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Abstract—We evaluate the benefits of intention perception, the
ability of an agent to perceive the intentions and plans of others,
in improving a software agent’s survival likelihood in a simulated
virtual environment. To model intention perception, we set up a
multi-agent predator and prey model, where the prey agents
search for food and the predator agents seek to eat the prey.
We then analyze the difference in average survival rates between
prey with intention perception—knowledge of which predators
are targeting them—and those without. We find that intention
perception provides significant survival advantages in almost
all cases tested, agreeing with other recent studies investigating
intention perception in adversarial situations and environmental
danger assessment.

Index Terms—awareness, intention perception, attention per-
ception, simulation, predator-prey model, intention trilogy

I. INTRODUCTION

You notice a small bug crawling on your bathroom floor. It
walks in roughly a straight line, turns seemingly at random,
and continues walking straight in its new direction. It repeats
this behavior in a robotic, space-filling, randomized pattern.
What is the purpose of its meandering? Is it looking for
food, or a potential mate? You know nothing of the insect
or its species, so you simply continue to observe. Its motion
algorithm and circuitry seem to produce simple randomized
behavior.

As far as you can tell, it pays no attention to you, even
when you approach and decide to remove it from your home.
A smarter, larger animal would become alarmed at your
proximity, but the bug doesn’t realize the danger posed by
your sudden attention. If it sensed your intentions it would
likely flee.

As an engineer, you ask yourself how you would create
an algorithm for this sort of “danger detection.” Would you
simply test for sudden motion, or use features better correlated
with intentionality? Leaves caught in the wind can be fast mov-
ing, but typically pose no threat. Some form of eye-tracking or
motion-tracking, allowing one to judge path trajectories, could
result in improved differentiation between threats and non-
threats. Estimating the target of an eye gaze seems promising;
there is likely a reason humans feel threatened when others
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stare at them, especially large crowds. We sense danger when
the attention of many others is directed at us. It seems plausible
that some ability to differentiate intention of agents versus
non-intentional behavior, based on visual or auditory clues,
can confer survival advantages.

In this study, we perform a series of tests in a simulated
environment inhabited by virtual agents to measure the sur-
vival advantages gained by agents who are able to perceive
intention. We seed the simulated world with small, fast agents
searching for food and more powerful agents seeking to eat
the smaller agents. We measure survival rates when large agent
(predator) intention is perceptible to the smaller agents (prey),
above and beyond merely sensing their general proximity,
allowing them to sneak around agents and flee when in danger.
We compare this to the survival rates of agents who cannot
perceive intention, but can still sense proximity. Lastly, we
measure survival rates when neither proximity nor intention
is perceptible. We find that intention perception leads to
statistically significant survival advantages in almost all cases
tested.

The rest of the paper is organized as follows. Section II
highlights related work, while Section III gives an overview
of the agents and their behavior. We present the main results of
the paper in Section IV and discuss them in Section V. Lastly,
we draw conclusions and address future work in Section VI.

II. RELATED WORK

Several other studies have used virtual agents to understand
intention perception [1]-[3]. Heinze explored the use of virtual
agents in intention perception studies, and proposed various
methodologies [1]. Qi and Zhu developed a framework and
algorithm for virtual agent intention perception, which they
tested in a driving simulation comprised of multiple intention-
aware agents [3]. Other researchers have emphasized the utility
of intention-aware agent environments, and have discussed the
complications of many-agent systems [2]. More specifically,
Kaminka investigated mechanisms which allowed an agent
to acquire, maintain, and infer knowledge of other agents.
Kaminka also addressed several challenges in agent modeling,
especially monitoring selectivity in the context of potentially
many agents.



Observing the interactions between two groups of agents is
significant to other areas such as evolutionary psychology. As
Barrett suggests, the influence of the predator-prey dynamic
covers several domains of human psychology and behavior
including perception, emotion, learning, inference, and rea-
soning [4].

The dynamics of predator-prey models have been widely
studied [4]-[12]. There has been notable interest in under-
standing behavioral changes in agents when factors such
as levels of stamina, hunger, and proximity awareness fluc-
tuate [12]. These variants have been closely observed and
simulated to provide insight regarding the reasoning of certain
actions that the agents choose to take in any given situation.

Others have studied how predators can affect prey popu-
lation density by stimulating costly defensive strategies such
as limiting energy income (similar to our prey’s food) and
increasing vulnerability to other predators [8]. However, the
importance of intimidation and consumption effects remains
an open question.

III. METHODS
A. Simulated Predator-Prey Model

Our research begins to address the aforementioned open
question. For a similar predator-prey simulation, one biologist
suggested implementing “targeted kills” in which a predator
selects a prey to target and chase [12]. Thus, we allow our
predators to target the prey that they intend to eat. We then test
whether a prey’s ability to detect a predator’s intention gives a
measurable survival advantage over simple predator proximity
awareness and over even simpler predator obliviousness.

We model our predators and prey as follows. Prey survival
involves eating food and steering clear of predators. In our
simulation, prey use observations to compute a probability
distribution of possible directions depending on the favor-
ability of each direction. They then sample a direction to
move along according to that distribution. Prey know the
locations of all food within their range of awareness and are
more likely to move towards food if it is close or if they
are hungry. Proximity-aware prey also know the locations of
nearby predators and are more likely to move away from a
predator if it is close. Intention-aware prey know when nearby
predators are targeting them and will emphasize running away
from those specific predators over others. Furthermore, prey
are given incentive to continue with their current direction to
help with indecision. When prey are targeted, they move as
fast as they are able, and when not targeted, move with a speed
in relation to the probability of the chosen direction.

In our simulation, a predator’s only objective is to catch
prey; they do not worry about being eaten themselves. Preda-
tors know the locations of all prey within their range of
awareness and stochastically select one to target, with closer
prey being more likely to be selected. Once a prey is targeted,
predators move as fast as they can to eat the prey. At each
moment during a chase, predators have a small chance of re-
evaluating which prey to target—perhaps there is now a closer
prey which would make more sense to chase. If the predator

Fig. 1. Our predators are portrayed as lions, our prey as antelope, and our
food as vegetation. A red line between predator and prey indicates that the
predator is targeting that prey.



does not see anything, it moves randomly with emphasis
around its current direction and with a speed relating to the
chosen direction’s probability. The prey and predator decision
processes are outlined in pseudocode in Algorithms 1 and 2,
which use notation from Table II in the Appendix.

Both predators and prey have measures of stamina to slow
them down if they move too fast for too long and are given
incentive to stay close to the center of the environment.

Because intention-aware prey focus on running away from
predators and take fewer risks than other prey, one might
worry that any benefits observed are due to caution rather than
knowledge of intention awareness. To address this concern, we
implement a “cautious” prey which acts on paranoia rather
than intention perception. We retrieve data on how often
intention-aware prey are targeted by predators and for how
long, and use this to occasionally make the cautious prey think
that they are being targeted by a random predator, regardless of
whether that is true. In practice, this means that cautious prey
are proximity-aware prey that will sometimes put emphasis on
running away from particular predators—Ilike the intention-
aware prey—except that these predators may or may not
actually be a threat. This decouples the knowledge from the
behavior and strengthens the link between intention awareness
and increased survival rate.

Further detail about these parameters and algorithms are
given in the Appendix, and the full implementation of
this simulation is available at https://github.com/AMISTAD-
lab/predators-purpose-source.

Algorithm 1 Direction Algorithm

1: if agent is a predator that is targeting a prey then
2 Return the direction to the targeted prey.

3: else

4. foralli=0,1,...,11 do

5 Set ¢; < 30i + 15 degrees.

6

Set p; < >, APs(¢;), where S denotes the set of all
sES
stimuli that the agent is aware of and A Ps(¢;) is calculated

using Eq. 5 in the Appendix.

7:  end for

8:  Normalize the distribution of the p;’s.

9: Sample ichosen € {0,1,...,11} using the distribution of the
p;’s and save the corresponding probability pchosen-

10: Sample direction ¢cposer, Using a uniform distribution over
range of angles 30(ichosen) t0 30(ichosen + 1) degrees.

11: Return ()behosen, Pchosen-

12: end if

B. Experimental Setup

Our agents are simulated as spheres in the PyBullet physics
engine and rendered afterwards in the Unity3D game devel-
opment engine. We randomly spawn several prey, predators,
and food in a flat, circular, obstacle-free environment. At each
time step, the agents make a decision regarding their direction
and their speed and move forward accordingly.

A prey is considered eaten when it comes into contact with
a predator. The prey eats food in a similar fashion, by coming
into contact with the food objects.

Algorithm 2 Speed Algorithm

1: Initialize Vipar < Vi
speed).

2: if agent is tired (S < Stirea for some previous step ¢’ and
Sy < Sy for all t > t', where S; denotes the stamina at step t)
then

3: Set Vinaw < Viired-

4: end if

5: if agent is a predator targeting a prey then

6: Return %Vmaz.

7

8

9

(where V,,, is the agent’s maximum

. else if agent is a prey being targeted then
Return Vinas.

: else
Pchosen * V'm + ‘/cu'rrent

10: Set Videal < 5 .

11:  Sample speed v using a normal distribution with t = Vigea:
and 0 = V;,, /6.

12:  Return min(|v|, Vinaz)-

13: end if

Information about the prey, such as the amount of food eaten
and their lifespan, is recorded during every run. These results
are statistically analyzed to assess the relative survival rates
for intention-aware, proximity-aware, unaware, and cautious
prey, and their typical mode of death.

We vary several parameters in our experiments. The first
are prey and predator sight distance, which gives the radius
of each agent’s field of view. Then there is sight angle, which
gives the angle that their field of view spans. The speed
fraction is the ratio of the predator’s speed to the prey’s speed.
Finally, we have the Maximum Fasting Interval (MFI),
which is number of time steps a prey can go without eating
food before it starves.

For computational efficiency, we set each parameter to a
default value and vary them individually. In our values we use
a distance reference based on prey body width, so that the
diameter of a prey is 1 unit and that of the larger predator is
2 units.

Prey typically have a very wide field of view and strong
additional senses to help with awareness of their surroundings
(e.g., mice and gazelle). In our simulation all knowledge is
through sight, and so to account for this situational awareness
of food through smell or predators through hearing, we give
our prey a fixed sight angle of 360°. However, a wide field of
view generally comes with a shorter range of sight, and so we
give prey a default sight distance of 10—enough to identify
food and predators but small enough to contain primarily
relevant information.

Predators, on the other hand, tend to have more narrow fields
of view but very sharp eyesight (e.g., eagles and lions). In
accordance with this, we give them a sight angle of 90°, which
is wide enough to not incapacitate the the predators and narrow
enough to prevent full side-to-side vision. We also note that
in exploratory simulations, the sight angle did not appear to
have a large effect since predators frequently change direction
in order to find and focus on particular prey. To incorporate
the sharp eyesight of predators, we give them a sight distance
of 20 (doubling that of prey) which is generally sufficient to
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identify most prey in their field of view.

We give prey a fixed maximum speed of 31.25 prey lengths
per 100 time steps, which is somewhat arbitrarily chosen to
yield a reasonable duration for viewing the simulation. More
importantly, predators have a default speed fraction of 0.8 so
that they are a little slower with a maximum speed of 25 prey
lengths per 100 time steps. Additionally, we test scenarios
where predators move faster than prey (see Fig. 3).

For the Maximum Fasting Interval, we set this to a default
of 2000 steps as we found that this provided a substantial cost
to not eating while not being too punishing.

Note that while these are the default values, each parameter
is individually varied to test other scenarios, such as when
predators are faster than their prey. These parameters and
values are summarized in Table I. See Section A of the
Appendix for further details.

TABLE I
DEFAULT PARAMETER VALUES.

Description Value
Prey sight distance 10
Predator sight distance 20
Prey sight angle 360
Predator sight angle 90
Speed fraction 0.8
Prey to predator ratio 4
Maximum Fasting Interval (MFI) 2000

IV. RESULTS

Our results show that intention perception provides prey
with a measurable, statistically significant survival advantage
in almost all cases. Not only are more prey with intention
perception alive at each time step on average than others, but
they also have the longest lifespan across most parameters.

Each of the line graphs in Fig. 3 was generated from
1,000 independent runs (each consisting of 10,000 time steps)
per set of parameters, except for the cautious results, which
were computed based on 100 runs per set. Each line denotes
the uniform average of all runs, and is surrounded by a
(near-imperceptible) 95% confidence interval indicating the
statistical significance of the results. Similarly, the stack plots
in Fig. 2 were each generated from 1,000 independent runs per
intention tier, except for the cautious plot which was computed
from 100 independent trials.

In Fig. 2, we see that at default values, a greater proportion
of intention-aware prey are alive at each time step than that of
any others. Fig. 3 shows that the intention-aware prey also have
the longest lifespans as we vary most parameters—only briefly
are they overcome by the prey with just proximity awareness
and the prey with caution in the speed fraction plot when the
speed fraction is less than 0.5. However, as soon as the fraction
increases past 0.5, predators become fast enough to become a
significant threat, such that prey with intention and proximity
awareness begin to live much longer than all other prey.

In almost all plots, we see that cautious prey have the
second longest lifespans, followed by proximity-only prey and
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Fig. 2. The effect of intention perception as seen through the status of prey
progressing through a simulation with the default parameters.

then unaware prey. The exceptions to this are of course speed
fraction, as well as predator sight distance, where cautious and
proximity-only prey have very similar lifespans at low predator
sight distance values.

We also note that a greater proportion of prey with intention
perception die from starvation than any of the other three types
of prey (see Fig. 2). This is why the average lifespan of prey
with intention perception increases rapidly with respect to the
MFI, the maximum duration a prey can stay alive without eat-
ing, until MFI reaches 4000 and the intention-perception prey
have enough time to eat while simultaneously fleeing predators
(see Fig. 3). However, the trade-off between starvation and
predator avoidance is worth it, as at all maximum fasting
intervals under standard conditions, the prey with intention
perception still survive much longer than those without.

We notice some specific trends across the six varied pa-
rameters. At low MFI and prey sight distance values, all
prey have similarly low survival rates because they all either
starve almost immediately or are unable to see predators,
respectively. On the other hand, at low speed fraction and
predator sight distance values, all prey have similarly high
survival rates because predators are either too slow or unable
to see, respectively, preventing them from catching most prey.

At high values of most parameters, prey with intention
perception live far longer than the others. However, at high
speed fraction values, predators are fast enough that even prey
with intention perception are eaten before they can escape,
resulting in short lifespans for all types of prey.

We also notice peaks in the graphs for prey sight dis-
tance, speed fraction, and prey to predator ratio. For prey
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Fig. 3. The effect of varying different parameters on prey lifespan. All lines
include near-imperceptible 95% confidence intervals. Note: There were too
few observations with which to estimate the tracking distribution for the first
point in Predator Sight Distance for the cautious prey, and therefore the point
was left out.

sight distance, it seems that too much information negatively
impacts survival. All three tiers with awareness have a peak
after a certain sight distance—perhaps beyond that point the
additional information muddles their priorities and makes them
less likely to choose the optimal direction.

For the speed fraction, we expect a downward trend as
predators become faster and eat more prey. This does appear
in the graph, but not until a certain point. This is because
once we factor in hunger, slightly faster predators can chase
prey towards food that relatively idle prey might not find. The
peak is where the main cause of death shifts from starvation
to being eaten.

For the prey-to-predator ratio, when there are more prey, a
smaller percentage will be eaten. However, the prey that avoid
the predators are likely on the outskirts of the terrain and will
starve because they are not eating. It is also harder to find
food when there are more prey. The peak is where we find the

balance of being less likely to starve but not too likely to be
eaten.

Lastly, the lack of a relationship between prey lifespan and
predator sight angle is likely due to a predator’s behavior when
it cannot see prey, as it turns in a random direction every frame
until it finally locks onto a prey. As such, low values do not
have a huge effect on the predator’s ability to find and target

prey.

V. DISCUSSION

Across the varied parameters of our experiments, we see
that intention perception almost always provides the greatest
survival advantage, followed by caution, proximity awareness,
and finally, no awareness. It makes sense that caution provides
a slightly greater survival advantage over proximity awareness,
as cautious prey have both proximity awareness along with a
randomly occurring speed boost provided by their cautious
nature. However, the average lifespan of cautious prey is
almost always shorter than that of intention prey, establishing
that the survival advantage of prey with intention perception
is due to intention perception specifically, as opposed to mere
caution.

There is one case in which prey with only proximity
awareness and prey with only caution have longer average
lifespans than prey with intention perception—low speed
fraction values. Speed fraction is the ratio of predator speed to
prey speed. At low speed fraction values, prey with intention
perception run away from predators that are often too slow to
catch them, unnecessarily preventing them from eating food
which leads to their starvation. Although one might think
that this would also happen to cautious and proximity-only
prey, cautious prey sometimes think that a faraway predator is
targeting them, such that they mainly use proximity awareness
to decide upon a direction. Proximity-only prey, by nature,
also only fear predators that are close to them, allowing them
to focus on eating food unless in immediate danger. As such,
prey with intention perception do not survive the longest when
the prey are very fast but the predators are very slow.

We also note that although prey with intention perception
survive the longest overall, prey with intention perception that
do not survive are more likely to die from starvation than prey
of any other type. This is because their intention perception
ability makes them prioritize fleeing predators that intend to
eat them over eating food themselves.

Overall, intention perception does confer statistically-
significant survival advantages in most cases, with only one
observed exception (when predators are very slow compared
to prey). Furthermore, the advantages of intention perception
were not simply due to caution. We saw that decoupling the
“cautious” aspect from the “informational” aspect of intention
perception demonstrated that the same gains were not realized
by agents equipped with caution alone. Finally, although prey
with intention perception are the most likely to starve, they are
the least likely to be eaten, and thus have the highest overall
survival rate.



VI. CONCLUSION

The goal of our study was to investigate whether a prey’s
ability to detect a predator’s intention gives a measurable
survival advantage over simple predator proximity awareness
and over even simpler predator obliviousness. To test the
hypothesis that intention awareness is advantageous, we cre-
ated a multi-agent predator-prey simulation and analyzed the
survival of prey with and without intention perception. The
results of our study establish that intention perception provides
significant survival advantage for agents, as our intention-
aware prey had the highest survival rates in almost all of the
experiments conducted.

However, prey with intention perception do starve the
most, since they often prioritize avoiding predators over food
consumption. This behavior leads to lower survival rates
in certain situations where predators are less of a threat.
Yet, intention perception still provides the greatest survival
advantage overall, as it allows prey to observe when predators
are targeting them and act accordingly.

We show that it is the knowledge gained through intention
perception, and not caution in general, that greatly increases
survival rates. In our experiments, we found statistically sig-
nificant differences in the survival rates between intention-
perception prey and cautious prey, which have the same
level of caution as intention-perception prey but lack true
information about predator targeting. This provides additional
evidence of the value of intention perception.

While our results are strikingly clear and unambiguous,
we remind the reader that these are virtual experiments in
simulated multi-agent environments, and thus might not be
fully representative of actual predator-prey scenarios. All
models are wrong, yet some are useful: we believe that our
experiments provide insight into the advantages of intention
perception in software agents, and perhaps might even suggest
similar survival advantages for living organisms. Without
further research in actual predator-prey systems, however,
these suggestions remain no more than tantalizing possibilities.
Extensions to this work include using evolutionary algorithms
to evolve predator and prey strategies, rather than using hand-
designed motion algorithms. Future work to probe advantages
of intention perception in other multi-agent situations remains
ongoing.
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APPENDIX
A. The Agents

Our predators and prey have measures of hunger and
stamina to enhance realism. Hunger satiety, denoted by H,
starts at an initial value Hy, decreases by A H; every time step,
and increases by AH,,; each time they eat. Moving forward,
we will often refer to hunger satiety as simply hunger, but
note that this measure decreases over time contrary to actual
hunger, since it represents satiety (fullness). This hunger factor
is used to increase the likelihood of prey moving towards food.
Hunger has a minimal value of +AH; and any deaths that
should have resulted from starvation are accounted for after
the simulation, with the default maximum fasting interval set
at 2000 time steps. It is also important to note that one food
spawns every 70 time steps and that the amount of food is
capped at the initial number of prey.

Stamina, denoted by S, starts at an initial value S, and
changes according to how fast agents move with respect to
their threshold speed Vipresh:

(1)

AS = Sueight - (Vt’”esh_v)

‘/thresh

where Syeight is a value that varies depending on whether the
change is positive or negative and V' is the current speed.

When an agent’s stamina measure reaches their tired
stamina Sy;-e4, their speed, originally restrained by a maxi-
mum speed V,,,, becomes restrained by a tired speed Vijreq
until they restore their stamina back to Sj.
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TABLE II
HUNGER AND STAMINA CONSTANTS.

Agent Name Notation Value
Both Initial hunger satiety Hy 1.0
Prey Hunger satiety decrement Hi py 0.0005
Pred. Hunger satiety decrement Hi pq 0.0003
Both Hunger satiety increment Heat 0.5
Prey Initial stamina S0,py 1.5
Pred. Initial stamina So,pd 1.0
Both Tired stamina tired 0.2
Both Stamina weight (+) Sweight,+ 0.01
Both Stamina weight (-) weight,—  0.0025
Prey Max speed Vin,py 31.25
Pred. Max speed m,pd *
Both Threshold speed Vihresh Vi
Both Tired speed Viired Vz”

*Note: This value is a fraction of the prey max speed and varies between
simulation runs (default is 0.8 - Vi, py).

Both prey and predators decide their direction and speed
using the direction and speed probability distribution algo-
rithms as outlined by Algorithms 1 and 2 in Section III. The
specific processes for sampling direction and speed are further
detailed in Sections C and D. Note that when prey are targeted,
their speed is instead set to their maximum (restrained by
stamina). Also note that predators only sample direction and
speed when they do not see any prey. When prey become
visible, the predator randomly selects a prey with each one
having probability proportional to !/d, where d is the distance
to the prey. When a prey is targeted, the predator direction is
always towards the targeted prey and the predator’s speed is
set to the maximum it can be (restrained by stamina). Note
that predators of any fixed speed move much faster when not
faced with indecision, as the motion becomes entirely in one
direction, and thus we set the max speed to 2/3V,,,, when
they target a prey as a form of counterbalancing this effect.
At each time step when a prey is targeted, the predator has a
5% chance to reevaluate the nearby prey and choose again.

The environment is a flat square but the agents are discour-
aged from exploring all of it. The side length of the environ-
ment is £ = 250, but we limit the reasonably accessible terrain
to a circle with radius Ryeprain = 3/10 E = 75. Predators are
only allowed to target prey up to a maximum chase radius,
given by Rengse = 7/10 Rierrain = 52.5, with a growing
probability of “untargeting” the prey:

d

Puntarget = (Rchase)15

(2)
where d is the distance to the center of the environment.
Furthermore, all agents are placed within a given spawn radius
Rpawn = /10 Repase = 36.75 and are encouraged to stay
close by the direction probability distribution algorithm. Note

that we cap Pyntarge: at 1 to ensure it is a valid probability.

B. Values for Cautious Prey

To create the cautious prey, we used observed data gathered
from 100 simulations for each parameter configuration (seed),
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Fig. 4. Distribution of tracking durations under default parameters.

most of which had 20 intention-aware prey. We averaged each
prey’s number of “lock-ons” per lifespan, giving the probabil-
ity of a prey getting targeted each frame. These probabilities
are in Table III. Note that the “val” column represents the
value of the parameter of interest (with all other parameters
set to their defaults), and that the entries under the parameters
indicate the probability of a lock-on in each frame as a
percent, for that configuration. For example, when d,, = 1,
the probability is 0.00453. Note that dp,,, and dq refer to prey
and predator sight distance, respectively; np, /npq refers to
prey to predator ratio; v,q/vp, refers to speed fraction and
has parameter values in 10%’s; and 6,4 refers to the predator
sight angle and has parameter values in degrees. With this
information, we use the probability of a prey getting targeted
to determine on each frame whether the prey should think a
predator is targeting them, and if so, we choose a predator
at random and sample a duration of this fake lock-on from
an estimated distribution model. To model this distribution
of tracking durations we used nonparametric kernel density
estimation (KDE) based on observed tracking durations for
intention perception agents, with reflection around the y = 1
boundary to ensure validity of sampled points. Fig. 4 shows the
distribution of tracking durations for the default configuration.

C. Direction Probability Distribution

To explain our direction probability distribution, we must
first define our weighting system.

We use Dy(¢1,¢2) as a measure of similarity between
two angles, defined as the length of the chord between them
on a unit circle, so zero is most similar and two is most
different with the angles differing by 180°. With this, we
weight similar angles as more favorable according to our angle
weight formula:

-3
Wy(o1, p2) = <D¢(¢1,¢2) + ;) (3)



TABLE III
OBSERVED TARGETING FREQUENCIES (%).
DOTS INDICATE INAPPLICABLE PARAMETER VALUES.

val dpy dpa Opd Npy/Npd  Vpd/Vpy
1 453 .001 . 7139 .830
2 . . . .508 147
3 472 .682
4 477 .635
5 . . . 447 .606
6 303 .063 . 421 .565
7 . . . 397 525
8 371 480
9 . . . 355 399
10 . . . 334 333
11 501 282 . . 249
12 . . . . 205
13 . . . . 179
14 . . . . 170
15 . . . . 189
16 560 .400 . . 215
17 . . . . 240
18 . . . . 296
19 . . . . 374
20 . . . . 426
21 396 491 .
26 316 .568

31 295 645

36 295 .690

41 298 734

46 296 769

51 312 794 .

60 . . 371

70 . . 400

80 . . 443

90 . . 465

100 . . 487

110 . . .536

120 . . .561

For a weighing of physical proximity, we use our distance
weight formula, D,, as defined by

dsight

Dat(XlaXQ) == d

“4)

where dg;gns is the maximum distance the agent can see and
d is the Euclidean distance between the two positions X3
and X5. The sight distance of the agents is determined in
the simulation, as well as the sight angle for the predator.
The sight angle for the prey, however, is set to 360° as prey
generally have wider range of view and often use scent and
hearing for greater proximity awareness.

To determine the probability distribution that an agent uses
to move, we assign probabilities to 12 bins of angles (evenly
dividing 0° and 360°) by iterating through the visible stimuli
and adding the probability increase associated with it.

For a given stimulus (i.e., food), denote by F' its corre-
sponding stimulus factor, by ¢, the favorable angle for the
stimulus (e.g., towards if food, away if a predator), and by X
the position of the stimulus. Then the probability increase for
angle ¢ of an agent at position X is given by

AP(¢) =F- W¢(¢7 ¢s) ’ Dm(X07Xs) )

except in two unique cases. In the case of adding probability
for the current angle, we forgo the distance weight component.
In the case of adding probability towards the center of the
environment, we use replace D, with

d

Dcentar (Rspawn)4 (6)
where d is the distance to the center and Rgpqun iS the
radius of the circle in which we place our agents (so that
agents do not drift too far from the central location). All of
the probabilities are then normalized and a bin is randomly
selected. We then sample a specific angle within that bin using
a uniform distribution.

All of the stimulus factors for prey and predators are given
in Table IV. Note that the prey’s center of environment factor
is not applied when it can see predators, as it should still
prioritize running away.

TABLE IV
STIMULUS FACTORS.

Agent  Stimulus Value
Prey An ordinary predator 1.5
Prey A targeting predator 6.0
Prey Food 1.5- %
Prey Center of environment 5.0
Pred. Center of environment 20.0
Both Current direction 30.0

D. Speed Probability Distribution

First we find the normalized probability of the bin selected
by the direction probability distribution algorithm, p.josen and
compute a chosen speed

‘/chosen = Pchosen * ‘/m (7)

To minimize drastic changes in speed, we average the
chosen speed with the current speed and use that as the ideal
speed Vigeq: (see Algorithm 2 in Section III).

The actual speed is chosen randomly according to a normal
distribution centered on V;4e,; With a standard deviation of
Vé”, and the absolute value is taken (to avoid “negative”
speeds). It is then capped at Vi;..q if the agent’s stamina is
less than Sy;,.q, and at V,,, otherwise.
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