spans the entire range of correlations that are possible and
this was easiest to do by limiting the study to the two-dimensional case. We considered
(1) equal prior probabilities for the four models, (2) the unit information g-prior for the
parameters and (3) the more realistic scenario where the variance σ2 is unknown and
assigned the usual objective prior 1/σ2.

The study considered the following correlations and sample sizes:

• r12 varies over the grid {−0.9,−0.8,−0.7,−0.6,−0.5,−0.4,−0.3,−0.2,−0.1, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. (r12 = 0 was not considered because the MPM
is guaranteed to be optimal.)

• r1y and r2y vary over ranges meant to span the range of likely data under either
the full model, one-variable model, or null model; the description (and derivation)
of the various correlation ranges is given in the Supplementary Material.

• Sample sizes n = 10, 50 and 100 are considered.

The reason the numerical study is conducted in this way is to reduce the dimen-
sionality of the problem. In terms of ordinary inputs, one would have to deal with a
study over the space of x1, x2, β1, β2, and the random error vector ε (or Y ). But,
because the predictive Bayes risks only depend on r12, r1y, r2y and n, we can reduce the
study to a three dimensional problem. And, since these are simply correlations, we can
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number MPM=MAP MPM=MAP MPM=OP MAP=OP MAP>MPM MPM>MAP GM GM

of both=OP both+=OP MAP +=OP MPM+=OP both+=OP both+=OP R(MPM)
R(OP )

R(MAP )
R(OP )

cases (a) % (b) % (c) % (d) % (e) % (f) %

Cases combined: Full model scenario

n=10 534 75.7 17.4 5.1 0.6 0.7! 0.6! 1.078 1.110
n=50 534 94.6 1.5 2.4 0.0 1.5! 0.0 1.017 1.056
n=100 534 95.9 1.5 2.6 0.0 0.0 0.0 1.006 1.058

Overall 1602 88.7 6.8 3.4 0.2 0.7! 0.2! 1.033 1.074

Cases combined: β1 = 0 and β2 += 0 scenario

n=10 620 68.4 27.3 2.9 0.3 0.5! 0.6! 1.030 1.032
n=50 731 90.4 7.8 0.4 0.1 1.2 0.0 1.019 1.017
n=100 749 91.1 8.7 0.1 0.0 0.0 0.1! 1.016 1.016

Overall 2100 84.1 13.9 1.1 0.1 0.6 0.2! 1.021 1.022

Cases combined: Null model scenario

n=10 719 65.9 24.8 7.0 0.3 1.1 1.0! 1.032 1.036
n=50 799 85.5 12.3 1.6 0.4 0.0 0.3! 1.013 1.015
n=100 805 91.7 7.5 0.6 0.1 0.0 0.1 1.008 1.008

Overall 2323 81.6 14.5 2.9 0.3 0.3 0.4 1.018 1.020

Table 2: The case of two covariates: performance of MPM and MAP under the full,
one-variable and null models.

Legend: columns (a) to (f) contain percentages of cases, over combinations of different values of the cor-
relations among variables; OP denotes the optimal predictive model; MPM>MAP (resp. MAP>MPM)
means that MPM (resp. MAP) has a smaller value of risk defined in (1.2) than MAP (resp. MPM);
GM is the geometric mean of relative risks (to the optimal model) when MPM or MAP is not optimal.
∗ denotes cases when OP is the lowest probability model.

choose a grid of values for each that essentially spans the space of possibilities in the
5-dimensional problem. The details of this are given in the Supplementary Material.

Table 2 summarizes the results, combining the three cases from Table 1, under each of
the model correlation scenarios (full, one-variable, and null), i.e. the overall combination
of values of r12, r1y and r2y considered. We have 1602, 2100 and 2323 cases for the full,
one-variable and null models, respectively. The table reports the percentage of times
the MPM and MAP models equal the optimal predictive model (denoted with OP), i.e.
the model minimizing (1.2). The last two columns of the table contain the geometric
averages of relative risks to the optimal predictive model when MPM or MAP are not
optimal, while graphs in Figure 2 depict box-plots of the corresponding distributions.

Here are some observations from Table 2:

• Simpler models are more challenging for the MPM (and MAP); indeed, MPM =
OP in 92.1% (1421+54 out of 1602), 85.2% (1767+22 out of 2100) and 84.5%
(1895+68 out of 2323) of the cases for the full, one-variable, and null model,
respectively; still, these are high success rates, given that correlations vary over
the full feasible spectrum.

• As would be expected, both the MPM and MAP do better with larger sample
sizes.

• The vast majority of the time, the MPM and MAP are the same model but, when
they differ, the MPM is typically better:
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Figure 2: The case of two covariates: boxplots of the relative risks (to the optimal model)
when MAP or MPM is not optimal under the full, one-variable and null models (cases
combined). Dots correspond to values more extreme than 1.5 times the interquartile
range from the box.

– Combining all three model types (full, one-variable and null), the MPM does
better than the MAP (from the MPM = OP += MAP and MPM > MAP
columns) in 2.7% of the cases (i.e. there are 162 cases MPM = OP += MAP
or MPM > MAP out of 6025 = 1602 + 2100 + 2323 total cases); while the
MAP does better than the MPM in 44 out of 6025 total cases (0.7%).

– When the MPM and MAP are not optimal, the MAP may present values of
the risk (relative to that of OP) more extreme than the MPM (see Figure 2);
the geometric average of the MAP relative risk is higher than the geometric
average for the MPM.

• In the cases denoted with a star ∗, the optimal model OP is, curiously, the lowest
probability model.

We may have some insight on the role of correlation between covariates through
Table 3, which contains summaries under different values of r12 = Corr(x1, x2), after
combining all cases and model scenarios (full, one variable and null). When the corre-
lation between x1 and x2 is small, MPM is virtually always optimal (MPM = OP in
98.1% of the cases when r12 = 0.1). While, as correlation increases, the rate of success
degrades (MPM = OP in 75% of the cases when r12 = 0.9). However the deterioration
in the performance of MPM appears slower than that of MAP.

Tables S.2, S.3 and S.4, in the Supplementary material, summarize some additional
features of the numerical study. Note that the last sub-tables of Tables S.2–S.4 are
included in Table 2. Each of those tables considers one model scenario (either the full
model, the one-variable model, or the null model) and presents the results separately
for the Case 1, Case 2, and Case 3. It is very clear from these tables that the Case 1
scenario is very favorable for the MPM – it is then virtually always the optimal model
– while, in Cases 2 and 3, the MPM fails to be the optimal model in roughly 12% of
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number MPM=MAP MPM=MAP MPM=OP MAP=OP MAP>MPM MPM>MAP
|r12| of both=OP both+=OP MAP +=OP MPM +=OP both+=OP both+=OP

cases (a) % (b) % (c) % (d) % (e) % (f) %

0.1 743 96.6 1.6 1.5 0.3 0.0 0.0
0.2 740 93.7 4.3 1.5 0.4 0.1 0.0
0.3 730 91.0 6.9 1.8 0.1 0.1 0.1
0.4 716 87.3 9.6 2.4 0.4 0.1 0.1
0.5 680 82.1 14.0 2.9 0.3 0.4 0.3
0.6 676 80.8 16.1 2.1 0.0 0.7 0.3
0.7 641 75.8 19.8 3.0 0.0 1.1 0.3
0.8 594 73.0 21.9 3.2 0.0 1.2 0.7
0.9 505 71.1 22.2 3.9 0.2 1.4 1.2

Overall 6025 84.4 12.2 2.4 0.2 0.5 0.3

Table 3: The case of two covariates: performance of MPM and MAP models under
different values of r12 = Corr(x1, x2).

Legend: columns (a) to (f) contain the percentage over combinations of all cases (1, 2 and 3), model
scenarios (full, one variable and null), sample sizes (n = 10, 50, 100) and riy = Corr(xi, Y ) (i = 1, 2);
OP denotes the optimal predictive model; MPM>MAP (resp. MAP>MPM) means that MPM (resp.
MAP) has a smaller value of risk defined in (1.2) than MAP (resp. MPM).

Figure 3: Results from the numerical study under the full model correlation scenario:
each dot has the color of the MPM, with the MPM being optimal (or not) if it lies
within (or outside) the quadrilateral with external vertex of the same color.

the cases (the proportion of MPM += OP cases across the three model classes in Case
2 and 3). This is a useful result if one is in the two-variable situation, since it is easy
to determine if one is in Case 1 or not. Alas, it is not known how to generalize this to
larger dimensions.

Additional insight can be gained by looking at the nature of the ‘failures’ of the
MPM and MAP. Figure 3, for the MPM, and Figure 4, for the MAP, show the errors
being made, in the numerical study, for each of Case 1, Case 2 and Case 3, under the
full model correlation scenario. Focusing on the MPM for explanation, the color of the
dots in Figure 3 indicates which model was the median probability model; thus a blue
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Figure 4: Results from the numerical study under the full model correlation scenario:
each dot has the color of the MAP, with the MAP being optimal (or not) if it lies within
(or outside) the quadrilateral with external vertex of the same color.

dot indicates that the median probability model was M00, because that is the color of
α00. As before, the true optimal model for a dot is the external vertex defining the
quadrilateral in which the dot lies; thus, if the blue dot lies within the quadrilateral
with α00 as the external vertex, the MPM is the optimal model, while if the blue dot
lies within the quadrilateral for which α10 is the external vertex, the MPM is incorrectly
saying that M00 is optimal, when actually M10 is optimal.

The figures reinforce the earlier messages; Case 1 is nice for the MPM and MAP
(almost all the colored dots are in the quadrilateral with the external vertex being of the
same color), while Case 2 and, especially, Case 3 here are problematic – in Case 3, the
MPM is typically M00 when M10 is optimal. Careful examination of the figures shows
that the MPM is slightly better than the MAP, but the improvement is not dramatic.

The interesting feature revealed by the figures is that, essentially always, when the
MPM and MAP fail, they do so by selecting a model of smaller dimension than the
optimal model. There are a handful of dots going the other way, but they are hard to
find. (This same feature was present in the corresponding figures for the one-variable
and null model correlation scenarios, so those figures are omitted.) We highlight this
feature because it potentially generalizes; if the MPM and MAP fail, they may typically
do so by choosing too-small models.

The numerical study has also been implemented with three possible predictors
(x1, x2, x3) using the same ingredients, conveniently adapted. In particular we referred
to the usual choice of prior distributions, sample sizes and grid of values of the corre-
lations between covariates. Just as with two variables, we also considered the complete
set of feasible correlations between the response and the explicative variables, under
each model scenario (full, two variables, one variable and null). Since the results are
substantially comparable to those in two dimensions, we only report a concise sum-
mary of the conclusions. Indeed more complex models and larger sample sizes are more
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number MPM=MAP MPM=MAP MPM=OP MAP=OP MAP>MPM MPM>MAP GM GM

of both=OP both+=OP MAP +=OP MPM+=OP both+=OP both+=OP R(MPM)
R(OP )

R(MAP )
R(OP )

cases (a) % (b) % (c) % (d) % (e) % (f) %

|r12| = |r13| = |r23| = 0.1

n=10 5299 86.2 5.8 6.2 1.3 0.1 0.4 1.003 1.010
n=50 5703 97.9 1.2 0.2 0.2 0.6 0.0 1.001 1.001
n=100 5587 98.8 1.0 0.2 0.0 0.0 0.0 1.000 1.000

Overall 16589 94.5 2.6 2.1 0.5 0.2 0.1 1.001 1.003

|r12| = |r13| = |r23| = 0.5

n=10 1908 52.8 36.7 5.8 0.7 2.8 1.2 1.149 1.160
n=50 2186 80.0 12.9 3.4 0.5 2.6 0.6 1.041 1.047
n=100 2203 86.5 9.1 2.0 0.4 1.2 0.8 1.028 1.038

Overall 6297 74.0 18.8 3.6 0.5 2.2 0.9 1.068 1.077

|r12| = |r13| = |r23| = 0.9

n=10 835 43.7 36.4 10.1 1.6 8.0 0.2 1.810 1.668
n=50 1380 63.0 19.6 9.0 0.1 8.0 0.3 1.401 1.365
n=100 1550 71.9 15.2 6.8 0.0 5.7 0.4 1.340 1.317

Overall 3765 62.4 21.5 8.3 0.4 7.1 0.3 1.456 1.406

Correlations combined

n=10 1271624 50.5 37.4 5.8 0.8 2.5 3 1.190 1.214
n=50 1583299 78.3 15.9 2.3 0.7 1.9 0.9 1.082 1.092
n=100 1628570 84.6 12.3 1.7 0.3 0.6 0.5 1.058 1.075

Overall 4483493 72.7 20.7 3.1 0.6 1.6 1.3 1.103 1.625

Table 4: The case of three covariates: performance of MPM and MAP models under
different values of rij = Corr(xi, xj) (i, j = 1, 2, 3).

Legend: columns (a) to (f) contain the percentage over combinations of all model scenarios (full, two
variables, one variable and null), sample sizes (n = 10, 50, 100) and all feasible values of the correlations
between the response variable and each covariate; Correlations combined refers to the complete set of
the correlations between the covariates; OP denotes the optimal predictive model; MPM>MAP (resp.
MAP>MPM) means that MPM (resp. MAP) has a smaller value of risk defined in (1.2) than MAP
(resp. MPM); GM is the geometric mean of relative risks (to the optimal model) when MPM or MAP
is not optimal.

suitable for MPM and MAP: combining all correlations, under the full model and with
n = 100 MPM is the optimal model in 93.8% out of the 196 198 cases (MAP in 92%),
while under the null model and with n = 10 MPM = OP in 52.4% (MAP in 47%) out
of the 198 043 cases. Table 4 provides further hints on the effect of correlation between
covariates. Combining all other ingredients of the study, when correlation is low MPM
and MAP are almost always both equal to the optimal model. Higher correlation is more
challenging for MPM and MAP: when covariates are equicorrelated and the common
value of the correlation is 0.9, MPM and MAP are the same model in 84% of the cases
and both optimal in 62%; when they differ, MPM is the optimal model in almost half
of the cases, in the others MAP, although not optimal, is preferable to MPM in terms
of risk. However on average the relative risks to the optimal model of MPM and MAP
(when neither is optimal) do not differ much.

4 Generalizations of the Median Probability Model
Optimality

In orthogonal designs, the primary condition for optimality of the median probability
model is that β̃γ , the conditional posterior mean of β under γ, is obtained by taking
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the relevant coordinates of the posterior mean under the full model (condition (17) of
Barbieri and Berger (2004)). With X ′X = D = diag{di}q

i=1, the likelihood factors into
independent likelihoods for each βi and thereby any independent product prior

π(β | γ) =
q∏

i=1

πi(βi) , (4.1)

will satisfy the condition (17). This is a very important extension because priors that
are fat-tailed are often recommended over sharp-tailed priors, such as the g-prior (for
which the optimality results of the MPM were originally conceived).

Example 1 (Point-Mass Spike-and-Slab Priors). As an example of (4.1), consider the
point-mass mixture prior π(β | γ) =

∏q
i=1[γiπ̃i(βi) + (1 − γi)δ0(βi)], where π̃i(βi) could

be e.g. the unit-information Cauchy priors, as recommended by Jeffreys, or the non-local
spike and slab priors (Rossell and Telesca, 2017).

Example 2 (Continuous Spike-and-Slab Priors). The point-mass spike is not needed
for the MPM to be optimal. Consider another example of (4.1), the Gaussian mixture
prior of George and McCulloch (1993): π(β |γ) = Nq(0q, V γ), where V γ = diag{γiv1+
(1 − γi)v0}q

i=1 with v1 >> v0. While the MPM was originally studied for point-mass
spike-and-slab mixtures, it is optimal also under the continuous mixture priors. Indeed,
to give an alternative argument, note that the posterior mean under a given model γ
satisfies

β̃γ = (X ′X + V −1
γ )−1X ′Y =

= diag

{
1

di + v−1
0

}
X ′Y + diag

{(
1

di + v−1
1

− 1

di + v−1
0

)
γi

}
X ′Y ,

where V −1
γ = diag

{ γi

v1
+ (1−γi)

v0

}q

i=1
. Then the overall posterior mean vector appears to

be

β̄ = diag

{
1

di + v−1
0

}
X ′Y + diag

{(
1

di + v−1
1

− 1

di + v−1
0

)
π(γi = 1 | Y )

}
X ′Y .

The criterion R(γ) in (1.2) can be then written as

R(γ) =
q∑

i=1

(
1

di + v−1
1

− 1

di + v−1
0

)2

(γi − π(γi = 1 | Y ))2 diz
2
i ,

which easily seen to be minimized by the MPM model.

Barbieri and Berger (2004) show that the MPM is optimal also for correlated re-
gressors, when considering a nested sequence of linear models: Mγ(j) (j = 0, . . . , q),
where the first j elements of the index set γ(j) are equal to one and the last q − j to

zero. Again, one of the sufficient conditions is that the posterior mean β̃γ is obtained
by taking the relevant coordinates of the posterior mean under the full model, which
holds under, e.g., the g-prior. Here, we generalize the class of priors under which MPM
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is optimal for nested correlation designs. Assume q < n and denote with A the upper
Cholesky triangular matrix such that X ′X = A′A. Then transform the linear model
to

Y = X∗β∗ + ε

= (XA−1)(Aβ) + ε,

where ε ∼ N (0,σ2In). Note first that, since A−1 is upper triangular, the nested sequence
of models is unchanged; the parameterizations within each model have changed, but only
by transforming the variables inside the model. We thus have the same nested model
selection problem.

Next note that (X∗)′X∗ = In, so the likelihood factors into independent likelihoods
for the β∗

i ; and this independence holds within each of the nested models, since the
columns of X∗ are orthonormal. Thus, if the prior is chosen to be π(β∗) =

∏q
i=1 πi(β∗

i ) ,
then it follows from the earlier considerations in this section that the median probability
model is optimal. For example, assuming β∗ ∼ N (0, D) for some diagonal covariance
matrix D, we obtain generalizations of the g-prior for which we already know that MPM
is optimal.

5 Discussion

The paper consists of two quite different parts. One part (mostly Section 4) focuses
on generalizing previous theorems concerning the optimality of the median probability
model. In addition to the generalizations therein a number of other generalizations are
suggested in the paper, when groups of variables are orthogonal to others. Here are
three such results, whose proofs are essentially obvious.

Result 1. If one group of variables is orthogonal to another, then finding the MPM
and the optimal procedure can be done separately for each group of variables.

Result 2. If a variable is orthogonal to all others, it can be separated from the problem
and handled on its own, and will belong in the optimal model if its inclusion
probability is bigger than 1/2.

Result 3. If two groups of orthogonal variables each have a nested structure, then the
median probability model is optimal and can be found separately in each group.

In spite of the considerable generalizations of optimality afforded by Section 4 and
these related results, the extent to which the median probability model is guaranteed
to be optimal is still rather limited. Hence the second goal of the paper was to study
the extent to which the MPM failed to be optimal. This was done in two ways. First,
by looking at “worst cases,” where the number of highly correlated variables grows.
The theoretical conclusions (besides Section 2.5) were obtained for the case of fixed and
random variance. Note that the extreme case of perfect correlation is where we would
expect the performance of the median probability model to be most challenged and
several sections of the paper focused on this choice.
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The second approach to studying the adequacy of the MPM was through an extensive
numerical study to see how often the MPM (and MAP) fail to be optimal. Various
degrees of correlated covariates were considered and, indeed, the more extreme the
correlation, the worse the MPM performed. However, even with considerable correlation,
the MPM was optimal more often than the MAP (when the two models were not the
same). These results are encouraging and indicate that the MPM can also be optimal
very often, even in non-nested non-orthogonal designs.

The MPM can fail, however, and fail badly, so we finish with a discussion of when
this happens, focusing on the situation where there are many highly correlated covariate
vectors xi, i = 1, . . . , k. If k is large, we saw in Section 2.5 that the median probability
model may well not include any of these covariates. (The section formally only consid-
ered the case of duplicate covariates, but the same conclusions apply qualitatively to
the highly correlated case.) Consider four cases.

Case 1. None of the xi are useful for prediction: Now the median probability model
might well do better than the model averaged answer for the original problem, since the
median probability model will ignore these covariates, while the model averaged answer
will include them.

Case 2. Including one of the xi is crucial for good prediction: Now the median proba-
bility model does poorly. Unfortunately, the error here, in not including one of the xi,
will typically be larger than the gain in Case 1.

Case 3. One of the xi is helpful, but not crucial, for good prediction: This is like the
situation in Section 2.1. The harm in the median probability model ignoring the xi is
likely rather small.

Case 4. Nested Models: If the above arises in a nested model scenario, the median
probability model is, of course, the optimal single model. It can still err, however,
through the prior probabilities being inappropriate, assigning too much mass to all the
duplicate models. (But this is just saying that the model averaged answer then can also
err.)

Supplementary Material

Supplementary Material to “The Median Probability Model and Correlated Variables”
(DOI: 10.1214/20-BA1249SUPP; .pdf). The supplementary material contains a proof
of Theorem 1, details from the numerical study (including additional tables) and the
results of a simulation study with q = 5 covariates.
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