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When statistical decision theory was emerging as a promising new
paradigm, Charles Stein was to play a major role in the development of min-
imax theory for invariant statistical problems. In some of his earliest work
with Gil Hunt, he set out to prove that, in problems where invariant proce-
dures have constant risk, any best invariant test would be minimax among all
tests. Although finding it not quite true in general, this led to the legendary
Hunt-Stein theorem, which established the result under restrictive conditions
on the underlying group of transformations. In decision problems invariant
under such suitable groups, an overall minimax test was guaranteed to reside
within the class of invariant procedures where it would typically be much
easier to find. But when it did not seem possible to establish this result for
invariance under the full linear group, he instead turned to prove its impos-
sibility with counterexamples such as the nonminimaxity of the usual sam-
ple covariance estimator where the full linear group was just too big for the
Hunt-Stein theorem to apply. Further explorations of invariance such as the
sometimes problematic inference under a fiducial distribution, or the charac-
terization of a best invariant procedure as a formal Bayes procedure under a
right Haar prior, are further examples of the far reaching influence of Stein’s
contributions to invariance theory.

1. Introduction. Invariance arguments in statistics date back at least to the work of
Fisher and Hotelling, but perhaps the beginnings of a systematic development are the two
highly original contributions of Pitman (1939a, 1939b). These two works treat estimation
and testing problems for statistical models indexed by real valued translation and/or scale
parameters. In that same year, in what was arguably the first paper on statistical decision the-
ory, Wald (1939) introduced minimaxity and admissibility as desirable risk properties for the
evaluation of estimation and testing procedures. He there considered Pitman’s invariant pro-
cedure for the location problem, but was unsuccessful in his attempt to prove its minimaxity
and admissibility. Four years later, while working on general decision theory problems, Wald
(1943) introduced the related notion of stringency as an optimality property of statistical tests.
Here, too, at least initially, it proved to be rather difficult to apply this notion to standard test-
ing procedures. These developments, as well as personal encouragement from Wald himself,
would set the stage for Charles Stein to focus on the landscape of risk properties of invariant
statistical procedures, a focus that would persist throughout his career. Indeed, the Pitman
work coupled with the challenge of establishing the stringency of testing procedures would
lead to the initial Hunt-Stein work on invariant testing problems.

Brought together by chance in the middle of their graduate school studies to carry out
weather forecasting for the U.S. Army during 1945-1946, Gilbert Hunt and Charles Stein
collaborated to develop a general minimax theory for testing problems invariant under a group
of transformations. Within this framework, they established what has come to be known as
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the Hunt—Stein theorem and showed how to apply this discovery to the study of most stringent
tests. Unfortunately, Hunt and Stein never published their results as their working manuscript
got mislaid and lost, apparently while they were continuing to flesh out the details of some
key counterexamples, (DeGroot (1986)). Fortunately, Stein communicated his results to Erich
Lehmann, who discussed them and some of the applications in an early “theory of hypothesis
testing” paper, which led to the wide dissemination of their ideas, (Lehmann (1950)). Perhaps
the most striking thing about the Hunt—Stein result is that the main assumption involves the
group of transformations and not the statistical model of the testing problem.

A natural outgrowth of the Hunt—Stein theorem was a concerted effort to establish a more
comprehensive invariant minimax theorem. By this, we mean a result that implies that the
minimax risk, M, of an invariant decision problem is equal to the invariant minimax risk,
M, of the problem. The work of Peisakoff (1950), Kudo (1955) and Kiefer (1957) estab-
lished various conditions under which M = M. The most limiting condition in these works
is directly related to the Hunt-Stein condition on the group of transformations leaving the
statistical problem invariant. This condition, which we denote by HS, is defined precisely in
Section 2 below. In brief, when HS holds, then M = M;. Of particular interest early on was
whether this condition was met by G/, the multiplicative group of all p x p nonsingular
matrices, with p larger than one. Peisakoff (1950) asserted that HS holds for G/, but the
proof contains a lacuna, Kudo (1955) said it was not known whether GI,, satisfies HS, and
then Kiefer (1957), p. 587, reported that Stein had constructed an example showing that G1,,
does not satisfy HS.

The Stein example alluded to by Kiefer was reported in an unpublished Stanford technical
report issued in 1956. Indeed, this report, dealing almost exclusively with inferential prob-
lems of multivariate analysis, contains a variety of invariant examples where the invariant
minimax theorem fails. The key example there focused on invariance under the group G,
when the estimation of a covariance matrix was of special interest. A related testing example
of Stein’s is also reported in Lehmann (1959), Example 9 on p. 338; also see problem 10 on
p. 344. A significant portion of the material in Stein (1956a) is reported in James and Stein
(1961).

An interesting aspect of the Pitman (1939a, 1939b) work is the interpretation of best in-
variant procedures in terms of a “fiducial” distribution. Related to this is an example in Stein
(1959) where a fiducial calculation leads to an inference that is strongly at odds with a rel-
evant frequentist calculation. This example leads to the conclusion that in certain situations,
treating a natural fiducial distribution as a “regular” probability distribution can lead to in-
ferential statements that are widely divergent from frequentist evaluations. However, a prob-
ability matching problem is treated in Stein (1965), pp. 221-225, where the calculation of a
posterior distribution using a right Haar prior hints at more general representations of best
invariant decision rules. In this context, the role of right Haar measure was mentioned in
passing in Peisakoff (1950), pp. 37-38. Contemporaneous work of Hora (1964), reported in
Hora and Buehler (1966), gives a more detailed account of some aspects of the Stein discus-
sion although Stein (1965) is not referenced. The material in Stein (1965) was reported at a
scientific meeting at Berkeley in 1963.

Charles Stein’s work on invariance in the 1945-1965 period has been enormously influ-
ential and has inspired a wide range of theory and applications over the past 70 years. Un-
fortunately, the Hunt—Stein work and Stein (1956a) are unpublished, and his elegant “right
Haar” argument in Stein (1965) is at best sketchy. In spite of this, the importance of these
contributions is recognized by almost everyone interested in invariance. In the next three sec-
tions, we shall discuss the two unpublished works and the right Haar argument in a bit more
detail. This work continues to influence some current research work on probability matching,
incoherence and strong inconsistency, fiducial arguments and invariance theory in general.
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2. The Hunt-Stein theorem and its generalizations. For invariant statistical testing
problems as defined in Lehmann (1950), the central question Hunt and Stein sought to ad-
dress, was whether a minimax invariant test would be minimax (i.e., maximize the minimum
power) within the class of all tests of a given size. Initially setting out to prove that a best
invariant test would be minimax in problems where invariant tests have constant risk, they
quickly realized that such a property would hinge essentially on the theoretical properties
of G, the group of transformations under consideration for the problem at hand, (DeGroot
(1986)).

Although the original statement and proof of their results remain lost, Kiefer (1966) re-
marks that the following version of the Hunt-Stein theorem, reported by Lehmann (1959) in
Lemma 2 on p. 332 and Theorem 3 on p. 336, is probably closest in spirit to the original.

THEOREM 2.1 (Hunt-Stein). Let P = {Py, 0 € Q} be a dominated family of distributions
on the sample space (X, A), and let G be a group of transformations of (X, A) such that the
induced group G leaves the two subsets Qg and Qx of Q invariant. Let B be a o -field of
subsets of G such that for any A € A, the set of pairs (x, g) with gx € A is in A x B, and for
any B € B and g € G, the set Bg is in B. Suppose that there exists a sequence of probability
distributions v, over (G, B), which is asymptotically right invariant in the sense that for any
g€Gand BeB,

(1) 1im [v,(Bg) — va(B)| =0,

Then for any critical function ¢, there exists an (almost) invariant critical function \r, which
satisfies

2 inggMﬁ(X) < Egy(X) < sup Egop(X)
G

forall 6 € Q.

Just as Hunt and Stein had sought to establish, it follows directly from (2) that if there
exists a level-a test ¢g of 6 € Qg versus 6 € Qg that maximizes infg, Eg¢(X), then there
also exists an invariant test ¢ with this property. (Note that as described in Lehmann (1959),
Theorem 4 of Chapter 6, under suitable measurability assumptions which are “satisfied in all
the usual applications,” to every almost invariant procedure there is an equivalent invariant
procedure.)

The essential property of G in the Hunt-Stein theorem is the existence of the asymp-
totically right invariant sequence v, in (1). We refer to this property as condition HS (for
Hunt-Stein) following Bondar and Milnes (1981) who named it as such in their important
survey paper. Condition HS is the essential ingredient needed to show that an invariant test
Y satisfying (2) can be obtained from ¢ by averaging over the group G. This is transparent,
for example, when G = {g1, ..., gn} is a finite group and v, = v is the uniform distribution
over G, which trivially satisfies (1). In this very simple case, the invariant critical function
Y(x) = % Zi\/ ¢o(gix) is easily seen to satisfy (2) since Eggpo(gX) = Ezo¢po(X) is an in-
variant average of terms, which includes both the upper and lower bounds of (2). To make
such a construction of ¥ work for larger groups, it is necessary to replace the invariant aver-
aging operation % ZlNzl by a suitable mean preserving measure on G. For compact groups
for which the invariant Haar measure has finite mass, this is straightforward. For noncompact
groups, the condition HS or its equivalent is needed to asymptotically obtain suitable right
invariant averaging.

For invariance under locally compact groups, statements of the Hunt—Stein theorem in
the literature often substitute the property of amenability for condition HS. The notion of
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amenability (existence of an invariant mean, as discussed in Greenleaf (1969)) was intro-
duced by von Neumann in (1929). The paper of Bondar and Milnes (1981) contains a dozen
or so conditions all of which are, modulo some minor regularity conditions, equivalent to
amenability and HS. Essentially all of the research establishing these equivalents was done
in the period 1946 to 1980 (see the eighty or so references in Bondar and Milnes).

A convenient sufficient condition for HS to hold is to let v, be the restriction of a right Haar
measure to a compact set K,, appropriately normalized so that v, is a probability measure.
For example, when G is the real line and K,, = [—n, n], then HS holds when v, is Lebesgue
measure restricted to K, and normalized by (2r). As mentioned in Lehmann (1950), a useful
condition that HS hold is the following. Assume N is a closed normal subgroup of G such
that both N and the quotient group G /N both satisfy HS. Then G satisfies HS. Hence if G
is a finite direct product of groups that satisfy HS, then so does G. This observation together
with induction can be used to show, for example, that G, the group of p x p lower triangular
matrices with positive diagonal elements, satisfies HS. In the hypothesis testing context, the
first invariant statistical example where HS does not hold was given by Peisakoff (1950).
The example involved the free group on two generators. Other such examples of more direct
statistical interest were given in Stein (1956a). These are discussed in the next section.

For general invariant statistical decision problems as described, for example, in Stein
(1956a) or Kiefer (1957), an immediate consequence of the Hunt—Stein work was interest in
the validity of more comprehensive invariant minimax theorems. To state the issue precisely
for an invariant decision problem, let D be the class of all decision rules and let Dy C D be
the subclass of all invariant decision rules. Given é € D, let r(§, 6) denote the risk of § at 9.
As usual, we define M and M; by

3 M = inf 0,6

(3) 812 Sl;pr(,),
4 M; = inf 0,0).
4) I alen,s‘;pr( )

These are the minimax risk and the invariant minimax risk, respectively. Obviously, M < M
and when M = M7 we say that an invariant minimax theorem holds. In such cases, it follows
that when § is minimax within Dy, it will also be minimax within D. In a decision theoretic
setting, depending on the structure of the particular problem at hand, finding a minimax
8 € Dy is often much easier than finding a minimax § € D. Thus, the validity of an invariant
minimax theorem provides a simplified route for finding both an overall minimax procedure
and the minimax risk it attains. These at least serve as useful benchmarks against which
competing procedures may be compared.

In essence, Hunt-Stein showed that M = M/ for hypothesis testing problems when HS
holds. Following on the heels of the Hunt—Stein contribution was the work of Peisakoff
(1950), Kudo (1955) and Kiefer (1957) where versions of the invariant minimax theorem
are given for various types of invariant decision problems. The three papers all have regular-
ity conditions regarding the model, the loss function, the action of the group and the “size”
of the group. What is striking is the similarity of the size assumptions with the HS condi-
tion. Indeed the size condition seems to be an invariant for these minimax theorems. Kiefer
(1957) contains an excellent discussion of the different conditions and arguments, although
Kudo (1955) is not discussed in detail. A general heuristic exposition of these developments
can also be found in Kiefer (1966). Further discussion and illumination of the assumptions
in Kiefer (1957) appear in Brown (1986), who also provides a sketch of an alternative proof
of Kiefer’s results using a fixed-point approach proposed by Huber. Further overviews and
elaborations of Hunt—Stein theory appear in Berger (1985), Lehmann and Casella (1998) and
Robert (2001).
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3. Gl, is not amenable and related issues. Stein’s work on invariant estimation yielded
two fundamental results that were announced in Stein (1956a, 1956b). Perhaps the more
famous is the inadmissibility of the maximum likelihood estimator (MLE) of the mean vector
of a p-dimensional multivariate normal distribution when p > 3 (the loss is quadratic, and
the MLE is also the best translation invariant estimator). Of course, this led to James and
Stein (1961) and the James—Stein estimator. The other result deals with the estimation of a
covariance matrix ¥ based on a sample X, X5, ..., X;, from a p-dimensional mean zero
multivariate normal distribution and p < n. For this estimation problem, Stein used the loss
function

(5) L(E, D) =t(£x7) —logdet(S=1) — p.

With this loss, the problem of estimating X is invariant under both Gr and GI,. A sufficient
statistic for this problemis S = """ X; X/. Because G is transitive on the parameter space
of all p x p positive definite matrices, all Gr invariant estimators have constant risk. Of
course, all G/, invariant estimators also have constant risk since G is a subgroup of GI,,.

What Stein (1956a) showed was the following. First, the MLE %S is the best G/, invariant
estimator and has constant risk, say ro. Next, write S = T'T’ where T is the unique element of
G 7 satisfying this relationship. Then the minimum risk G invariant estimator of X is > =
T DT’ where D is a p x p diagonal matrix with diagonal elements d; = (n + p — 2i + 1)~
fori=1,..., p. When p > 2, 3 differs from the MLE and is not invariant under G/ p- The
risk of this estimator is a constant, say 1. The key result is that r| is strictly less than rg. From
the results of Kudo (1955), the group G is amenable so the minimax risk for this problem
is 1. Hence no G/, invariant estimator can be minimax, and thus G/, cannot be amenable.

The validity of similar G/, results for other models, problems and/or loss functions has
been established. In the context of covariance estimation, see Selliah (1964), Olkin and Sell-
iah (1977) and Eaton (1970). In addition, the de Finetti notion of incoherence (and its equiv-
alent of Stone’s strong inconsistency; see Eaton and Freedman (2004)) also arises in G/,
invariant situations. For example, in classical prediction problems involving multivariate nor-
mal sampling, both G, invariant predictive distributions and classical parametric posterior
distributions are strongly inconsistent (incoherent); see Eaton and Sudderth (1995, 1999).
The importance of the nonamenability of G/, in an applied context is discussed in Eaton,
Muirhead and Pickering (2006). Further discussion of the nonamenability issue can be found
in Kass and Wasserman (1996) and Eaton and Sudderth (2002, 2004).

The Stein (1956a) work provided troubling examples where traditional likelihood methods
yield inferential procedures with some serious deficiencies. In essence, too much invariance
yields incoherence. This circumstance has lead to a number of alternative proposals; none of
which seem particularly appealing. The evidence would suggest that the foundational issues
caused by nonamenability will not be resolved any time soon. This situation seems rather
serious in multivariate analysis where G/ -invariance is ubiquitous.

4. The right Haar argument. Fisher’s fiducial inference stems in part from the obser-
vation that in certain situations, frequentist claims concerning confidence sets match proba-
bilistic assertions based on a distribution on the parameter space. For example, suppose X
has a univariate normal distribution with mean 6 and variance one. Consider the set C that
consists of the collection of pairs (x, ) such that |[x — 6| < d where d is a fixed positive
constant. The set C has two sections

(6) Ci=1{01(x,0)eC},
(7 Co={x|(x,0)eC).
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Under the probability model for X, say P(- | 6), the set Cyg has a fixed probability, say y, that
does not depend on the parameter 8. Next, let Q(- | x) be the normal distribution with mean
x and variance one. Under this distribution for 6, the set C, has the same probability y for
all x. In other words, the distribution Q for the parameter results in “probability matching”
for the sections of the set C. The distribution on the parameter space arises via two different
arguments, the first being what is called Fisherian pivoting. This pivoting uses the fact that the
variable (X — ) has a normal distribution with mean zero and variance one. Then with a wave
of the hand, one asserts that the conditional distribution of 6 given X = x is just Q(- | x). The
second argument assigns the parameter an improper prior distribution of Lebesgue measure
and then formally applies Bayes theorem to obtain the posterior distribution Q(- | x) for the
parameter. The fact that these two arguments agree in this and other relevant situations has
long been of interest, especially after the Pitman work and the Stein (1965) and Hora and
Buehler (1966) papers. An explanation for this agreement is given in Eaton and Sudderth
(1999).

In the Hora and Buehler work, a statistical model that is invariant under a group G is as-
sumed. Sufficiently limiting assumptions are made so that Fisherian pivoting can be used;
see Eaton and Sudderth (1999) for the condition that yields Fisherian pivoting when G is
transitive on the parameter space ®. Hora and Buehler assume G equals ® and focus on the
fiducial distribution obtained from their structural assumptions; however, they also remark
that the fiducial distribution is that obtained from a formal Bayes argument using right Haar
measure as a prior distribution on ® = G. Hora and Buehler apply their results to derive best
invariant estimators for certain parametric functions and to generalize some of the Pitman
confidence set results. Stein (1965) considers an invariant model similar to that in Hora and
Buehler, but the Stein considerations differ in two important aspects from both those in Hora
and Buehler and earlier works. First, Stein does not make the standard structural assumptions
needed to do Fisherian pivoting, and second, the focus is on the so-called right Haar prior dis-
tribution on ®. The formal posterior distribution rather than the fiducial distribution becomes
the center of attention. The importance of the Stein argument, although very sketchy, is that
it suggests the validity of probability matching without Fisherian pivoting, and it hints at an
alternative argument for finding best invariant decision rules. We now turn to a discussion of
this alternative argument.

We begin the discussion of best invariant rules with a paraphrase of a result from Charles
Stein circa 1965 [personal communication]: Consider an invariant decision problem where
the group G acts transitively on the parameter space. Using the right Haar prior distribution,
calculate the formal posterior distribution on the parameter space. Then choose the action
that minimizes the expected loss under the posterior distribution. This action, dependent upon
the data, is a best invariant (minimum risk) decision rule.

The exact provenance of this result is not known to us, as attempts to trace the origin have
been largely unsuccessful. Zidek (1969), p. 292, calls the above “well known” but without
a reference. Special cases are given in varying degrees of generality in a number of places.
For example, see Peisakoff (1950), pp. 37-38, and Hora and Buehler (1966), Section 5. In
Eaton (1970), the result is attributed to Stein and a proof is given. This proof uses a set of
unappealing assumptions and utilizes the ideas and calculations in Stein (1965).

What is important about the Stein (1965) calculation is the emphasis on right Haar measure
and the prior it induces on the parameter space. In cases where Fisherian pivoting is possible,
this prior produces a posterior that is the fiducial distribution. The insight that the right Haar
argument is more widely applicable than Fisherian pivoting has led to additional instances
of probability matching examples (see Eaton and Sudderth (2002, 2004)). Further, the use of
Haar measure has contributed significantly to a better understanding of the representation of
best invariant rules described above (see Eaton (1989), Chapter 6, and Eaton and Sudderth
(2001)).
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5. Personal reflections. What a fortunate privilege it was for both of us to have stud-
ied under Charles Stein. The amazing depth of his ideas and imagination made a profound
impression on our own thinking, one that would influence our research trajectories for years
to come. But what was also so remarkable about this intellectual giant, were his wonderful
human qualities, his kindness, humility and generosity to all. He would happily spend hours
with us in his office, at lunch and on long walks, which he especially loved, discussing what-
ever we wanted, from statistics to the pressing political issues of the day. It is a true honor for
us to contribute this memorial article to his legacy.
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