
Distributed Zero-Knowledge Proofs Over Networks

Aviv Bick* Gillat Kol� Rotem Oshman�§

Abstract

Zero knowledge proofs are one of the most influential concepts in theoretical computer science. In the
seminal definition due to Goldwasser, Micali and Rackoff dating back to the 1980s, a computationally-bounded
verifier interacts with a powerful but untrusted prover, with the goal of becoming convinced that the input is
in some language. In addition to the usual requirements of completeness and soundness, in a zero knowledge
proof, we protect the prover’s knowledge: assuming the prover is honest, anything that the verifier can deduce
after interacting with the prover, it could have deduced by itself. Zero knowledge proofs have found many
applications within theoretical computer science and beyond, e.g., in cryptography, client-cloud computing,
blockchains and cryptocurrencies, electronic voting and auctions, and in the financial industry.

We define and study the notion of distributed zero knowledge proofs, reconciling the computational notion
of zero-knowledge with the communication-based paradigm of distributed graph algorithms. In our setting, a
network of verifiers interacts with an untrusted prover to decide some distributed language. As is usually the
case in distributed graph algorithms, we assume that the verifiers have local views of the network and each
only knows its neighbors. The prover, on the other hand, is assumed to know the entire network graph, as
well as any input that the verifier may possess. As in the computational centralized setting, the protocol we
design should protect this knowledge. In particular, due to the dual role of the underlying graph in distributed
graph algorithms, serving as both the communication topology and the input to the problem, our protocol
must protect the graph itself.

We construct communication-efficient distributed zero knowledge proofs for two central problems: the
3-coloring problem, one of the poster children of computational zero-knowledge, and for the spanning-tree
verification problem, a fundamental building block for designing graph algorithms. We also give a general
scheme for converting proof labeling-schemes to distributed zero-knowledge protocols with related parameters.
Our protocols combine ideas from computational complexity, distributed computing, and cryptography.

1 Introduction

In the classical setting of interactive proofs, an efficient (polynomial-time) verifier interacts with a computationally
unbounded but untrusted prover, in order to verify a claim of the form “x ∈ L” [20] (see also [2]). The interaction
of the verifier and the prover is said to be zero knowledge if, whenever the prover follows the protocol, the verifier
does not gain any knowledge from the communication, aside from the validity of the claim x ∈ L. Zero-knowledge
protocols were shown to be extremely strong: virtually any language L that has an interactive proof system
(that is, any language L ∈ IP = PSPACE [37, 31]) has a zero-knowledge proof system that is (computationally)
zero-knowledge (CZK = IP) [5].

Zero-knowledge proofs were the original motivation for the introduction of interactive proofs [20], and
have since found many applications within theoretical computer science and beyond, including applications to
cryptography (e.g., enforcing truthful behavior in cryptographic protocols, constructing identification schemes),
cloud computing and delegation, blockchains and cryptocurrencies (e.g., private smart contracts), electronic voting
and auctions (e.g., allowing participants to verify that their vote was counted, without revealing anything else to
them), and in the financial industry (e.g., to help banks protect their confidential data while meeting regulatory
requirements).

*Blavatnik School of Computer Science, Tel Aviv University.
�Computer Science Department, Princeton University. Supported by an Alfred P. Sloan Fellowship, the National Science

Foundation CAREER award CCF-1750443, and by the E. Lawrence Keyes Jr. / Emerson Electric Co. Award.
�Blavatnik School of Computer Science, Tel Aviv University. Research funded by the Israel Science Foundation, Grant No.

2801/20, and also supported by Len Blavatnik and the Blavatnik Family foundation.
§This work was funded by BSF grant no. 0603808692.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2426

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



Defining (lack of) knowledge. Zero-knowledge protocols aim to protect the prover’s “knowledge”.
Although the prover and the verifier have the same information (namely, they both know the language L and the
element x), the prover may have more “knowledge”, stemming from its greater computational power. Consider,
for example, the scenario where the prover wishes to convince the verifier that the graph G is 3-colorable. Since
the prover is computationally unbounded, if G is indeed 3-colorable, the prover can simply compute a proper
coloring (the “NP-witness”) and give it to the verifier; the verifier is then able to verify that the coloring is proper
in polynomial time. This näıve solution is not considered zero-knowledge, because the verifier learns a proper
coloring of the graph. But what if instead of fully learning a proper coloring, the verifier only learns something
about the proper colorings of the graph, for example, that some large set S of potential colorings does not contain
a proper coloring? What constitutes “knowledge” or “learning”?

The brilliant classical definition of zero-knowledge, due to [20], asserts that the verifier learns nothing from the
prover if the verifier is able to simulate its conversation with the prover by itself (i.e., without actually interacting
with the prover). More formally, an interactive proof is zero-knowledge if there exists an efficient (polynomial-
time) algorithm, called a simulator, such that for any input x ∈ L, running the simulator on x produces an
output that has the same distribution as the verifier’s conversation with the prover on the input x. According to
this definition, ruling out a set S of polynomially-many colorings does not count as new knowledge, because the
verifier could have done it by itself (recall that the verifier is polynomial-time); but if S is of size, say, 2

√
n, then

ruling out S may count as knowledge.

1.1 Defining distributed zero-knowledge. Our goal is to adapt the classical centralized definition of zero-
knowledge to the distributed network setting. The starting point for our work is the recently introduced framework
of interactive distributed proofs [26] (see also [33]), which adapts the notion of interactive proofs to the distributed
setting, and follows a long line of work on distributed non-interactive proofs [30, 29, 27, 28, 36, 4, 21, 35, 10,
15, 38, 14]. In this framework, a network of verifiers, each of which holds part of the input and only knows its
neighbors, interacts with an untrusted prover that knows the entire network and all inputs, in order to compute
a function of the network and inputs. The scarce resource here is communication; no computational limitations
on the communicating parties are assumed (although computationally-efficient protocols are preferred).

In this work, we seek to protect the prover’s additional “knowledge” in these interactive distributed proofs
from the verifiers. Such zero-knowledge distributed proofs can allow central entities holding massive amounts of
data — such as Facebook, knowing the topology of a social network, or 23andMe and other genetic companies
having large graphs describing gene propagation — to convince their clients of some truth about the network,
without revealing their “knowledge” about the network.

We emphasize that in distributed graph algorithms, the network graph often serves a dual role: it is both the
communication topology and part of the input to the problem we want to solve (e.g., finding a minimum-weight
spanning tree over the network graph, or finding a coloring of the graph). Initially, each node only knows the
network size and its own neighbors and input (in some settings, e.g. [30], nodes may know even less), and the
prover is the only entity that knows the entire graph topology and input. This global view of the network (and
inputs) is the prover’s advantage over the nodes; this is the “knowledge” we wish to protect.

For example, in many distributed proofs in the literature, the prover is asked to compute a spanning tree of
the network, and give each node its parent in the tree. The nodes verify that the spanning tree is valid, and they
can then verify sums of their inputs and other functions by checking them “up the tree”, with the prover giving
each node the partial value corresponding to its subtree [30]. However, this style of proof can reveal “global”
information about the graph: e.g., in the spanning-tree based proofs in [30], each node is given its distance from
the root of the tree (used to verify cycle-freeness of the “tree” given by the prover), providing the node with a
lower bound on the diameter of the graph.

Towards a distributed definition. As in the case of centralized zero-knowledge proofs, for an interactive
distributed proof to be considered zero-knowledge, the network should be able to simulate its interaction with
the prover by itself, on any input in the language. Only information that cannot be efficiently computed by the
network is considered “knowledge”.

What does it mean that the network “can efficiently compute something by itself”? In the computational
setting, efficient computations are typically modeled as the complexity class P. In the distributed world, efficiency
can be modeled in many different ways, depending on the context and the physical layout of the network.
Therefore, our definitions are parameterized by a class A of distributed algorithms that we consider “efficient”

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2427

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



(e.g., 3-round CONGEST algorithms).
Inspired by the centralized definition of interactive proofs, in a distributed interactive proof Π, we allow the

verifiers to:

(1) Communicate back-and-forth with the prover, and then

(2) Run a verification algorithm A from the class A, to decide whether to accept or reject the proof.

In order for a protocol Π to be considered distributed zero-knowledge, the network nodes should be able to compute
their view of the protocol Π by themselves: the view of each node consists of the node’s randomness and input,
and all the messages it sent or received from the prover and from other nodes when executing Π. Thus, there
should exist an efficient distributed algorithm S that outputs at each node v a view that, as a random variable,
has exactly the same distribution as the transcript that v would observe when interacting with the real prover.
This means that whatever node v observed when interacting with the prover, it could have computed by itself
using an efficient distributed algorithm. As in the case of centralized zero-knowledge, the algorithm S is called
the simulator.

We emphasize that running the simulator — a distributed algorithm from the class A — may allow nodes to
acquire information that they did not initially have: for example, a node can learn its neighbors’ inputs. However,
we do not consider this to be knowledge, because it can be computed by an efficient distributed algorithm; just
as in the classical definition, an efficient verifier is able to learn something about the input (for example, ruling
out a polynomially-sized family of 3-colorings), and this is not considered to be knowledge.

We also consider coalitions of nodes: what if after interacting with the prover, k > 1 nodes cooperate to
try to gain knowledge by sharing their views with one another? Intuitively, to ensure that a proof system Π is
zero-knowledge against coalitions of k nodes, the simulator S should be such that for every subset V ′ ⊆ V of k or
fewer nodes, the joint distribution of the outputs of the nodes in V ′ under S is identical to the joint distribution
of the views of the nodes in V ′ under Π.

Our definition of distributed zero-knowledge. In light of the discussion above, we define distributed
zero-knowledge as follows (see Section 2 for a formal definition): fix n ∈ N and a domain X from which the nodes’
inputs are drawn. An annotated graph is a pair (G = (V,E), I), where I : V → X assigns an input to each node.
A distributed language is a family of annotated graphs L ⊆ G ×Xn, where G is the set of all graphs on n vertices.

Let A be a non-empty set of distributed algorithms (our class of “efficient” algorithms). We first define the
notion of A-interactive distributed proofs, which generalize the notion of interactive distributed proofs from [26] by
allowing the verifiers to run any algorithm from A; then we define what it means for an A-interactive distributed
proof to be zero-knowledge.

An interactive distributed proof system [26] for a distributed language L consists of a set of algorithms, one
for the prover and one for each node. To verify a claim of the form “(G, I) ∈ L”, the prover interacts with each
of the nodes over a series of synchronous rounds, and finally, each node decides whether to accept or reject. We
require that if (G, I) ∈ L, then with high probability (say 2/3) all the nodes accept; and if (G, I) 6∈ L, with high
probability at least one node rejects. We define an A-interactive distributed proof for a distributed language L to
be as above, except that after the communication with the prover ends (and before they decide whether to accept
to reject), we allow the nodes to run any protocol from the class A to jointly verify the prover’s claims.

Next, let us define distributed zero-knowledge. Let r, b, k ∈ N, s < c ∈ [0, 1], A 6= ∅. The class dZK[r, `,A, k]
is defined as the set of distributed languages L that have an A-interactive distributed proof system Π, such that

1. In Π, the prover interacts with each node over r communication rounds, and in each round, the prover
exchanges ` bits with the node.

2. In addition, Π satisfies the following distributed zero-knowledge property: there exists a simulator protocol
S ∈ A such that for every (G, I) ∈ L, and for every coalition of nodes V ′ ⊆ V of size |V ′| ≤ k, it holds that

(outS(G, I))V ′ = (VIEW(Π, G, I))V ′ .

Here, the equality sign denotes equality between distributions, (outS(G, I))V ′ is the joint distribution over the
outputs of all nodes v ∈ V ′ on an execution of the simulator S on (G, I), and (VIEW(Π, G, I))V ′ is the joint
distribution over the views of all nodes v ∈ V ′ at the end of the execution of the protocol Π on (G, I).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2428

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



Strong distributed zero-knowledge. As we explained above, in a distributed zero-knowledge proof we are
concerned with protecting the prover’s global view of the network and inputs; whatever an efficient distributed
algorithm (from the class A) can compute by itself is not considered “knowledge”. However, in some cases we
may wish to impose an even stronger requirement, and ask that nodes learn nothing they did not initially know.
This corresponds to weakening the simulator: while the verifiers will still use a protocol from the class A to
verify the proof, the simulator S should now be a zero-round protocol, i.e., a protocol that does not communicate
at all, where each node simulates its view completely by itself. We call this stronger notion strong distributed
zero-knowledge, and denote it by dSZK[r, `,A, k].

While our notion of distributed zero knowledge is meant to protect the prover’s knowledge from the network
nodes, à la centralized zero knowledge, strong zero knowledge protects the knowledge of the prover and of all
the nodes in the network from node v, so that v learns nothing it did not already know,1 à la secure multi-party
computation (see Section 1.4 for an additional discussion).

Distributed knowledge as a continuum. We mention that we derive the definition of both dZK and
dSZK as special cases of the more general definition of distributed knowledge, denoted dK[r, `,AV ,AS , k]. The
definition of dK replaces the single class A of “efficient” protocols with two classes, AV and AS : we allow the
nodes to run any protocol from AV to verify the prover’s claims, and to run any protocol from AS as a simulator
(see Section 2 for a formal definition). We view AV as the “real” or the “physical” capability of the network,
the set of protocols that the nodes can actually carry out, and we view AS as a set of protocols that reveal little
knowledge.

The definition of dZK is derived from that of dK by taking AV = AS . In this case, anything that the network
nodes can deduce from the interaction with the prover is within their physical power to calculate. This means that
the “extra” knowledge of the prover is protected. (In fact, we view any setting in which AV is at least as powerful
as AS (i.e., AS ⊆ AV ) as protecting the prover’s knowledge.) The definition of dSZK is obtained by taking this
to the extreme, and setting AS to be the class of zero-round, no-communication protocols. Note, however, that
the definition of dK allows us to view the protection of the knowledge of other nodes as a continuum, and we can
choose to protect the nodes’ knowledge only partially by taking AS to be a larger subset of AV .

By taking AS to be more powerful than AV in the definition of dK, we get other interesting classes that
are not zero knowledge per se, but do admit some bound on the knowledge they reveal: by interacting with the
prover, the nodes cannot learn more than what they could have deduced had they been able to physically run
protocols from AV .2

1.2 Motivating example: 2-colorability vs. 3-colorability. To get a feel for our new definitions, we next
explain why the “natural” distributed proof for verifying 2-colorability is, in fact, distributed zero-knowledge,
while the “natural” proof for 3-colorability is not.

Before diving into the distributed setting, recall that as a computational problem, 3-colorability is an NP-
complete problem, and was one of the early examples studied in the context of centralized zero-knowledge: based
on cryptographic assumptions, [19] gave a zero-knowledge protocol for 3-colorability, and thus for all of NP. In
contrast, the 2-colorability (bipartiteness) problem is in P, and thus has a trivial zero knowledge proof, where the
verifier computes the answer without even consulting the prover. In the distributed setting, however, 2-colorability
is a very hard problem: nodes must be able to distinguish between odd and even cycles of length Θ(n), which
requires Ω(n) communication rounds.

2-colorability. Some distributed proofs are naturally zero-knowledge, or can easily be made so. For example,
consider the natural interactive distributed proof for 2-colorability: if the graph is indeed 2-colorable, the honest
prover computes a legal 2-coloring, gives each node v its color cv ∈ {0, 1}, and every node verifies that its neighbors
u ∈ N(v) all have cu 6= cv. This proof can be made strong distributed zero-knowledge by having the prover apply
a random permutation to the colors {0, 1} before giving them to the nodes: with probability 1/2 the color names
remain unchanged, and with probability 1/2 we swap color 0 with color 1 everywhere in the graph. With this
minor modification, even a zero-communication simulator can easily compute the view of a given node v in a

1This is the case for coalitions of size k = 1. In general, distributed strong zero knowledge protects the knowledge of the prover
and all the nodes not in a coalition from a coalition.

2An analogue in the centralize setting is, for example, allowing the zero-knowledge simulator to be quasi− P instead of P, while the
verifier still works in P. In this setting, we can say that the verifier, whose “real” power is P, cannot gain more from the interaction
than if it were able to run quasi− P algorithms.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2429

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



Figure 1: Example of non-trivial information that a node learns in the natural 3-colorability proof: the rightmost
node (shown in bold) can distinguish between these two graphs by comparing its neighbors’ colors. The figure
depicts the only possible 3-coloring for each graph, up to permuting the color names.

2-colorable graph: node v receives from the prover a uniformly random color cv ∈ {0, 1}, and from each neighbor
u 6∈ N(v) it receives the color 1− cv.

3-colorability. In contrast to 2-colorability, the natural interactive distributed proof for 3-colorability is
not zero-knowledge, nor can it be made zero-knowledge by simply shuffling the names of the colors at random.
Consider the distributed proof for 3-colorability where the prover gives each node v ∈ V its color cv ∈ {0, 1, 2},
and each node v sends cv to its neighbors and checks that they received a different color than cv. Now that we
have three colors rather than two, a node can learn non-trivial information about the graph by comparing the
colors of its neighbors, even if the prover randomly permutes the color names; for example, a node can learn that
a specific pair of its neighbors have the same color.

Fig. 1 shows two graphs where the rightmost node (shown in bold) has the same initial view: in both graphs
it has two neighbors and is given the same ID (note that the numbers in the figure indicate colors, not IDs).
In the graph on the left, both neighbors of the rightmost node will always have different colors, under any legal
3-coloring; in the graph on the right, the two neighbors will always have the same color. Therefore, if nodes tell
one another their colors, the rightmost node is able to distinguish the two graphs, even though they are identical
up to distance Θ(n) from it. It follows that for any reasonably “local” or “efficient” class A, this natural proof
for 3-colorability is not distributed zero-knowledge, and it is certainly not strong distributed zero-knowledge. We
can overcome this difficulty by constructing a dSZK proof where the prover does give the nodes their colors, but
they verify that the coloring is proper without directly sending their colors to one another (see Section 3).

We note, however, that the approach above, where the prover gives nodes their colors in some legal 3-coloring,
cannot be used to obtain coalition-resilient dZK protocols. In fact, the example from Fig. 1 demonstrates that
in any distributed proof that is resilient to coalitions of size at least 2, if the prover gives the nodes their colors,
then the proof can only have a highly inefficient simulator, which runs in Ω(n) rounds. The reason is that if the
two neighbors of the rightmost node in Fig. 1 collude, they can distinguish between the two graphs shown in the
figure by comparing their colors. We see that to handle coalitions, the prover should not even tell a node its own
color; instead, we will split the color of a node between nearby nodes using secret-sharing. The challenge now
comes from deciding which nodes will receive shares for which nodes’ colors, and how these nodes should verify
that the coloring is proper, without requiring too much communication or disclosing non-local information about
the graph.

1.3 Our results. In this paper we adopt the popular CONGEST model of distributed network algorithms,
and model the class of “efficient” protocols by A = C(r′, b), the class of CONGEST algorithms that run for r′

synchronized rounds and send b bits on every edge in each round. Our goal is to minimize both r′, the “locality”
of the algorithm, and b, its communication, as these two parameters govern the information that algorithms from
the class C(r′, b) can collect about the annotated network. In addition, we would like to minimize the number of
communication rounds with the prover and the number of bits that are exchanged with the prover, because the
prover is an external entity, and interacting with it may be expensive.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2430

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



1.3.1 Our constructions. We give the following constructions for distributed zero-knowledge proofs.
dSZK for 3-colorability. While Section 1.2 shows that the näıve distributed proof for 3-colorability is not

zero-knowledge, in Section 3 we show that there is a relatively simple distributed strong zero-knowledge proof for
this problem. Our protocol is inspired by the seminal graph non-isomorphism protocol of [19]: the prover gives
each node its color in a randomly-permuted 3-coloring, but instead of sending their colors directly to one another,
every pair of neighboring nodes challenge the prover with a question that it can only reliably answer correctly if
it gave them different colors.

Theorem 1.1. 3-colorability ∈ dSZK[3, O(∆), C(1, O(1)), 1].

Here, ∆ is the maximum degree in the graph (which may not be known to the nodes in advance). In our proof,
each node u actually sends O(deg(u)) bits to the prover. It is an intriguing open question whether there is a dZK
proof for 3-colorability where the total number of bits exchanged with the prover is o(|E|).

dZK for spanning-tree verification. One of the most central problems in distributed computing is to
construct or to verify a spanning tree of the network. In the verification version, every node v is given a parent
p(v), and we wish to verify that the edges {{v, p(v)} : v ∈ V } indeed form a spanning tree. We show that
the spanning-tree verification problem, STVer , admits a distributed zero-knowledge proof with essentially no
overhead compared to the non-interactive, non-zero-knowledge version of the proof: it is known that a PLS for
STVer requires Ω(log n) bits [30, 21], and our dZK proof achieves the same.

Theorem 1.2. STVer ∈ dZK[1, O(log n), C(1, O(log n)), 1].

We believe that the key to the efficiency of our proof is that the input to spanning-tree verification already
induces some sparse structure over the graph topology, which, since it is part of the input, is not considered
“knowledge we need to protect”. Our protocol works by computing linear shares for the size of each node’s
subtree, carefully partitioning the shares between the node and its children, and homomorphically computing
sums over the shares to verify that the tree contains no cycles and spans the network. See Section 4 for the
details.

A general compiler. While the construction in Theorem 1.1, 1.2 are simple and and achieve good
parameters, they only work against a single adversary (i.e., k = 1). However, we show that for every distributed
language, it is possible to protect the prover’s knowledge against larger coalitions: we give a compiler that takes
a proof labeling-scheme (PLS) [30] and converts it into a distributed zero-knowledge proof, whose parameters are
related to the length of the PLS and the size of the circuit describing it. A PLS is a particularly simple form of
distributed proof, where the prover assigns each node a label, and the nodes then send one another their labels,
and decide whether to accept or reject. (We mention that while for simplicity we state our results only for PLS,
similar claims can be proved for all interactive distributed proofs.)

Our compiler is more involved, and it is based on fully-linear PCPs [8]. It was already shown in [8] that fully-
linear PCPs can form the basis for a form of distributed zero-knowledge, but in [8] the communication topology
was the complete graph, and there was no need to protect it. In our compiler, the prover distributes linear shares
for each node’s label in the PLS, as well as for a fully-linear PCP showing that the node would accept this label
and its neighbors’ labels, among k+1 nodes in the node’s vicinity. The nodes then cooperate to collect the shares
required to verify, for each v ∈ V , that v would accept.

The challenge on the distributed side is to choose an assignment of the shares of each node to other nodes
in its vicinity, in a way that allows for efficient verification, and also ensures that the very assignment itself does
not reveal too much information about the graph. We remark that typical building blocks that might be used
for this purpose, such as coloring and dominating sets, cannot be used here, because computing them is known
to require learning information from a radius of Ω(log∗ n) around each node (while we would like to avoid any
dependence on n in the locality). In Section 6 we show how to assign to each node a set of k “helper nodes”
at distance at most k from itself, such that nodes can communicate with their helper nodes without causing too
much congestion, and the assignment itself can be computed in Õ(k) rounds, using messages of size O(k2 log n).
This yields the following generic compiler:

Theorem 1.3. Let L be a distributed language that admits a PLS where every node receives a label comprising `
bits from the prover, collects its neighbors’ labels, and uses a circuit of size at most s to decide whether to accept.3

3For instance, 3-colorability has a PLS where every node receives a label of ` = 2 bits, and can decide whether to accept or reject

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2431

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



Then, for every k = o(n),

L ∈ dZK[1, O(k2(∆`+ s) log n), C(Õ(k), O(k2(∆`+ s) log n)), k].

1.4 Related work. We briefly discuss prior work on distributed proofs, zero-knowledge proofs, and fully-linear
PCPs.

Interactive distributed proofs and distributed NP. As noted above, interactive distributed proofs
were recently introduced by [26] (see also [3]). They show that interaction can exponentially decrease the
communication cost compared to a non-interactive prover; however, some problems still retain non-trivial costs
even with interaction. The work of [33] constructs a general scheme for transforming any interactive proof with
a central verifier into a distributed interactive protocol, giving an excellent example as to how general ideas can
be transferred between different models.

There is a large body of work studying the relative expressive power on various notions of “distributed
NP”, where a proof is distributed between a set of nodes, but there is no interaction with the prover; e.g.,
[30, 29, 27, 28, 36, 4, 21, 35, 10, 15]; we refer to the excellent surveys [38, 14] for a comprehensive overview.

Distributed zero-knowledge for a complete network. In [8], the notion of a fully-linear PCP is defined,
and is used to construct distributed zero-knowledge proofs for a setting where all parties communicate with one
another over private channels. The definition of zero-knowledge adopted in [8] is similar to secure MPC, or to what
we call strong zero-knowledge with coalitions of size up to n− 1 in the current paper. We use fully-linear PCPs
in our generic compiler, in a way that is similar to their use in [8]: to verify that a node would accept its label
and its neighbors’ labels, while having the labels themselves split among k + 1 nodes using linear secret-sharing.
We emphasize that in [8], all nodes can talk to one another directly, and the input and proof are shared among
all nodes. On the other hand, our compiler is local : the information relevant to a node v is shared only to within
distance O(k) of v, and the topology of the network beyond distance O(k) is not revealed.

Secure multi-party computation over networks. Secure multi-party computation (SMPC) protocols
allow a group of parties to jointly compute a value that depends on their private inputs, without revealing
anything about their inputs, except for what is given by the computed value. There is a tremendous body of work
studying SMPC for a wide range of security notions, starting from general SMPC compilers by [39, 18, 6, 13],
which provide protocols for computing any function f(x1, . . . , xn) securely and can even tolerate large coalitions.
These general results, and many others, assume that the parties communicate through private channels, and are
designed for single-hop (clique) networks. The problem of SMPC over different multi-hop networks in various
settings were also considered, see, e.g., [17, 12, 23, 22, 9, 11, 34].

Our definition of distributed zero knowledge is incomparable (or at least not directly comparable) to the
models of SMPC over general networks studied in the literature. We assume the existence of a central “all
knowing” prover, while in the SMPC setting, no single node has all the information. However, in our setting, the
graph topology is unknown to the nodes, and each only has a local view of it. In fact, the graph is a part of the
prover’s “additional knowledge” (together with all inputs) that we wish to protect. In contrast, SMPC typically
assumes that the network is known to all nodes, and only the nodes’ inputs should be protected. We mention
that the task of hiding the underlying network was recently considered as well: [24] give some negative results
in the information-theoretic setting (which is the setting we adopt in this paper), and [32] gives a positive result
under computational assumptions.

While the problems of distributed zero knowledge and SMPC over general networks are inherently different,
they are also related: recall that our primary interest is to protect the knowledge of our prover. However, the
information given to the prover is, collectively, known to the nodes. Thus, by protecting the prover, we partially
also protect the nodes from each other. Nevertheless, the view we take in our definition of distributed zero
knowledge considers the nodes to be an alliance that cooperates in order to check the prover’s claims (by running
the algorithm A ∈ A), potentially sacrificing some of their own privacy in order to do so. Our definition of strong
distributed zero knowledge more closely echoes SMPC, as it fully protects each node’s privacy.

1.5 Discussion and open problems. In this paper we initiate the study of distributed zero-knowledge proofs
and make some first steps towards understanding their power. Our work leaves many open problems, and we
highlight a few interesting future directions.

using a linear-sized circuit.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2432

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



Lower bounds. In this paper we design distributed zero-knowledge protocols; it will be very interesting to
prove lower bounds for such protocols. For instance, can one show that any distributed zero-knowledge protocol for
3-coloring requires Ω(|E|) communication with the prover? Although showing lower bounds on the communication
required by classical zero-knowledge protocols (and related protocols that reveal no information) is a notoriously
hard open problem, it may be much more feasible in the distributed setting, because no single node knows the
entire input.

It is also an interesting problem to separate distributed zero-knowledge from strong distributed zero-knowledge
in terms of their communication cost, for reasonable classesA of distributed algorithms, such as the one we consider
here.

Cheating verifiers. Our definition of distributed zero knowledge corresponds to the classical definition of
perfect zero-knowledge with an honest-but-curious verifier. Many other variants of zero-knowledge proofs were
studied in the literature, most notably the model of cheating verifiers: while here we assume that the verifiers
always follow the protocol, a cheating (or malicious) verifier may deviate from the protocol in order to extract
knowledge from the prover. Our protocols are not zero-knowledge against cheating verifiers; for example, in
Section 3 we show that in our 3-coloring protocol, a single cheating verifier can obtain non-trivial and highly
non-local information about the graph. Whether our protocols can be generalized to handle cheating verifiers is
an intriguing question.

2 Defining Distributed Zero-Knowledge

Fix a network size n ∈ N, and let V = {v1, . . . , vn} be the nodes of the network. We assume that n is known in
advance to all the network nodes.4 Let G(V ) be the set of all graphs G = (V,E). We use N(v) to denote the
neighborhood of a node v ∈ V .

Annotated graphs and distributed languages. Let X be a (possibly empty) input domain, and let
IX (V ) be the set of all assignments I : V → X of inputs to network nodes. Let Ĝ = Ĝ(V ) = G(V ) × IX (V ) be
the set of annotated graphs where each node v ∈ V receives the input I(v). We abuse the notation by implicitly
assuming that the input assignment I also specifies for each node a unique identifier from some domain {1, . . . , N},
and a port numbering. We typically conflate a node with its ID in our notation.

A distributed language is a family of annotated graphs, L ⊆ Ĝ.
Distributed interactive proofs. We model a distributed interactive proof as a protocol that runs in a

port-labeled network, where each node v ∈ V of degree d has d+ 1 ports: port 0 is used to communicate with the
prover, and ports 1, . . . , d to communicate with v’s neighbors. The nodes of the network have unique identifiers
drawn from a domain {1, . . . , N}, where N is polynomial in the network size n. Initially, each node knows only
its own identifier, its degree, its input, and the network size n, which is fixed throughout. Each network node,
as well as the prover, has private randomness, which is hidden from all other participants. Shared randomness
between the nodes, or between the nodes and the verifier, is not assumed.

A distributed interactive proof is parameterized by the number of interaction rounds with the prover (r),
the number of bits each node can send or receive from the prover in a given round (`), and the class of possible
verification protocols for the nodes (A).5 An (r, `,AV )-protocol with a prover proceeds as follows:

1. The network nodes communicate back-and-forth with each other and with the prover for r rounds, with the
prover going first. In each round, either

� The prover sends each node a message of length `, or

� Each node sends the prover a message of length `, or

� Each node sends each of its neighbors ` fresh random bits (different bits on each edge), which are not
revealed to the prover.

4It is interesting to consider networks whose size is not known in advance, but in that case a zero-knowledge protocol should also

protect the size of the network — if the nodes do not know it a-priori, they must not learn it. In fact, all of our protocols except

the spanning-tree protocol also work under the assumption that the nodes only know some loose upper bound n′ = poly(n), but for
simplicity we fix the network size throughout.

5We allow r and ` to be functions of the number of nodes (r = r(n), ` = `(n): when the distributed interactive proof is run with

a graph G over n nodes, the number of interaction rounds with the prover will be r(n), the number of bits each node can send or
receive from the prover will be `(n). We also assume that each protocol A ∈ AV can be run over any annotated graph Ĝ.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2433

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



2. Following the interaction, the nodes run a protocol A ∈ AV (the “verification” protocol), and each node
outputs either “accept” or “reject”.

(A more general definition would allow the nodes to run an algorithm from A in between every round of
communication with the prover, but for the sake of simplicity, and to separate the cost of the communication
with the prover from the cost of the network verification, we impose a more restricted structure.)

An annotated graph Ĝ is accepted if all nodes output “accept”, and otherwise Ĝ is rejected.

Let s < c ∈ [0, 1]. An (r, `,AV )c,s-distributed interactive proof system for a language L ⊆ Ĝ is an (r, `,AV )-
protocol with a prover, Π = (Prov,Ver), satisfying the following two conditions:

� Completeness: For every Ĝ ∈ L, Π accepts Ĝ with probability at least c.

� Soundness: For every Ĝ /∈ L, for any Prov?, Π? = (Prov?,Ver) rejects Ĝ with probability at least 1− s.

Throughout the paper, we fix s = 1/3, c = 1 and omit c, s from our notation, unless stated otherwise.
Views. When executing a protocol Π with a prover, the view of a node v ∈ V consists of v’s input,

randomness, and the list of all messages it received from the prover and from its neighbors over its ports. We
think of v’s view as a binary string encoded in some canonical representation. Let VIEW(Π, Ĝ) be a vector random
variable, indexed by V , distributed according to the joint distribution of the views of all the nodes v ∈ V in the
execution of Π on Ĝ.

For a distributed algorithm A, we denote by outA(Ĝ) the vector random variable indexed by V , distributed
according to the joint distribution of the views of all the nodes v ∈ V when they execute A in Ĝ.

Distributed knowledge in a network. Our definition of knowledge is parameterized by a class AS of
distributed algorithms, which captures the amount and type of information that the prover may leak, and the size
k ∈ N of the semi-honest coalition. Intuitively, we want an adversary that observes the views of up to k nodes to
learn no more than it could have learned by running an algorithm from the class AS .

Definition 2.1. (The class dK) Let r, `, k ∈ N and let AV ,AS be non-empty sets of distributed algorithms.
The class dK[r, `,AV ,AS , k] is the set of all distributed languages L, for which there exist an (r, `,AV )-distributed
interactive proof system Π = (Prov,Ver) and a simulator S ∈ AS such that for every subset U ⊆ V of size |U | = k,
we have (

outS(Ĝ)
)
U
≡
(
VIEW(Π, Ĝ)

)
U
.

Here, ”≡” denotes identity as distributions.
Distributed zero-knowledge and strong zero-knowledge. Our notions of zero-knowledge and strong

zero-knowledge are obtained from Definition 2.1 as follows:

� dZK[r, `,A, k] = dK[r, `,A,A, k], that is, the set of distributed languages for which there exists an (r, `,A)-
distributed interactive proof that has a simulator from the same class as the verifier, A.

� dSZK[r, `,A, k] = dK[r, `,A, C[0, 0], k], that is, the set of distributed languages for which there exists an
(r, `,A)-distributed interactive proof that can be simulated by a protocol that runs in 0 rounds and sends
0 bits.

We remark that for some problems, to obtain strong distributed zero-knowledge, it may be desirable to allow the
simulator the use of shared randomness among the nodes in the coalition (as in secure MPC).

The class of distributed verifiers and simulators that we consider in this work is the class CONGEST of
synchronous distributed algorithms with bounded message size. We denote by C[t, b] the family of CONGEST
algorithms that run in at most t rounds and send messages of at most b bits each. CONGEST algorithms may
use private randomness, but shared randomness is not available to the nodes.

3 Single-Adversary Strong Zero-Knowledge for 3-Colorability

In this section we give a simple protocol for 3-colorability that is strong zero-knowledge against an adversary that
can take over a single node. We ask the prover to give each node its color (as in the näıve 3-colorability protocol we

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2434

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



discussed in the introduction), but instead of directly comparing colors with its neighbors, the nodes interact with
the prover again to convince themselves that the coloring is proper, without directly comparing colors with their
neighbors. The protocol is inspired by the seminal zero knowledge proof for graph-non-isomorphism from [20].
The protocol we present here requires 3 rounds of interaction with the prover; we remark that using correlated
randomness [25] provided by the prover, and verified by the nodes using the cut-and-choose technique (which we
will use in later sections), we can also obtain a 1-round strong zero-knowledge protocol with the same message
size.

Jointly sampling a random object. Our protocol uses a symmetric mechanism that allows two nodes
u, v to agree on a uniformly random object X from some domain D: let D = {D0, . . . , DN−1}. Nodes u, v
independently choose uniformly random numbers ru, rv ∈ {0, . . . , N − 1} and send them to each other. Then
they both select the object Dr, where r = (ru + rv) mod N . In the sequel, when we say that two nodes “agree on
a uniformly random X ∈ D”, we mean that they execute this protocol to choose X.

The protocol. In our protocol, the honest prover begins by choosing a proper 3-coloring of the graph, and
then it applies a random permutation to the color names.1 Let c : V → {0, 1, 2} be the resulting 3-coloring. The
prover gives each node v its color c(v), which is uniformly random in {0, 1, 2}. Next, every pair u, v of neighboring
nodes interact with the prover to try to convince themselves that c(u) 6= c(v), without revealing their colors to
one another:

� Nodes u, v agree on a uniformly random bit b{u,v} ∈ {0, 1}. (The value of b{u,v} is kept secret from the
prover.)

� If b{u,v} = 0, nodes u, v agree on a uniformly random permutation π{u,v} of the colors {0, 1, 2}. Node u
sends π{u,v}(c(u)) to the prover, and node v sends π{u,v}(c(v)) to the prover. (The nodes do not disclose
these colors to one another.)

� If b{u,v} = 1, nodes u, v agree on a uniformly random color a{u,v} ∈ {0, 1, 2}, and both nodes send a{u,v} to
the prover.

� The prover must respond by guessing the value of b{u,v} and sending it to nodes u and v. If the prover
sends the wrong value, the nodes reject.

Every node executes this in parallel for all its ports, yielding an overall proof length of O(∆): a node u of degree
d sends the prover a list of d colors, one for each of its edges, and the prover responds with a list of d bits. Node
u accepts iff all the bits are correct (that is, they match the values u agreed on with its respective neighbors).

Completeness. Our protocol has completeness 1: suppose the prover gives the nodes a proper coloring.
Then for every edge {u, v} ∈ E, if nodes u, v chose b{u,v} = 0, the prover receives different colors, π{u,v}(c(u)) 6=
π{u,v}(c(v)), from u and from v; whereas if b{u,v} = 1 is chosen, the prover gets the same color, a{u,v}, from both
nodes. The prover is always able to distinguish these two cases and return the correct value of b{u,v}. Since this
holds for every edge, the prover can cause all nodes to accept.

Soundness. The soundness of our protocol is 1/2: suppose the graph is not 3-colorable. Then there is some
edge {u, v} ∈ E such that c(u) = c(v). In this case, regardless of whether u, v choose b{u,v} = 0 or b{u,v} = 1, the
prover receives the same uniformly random color from both nodes. Thus, the prover can only guess b{u,v} with
probability 1/2. Of course, repeating the protocol (sequentially) several times will decrease the soundness error.

Strong zero-knowledge. Our protocol is secure against a single honest adversary, as witnessed by the
following local simulator:

� Through port 0, receive a uniformly random c(u) ∈ {0, 1, 2};

� On every port i 6= 0,

– Send a random number b→i ∈ {0, 1}, and receive a random number b←i ∈ {0, 1}. Set bi = b→ ⊕ b←.

– If bi = 0, send a random number π→i ∈ {0, . . . , 5} and receive a random number π←i ∈ {0, . . . , 5}. Set
π to be the permutation on {0, 1, 2} whose index is (π→i +π←i ) mod 6 among the 6 such permutations.
On port 0, send π(c(u))

– If bi = 1, send a random number a→i ∈ {0, 1, 2} and receive a random number a←i ∈ {0, 1, 2}. Send on
port 0 the number (a→i + a←i ) mod 3.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2435

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



� Receive on port 0 the list b1, . . . , bdeg(u).

Our protocol is strong zero-knowledge against an honest-but-curious adversary, which follows the protocol
but attempts to extract information from its local view; the protocol is not secure against a malicious adversary,
which can deviate from the protocol in order to extract information from the prover. To demonstrate, we show
that a malicious adversary that takes over the rightmost node in Figure 1 can distinguish the two graphs depicted
in Figure 1 with probability at least 25/48. This is better than a random coin-toss, which means that a malicious
adversary is able to extract meaningful information about the network graph.

Let v denote the bottom node in the figure, and let u0, u1 be its two neighbors. Let c, c0, c1 denote the colors
given by the prover to nodes v, u0, u1 (respectively).

� The adversary follows the first step of the protocol truthfully, to select random values b0, b1 ∈ {0, 1} with
nodes u0, u1 (respectively). If b0 6= 0 or b1 6= 0, the adversary quits, and guesses which graph it is (from the
two depicted in Figure 1) at random.

� If b0 = b1 = 0, the adversary follows the next step to select random permutations π0, π1 with u0, u1 (resp.).
If π0 6= π1, the prover quits and guesses at random.

� Suppose the adversary has been “lucky”: b0 = b1 = 0, and π0 = π1. According to the protocol, it is now
supposed to send, for both edges, the same permuted color, π0(c) = π1(c). Instead, the adversary chooses
some other color c′ 6= π0(c) and sends it to the adversary for both edges.

� If the prover returns the same guess for b0 and b1, the adversary guesses that it is the graph on the right
(where its neighbors have the same color). Otherwise, the adversary guesses that it is the graph on the left
(where its neighbors have different colors).

We claim that the adversary has probability 25/48 of guessing the correct graph: the probability that b0 = b1 = 0
and π0 = π1 is (1/4) · (1/6) = 1/24. If this does not occur, the adversary guesses at random, and has probability
1/2 of guessing the right graph. Now assume b0 = b1 = 0 and π0 = π1, and for convenience, let us denote
π = π0 = π1. Nodes u0, uv send π(c0), π(c1) (resp.) to the prover, while node v sends a color c′ 6= π(c). We know
that the honest prover will guess “b0 = 0” iff π(c0) = c′, and “b1 = 0” iff π(c1) = c′. Therefore, if c0 = c1, the
prover will guess the same value, b0 = b1, for both edges, whereas if c0 6= c1, it will guess different values, b0 6= b1.
The adversary guesses accordingly: if the prover guesses the same value for both edges, the adversary guesses
that it is the left graph in Figure 1, and if the prover guesses different values, the adversary guesses that it is the
right graph. This guess will always be correct.

The adversary’s overall probability of guessing the correct graph is(
1− 1

24

)
· 1

2
+

1

24
· 1 = 25/48.

4 Single-Adversary Zero Knowledge Proof for Verifying a Spanning Tree

In this section we construct a zero-knowledge proof for verifying a given spanning tree. In this proof nodes will
need to communicate with their parent in the tree, and learn how many siblings they have; thus, the proof is
not strong zero-knowledge, and instead it is “plain” zero-knowledge with respect to the class A of constant-round
CONGEST algorithms.

Suppose that each node v ∈ V is given either the ID of a node pv ∈ V or ⊥, and we wish to verify that the
subgraph induced by the edges H = {{v, pv} : v ∈ V, pv 6= ⊥} is a spanning tree of the network.6 If we were not
concerned about the knowledge that verifiers acquire, we would simply ask the prover to give every node v ∈ V
the size sv ∈ N of v’s subtree; then, each node v would verify that

(4.1) sv = 1 +
∑

u:pu=v

su,

6In networks that do not have unique identifiers, we can encode the input by asking for the parent’s port rather than its actual
ID, and the protocol remains the same.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2436

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



and we also verify that at the root r we have sr = n, and at every leaf v we have sv = 1.7 We refer to (4.1) as the
consistency condition. If the consistency condition is satisfied, it guarantees that H is cycle-free, since sv < spv

for each node v, unless pv = ⊥. In addition, by verifying that any node v with pv = ⊥ has sv = n, and that any
node v that is a leaf has sv = 1, we guarantee that H is spanning. Together, H must be a spanning tree.8

In a zero-knowledge proof, we cannot afford to give sv to every node v, because this discloses non-trivial
information about the graph: e.g., if sv = 2 but node v has only one child, it learns that its child has another
neighbor other than itself; this is “distance 2 information” for v. It is not difficult to extend this example to show
that disclosing sv can reveal to v information about the network graph at distance Ω(n) from itself.

Instead of providing sv, we ask the prover to divide sv into two shares, using Shamir’s secret-sharing scheme.
Each share by itself is uniformly random and independent of sv, but from the two shares together we can
reconstruct sv. We give one share of sv to v itself, and we give the other share to all of v’s children, and also to
another node in v’s vicinity (more on this below). Then we verify consistency by computing over the shares, as
is done in secure MPC (e.g., [6]), without ever reconstructing the value of sv. One can also view this protocol
as using correlated randomness, provided by the prover, to allow the nodes to securely verify the consistency
condition without revealing their shares.

Next, we give a high-level description of the spanning tree verification protocol, followed by a detailed
description and the proof of correctness.

4.1 Overview of the protocol. We first describe a simplified version where for each v ∈ V , node v is given
one share of sv, and the other share is given to all of v’s children and also to v’s parent (if it has children and/or
a parent, respectively). This results in potentially long proofs, since nodes with high degree in the tree will need
to receive many shares; we then show how to distribute the shares more efficiently in the network, to reduce the
proof length to O(log n).

Hiding the subtree size. Let q ∈ [n, 2n] be a prime number, and let Fc
q[x] denote the univariate polynomials

of degree at most c over the field Fq, in the formal variable x.
For each node v ∈ V , the prover divides the size sv of v’s subtree into two shares, as follows: the prover

samples a line Sv = a0 + a1x ∈ F1
q[x], such that Sv(0) = a0 = sv, and a1 is uniformly random in Fq. Then it

produces the two shares Sv(1), Sv(2). Note that Sv(1) and Sv(2) by themselves are uniformly random in Fq and
independent of the secret Sv(0) = sv, but together they lie on the unique line Sv, allowing us to reconstruct Sv

and recover Sv(0) = sv. The prover gives one share of Sv to node v, and the other share to its parent and children.
If v is the root or a leaf, the prover gives v both shares of Sv, allowing v to reconstruct Sv(0) = sv and verify

that sv = n if v is the root, or that sv = 1 if v is a leaf. This does not violate the zero-knowledge property: the
honest prover always gives sr = n to the root r, and sv = 1 to a leaf v. Nodes can learn whether they are the root
or a leaf using one round of communication, by simply having each node v send pv to all its neighbors. Therefore
no “non-local information” is conveyed by allowing the root and leafs to learn sv.

In the sequel, we describe how the shares for the subtree size sv are distributed and how their consistency is
checked. To simplify the discussion, we do not discuss the root here; it is handled in the detailed version of the
protocol given in Section 4.2.

Choosing evaluation points. As we explained above, the shares of each sv are two evaluations Sv(1), Sv(2)
of a random polynomial Sv such that Sv(0) = sv. We would like node v to receive one share of sv, and the children
and parent of v to receive the other share. We have the freedom to choose whether v gets Sv(1) and its children
get Sv(2), or vice-versa, but our choice must not reveal information about the tree.

To decide which nodes will get which shares, the prover computes a 2-coloring of the tree (that is, it partitions
the tree into odd and even layers), using the colors {1, 2}. Then, as in the 2-colorability proof from Section 1.2,
the prover randomly permutes the color names, and gives each node its permuted color. The nodes verify that
their colors indeed represent a proper 2-coloring of H. The color assigned to each node determines which shares
it will receive: if v is colored 1, it will receive the share Sv(1), and its children and parent will receive the share
Sv(2); and vice-versa if v is colored 2.

7The root r knows that it is the root, because it has pr = ⊥, and leafs can learn in a single round that they are leafs, because
none of their neighbors have them as parents.

8This proof is different from the one originally given in [30], where all nodes are given the ID of the root and their distance from it.
The proof from [30] can also be adapted to obtain a zero-knowledge version, but this is more complicated, since in a zero-knowledge
proof we do not want to tell all nodes the ID of the root of the tree.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2437

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



Checking consistency of sv. For convenience, let us denote 1 = 2, 2 = 1. The prover distributes the shares
in the tree so that for each node v with children u1, . . . , u`,

� v has one share Sv(a) of sv, and one share Sui
(a) of each sui

(i = 1, . . . , `), for some a ∈ {1, 2}.

� Each child ui of v has the other share Sv(b) of sv, and the other share Sui(b) of sui , where b = a.

Let q′ ∈ [2n2, 3n2] be a prime number.9 To verify the consistency condition at node v, we would like to

evaluate the polynomial Sv(x) −
∑`

i=1 Sui
(x) at x = 0, and check that the answer is 1; since Sv(0) = sv and

Sui
(0) = sui

for each child ui, this guarantees that sv =
∑`

i=1 sui
+1, as required. However, we must carry out the

verification in a way that does not reveal sv, su1
, . . . , su`

themselves, so instead of evaluating Sv(0)−
∑`

i=1 Sui
(0)

directly, we will evaluate the polynomial

Z(x) := [Sv(x) +Xv(x)]−
∑̀
i=1

[Sui
(x) + Yui

(x)]

at x = 0, where Xv(x), Yu1
, . . . , Yu`

∈ F1
q′ are random lines such that Xv(0) =

∑`
i=1 Yui

(0). We have

Z(0) = [Sv(0) +Xv(0)]−
∑̀
i=1

[Sui
(0) + Yui

(0)] = Sv(0)−
∑̀
i=1

Sui
(0),

so verifying that Z(0) = 1 ensures consistency; the addition of the random lines Xv, Yu1 , . . . , Yu`
protects the

prover’s secrets.
To this end, we ask the prover to sample uniformly random lines Xv, Yu1

, . . . , Yu`
∈ F1

q′ [x] subject to

Xv(0) =
∑`

i=1 Yui
(0). We cannot trust that the prover will actually give us lines satisfying the constraint,

so instead, we use the cut-and-choose technique: we ask the prover for t independent copies, where t is a security
parameter. We choose one random copy, and reveal all the rest, to verify that the constraint was satisfied for all
of them (otherwise we reject). We then use the one copy that was not revealed for the remainder of the protocol.
If the prover cheats by giving us at least one copy that does not satisfy the constraint, then we will catch it with
probability at least 1− 1/t.

We evaluate Z(0) as follows:

� The prover gives Xv(a), Yu1
(a), . . . , Yu`

(a) to node v, and Xv(b), Yui
(b) to each child ui.

� Each child ui sends Sui(b) + Yui(b) to the parent v, and some child sends Sv(b) +Xv(b) as well.

� The parent v computes

Z(a) = [Sv(a) +Xv(a)]−
∑̀
i=1

[Sui
(a) + Yui

(a)]

from the shares it was given by the prover, and

Z(b) = [Sv(b) +Xv(b)]−
∑̀
i=1

[Sui
(b) + Yui

(b)]

using the information it was sent by its children. It then interpolates to find Z, and verifies that Z(0) = 1.

We note that all the values the children send to v are independent of the shares Sv(b), Su1
(b), . . . , Su`

(b), even
given all the other information v has. Thus, v learns nothing about sv, su1

, . . . , su`
, because it has only one share

for each of them.

9Our verification procedure involves modular arithmetic, which is carried out in a field of size greater than any intermediate value

we might operate on when interacting with an honest prover, allowing us to pretend that we are working over the natural numbers.
We also show that it is not possible for a cheating prover to exploit the fact that we use modular arithmetic.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2438

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



Verifying share equality across layers. For each node v, the prover is meant to give the share Sv(cv) to
v’s parent and children. The prover may try to cheat by claiming different values for Sv(cv) to different nodes. To
be very explicit, let us denote by JV Ku the value that the prover gave node u for the variable V (in our case V is
Sv(cv)); then we must ensure that v’s parent p and any child u of v received the same value, JSv(cv)Kp = JSv(cv)Ku.
However, we cannot ask p and u to send the values JSv(cv)Kp , JSv(cv)Ku to one another in order to compare them,
because the only path connecting p and u may go through v itself, and we do not want to reveal Sv(cv) to v!

Instead, we ask the prover to produce for node v and its neighbors a “one-time pad”, a uniformly random
value Mv ∈U Fq, and to give Mv to node v and its parent and children. We verify that the prover gives the same
values using the cut-and-choose technique, as we did for Xv, Yv,u above: the prover provides the nodes with t

copies,
{
M j

v

}t
j=1

. Node v chooses a uniformly random jv ∈U {1, . . . , t} and sends it to its parent and children,

who respond by sending back the values they received for
{
M j

v

}
j 6=jv

. Node v verifies that all nodes sent the same

value, ensuring that if the prover tried to cheat by giving
r{
M j

v

}t
j=1

z

u1

6=
r{
M j

v

}t
j=1

z

u2

to two neighbors u1, u2

of v, then v catches it with probability at least 1 − 1/t. Finally, we use the remaining one-time pad, M jv
v , to

encrypt Sv(cv): each node u that is either a parent or a child of v sends JSv(cv)Ku +
q
M jv

v

y
u

to v (the sum is over
Fq), and v verifies that it received the same value from all nodes that sent it.

Distributing the shares more efficiently. In the scheme we described above, the parent v was given

shares Sui
(a), Yui

(a) and one-time pads
{
M j

ui

}t
j=1

for each child ui. This requires O(∆ log n) bits from the

prover. We can distribute the shares more efficiently, and decrease the proof length to O(log n), by giving

Sui
(a), Yui

(a),
{
M j

ui

}t
j=1

to a sibling of ui instead of to the parent v, assuming ui has a sibling; if it does not,

then v has only one child, so giving v the shares for its children requires O(log n) bits. The sibling then sends

Sui
(a), Yui

(a),
{
M j

ui

}t
j=1

up to the parent, and we proceed with the verification. Essentially, this shifts the

communication burden from the prover to the edges of the tree.

4.2 Detailed protocol and correctness proof. The details for our protocol are given below. All arithmetic
is carried out in Fq. We use Children(v) = {u ∈ N(v) : pu = v} to denote v’s children in the input tree.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2439

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



Algorithm 1 Spanning Tree — Prover’s Protocol

1: Prover: Sample c ∈U {1, 2}. Next, for each v ∈ V ,

� Calculate the size sv of v’s subtree (including v itself) and its depth depthv (i.e., its distance from the
root of the tree). Let cv = (depthv + c) mod 2 + 1 be the point at which v will receive polynomial
evaluations.

� Sample Sv ∈ F1
n+1[x], a uniformly random polynomial of degree 1 over Fn+1, subject to Sv(0) = sv.

� Generate Xv =
{
Xi

v

}t
i=1
⊆ F1

q[x], and Yv,u =
{
Y i
v,u

}t
i=1
⊆ F1

q[x] where each tuple (Xi
v, Y

i
v,u1

, . . . , Y i
v,ud

)

is a tuple of uniformly random degree-1 polynomials subject to Xi
v(0) =

∑
u∈Children(v) Y

i
v,u(0).

� Generate
{
M j

v

}t
j=1
⊆ Fq, iid uniformly random values.

2: Prover −→ v:
Denote by p the parent of v in the tree (if v is not the root). The prover sends to v:

� cv,

� Sv(cv) and, if v is not the root, also Sp(cv),

� Xv(cv) =
{
Xi

v(cv)
}t
i=1

, and if v is not the root, also Xp =
{
Xi

p(cv)
}t
i=1

.

If v is not the root, and v has at least one sibling: let v0 < . . . < vd−1 be the children of p (ordered by their IDs), and
let v = vi. The prover also gives v:

� The name wv = v(i+1) mod d of the next sibling after v,

� Swv (cp),
{
Y j
p,wv

(cp)
}t
j=1

,
{
M j

wv

}t
j=1

. Here, cp = cv is the color of v’s parent in the tree (in the previously

computing 2-coloring).

Regardless of whether v is the root, if v has only one child u, the prover also gives v:

� Su(cv),
{
Y j
v,u(cv)

}t
j=1

,
{
M j

u

}t
j=1

.

If v is either the root (sv = n) or a leaf (sv = 1), the prover also gives v:

� Sv(cv).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2440

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



Algorithm 2 Spanning Tree — Verifiers’ Protocol: Checking the Tree Structure and Promises

1: Verify the 2-coloring: send the color cv ∈ {1, 2} to v’s parent and children (if any), and verify that the 2-coloring is
proper (i.e., the colors received from the parent and/or children are not cv).

2: Check whether v is a root, whether v has children, and whether v has any siblings, using two rounds of communication:
each node v sends pv to node pv (unless pv = ⊥, in which case v is a root), and the parent pv sends back the number
of neighbors u ∈ N(pv) that have pu = pv.
Let d be the degree of v, and let u0, . . . , ud−1 be the children of v, in order of their IDs.

3: Verify the ordering of siblings: if v has children, it sends to each child ui the name of its next sibling, u(i+1) mod d.
Each child verifies that this matches the value wui that it was told by the prover (if it has siblings).

4: Check the promise for Xv, Yv and Mv:

� Node v chooses a uniformly random number zv ∈U [t], and sends it to its children and parent (if any).

� Upon receiving zp from v’s parent p (if any), node v sends its parent the values:
{
Xj

p(cv)
}
j 6=zp

,
{
Y j
p,v(cv)

}
j 6=zp

,{
M j

p

}
j 6=zp

.

� Upon receiving zu from a child u (if any), node v sends u the values
{
M j

u

}
j 6=zu

: If v has only one child, then it

was given this value by the prover. If v has more than one child, then
{
M j

u

}
j 6=zu

was given to the next child u′

after u in order of IDs; node v sends zu to u′, receives back
{
M j

u

}
j 6=zu

, and forwards it to u.

� If v has children, it now has, for each child ui and j 6= zp, the values:

– Xj
v(cui) (sent by ui),

– Xj
v(cv) (provided by the prover),

– Y j
v,ui

(cv) (provided by the prover if ui is an only child, or sent by u(i−1) mod d if ui has siblings),

– Y j
v,ui

(cui) (sent by ui).

Note that cui = cp for each child ui (a 2-coloring). Node v now interpolates:

– The lines
{
Xj

v

}
j 6=zv

,

– The lines {Yv,ui}j 6=zv,i=0,...,d−1,

and verifies that Xj
v(0) =

∑d−1
i=0 Yp,ui(0) for each j 6= zv.

� If v is an inner node (not a leaf or a root), it verifies that its parent and children sent the same values for{
M j

v

}
j 6=zv

.

5: Verify share equality across layers:

� For each u ∈ N(v) that is the parent or a child of v, node v sends Mzu
u + Su(cv) to u: if u is the parent of v,

or if u is a single child of v, then v was given Mzu
u , Su(cv) by the prover; otherwise, the next sibling u′ after u

sends Mzu
u + Su(cv) up to v, and v forwards the value to u.

� If v is an inner node (not a leaf or the root), it verifies that its parent and children sent the same values for
Mzv

v + Sv(cv).

� If v is a leaf or a root, it sends Sv(cv), which it was given by the prover, to its parent or children (respectively),
who were also supposed to be given this value. The receiving nodes verify that they received the same value
from the prover.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2441

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



Algorithm 3 Spanning Tree — Verifiers’ Protocol: Checking the Consistency Condition

1: Verify the consistency condition over the subtree sizes:

� If v has a parent p, it sends it: Sp(cv) + X
zp
p (cv), and Sv(cv) + Y

zp
p,v(cv).

� If v has siblings, it sends to its parent p the share Swv (cp), which it was given by the prover.

� If v has children u0 < . . . < ud−1, it now has for each child ui the shares:

– Sv(cui) + Xzv
v (cui) (sent up by ui),

– Sv(cv) + Xzv
v (cv) (computed from the values Sv(cv), Xzv

v (cv) that v was given by the prover).

It interpolates to find the line Sv + Xzv
v . In addition, node v has the shares:

– Sui(cui) + Y zv
v,ui

(cui) (sent up by ui),

– Sui(cv) + Y zv
v,ui

(cv) (computed from the values Sui(cv), Y zv
v,ui

(cv), either sent up by a sibling of ui or given
to v directly if it has only one child).

It interpolates to find the line Sui + Y zv
v,ui

.
Node v evaluates and verifies that

[
Sv + X

zp
v

]
(0) = 1 +

d−1∑
i=0

[
Sui + Y

zp
v,ui

]
(0).

� If v is a root, the prover also gave it the share Sv(cv), in addition to Sv(cv). Node v interpolates to find the line
Sv, and verifies that Sv(0) = n.

� Similarly, if v is a leaf, it was also given the share Sv(cv). It now interpolates to find the line Sv and verifies
that Sv(0) = 1.

Completeness. In the case of an honest prover, all verification checks succeed. In particular, for each node
v the consistency condition is satisfied, and the promise Xzv

v (0) =
∑

u∈Children(v) Y
zv
v,u(0) is satisfied. Therefore,

Sv(0) + Xzv
v (0) = 1 +

∑
u∈Children(v) Su(0) + Y zv

v,u(0), as required. Finally, leafs v each have Sv(0) = 1 and the

root r has Sr(0) = n, as required.
Soundness. Consider (G, I) /∈ L. If the prover provides an incorrect 2-coloring of the subgraph induced by

the pointers in I, or if it lies about the local structure — whether a given node has children, a parent, or siblings
— it will be caught in the first steps of the verification.

If there is some node v and index i such that Xi
v(0) 6=

∑
u∈Children(v) Y

i
v,u(0), then the verifiers will catch this

with probability 1− 1/t, where t is a soundness parameter (a sufficiently large constant). Similarly, if the prover

provides
r{
M j

v

}t
j=1

z

u
6=

r{
M j

v

}t
j=1

z

v
to some nodes u, v at distance 2 in the tree, then it will be caught with

probability 1 − 1/t when the node w that neighbors both u, v in the tree requests
{
M j

v

}
j 6=zw

. Let us condition

on the event that the prover was not able to cheat in this manner without being caught. This implies that all
objects satisfy their promise, and moreover, for each share Sv(cv) that is given to more than one node, the prover
gave the same value to all nodes that receive the share — to v’s parent and children if v is an inner node, and to
v’s parent or children if v is a leaf or a root, respectively. Otherwise the prover would be caught:

� If v is an inner node, the prover would be caught by v upon receiving different values for Mzv
v +Sv(cv) from

its children and parent.

� If v is a leaf or a root, the prover would be caught by v’s parent or children (respectively) after v sends
them JSv(cv)Kv and they compare it with the value they received from the prover.

In the sequel, we simply use “Sv(a)” to denote the single value JSv(a)Ku for all nodes u ∈ V (since, as we just
said, it is the same value for all nodes).

For each node v, the prover provides shares Sv(cv) (to v itself) and Sv(cv) (to v’s parent or sibling, and also
to v itself if it is a leaf or the root). This uniquely determines a line Sv ∈ F1

q[x].
To rule out a prover that exploits the modular arithmetic over Fq to cheat, define “true subtree sizes”

{s′v}v∈V ⊆ N inductively over the height of v, with s′v = 1 if v is a leaf and s′v = 1 +
∑

u∈Children(v) s
′
u if v is not

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2442

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



a leaf. We prove by induction on the height of v that s′v = Sv(0): if v is a leaf, then Sv(0) = 1 = s′v, otherwise v
rejects, as v is able to reconstruct Sv by itself and verify that Sv(0) = 1. Now let v be a node that is not a leaf,
and suppose that for each child u ∈ Children(v) we have s′u = Su(0). In particular, Su(0) < n, because s′u is the
true size of u’s subtree, and the network contains n nodes in total.

Because node v did not reject,

Sv(0) +Xzv
v (0) 6= 1 +

∑
u∈Children(v)

(
Su(0) + Y zv

v,u(0)
)

mod q,

and because Xv, {Yv,u}u∈Children(v) satisfy Xzv
v (0) =

∑
uChildren(v) Y

zv
v,u(0) mod q, this implies that

Sv(0) = 1 +
∑

u∈Children(v)

Su(0) mod q.

Since q > n2, |Children(v)| < n, and Su(0) = s′u ≤ n for each child u, over the natural numbers we have

Sv(0) = 1 +
∑

u∈Children(v)

s′u.

Thus, by definition of s′v we have s′v = Sv(0).
We can now conclude that the input {pv}v∈V indeed forms a spanning tree: first, since for every node v with

pv = u 6= ⊥ we have Sv(0) = s′v < s′u = Su(0), the input induces a forest (there cannot be cycles). Thus, there is
some node r ∈ V that has pr = ⊥. Node r is given both Sr(1), Sr(2) by the prover, and it verifies that Sr(0) = n.
Since Sr(0) = s′r, we see that the forest is spanning, i.e., it is a spanning tree.

CONGEST (O(1), O(log n))-dZK against a single adversary. Finally, we prove that our protocol is
(C(O(1), O(log n)), 1)-dZK, by defining a simulator in the class CONGEST that runs in O(1) rounds and sends
O(log n)-bit messages, and proving that for any single node, the simulator produces a view that is identical to
the real view. Our goal is to “fill in” all the values received from either the prover of neighboring nodes, so that
the distribution of the resulting view is identical to the real proof.

The simulator at each node v begins by sending v’s parent to all neighbors. Following this step, v knows the
names of its children (i.e., the neighbors that have v as their parent). It orders the children according to their
IDs, u1 < . . . , ud, and sends to each child ui the name of the next sibling, u(i+1) mod d, or informs ui that it is an
only child. This provides each node with the local structural information that the prover is supposed to give it.
Note that this information completely determines the communication pattern of the verifier — which messages
will be sent, and when. However, the values sent still need to be “filled in” by the simulator.

The remainder of the simulation is carried out locally, without communication; The simulator flips a fair coin
in {1, 2} and sets cv to the result. It uses cv for the colors that are supposed to be sent by all the neighbors to
node v.

The simulator prepares the following random degree-1 polynomials, and “fills in” the following values the
prover is supposed to send:

� If node v is not the root or a leaf: Sv ∈U F1
n+1[x]. Node v receives from the “prover” Sv(cv).

� If node v is the root: Sv is a random polynomial in F1
n+1[x], subject to Sv[0] = n. Node v receives from the

“prover” both Sv(1) and Sv(2).

� If node v is a leaf: Sv is a random polynomial in F1
n+1[x], subject to Sv[0] = 1. Node v receives from the

“prover” both Sv(1) and Sv(2).

� Xj
v ∈U F1

q[x], for each j = 1, . . . , t. Node v receives from the “prover” Xj
v(cv) for each j.

� If v has a parent p: Sp ∈U F1
n+1[x]. Node v receives from the “prover” Sp(cv).

� If v has a parent p: Xj
p ∈U F 1

q [x] for each j = 1, . . . , n. Node v receives from the “prover” Xj
p(cv) for each

j.

� If v has a sibling, and v’s next sibling is wv = u: Su ∈U F1
n+1[x] and Y j

p,u ∈U F1
q[x] for j = 1, . . . , t.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2443

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



� If v has children, the simulator samples (but does not use yet):

–
{
Y j
v,u ∈ F1

q[x]
}
u∈Children(v),j=1,...,t

⊆ F1
q[x], iid uniform subject to the constraint that

(4.2)
∑

u∈Children(v)

Y j
v,u(0) = Xj

v(0),

for each j.

– {Su}u∈Children(v) ⊆ F1
q[x], iid uniform subject to the constraint that

(4.3) 1 +
∑

u∈Children(v)

(
Su(0) + Y j

v,u(0)
)

= Sv(0) +Xj
v(0),

for each j = 1, . . . , t.

� If v has a single child u: node v receives from the “prover” Su(cv) and
{
Y j
v,u(cv)

}t
j=1

.

� Finally, the simulator samples “one-time pads”
{
M j

u

}t
j=1

for each node u that is either v itself, or a parent

or child of v. It gives
{
M j

v

}t
j=1

to v, and if u is a single child of v, or if u is the next sibling after v, it also

gives
{
M j

u

}t
j=1

to v.

Next, we simulate the verification part of the protocol, without communication, by “filling in” values as sampled
above. Observe that above, the distribution of every value the simulator plugs in to replace communication from
the prover is the same as the distribution of the corresponding value sent by the prover in the real proof: these
are all single shares, which are independent and uniform from their respective fields (except in the case of the
root and of leafs, where we give both shares). The values not received from the prover (e.g., Sv(cv) when v is not
the root or a leaf) may not be distributed correctly.

Crucially, the following distributions are identical to the prover’s real distribution:

� The joint distribution of
{
Xj

v ,
{
Y j
v,u

}
u∈Children(v)

}t

j=1
(iid uniform subject to (4.2)),

� For each j = 1, . . . , t, the joint distribution of 1 +
∑

u∈Children(v)

(
Su + Y j

v,j

)
and Sv +Xj

v (uniform subject

to (4.3)).

The joint distribution of all these polynomials together is incorrect, as it depends on the true subtree size sv, but
this is not exposed by the simulator’s output: for each j = 1, . . . , t, the simulator exposes either the polynomials

Xj
v ,
{
Y j
v,u

}
u∈Children(v)

, or the polynomials 1 +
∑

u∈Children(v)

(
Su + Y j

v,j

)
and Sv + Xj

v , but never both for the

same value of j.
From the simulator’s output, only the following polynomials can be reconstructed:

�

{
Xj

v ,
{
Y j
v,u

}
u∈Children(v)

}
j 6=zv

, and

� Xzv
v ,
{
Y zv
v,u

}
u∈Children(v)

.

The joint distribution of these polynomials is identical to the prover’s real distribution, as they are independent
of one another and each is uniform subject to (4.2) or (4.3), respectively — both in the simulator’s distribution
and in the prover’s real distribution. All the rest of the values output by the simulator are single shares of some
polynomial for which the simulator does not output the other share, or one-time pads that are revealed to verify
the promise. These are each uniformly random, even conditioned on all the other values output by the simulator,
matching their distribution in the real proof.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2444

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



5 A Generic Compiler

In this section we describe a compiler that takes a proof labeling scheme (PLS) for some graph language L and
a coalition size k ≥ 1, and constructs an efficient dZK proof for L.

In a PLS for a language L, the prover assigns to each node v a label av ∈ {0, 1}`PLS (where `PLS is the length
of the PLS), and the nodes send their labels to their neighbors. Then, each node v applies a circuit Dv to its
input, its label, and its neighbors’ labels, to decide whether to accept or reject. As usual, the input is considered
accepted iff all nodes accept.

Our compiler takes a PLS of length `PLS and circuits of size µ, and constructs a distributed interactive proof
for L that uses one round with the prover, has a locality radius of O(k) for both the verifier and the simulator,
and uses messages of O

(
k2 (∆ + µ) + log n

)
bits.

Intuitively, similarly to Section 4, we use a form of secret-sharing to divide the label of each node u into more
than k shares. We give one share each to node u and to k nodes in u’s vicinity, called u’s helper nodes. Then, we
run a verification protocol over the shares, to check that every node would accept under the original PLS, without
ever reconstructing the labels themselves. The verification protocol relies on full-linear PCPs [8], a special type
of probabilistically-checkable proof where the verifier accesses the proof and the input only through linear queries.
As shown in [8], a fully-linear PCP can be verified even when the input is spread across many parties using a
linear secret-sharing scheme, rather than stored in one location as in a typical PCP.

5.1 Assigning helper nodes. Suppose that the prover in the PCP we wish to compile produced the labels
{av}v∈V . For each node v, we choose k helper nodes, and split v’s label av, as well as a proof that v’s circuit Dv

should accept, between v and its helper nodes (k + 1 shares). The helper nodes of v and its neighbors must then
communicate in order to verify that v would accept the labels {av} ∪ {au}u∈N(v) in the original PLS (i.e., that

the circuit Dv would output “accept” when given v’s input, and the labels of v and its neighbors).
In order for the verifier produced by our compiler to be efficient, the helper nodes of v should not be too far

from v, and communicating with them should not cause too much congestion in the network. These requirements
are captured by the following definition:

Definition 5.1. ((k, d, c, h)-helper assignment) Given k, d, c, h ∈ N, a (k, d, c, h)-helper assignment is a
collection {(Hv, Pv}v∈V , where for each v ∈ V ,

� Hv ⊆ V is a set of exactly k nodes, which we refer to as v’s helper nodes.

� Pv ⊆ (V ∗)k is a set of k paths, leading from v to each of its helper nodes.

We require:

� Bounded distance: for every v ∈ V , each path π ∈ Pv is of length at most d.

� Bounded congestion: for each edge e ∈ E, the total number of times that e occurs in all the paths in {Pv}v∈V
is at most c.

� Bounded help: no node v ∈ V is assigned as a helper node to more than h nodes, that is,
| {u ∈ V : v ∈ Hu} | ≤ h for every v ∈ V .

In our compiler, the prover constructs a helper assignment {(Hv, Pv)}v∈V , and provides each node v with (Hv, Pv).
It is important that such an assignment can be computed efficiently: even though we are not concerned with the
prover’s computational resources, the helper assignment itself may disclose information about the network; to
bound the quality and quantity of information, we must show that we can compute the helper assignment via
an efficient distributed algorithm, so that the nodes can efficiently simulate their interaction with the prover. In
Section 6 we show that a (k,O(k), O(k2), O(k))-helper assignment can be computed efficiently in CONGEST ; for
the remainder of the current section, we assume that we have an algorithm AH that computes such an assignment.

For each node v, we order the helper nodes Hv by their IDs; if Hv = {u1, . . . , uk} such that u1 < . . . < uk,

then we denote v’s helpers by {v̂i}ki=1, where v̂1 = u1, . . . , v̂k = uk. For convenience, we denote v̂0 = v.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2445

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



5.2 Fully-linear PCPs. In the protocol produced by our compiler, the prover must convince each node v that
the circuit Dv from the original PLS would output “accept” when given v’s input, the label of v, and the labels of
v’s neighbors. However, the prover must do this without revealing any information about v’s inputs or the labels.
To this end, we ask the prover to provide node v and its helpers with a fully-linear PCP [8], a type of proof that
can be verified even when the input is split into many shares, without disclosing any information.

Fully-linear probabilistically checkable proofs [8]. Let F be a finite field, let L ∈ Fn be a language, and
let R ⊆ Fn × Fh be a binary relation, such that x ∈ Fn iff there exists a witness, w ∈ Fh, such that (x,w) ∈ R.

A fully-linear probabilistically checkable proof system (FLPCP) for R over F with proof length m, soundness
error ε, and query complexity ` is a pair of algorithms (PLPCP , VLPCP ) (the prover and the verifier), with the
following properties:

� For every (x,w) ∈ R, the prover PLPCP (x,w) outputs a proof π ∈ Fm.

� The verifier VLPCP consists of a query algorithm QLPCP and a decision algorithm DLPCP .

– The query algorithm QLPCP takes no input and outputs ` queries q1, . . . , q` ∈ Fm , which are
independent of x, as well as state information st ∈ {0, 1}∗.

– The decision algorithm DLPCP takes as input the state st, and the ` answers 〈(x ‖ π), q1〉, . . . , 〈(x ‖
π), q`〉 ∈ F to QLPCP ’s queries. (Here, ‖ denotes concatenation, and 〈·, ·〉 denotes the inner product.)
It outputs ”accept” or ”reject.”

We require the following properties:

� Completeness: for all (x,w) ∈ R, the verifier always accepts a valid proof:

Pr

[
DLPCP (st, 〈(x ‖ π), q1〉, . . . , 〈(x ‖ π), q`〉) = accept :

π ← PLPCP (x,w)

(st, q1, ..., q`)← QLPCP ()

]
= 1.

� Soundness: for all x∗ /∈ L, and for all “false proofs” π∗ ∈ Fm, the probability that the verifier accepts is at
most ε:

Pr

[
DLPCP (st, 〈(x ‖ π∗), q1〉, . . . , 〈(x ‖ π∗), q`〉) = accept : (st, q1, ..., q`)← QLPCP ()

]
≤ ε.

� Strong honest-verifier zero knowledge (strong HVZK): there exists a simulator SLPCP such that for all
(x,w) ∈ R, the following distributions are identical:

SLPCP () ≡
{

(q1, . . . , q`)

〈(x ‖ π), q1〉, . . . , 〈(x ‖ π), q`〉
:

π ← PLPCP (x,w)

(q1, . . . , ql)← QLPCP ()

}
.

That is, the simulator is able to sample, with no input, from the true distribution of the queries and answers
that would be observed by the verifier when interacting with the prover.

As shown in [8], FLPCPs can be used when the input (x) is shared among many parties using linear secret-
sharing; since the FLPCP uses linear queries, we can implement the queries by having each party apply them to
its own share of the input, and then adding up the results.

Here we will use a Hadamard linear PCP [1, 7], which was shown in [8] to be an FLPCP with the strong-
HVZK property above. Given an arithmetic circuit C over the field F and an input x ∈ F to the circuit, there is
a Hadamard linear PCP for the relation {(C, x) : C(x) = 0} which has proof length O(|C|2), uses 3 queries, and
has soundness error ε = O(1)/|F|.1011

10The size |C| of an arithmetic circuit C is the number of multiplication gates in the circuit.
11Strictly speaking, the Hadamard PCP we use is for the satisfiability problem of arithmetic circuits, while here we want to verify

satisfaction, C(x) = 0. However, it is easy to take a given circuit C and an input x, and produce a new circuit Cx of roughly the
same size, which is satisfiable iff C(x) = 0.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2446

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



5.3 From PLS to fully-linear PCP. Next we explain how we instantiate the FLPCP construction from [8]
in our compiler. Suppose that under the PLS we wish to compile, each node v receives a label av ∈ F`PLS .12 Let
Av = av, au1

, . . . , aud
, where each ui is the neighbor of v that v communicates with through the port numbered

i. We view Av as an element of F`PLS ·(deg(v)+1).
Under the PLS, node v decides whether to accept or reject by applying an arithmetic circuit D

deg(v)
v (I(v), Av).

We assume that an output of 0 corresponds to “accept”. Given d ∈ [n] and I ∈ X , we let Dd,I
v denote the circuit

obtained by hard-wiring the value I(v) = I into Dd
v . In other words, when node v’s input is I and its degree is

deg(v) = d, the decision output by node v under the PLS is Dd,I
v (Av) = Dd

v(I,Av).
For each v ∈ V , degree d, and input I, let Πd,I

v be an FLPCP (satisfying the Strong-HVZK property, as
explained above) for the language

Ld,I
v =

{
Av ∈ F`PLS ·(d+1) : Dd,I

v (Av) = 0
}
.

Let `FLPCP (v, d, I) be the proof length of the FLPCP. We also use `FLPCP to denote the maximum length of an
FLPCP used by any node in the annotated graph, that is, `FLPCP = maxv∈V `FLPCP (v,deg(v), I(v)).

5.4 Our protocol. In the protocol produced by our compiler, the honest prover begins by constructing a
(k,O(k), O(k2), O(k))-helper assignment, using the deterministic algorithm AH given in Section 6. It then gives
each node v its helper nodes Hv and the paths to them, Pv. The prover also informs each node v of all nodes that
v needs to help, u ∈ V such that v ∈ Hu, and provides some auxiliary information needed to route messages that
may pass through v. Throughout the protocol, whenever node v and a helper node u ∈ Hv need to communicate,
they do so by routing a message over the corresponding path in Pv.

Next, the prover computes:

� The labels {av}v∈V of the original prover from the PLS,

� For each v ∈ V , a proof πv produced using the fully-linear PCP Π
deg(v),I(v)
v , proving that D

deg(v),I(v)
v (Av) =

0.

The prover divides av and πv into k + 1 shares each,
{
aiv
}k
i=0

,
{
πi
v

}k
i=0

, using a bitwise secret-sharing scheme:

a1v, . . . , a
k+1
v ∈ F`PLS are uniformly random subject to

∑k
i=0 a

i
v = av, where the sum is taken over F`PLS , and

similarly for πv (over F`FLPCP (v,deg(v),I(v))).
For each v ∈ V and i ∈ {0, . . . , k}, the prover gives aiv and πi

v to node v̂i.
With the prover’s assistance, the nodes cooperate to verify the FLPCP, in order to ensure that each node

would accept under the original PLS. The FLPCP πv corresponding to node v is verified by node v and its helpers;
however, since node v’s decision in the PLS can depend on its neighbors’ labels, node v and its helpers must first
collect shares of the labels of N(v). The verification thus involves the following high-level steps, carried out in
parallel for all nodes v ∈ V :

(1) For each u ∈ N(v), node u and its helpers send shares of au to node v and its helpers, with each ûi sending
one share of au to v̂i.

Here it is important not to re-use the same shares a0u, . . . , a
k
u of au originally provided by the prover: for

example, if some node w serves as a helper node for k + 1 neighbors z1, . . . , zk+1 of u, and if w is the i-th

helper for zi (w = ˆ(zi)i), then w will receive k+ 1 different shares of au, potentially exposing au. Thus, node
u and its helpers prepare a scrambled version ã0,vu , . . . , ãk,vu especially for node v, and send it to node v and
its helpers.

In addition, nodes never send shares “in the clear”; we use the prover to implement “secure channels” between
each ûi and v̂i, so that intermediate nodes on the path between them learn nothing.

(2) Each helper v̂i of v prepares a share Ai
v of Av (the labels of v and its neighbors): if the neighbors of v are

u1, . . . , ud (arranged according to the port numbering of v),

Ai
v = aiv, ã

i
u1
, . . . , ãiud

.

12Typically, in proof labeling schemes, we work with F (binary labels), but here we will work with some field F whose size depends
on the soundness error we are aiming for.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2447

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



(3) Node v samples three13 random queries qv,1, qv,2, qv,3 ∈ Fdeg(v)·`PLS+`FLPCP (v,deg(v),I(v)), and sends
qv,1, qv,2, qv,3 to its helper nodes v̂1, . . . , v̂k.

(4) Each helper node v̂i computes three responses,
{
riv,j = 〈qv,j , Ai

v ‖ πi
v〉
}
j=1,2,3

, and sends riv,1, r
i
v,2, r

i
v,3 back

to v.

(5) Finally, node v computes rv,j =
∑k

i=0 r
i
v,j for each j = 1, 2, 3 (where the sum is over

Fdeg(v)·`PLS+`FLPCP (v,deg(v),I(v))), and uses the decoder of the FLPCP Π
deg(v),I(v)
v to check whether the re-

sponses rv,1, rv,2, rv,3 should be accepted; otherwise, it rejects.

We note that the queries and responses of the FLPCP can be sent “in the clear”; by themselves they convey no
information, and as shown in [8], this is true even given a share of the input.

Next we detail how the nodes implement “secure channels” with the prover’s help, and how nodes produce
scrambled version of their shares.

Sending secret messages. Suppose that node u wishes to send a message m ∈U FL to node v, using the
path u0, . . . , um, where u0 = u, um = v. The intermediate nodes on the path are allowed to learn that a message
is being sent, and they can learn the path from u to v, but not the message itself: from their perspective, m
should remain uniformly distributed in FL.

To this end, the prover provides nodes u, v with a message kit,
{
M i
}t
i=1
∈U FL, where t is a security

parameter. Each M i can essentially serve as a one-time pad to encrypt a message that will be sent from u to v.

The prover is meant to give both nodes u, v the same values for
{
M i
}t
i=1

, but of course, we cannot trust that
it does so. Therefore, we use the cut-and-choose technique: node u selects a random index i∗ ∈ [t], and sends
to node v all the other values,

{
M i
}
i 6=i∗

, over the path between the two nodes. Node v then makes sure that it

received the same values as u from the prover, otherwise it rejects. If the prover cheated by sending a different
value for at least one one-time pad M i, there is probability at least 1− 1/t that it will be caught.

Finally, node u encrypts its message using the one remaining one-time pad that was not revealed, M i∗ : node
u sends m+M i∗ (the sum, as usual, is over FL) to node v along the path between them. Node v, which knows
M i∗ , is able to decrypt the message; the intervening nodes learn nothing — they know nothing about M i∗ , so to
them, the message m+M i∗ appears uniformly random.

Scrambling the shares. For each neighbor u ∈ N(v), node v and its helpers prepare “a scrambled version”
ã0,uv , . . . , ãk,uv of the shares a0v, . . . , a

k
v of av, as follows:

� Node v prepares k + 1 shares, o0v,u, . . . , o
k
v,u, of the value 0`PLS ∈ F`PLS .

� For each i ∈ {1, . . . , k}, node v securely sends oiv,u to v̂i, as described above.

� For each i ∈ {0, . . . , k}, node v̂i sets ãi,uv = aiv + oiv,u.

The scrambled version ã0,uv , . . . , ãk,uv still satisfies

k∑
i=0

ãi,uv = av,

so it is a valid split of av into k + 1 shares. However, now we do not need to worry about helper nodes collecting
too many shares: for any collection of neighbors u1, . . . , ud ∈ N(v) and for any indices i1, . . . , id ∈ {0, . . . , k}, the

joint distribution of
{
ã
ij ,uj
v

}d

j=1
is uniformly random and independent of av, even if d ≥ k + 1. Thus, even if a

single helper node is assigned to help d ≥ k+ 1 neighbors u1, . . . , ud of v in different helper roles (indices), it will
still not learn av.

13Recall that the FLPCP we work with, the Hadamard linear PCP, uses three queries.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2448

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



5.5 Detailed description and analysis of the protocol. Below, we put all the pieces together and detail
the protocol carried out by the prover and by the verifiers.

The protocol is detailed in Algorithms 4 and 5. All sums appearing in the protocol are over the respective
fields of the summands. Whenever we say that a message is routed or sent from u to ûi or vice-versa, we mean
that the message is sent on the corresponding path from pathsu provided by the prover, with intermediate nodes
on the path using the routing information provided by the prover to forward the message along the path.

Algorithm 4 General Compiler — Communicating with the Prover

1: Prover:

� Execute the algorithm AH to compute a (k, d, c, h)-helper assignment, assigning to every node v ∈ V a
set Hv ⊆ V , together with paths pathsv ⊆ (V ∗)k, leading from v to each of its helper nodes.

� Compute the labels under the PLS. Denote v’s label by av ∈ F`PLS . Let a0v, . . . , a
k
v ∈ F`PLS be uniformly

random subject to
∑k

i=0 a
i
v = av.

� Compute the FLPCP πv for the language L
deg(v),I(v)
v , attesting that D

deg(v),I(v)
v (Av) = 0. Let

π0
v , . . . , π

k
v ∈ F`FLPCP (v,deg(v),I(v)) be uniformly random such that

∑k
i=0 π

i
v = πv.

� For each edge {u, v} ∈ E and for each i ∈ {1, . . . , k}, generate a secret-message kit of iid uniform values{
M i,j
{u,v}

}t

j=1
⊆ F`PLS that will be used to send ãi,uv from v̂i to ûi.

� For each i ∈ {1, . . . , k}, generate a secret-message kit of iid uniform values
{
M i,j

helper

}t

j=1
⊆ F`PLS that

will be used to communicate with v̂i.

2: Prover → v:

� The set of v’s helper nodes Hv along with paths pathsv ⊆ (V ∗)k to them.

� Helping information: the set of nodes u such that v ∈ Hu, and for each such node u, the index i such
that v = ûi, and the IDs of u’s neighbors, ordered by the port number through which u sends them
messages.

� Message kits: for each u such that v ∈ Hu, and for each neighbor w ∈ N(u), if v = ûi, then v receives{
M i,j

helper ,u

}t

j=1
and

{
M i,j
{u,w}

}t

j=1
.

� Routing information: for each node u ∈ V and helper u′ ∈ Hu such that v appears on the path
pu,u′ ∈ pathsu from u to u′, the IDs of the neighbors of v that appear before and after, respectively, it
on the path pu,u′ .

Complexity. The protocol requires one round of interaction with the prover — in fact, it is a Merlin-Arthur
protocol, where the prover sends a message, and then the verifiers carry out their verification with no further
interaction with the prover.

To bound the size of the messages used in the verification, recall that in an (k, d, c, h)-helper assignment, each
path is of length at most d, each node participates in at most c paths, and each node is assigned to help at most
h other nodes. Describing the helper assignment therefore requires:

� O(kd log n) bits, to encode the helper nodes Hv and paths pathsv of a given node v.

� O(kh∆ log n) bits, to tell each node which nodes it must help, and the neighborhood of each node it must
help.

� O(c log n) bits, to encode the routing information (for each path that a node participates in, the endpoints
of the path, and the previous and next hops along the path).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2449

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



Algorithm 5 General Compiler — Verification at Node v

� The nodes verify that the helper assignment and all the information associated with it are valid, by
executing the algorithm AH themselves and verifying that its output matches what the prover claimed.
This includes checking the helping and routing information, which can be done by observing AH as it
runs (see Section 6).

� Verify the message kits: for each edge {u,w} and i ∈ {1, . . . , k} such that ûi = v, if u < w, choose a

uniformly random ji{u,w} ∈ {1, . . . , t}, and send ji{u,w} and
{
M i,r
{u,w}

}
r 6=jiu,w

to ŵi. The message is first

routed from v to u, then sent on the edge {u,w}, then routed from w to ŵi.

Upon receiving a message ji{u,w},
{
N i,r
{u,w}

}
r 6=ji{u,w}

, node v verifies that it was given matching values by

the prover, i.e., that N i,r
{u,w} = M i,r

{u,w} for each r 6= ji{u,w}.

Similarly, the message kit
{
M i,j

helper ,u

}t

j=1
is verified having v choose a random jhelper ,u and send{

M i,j
helper ,u

}
j 6=jhelper,u

to u, which then checks that it received the same value from the prover.

� Prepare scrambled shares: for each u ∈ N(v), node v prepares k + 1 shares, o0v,u, . . . , o
k
v,u, of the value

0`PLS ∈ F`PLS . It routes each oiv,u + M
i,jhelper,v
helper ,v to v̂i, and node v̂i then sets ãi,uv = aiv + oiv,u (including

i = 0, i.e., node v itself).

� Send the scrambled shares: for each edge {u,w} and i ∈ {1, . . . , k} such that ûi = v, node v routes ãi,wu
to ŵi using the same path as above.

� Node v samples random queries qv,1, qv,2, qv,3 ∈ Fdeg(v)·`PLS+`FLPCP (v,deg(v),I(v)), and sends qv,1, qv,2, qv,3
to nodes v̂1, . . . , v̂k.

� Each helper node v̂i computes three responses,
{
riv,j = 〈qv,j , Ai

v ‖ πi
v〉
}
j=1,2,3

, and sends riv,1, r
i
v,2, r

i
v,3

back to v.

� Finally, node v computes rv,j =
∑k

i=0 r
i
v,j for each j = 1, 2, 3 (where the sum is over

Fdeg(v)·`PLS+`FLPCP (v,deg(v),I(v))), and uses the decoder of the FLPCP Π
deg(v),I(v)
v to check whether the

responses rv,1, rv,2, rv,3 should be accepted; otherwise, it rejects.

Taking d = O(k), c = O(k2), h = O(k), we see that O(k2 log n) bits suffice.
Next consider the shares sent and received by a node v, including those that v simply forwards along on the

path between other nodes:

� “Encrypted” scrambled shares of the form ãi,wu +M i,j
{u,w} ∈ F`PLS : there are at most c = O(k2) such shares

that v needs to forward on behalf of other nodes, for a total of O(k2`PLS) bits (treating |F| as a constant).
In addition, for each u that v helps, v needs to send one scrambled share for each neighbor of u, for a total
of O(k∆`PLS) bits.

� Queries and responses of the FLPCP: these are each of size O(∆`PLS + `FLPCP ). Node v may need to send
out or forward c = O(k2) of them, for a total of O(k2(∆`PLS + `FLPCP )) bits.

Finally, “opening” all but one value in a secret-message kit requires messages of size O(`PLS · t+ log n), and
each node may need to send out or forward c+ ∆h such messages. Since we take the security parameter t to be
a constant, this is subsumed by the costs above.

Completeness. As usual, it is not difficult to go through the protocol and verify that the honest prover
convinces all nodes to accept with probability 1; this follows from the completeness of the FLPCP.

Soundness. Following the successful local verification of the helper assignment, each node u is able to reliably
route messages to and from the nodes in Hu ∪ {v : u ∈ Hv} ∪ {u′ : u ∈ Hv, u

′ ∈ Hw, (v, w) ∈ E}. We take this as

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2450

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



a given from now on.
The prover may try to cheat, and with some small probability it will not be caught. The following bad events

each occur with probability at most 1/t:

1. For at least one pair of nodes v, u that are meant to share a secret-message kit, the prover gives different
values of the message kit to v and u: since v, u compare a random subset of t − 1 values from the kit, if
there is any value that differs, the prover will be caught with probability at least 1− 1/t.

2. Some node v and its helpers verify the FLPCP of node v using shares
{
Ai

v ‖ πi
v

}k
i=0

such that
∑k

i=0 π
i
v is

not a valid proof for
∑k

i=0A
i
v ∈ L

deg(v),I(v)
v , but the verification succeeds (the verifier of the FLPCP returns

“accept”). Since the soundness error of the FLPCP is O(1)/|F|, by choosing |F| = Ω(t) we can drive the
probability of this event down to 1/t.

If neither of these bad events occur, a graph that is not in the language will not be accepted: if (G, I) /∈ L,

then for any assignment of labels to the nodes, there is a node v ∈ V such that D
deg(v),I(v)
v (Av) 6= 0, that is,

node v rejects in the original PLS. The proof πv provided by the prover is therefore invalid (the input is not
in the language). Whenever the prover does not provide invalid message kits without being caught, the shares{
Ai

v ‖ πi
v

}k
i=0

on which node v and its helpers execute the FLPCP verification are indeed valid shares of Av ‖ πv
(all secret messages are conveyed successfully). Therefore, the verification at v will fail.

CONGEST (Õ(k), O(k2(∆`PLS + `FLPCP ) log n))-knowledge. The distributed simulator begins by
computing the helper assignment, using AH . This requires O(k log k) rounds, and messages of size O(k2 log n).
Each node then sends its neighborhood to all its helper nodes. This requires O(c∆ log n) = O(k2∆ log n) bits.
From this point on, the communication pattern — which messages are sent in the protocol and at what time —
is fixed, as it is determined solely by helper assignment, and specifically, by the paths on which the node appears
and the neighborhood of the nodes that it must help; only the values of messages sent or received by the node
remain to be filled in.

The simulator now samples all the values that are supposed to be provided to nodes by the prover, as follows:
each node v produces k + 1 shares a0v, . . . , a

k
v of the value 0 ∈ F`PLS , and k + 1 shares π0

v , . . . , π
k
v of the value

0 ∈ F`FLPCP . For each i = 1, . . . , k, node v sends aiv, π
i
v to its i-th helper node v̂i. In addition, each message kit

that is meant to be shared between two nodes u, v is sampled by the smaller of the two nodes and sent to the
other.

Finally, the simulator executes the verification protocol, using the values sampled above, and outputs the
resulting view. Note that not all values that a node gains access to during the simulator’s run are exposed by the
simulator’s output: for example, the simulator may route all the shares a0v, . . . , a

k
v through the same node u, but

u’s simulator output includes at most one share aiv.

6 Computing an Assignment of Helper Nodes

In this section we show how to compute a (k,O(k), O(k2), O(k))-helper assignment (see Definition 5.1) in Õ(k)
rounds, using messages of O(k2 log n) bits. The construction has two parts:

(1) Using a variation on Controlled-GHS [16], we partition the graph into a collection of rooted trees, such that
each rooted tree is of size at least k+ 1. We refer to these trees as fragments. We note that in contrast to the
typical application of Controlled-GHS (which is usually used to compute minimum-weight spanning trees),
here we impose no upper bound on the size or the diameter of the fragments we construct.

(2) In parallel, all nodes of the graph choose helper nodes and find paths to their helper nodes. Informally, the
idea is as follows: suppose that node v belongs to some fragment F , and let s be the size of v’s subtree in F
(including v itself).

� If s ≥ k+ 1, then v recruits k nodes from its subtree in F as its helper nodes, choosing nodes at distance
at most k from itself.

� If s < k + 1, then node v reaches upwards and asks for help from its lowest ancestor in F that has a
subtree of size at least k + 1: we know that such an ancestor exists, because F is of size at least k + 1,
and furthermore, the lowest ancestor is at distance at most k from v.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2451

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



Nodes that received help requests handle them by first trying to “matchmake” among its descendants:
if more than k descendants asked node u for help, node u partitions the requesting nodes into batches
of size Θ(k), and assigns the nodes in each batch to help the nodes in their batch. If fewer than k
descendants asked node u for help, node u simply uses its own helper nodes and assigns them to help all
the requesting nodes as well. All in all, the load added to each helper node is at most O(k).

We now describe in more detail how to construct the fragments, and how to assign helper nodes and paths
once the fragments are computed.

6.1 Constructing a forest of fragments. Throughout this section, fix a threshold L (which we will later set
to k + 1). Our goal is to partition the graph into a collection of rooted trees, called fragments, each of size at
least L.

The fragments may be very large, and they can have large diameter, because we only impose a lower bound
on the fragment size. Thus, we cannot expect nodes to know which fragment they belong to; they may not be
able to communicate across the entire fragment to agree on, e.g., a unique identifier for the fragment. Instead,
all we require is that nodes should have a pointer to their parent in the fragment, and know whether or not their
subtree is of size at least L. We call the resulting structure an L-forest :

Definition 6.1. (L-Forest) An L-forest is an assignment up : V → V ∪{⊥} of parent pointers, such that the
directed graph formed by the edges {(v, up(v)) : v ∈ V } is a collection of rooted trees, each of size at least L.

We now show how to compute an L-forest in CONGEST (O(L logL), O(log n)), for any L ≤ n. The forest is
computed using a variation on Controlled-GHS [16], starting with each node in its own singleton fragment (with
the up-pointer set to ⊥), and merging fragments until no fragments of size less than L remain. A fragment of size
< L is called small, and a fragment of size ≥ L is called large.

During the process, we maintain the following invariants:

� The up pointers whose values are not ⊥ induce a collection of rooted trees (fragments).

� Every node v stores a Boolean variable small(v), which is 1 iff the size of v’s current fragment is less than
L.

� If v belongs to a small fragment (small(v) = 1), then v also stores the ID of the root of its fragment, which
we denote by leader(v). We also let leader(F ) denote the ID of the root of fragment F .

In the sequel, we often say that small fragments “send messages” or “receive messages”, meaning that some
fragment node sends or receives the message, and all fragment nodes know that the message was sent or received.

We construct the L-forest in O(logL) steps, where in each step,

(1) Each small fragment identifies a neighboring fragment that it would like to merge with, and sends it a merge
request ;

(2) Any small fragment F that sent a merge request to a fragment F ′ is merged into F ′. The up-pointers are
modified accordingly, and we update the local variables small(v), leader(v) at all fragment nodes v ∈ F .

6.1.1 Merge requests. At the beginning of each step, each small fragment F identifies a fragment F ′ 6= F
that it would like to merge with, as follows:

(a) Primary merge requests: each v ∈ F searches for an outgoing edge ev = (v, u) where u 6∈ F , such that
either

� u’s fragment is large, or

� u’s fragment is small, and leader(v) < leader(u).

If more than one such edge exists, node v chooses ev arbitrarily from among them. Next, the fragment nodes
disseminate the set {ev}v∈F to the entire fragment using pipelining, which requires O(L) rounds.

Let eF = (v, u) be the smallest edge in {ev}v∈F , in lexicographic order. Node v sends a merge request to
node u, asking to merge with u’s fragment. This request is called a primary merge request.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2452

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



(b) In each small fragment, the fragment nodes inform one another whether or not a primary merge request was
received by any node in the fragment. This again requires O(L) rounds (convergecast to the root, which then
broadcasts the answer to all nodes). The fragment nodes then send the answer (i.e., whether or not a primary
merge request was received) on all outgoing edges of the fragment.

(c) Secondary merge requests: now consider a small fragment F that did not send or receive a primary merge
request. Then F has an outgoing edge (v, u), where v ∈ F and u 6∈ F , such that u’s fragment sent a primary
merge request (see Observation 1 below). Fragment F chooses the lexicographically-smallest such edge (v, u),
using pipelining. Node v now sends a merge request to node v along the edge (v, u), and this request is called
a secondary merge request.

Before proceeding, let us make a few simple observations about the structure of the subgraph induced by the
merge requests.

Observation 1. If F is a small fragment that did not send or receive a primary merge request in some merge
step, then there is some small fragment F ′ adjacent to F (i.e., there is an edge {v, u} such that v ∈ F and u ∈ F ′)
such that F ′ did send a primary merge request.

Proof. Since F is a small fragment, its size is smaller than n, so there is some edge {v, u} such that v ∈ F and
u 6∈ F . Let F ′ be the fragment to which u belongs. Since F was not able to send any primary merge requests, F ′

must be a small fragment, and we must have leader(F ′) < leader(F ) (otherwise F ′ would be a candidate to which
F could send a primary merge request). But this means that F ′ itself does have at least one neighboring fragment
it can send a primary merge request to — fragment F itself. Thus, F ′ sends some primary merge request.

Observation 2. Every small fragment is either the origin or the target of at least one (primary or secondary)
merge request.

Proof. From the previous observation, we see that every fragment that does not send or receive a primary merge
request is able to send a secondary merge request.

Define the fragment graph to be the directed graph whose nodes are the fragments, and containing all edges
(F, F ′) such that F sent a merge request to F ′.

Observation 3. The fragment graph contains no directed or undirected cycles,14 and each fragment has out-
degree at most 1.

Proof. Let E1, E2 be the set of undirected edges {F, F ′} such that F sent or received a primary or secondary
merge request from F ′, respectively. Each fragment has out-degree at most 1 in E1 ∪ E2, because no fragment
sends more than one merge request.

There are no cycles (directed or undirected) in E1, because large fragments do not send merge requests, and
small fragments only send primary merge requests to fragments whose leader has a larger ID. Now consider the
edges in E2. A fragment F sends a secondary merge request to F ′ only if F neither sent nor received a primary
merge request. Thus, F is not adjacent to any edges in E1. Moreover, fragment F is adjacent to exactly one
edge in E2: fragment F sends out only one secondary merge request, and is not the target of any secondary
merge requests, because it did not send a primary merge request. Thus, the degree in E1 ∪E2 of any fragment F
adjacent to some edge in E2 is exactly 1, and so adding the edges in E2 to the edges in E2 does not create any
cycles, directed or undirected.

6.1.2 Merging fragments. The mergers are performed in parallel for all fragments. A small fragment H
merges into a fragment F along an outgoing edge (v, u) (where v ∈ H,u ∈ F ) as follows:

1. First, we re-orient the tree inside H so that node v becomes the root, by having node v carry out a breadth-
first search (BFS) inside fragment H: the BFS originates at node v, and it travels along the edges of the

14We make the distinction between directed and undirected cycles because strictly speaking, a directed cycle of length 2 is not
considered an undirected cycle but rather an undirected edge.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2453

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



undirected tree that underlies v’s fragment; that is, all edges {{u,w} : up(u) = w or up(w) = u}. As the
BFS travels, nodes that receive the BFS along an edge travelled “in the wrong direction” flip the edge:
that is, if node u receives the BFS token from node w such that up(u) 6= w (but up(w) = u), node u sets
up(u) = w after u forwards the token.

2. Node v sets up(v) = u, effectively merging the fragments.

3. Node v checks whether the fragment resulting from the merger is still small. To do this, node v initiates a
BFS to depth at most L − 1, by sending out a BFS token, BFS (v, 1), which is forwarded along tree edges
in both directions (i.e., the BFS travels from node u to node w if up(u) = w or up(w) = u), increasing
the hop-count at each step (a node that receives BFS (v, d) sends to its children BFS (v, d+ 1)). The token
travels until it either hits a dead end (a node with no tree edges other than the one through which the
token was received), or has traveled to distance L− 1 from v, or L rounds have passed; the token remains
at the last node it was able to reach. For convenience, we sometimes write BFS (v) to denote a BFS token
BFS (v, d) originating at v when we do not care about the distance travelled (d).

Since multiple BFS instances may be initiated in the new fragment, nodes pipeline BFS tokens that they
receive: each node stores all BFS tokens it needs to forward, and in each round, it forwards the BFS token
with the smallest-ID source to all neighbors in the tree, except the edge through which the token was received
(and the token is then removed from the set of tokens that need to be forwarded). It is not guaranteed that
all BFS instances will be able to complete, but the BFS initiated by the smallest-ID node will complete in
L rounds.

The BFS phase is capped at L rounds, at which point each BFS token BFS (v, d) becomes a convergecast
token, CON (v, s) carrying the following value s:

� If the BFS token reached a dead end, or traveled to distance L − 1 from its source (d = L − 1), then
it converts into a convergecast token with value 1, CON (v, 1).

� Otherwise, the BFS token converts into a convergecast token with value L, CON (v, L) (signifying that
the fragment is large, which caused the BFS not to complete).

Next we begin a convergecast phase, which is again capped at L rounds, during which convergecast tokens
are sent back to their sources: a node u that previously sent a token BFS (v) to nodes w1, . . . , w` waits
to receive convergecast tokens CON (v, s1), . . . ,CON (v, s`) from w1, . . . , w`, respectively, and node u then

sends a token CON (v,max(L, 1 +
∑`

i=1 si)) along the edge from which u received BFS (v).

As in the BFS phase, nodes may receive multiple convergecast tokens that must be returned along the same
edge; we again use pipelining, with each node forwarding the convergecast token with the smallest ID first.
We say that the BFS and convergecast initiated by node v completed if node v receives a convergecast token
from all of its neighbors.

Finally, after the BFS and the convergecast phases complete, we begin a broadcast phase, where nodes
inform one another whether their current fragment is small or large. Initially, each node u sets small(u) as
follows:

� If u initiated a BFS and convergecast that completed, and received back convergecast tokens
CON (u, s1), . . . ,CON (u, s`) from all of its tree neighbors, and if furthermore we have 1+

∑`
i=1 si < L,

then u sets small(u) = 1.

� Otherwise, small(u) = 0.

Next, for L rounds, all nodes send their current small(u) value to all their tree neighbors; if a value of 1 is
received from any neighbor, node u sets small(u) = 1, and will send 1 in future rounds as well.

4. We inform the nodes of small (merged) fragments of the identity of the leader, the root of their new fragment:
any node v such that small(v) = 1 and up(v) = ⊥ sends out a message informing its fragment that it is the
new leader, and the message is forwarded down tree edges to the entire fragment, for L rounds.

The correctness of the merge step follows from the following observations.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2454

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



Observation 4. At any point in the execution, the subgraph induced by the up-pointers is a collection of rooted
trees.

Proof. By induction on the number of steps: initially all up-pointers are ⊥. Now suppose that at the beginning
of the current merge step, we indeed have a collection of rooted trees. We first change the orientation of some of
the rooted trees, which does not create cycles. Then we add up-edges corresponding to merge requests. We know
from Observation 3 that the merge requests induce an acyclic graph over the fragments, which each fragment
having out-degree 1. Thus, the underlying graph obtained after adding the up-edges corresponding to the merge
requests is a forest. Moreover, a fragment F that merges into another fragment F ′ along an edge (v, u) where
v ∈ F , u ∈ F ′ first re-orients itself so that v is the root of F ; an easy induction on the number of fragments
merged shows that the resulting merged fragment is oriented towards the root.

Observation 5. Following the merge step, each node v has small(v) = 1 iff v’s fragment (following the merger)
is small.

Proof. An easy induction on rounds shows that if node u sends a convergecast token CON (v, s) where s < L,
then s is the size of the subtree of u in the directed tree corresponding to the fragment of u and v, with all tree
edges oriented outwards away from v.

Let F be a small fragment (following the merger), and let v be the smallest node that initiates a BFS in F .
Note that at least one node in F initiates a BFS: since F is small, it was formed by the merger of at least two
small fragments, and the node that sent a merge request initiates a BFS.

During the BFS and convergecast phases, the tokens associated with v are never delayed: they are always
forwarded immediately by any node that receives them, as v has the smallest ID in the fragment (and no tokens
are received from outside the fragment — tokens are sent only along tree edges). Thus, after L rounds, the BFS
token of v is able to complete a depth-L traversal, and another L rounds suffice for the convergecast to complete.
Since the fragment is small, the count that node v receives is less than L, and so node v sets small(v) = 1 at
the beginning of the broadcast phase. Finally, since the fragment is small, the L rounds of the broadcast phase
suffice for all nodes in the fragment to learn this fact and set their small values to 1 as well.

Now suppose that F is a large fragment. We claim that all nodes v ∈ F set small(v) = 0 at the beginning
of the broadcast phase, and thus, after the broadcast phase, all nodes v will still have small(v) = 0: the only
nodes v that set small(v) = 1 are those nodes that initiated a BFS and convergecast which were able to complete,
returning a complete count of the nodes in F to v. But in this case, since F is a large fragment, the count cannot
be less than L, so v will set small(v) = 0.

This completes the description of the L-forest computation. The time required is O(L logL): wince each
fragment of size less than L is able to join with another fragment in every round, as long as there remain small
fragments, the size of the smallest fragment is at least doubled in each round. Thus, after O(logL) merge steps,
every fragment is of size at least L. Each merge step requires O(L) rounds, for a total of O(L logL) rounds.

6.2 Assigning helper nodes. Given a (k+1)-forest, we show that in O(k) additional rounds, we can construct
an (k,O(k), O(k2), O(k))-helper assignment. Our goal is to assign to each node v ∈ V a set Hv of k helper nodes,
and construct a collection of paths P connecting each v ∈ V to all its helper nodes, such that each path is of
length d = O(k), the total congestion of P is at most c = O(k2) on each edge, and no node is assigned to help
more than O(k) other nodes.

6.2.1 Computing the subtree size. The subtree of a node v is the set of v’s descendants in its fragment,
that is, the set of nodes u such that v is reachable from u by following up-pointers (including v itself). We say
that node v has a large subtree if v’s subtree is of size at least k + 1.

We begin by having each node v check whether its subtree is large or not. This is done by having every node
initiate a BFS which is sent down the tree for L = k+ 1 steps, followed by a convergecast that computes the size
of the subtree.

Formally, each node v sends a BFS token BFS (v) to its children in its fragment, and the token is forwarded
to depth at most L down the tree. Note that the token BFS (v) reaches a node u in v’s subtree after exactly
distF (u, v) rounds, where distF (u, v) denotes the distance from node u up to node v by following up-pointers. In

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2455

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



particular, since the fragment is a rooted tree, no node receives more than one BFS token in any round, and so
there is no congestion. If a BFS token reaches a leaf, it remains at that node.

After L rounds of BFS, we begin a convergecast up the tree, to compute the size of each node’s subtree. Each
BFS token converts into a convergecast token of size 1. To avoid congestion, we arrange the convergecasts in
reverse order of the distance they must travel: if node u received a token BFS (v, d), then node u will send back
a convergecast token CON (v, s) in round L− d+ 1 of the convergecast. This ensures that convergecasts pipeline
neatly up the tree, with each node needing to send at most one convergecast token CON (v, s) per round, after

receiving from its children their own tokens CON (v, s1), . . . ,CON (v, s`) and summing their sizes, s = 1+
∑`

i=1 si.
Eventually, each node v receives a convergecast counting the number of nodes at distance at most L down

the tree from v. If there are at least L = k+ 1 such nodes, then node v has a large subtree, and otherwise it does
not.

6.2.2 Assigning helpers to nodes with large subtrees. Recall that node v has a large subtree if v’s subtree
is of size at least k+ 1. All such nodes are able to recruit helper nodes from inside their own subtree, in parallel:
each node v that has a large subtree sends a BFS token to its children, which is forwarded down the tree edges
for at most k hops by the nodes that receive it. The BFS token stores the path along which it has traveled. As
above, a node u never needs to forward more than one BFS token in any given round, because there is at most
one node that initiates a BFS at any given distance up the tree from v.

After reaching depth k or a leaf, nodes start returning the BFS tokens up the tree edges, with each token
sent up carrying paths to at most k nodes: when the children w1, . . . , w` of a node u send their tokens back
up to u, node u sends up a token carrying the first ≤ k paths it finds in its children’s tokens. We arrange the
convergecasts in reverse order of the distance they must travel, as explained in Section 6.2.1. Eventually, each
originating node v receives tokens from its children, and selects a set Hv of k helper nodes together with paths
Pv of length ≤ k reaching each helper node. (This many helper nodes are guaranteed to exist for v, because its
subtree is connected and has size ≥ k + 1; thus, a BFS to depth k explores at least k nodes, excluding v.)

The size of each token sent during this phase is O(k2) bits. Also, since the BFS downward-propagation phase
takes k rounds, and nodes send at most one token per round, each node forwards a total of at most k tokens;
therefore, no node appears more than k times altogether on all paths chosen, and no node helps more than k
other nodes.

6.2.3 Nodes with small subtrees. If v has a small subtree (of size < k+ 1), then v has an ancestor u which
has a large subtree, and is at distance at most k from u: we know that the tree to which v belongs has size ≥ k+1,
because all trees in the forest have size ≥ L = k + 1. Thus, as we go up from v to the root of its tree, we will
eventually reach some node whose subtree is of size ≥ k. Let u be the first such node. The distance from v to u
is at most k, because after going up k hops, the size of the subtree of the node we reach is clearly at least k + 1.

To find helper nodes, node v sends up a request REQ(v) to node u, which is forwarded by all nodes on the path
from v to u. This requires message size O(k), because u is the lowest ancestor of v that has a large subtree; thus,
on every edge leading up to u, at most k requests are sent. Nodes that have a large subtree store all requests they
receive, and do not forward them further up the tree. Note that a node u only receives requests from descendants
at distance at most k from itself, as we explained above.

We wait for k rounds for nodes with large subtrees to collect all the requests from their descendants. Then,
each node u with a large subtree assigns helper nodes as follows:

� If u received at most k + 1 requests from its descendants, it answers each request REQ(v) by sending down
to v own helper nodes and paths, Hu and Pu, and the path from u to v. Node v then sets Hv = Hu, and it
computes Pv by preprending the path from v to u to each path in Pu. This creates paths of length at most
O(k), congestion O(k2), and each of v’s helper nodes is assigned to help at most k+ 1 additional nodes, for
a total of O(k).

� If u receives more than k + 1 requests from its descendants, it partitions the requests into batches
B1, . . . , Bt+1, such that

– For each i = 1, . . . , t we have k + 1 ≤ |Bi| ≤ 2k,

– |Bt+1| ≤ k,

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2456

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



– For each child v of u, all requests made by v and its descendants belong to the same batch.

Such a partition exists, because only nodes with small subtrees send requests to u: we can create the
partition greedily by starting with an empty batch and adding subtrees of u’s children one after the other
until the batch first reaches size at least k + 1, then moving on to a new batch and continuing in this
manner. The size of each batch thus created is at most 2k, because adding an entire small subtree to a
batch containing fewer than k + 1 requests yields a total of at most k + k = 2k requests.

For each full-sized batch Bi = {REQ(vj) | j = 1, . . . , s} where i ≤ t, k + 1 ≤ s ≤ 2k, node u defines a
helper set Hi = {v1, . . . , vk+1} comprising the first k + 1 nodes that made the requests in the batch. Node
u answers each request REQ(vj) by sending down the set Hi, together with paths from vj to the nodes of
Hi: each path goes up from vj to Bi, then down to a descendant vj′ where j′ 6= i. Each node in the batch
chooses k nodes in Hi other than itself as its helper nodes (since |Hi| = k + 1, this is possible).

The length of the paths is O(k), and the congestion is at most O(k2) as well, since we created at most
(k + 1)2 paths going through each edge from u to a child.

For the “remainder” batch Bt+1 (if it is not empty), u sends down the helper nodes H1 from the first batch
and paths to them. Once again, the length of the paths is O(k), the additional congestion is at most O(k2),
and each node is assigned to help at most k more nodes.

References

[1] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and the hardness
of approximation problems. J. ACM, 45(3):501–555, 1998.

[2] László Babai and Shlomo Moran. Arthur-merlin games: a randomized proof system, and a hierarchy of complexity
classes. Journal of Computer and System Sciences, 36(2):254–276, 1988.

[3] Alkida Balliu, Gianlorenzo D’Angelo, Pierre Fraigniaud, and Dennis Olivetti. What can be verified locally? In
STACS, volume 66, pages 8:1–8:13, 2017.

[4] Mor Baruch, Pierre Fraigniaud, and Boaz Patt-Shamir. Randomized proof-labeling schemes. In Symposium on
Principles of Distributed Computing (PODC), pages 315–324. ACM, 2015.

[5] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan H̊astad, Joe Kilian, Silvio Micali, and Phillip Rogaway.
Everything provable is provable in zero-knowledge. In Shafi Goldwasser, editor, Advances in Cryptology (CRYPTO),
volume 403, pages 37–56, 1988.

[6] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract). In Janos Simon, editor, Symposium on Theory of Computing (STOC),
pages 1–10, 1988.

[7] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Omer Paneth, and Rafail Ostrovsky. Succinct non-interactive arguments
via linear interactive proofs. In Amit Sahai, editor, Theory of Cryptography, pages 315–333, 2013.

[8] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge proofs on secret-
shared data via fully linear pcps. In CRYPTO 2019, volume 11694 of Lecture Notes in Computer Science, pages
67–97.

[9] Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. Communication locality in secure multi-party computation -
how to run sublinear algorithms in a distributed setting. In Amit Sahai, editor, Theory of Cryptography Conference
(TCC), volume 7785, pages 356–376, 2013.

[10] Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-labeling schemes. In International Colloquium on
Structural Information and Communication Complexity, pages 71–89. Springer, 2017.

[11] Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Goldwasser, Rafail Ostrovsky, and Vassilis
Zikas. The hidden graph model: Communication locality and optimal resiliency with adaptive faults. In Innovations
in Theoretical Computer (ITCS), pages 153–162, 2015.

[12] Nishanth Chandran, Juan A. Garay, and Rafail Ostrovsky. Improved fault tolerance and secure computation on
sparse networks. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G.
Spirakis, editors, International Colloquium on Automata, Languages, and Programming, (ICALP), volume 6199,
pages 249–260, 2010.

[13] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure protocols (extended abstract).
In Janos Simon, editor, Symposium on Theory of Computing (STOC), pages 11–19, 1988.

[14] Laurent Feuilloley and Pierre Fraigniaud. Survey of distributed decision. Bulletin of the EATCS, 119, 2016.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2457

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



[15] Laurent Feuilloley and Pierre Fraigniaud. Error-sensitive proof-labeling schemes. In Symposium on Distributed
Computing (DISC), pages 16:1–16:15, 2017.

[16] Juan A. Garay, Shay Kutten, and David Peleg. A sublinear time distributed algorithm for minimum-weight spanning
trees. SIAM Journal on Computing, 27(1):302–316, 1998.

[17] Juan A. Garay and Rafail Ostrovsky. Almost-everywhere secure computation. In Advances in Cryptology
(EUROCRYPT), volume 4965 of Lecture Notes in Computer Science, pages 307–323, 2008.

[18] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem for
protocols with honest majority. In Alfred V. Aho, editor, Symposium on Theory of Computing (STOC), pages
218–229, 1987.

[19] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity for all languages in
NP have zero-knowledge proof systems. Journal of the ACM (JACM), 38(3):691–729, 1991.

[20] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof systems. SIAM
Journal on Computing, 18(1):186–208, 1989.

[21] Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing. Theory of Computing, 12(1):1–33,
2016.

[22] Shai Halevi, Yuval Ishai, Abhishek Jain, Ilan Komargodski, Amit Sahai, and Eylon Yogev. Non-interactive multiparty
computation without correlated randomness. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology
(ASIACRYPT), volume 10626, pages 181–211, 2017.

[23] Shai Halevi, Yuval Ishai, Abhishek Jain, Eyal Kushilevitz, and Tal Rabin. Secure multiparty computation with
general interaction patterns. In Madhu Sudan, editor, Innovations in Theoretical Computer Science (ITCS), pages
157–168, 2016.

[24] Markus Hinkelmann and Andreas Jakoby. Communications in unknown networks: Preserving the secret of topology.
Theoretical Computer Science Journal, 384(2-3):184–200, 2007.

[25] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat Paskin-Cherniavsky. On the power of
correlated randomness in secure computation. In Theory of Cryptography (TCC), volume 7785 of Lecture Notes in
Computer Science, pages 600–620, 2013.

[26] Gillat Kol, Rotem Oshman, and Raghuvansh R. Saxena. Interactive distributed proofs. In Symposium on Principles
of Distributed Computing (PODC), pages 255–264, 2018.

[27] Liah Kor, Amos Korman, and David Peleg. Tight bounds for distributed minimum-weight spanning tree verification.
Theory of Computing Systems, 53(2):318–340, 2013.

[28] Janne H Korhonen and Jukka Suomela. Towards a complexity theory for the congested clique. In Symposium on
Distributed Computing (DISC), pages 55:1–55:3, 2017.

[29] Amos Korman and Shay Kutten. Distributed verification of minimum spanning trees. Distributed Computing,
20(4):253–266, 2007.

[30] Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Computing, 22:215–233, 2010.
[31] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for interactive proof systems.

Journal of the ACM (JACM), 39(4):859–868, October 1992.
[32] Tal Moran, Ilan Orlov, and Silas Richelson. Topology-hiding computation. In Theory of Cryptography Conference

(TCC), volume 9014 of Lecture Notes in Computer Science, pages 159–181, 2015.
[33] Moni Naor, Merav Parter, and Eylon Yogev. The power of distributed verifiers in interactive proofs. In Shuchi

Chawla, editor, Symposium on Discrete Algorithms (SODA), pages 1096–115, 2020.
[34] Merav Parter and Eylon Yogev. Secure distributed computing made (nearly) optimal. In Symposium on Principles

of Distributed Computing (PODC), pages 107–116, 2019.
[35] Boaz Patt-Shamir and Mor Perry. Proof-labeling schemes: broadcast, unicast and in between. In International

Symposium on Stabilization, Safety, and Security of Distributed Systems, pages 1–17. Springer, 2017.
[36] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal Pandurangan, David Peleg,

and Roger Wattenhofer. Distributed verification and hardness of distributed approximation. SIAM Journal on
Computing, 41(5):1235–1265, 2012.

[37] Adi Shamir. IP= PSPACE. Journal of the ACM (JACM), 39(4):869–877, 1992.
[38] Jukka Suomela. Survey of local algorithms. ACM Computing Surveys (CSUR), 45(2):24, 2013.
[39] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In Foundations of Computer Science

(FOCS), pages 160–164, 1982.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2458

D
ow

nl
oa

de
d 

02
/0

1/
22

 to
 7

1.
16

8.
22

7.
19

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s


	Introduction
	Defining distributed zero-knowledge.
	Motivating example: 2-colorability vs. 3-colorability.
	Our results.
	Our constructions.

	Related work.
	Discussion and open problems.

	Defining Distributed Zero-Knowledge
	Single-Adversary Strong Zero-Knowledge for 3-Colorability
	Single-Adversary Zero Knowledge Proof for Verifying a Spanning Tree
	Overview of the protocol.
	Detailed protocol and correctness proof.

	A Generic Compiler
	Assigning helper nodes.
	Fully-linear PCPs.
	From PLS to fully-linear PCP.
	Our protocol.
	Detailed description and analysis of the protocol.

	Computing an Assignment of Helper Nodes
	Constructing a forest of fragments.
	Merge requests.
	Merging fragments.

	Assigning helper nodes.
	Computing the subtree size.
	Assigning helpers to nodes with large subtrees.
	Nodes with small subtrees.



