
Almost Optimal Super-Constant-Pass Streaming Lower Bounds
for Reachability

Lijie Chen

MIT

USA

Gillat Kol

Princeton University

USA

Dmitry Paramonov

Princeton University

USA

Raghuvansh R. Saxena

Princeton University

USA

Zhao Song

Institute for Advanced Study

USA

Huacheng Yu

Princeton University

USA

ABSTRACT
We give an almost quadratic n2−o (1) lower bound on the space

consumption of any o(
√
logn)-pass streaming algorithm solving

the (directed) s-t reachability problem. This means that any such

algorithm must essentially store the entire graph. As corollaries,

we obtain almost quadratic space lower bounds for additional

fundamental problems, including maximum matching, shortest

path, matrix rank, and linear programming.

Our main technical contribution is the definition and

construction of set hiding graphs, that may be of independent

interest: we give a general way of encoding a set S ⊆ [k] as

a directed graph with n = k1+o (1) vertices, such that deciding

whether i ∈ S boils down to deciding if ti is reachable from si , for a
specific pair of vertices (si , ti) in the graph. Furthermore, we prove

that our graph “hides” S , in the sense that no low-space streaming

algorithmwith a small number of passes can learn (almost) anything

about S .

CCS CONCEPTS
• Theory of computation → Streaming models;
Communication complexity.

KEYWORDS
Graph Streaming, Communication Complexity, Lower Bounds

ACM Reference Format:
Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao

Song, and Huacheng Yu. 2021. Almost Optimal Super-Constant-Pass

Streaming Lower Bounds for Reachability. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing (STOC ’21), June 21–25,
2021, Virtual, Italy. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3406325.3451038

1 INTRODUCTION
Graph streaming algorithms are designed to process massive graphs

and have been studied extensively over the last two decades. This

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’21, June 21–25, 2021, Virtual, Italy
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8053-9/21/06.

https://doi.org/10.1145/3406325.3451038

study is timely as huge graphs naturally arise in many modern

applications, particularly in those with structured data representing

the relationships between a set of entities (e.g., friendships in a social
network). A graph streaming algorithm is typically presented with

a sequence of graph edges in an arbitrary order and it can read

them one-by-one in the order in which they appear in the sequence.

We want the algorithm to only make one or few passes through

the edge sequence and use limited memory, ideally much smaller

than the size of the graph.

Much of the streaming literature was devoted to the study of

one-pass algorithms, and for many basic graph problems Ω(n2)
lower bounds were shown, where n is the number of vertices. This

implies that the trivial algorithm that stores the entire graph and

then uses an offline algorithm to compute the output is essentially

optimal. Such quadratic lower bounds were shown for maximum

matching and minimum vertex cover [26, 31], s-t reachability and

topological sorting [15, 26, 36], shortest path and diameter [26, 27],

minimum or maximum cut [49], maximal independent set [4, 22],

dominating set [6, 25], and many others.

Recently, the multi-pass streaming setting received quite a bit

of attention. For some graph problems, it was shown that going

from a single pass to even a few passes can reduce the memory

consumption of a streaming algorithm dramatically. For example,

semi-streaming algorithms (which are algorithms that only use Õ (n)
space and are often considered “tractable”) with few passes were

designed for various graph problems previously shown to admit

quadratic lower bounds for single pass streaming. These include a

two-pass algorithm for minimum cut in undirected graphs [46], an

O (1)-pass algorithm for approximate matching [29, 31, 38, 42], an

O (log logn)-pass algorithm for maximal independent set [4, 22, 30],

and O (logn)-pass algorithms for approximate dominating set

[6, 16, 35] and weighted minimum cut [44].

1.1 Our Main Result: Lower Bound for s-t
Reachability

Our main result is a near-quadratic lower bound on the space

complexity of any streaming algorithm that solves s-t reachability
(a.k.a, directed connectivity) and uses o(

√
logn) passes:

Theorem 1.1 (Reachability). Any randomized o(
√
logn)-pass

streaming algorithm that, given ann-vertex directed graphG = (V ,E)
with two designated vertices s, t ∈ V , can determine whether there is
a directed path from s to t in G requires n2−o (1) space.

570

https://doi.org/10.1145/3406325.3451038
https://doi.org/10.1145/3406325.3451038
https://doi.org/10.1145/3406325.3451038

STOC ’21, June 21–25, 2021, Virtual, Italy Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu

The s-t reachability problem is amongst the most basic graph

problems
1
and was also one of the first to be studied in the context

of streaming [36]. Prior to our work, an almost-quadratic lower

bound was only known for two-pass streaming algorithms by

the very recent breakthrough of [9]. Prior to that, a quadratic

lower bound was shown for one-pass streaming [27, 36]. For p-
pass streaming algorithms with p ≥ 3, the best space lower

bound was Ω(n1+1/(2p+2)) [34]. We mention that the hard instance

constructed and analyzed by [9] is easy (admits a semi-streaming

algorithm), even with only three passes. Additionally, the hard

instance used by [34] to prove their lower bound against p-pass

streaming algorithms can be solved in n1+1/Ω(p)
space with a single

pass and with Õ (n) space with p + 1 passes. Thus, Theorem 1.1

cannot be shown using the hard instances constructed by previous

papers, and we indeed design a very different instance.

Using a slightly different instance, the techniques used to

prove Theorem 1.1 also give a non-trivial lower bound for more

than o(
√
logn) passes. Specifically, we obtain a lower bound of

n1+1/O (log logn)
on the space used by any streaming algorithm

with o(logn/(log logn)2) passes (see Remark 5.2). For p satisfying

p = ω (log logn) and p = o(logn/(log logn)2), this improves over

the Ω(n1+1/(2p+2)) lower bound of [34]. Still, proving super-linear

n1+ε space lower bounds fornε -pass streaming algorithms solving s-
t reachability with ε > 0 is a great problem that we leave open. (Note

that withO (n)-passes, semi-streaming is possible by implementing

a BFS search).

Since the s-t reachability problem is a special case of the s-
t minimum cut problem in directed graphs, the lower bound in

Theorem 1.1 can also be applied to minimum cut. We note that

space efficient algorithms are known for the undirected versions

of both these problems: s-t connectivity (the undirected version of

s-t reachability) has a one-pass semi-streaming algorithm (e.g., by
maintaining a spanning forest [26]) and there is also a two-pass

streaming algorithm for s-t minimum cut in undirected graphs that

only requires O (n5/3) space ([46], see also [3]).

Technique: Set Hiding. We derive Theorem 1.1 as a special case

of a more general framework: given a set S ⊆ [k], we are able to
construct a random graph GS that “hides” S , in the sense that for

any two different sets S and S ′, no small-space streaming algorithm

with a small number of passes can distinguish betweenGS andGS ′

with any reasonable advantage. The graph GS we construct has

only n = k1+o (1) vertices, out of which k are “designated source

vertices” U = {u1, · · · ,uk } and k are “designated sink vertices”

V = {v1, · · · ,vk }. There is a directed path from the source ui to
the sink vi in GS if and only if i ∈ S . See Section 2 for a detailed

sketch of this construction.

Theorem 1.1 now follows by the following argument: let s := u1
and t := v1 and observe that G

[k] has a directed path from s
to t , while G∅ does not. This suggests that any algorithm for s-t
reachability can also distinguish betweenG

[k] andG∅, violating the
hiding property, which is impossible for a small-space algorithm

with a small number of passes. In fact, this argument proves a

stronger statement: the s-t reachability problem remains hard even

1
Time-space tradeoffs for s-t reachability in various graph automata models were

shown in [10, 23, 24].

under the promise that in the n-vertex input graph, either there

are no paths from s to t or there are at least k = n1−o (1) such
paths, that are vertex disjoint

2
. This stronger statement allows us

to obtain lower bounds for approximate versions of related graph

problems (with modest, sub-constant approximation factors), as

detailed below.

1.2 Lower Bounds for Other Streaming
Problems

Matching, shortest path, and rank. As in the case of the two-

pass lower bound for s-t reachability proved by [9], Theorem 1.1

also implies multi-pass lower bounds for the shortest path length,
maximum bipartite matching size, and matrix rank problems. This

can be shown by (by now standard) reductions: s-t reachability ⪯
shortest path, and s-t reachability ⪯ maximum matching ⪯ matrix

rank.

Theorem 1.2 (Shortest path). Any randomized o(
√
logn)-pass

streaming algorithm that, given an n-vertex undirected graphG =
(V ,E) and two designated vertices s, t ∈ V , can output the length of
the shortest path connecting s and t in G requires n2−o (1) space.

Theorem 1.3 (Matching). Any randomized o(
√
logn)-pass

streaming algorithm that, given an n-vertex undirected bipartite
graphG = (L⊔R,E) can determine whetherG has a perfect matching
requires n2−o (1) space.

Theorem 1.4 (Matrix rank). Any randomized o(
√
logn)-pass

streaming algorithm that, given the rows of a matrixM ∈ Fn×nq where
q = ω (n), can determine whether the matrix has full rank requires
n2−o (1) space.

When it comes to lower bounds, the state of affairs for (exact)

shortest path, maximummatching, andmatrix rank is similar to that

of s-t reachability:Ω(n2) for one-pass streaming [19, 26],Ω(n2−o (1))

for two passes [9], and Ω(n1+1/(2p+2)) for any p ≥ 3 [34]. On the

upper bound front, semi-streaming algorithms withO (
√
|E |) passes

are known for (weighted) maximummatching [40], and withO (
√
n)

passes for shortest path [18]. Understanding the pass-space trade-

offs for these problems is a great goal.

Lower bounds for approximation algorithms. Our proofs of

the above theorems also give some non-trivial results in the

approximation setting. Specifically, for constant p, our almost

quadratic lower bounds continue to hold even for p-pass algorithms

that only give a (1 + ω (logn)−2p)-approximation to the length of

the shortest s-t path (see Theorem 5.1), or a (1 + 2
−Ωp (
√
logn))-

approximation to the size of the maximum matching or to the

rank of a given matrix (see Theorem 5.3 and Corollary 5.6).

These lower bounds for approximate maximum matching and

approximate matrix rank are possible because our lower bound for

s-t reachability holds even when there are many (vertex) disjoint

paths from s to t (see Section 1.1). In the reduction from s-t
reachability to maximum matching, the number of such paths

translates into the difference in the size of the maximum matchings

that the streaming algorithm is unable to distinguish between.

2
To get this, start with the graphG

[k] and add two vertices, a global source s and a

global sink t . Add directed edges from s to every ui and from every vi to t .

571

Almost Optimal Super-Constant-Pass Streaming Lower Bounds for Reachability STOC ’21, June 21–25, 2021, Virtual, Italy

u1 v1

u2 v2

u3 v3

u4 v4

U V

3 /∈ S
7

1 ∈ S

2 ∈ S

4 ∈ S

Figure 1: A graph that encodes the set {1, 2, 4} using the
reachability fromU to V . Vertex ui cannot reach vj for i , j.

Since Oε (1)-pass semi-streaming algorithms for (1 + ε)-
approximations to the size of the maximum matching and single-

source shortest path are known [11, 42], our above lower bounds for

these problems cannot be strengthened to deal with constant ε . A

polynomial (but sub-linear) lower bound of n1−ε
Ω(1/p)

on the space

complexity of p-pass streaming algorithms that obtain a (1 + ε)-
approximation of maximum matching and of matrix rank was very

recently proved by [8].

Lower bounds for additional problems. Via other known

reductions, the lower bound in Theorem 1.1 can be shown to

imply lower bounds for additional streaming problems, such as

estimating the number of reachable vertices from a given source

[36] and approximating the minimum feedback arc set [15].
We also consider the linear programming feasibility (LP

feasibility) problem, where given a set of n linear constraints

(inequalities) over d variables, one needs to decide if all constraints

can be satisfied simultaneously. We prove that Theorem 1.1 implies

a similar lower bound for the LP feasibility problem with d ≈ n, see
Theorem 5.7 (for the low dimension d ≪ n regime, see [5, 17]). To

this end, we devise a reduction from s-t reachability to LP feasibility
that exploits the fact that our hard s-t reachability instance is a

layered graph
3
.

2 TECHNICAL OVERVIEW
Our proof proceeds by designing a carefully structured hard

instance for s-t reachability. The key component in our lower bound

proof is a construction that hides a set in a random (directed) graph

from streaming algorithms. Specifically, let S ⊆ [n] be a set, and
U ,V be two sets of n vertices. We will construct a random graph,

possibly adding more vertices, such that ui (the i-th vertex in U)

cannot reachvj (the j-th vertex inV) for any i , j; andui can reach

vi if and only if i ∈ S (see Figure 1). That is, the graph encodes

the set S using the reachability from U to V . The most important

feature of this random graph construction is that (with a proper

3
While there are known reductions from s-t reachability to LP feasibility, to the

best of our knowledge, our reduction is the only one that is both deterministic and

generatesΘ(n) dense constraints with super small coefficients ({0, 1, −1} coefficients),

as opposed to polynomially large ones.

ordering of its edges in a stream) any p-pass (for some small p) low-
space streaming algorithm A cannot “learn anything” about S , in
the sense that for any S1 and S2,A cannot distinguish between the

random graphs generated based on S1 or S2 except with probability

at most 1/n. We call such a random graph a Set-Hiding graph.4

Assuming such a graph construction, the s-t reachability lower

bound follows easily. To see this, we set S1 := ∅ and S2 := {1},

let the source s be u1 and the sink t be v1. Then in a Set-Hiding
graph that hides S1, s cannot reach t ; and in a Set-Hiding graph

that hides S2, s can reach t . But any p-pass low-space streaming

algorithm cannot distinguish between the two cases. In particular,

it is impossible for such an algorithm to solve s-t reachability. In
the following, we will focus on the construction of such Set-Hiding
graphs.

2.1 Set-Hiding Graphs Against One-Pass
Algorithms

Let us for now set the goal to constructing graphs that hide

a set S from any low-space one-pass streaming algorithm, as a

demonstration of the idea.

2.1.1 A New Communication Problem.

The problem. It turns out that the indistinguishablility stems from

the hardness of the following one-way communication problem:

• Alice gets nK sets (T
(k)
j)(j,k)∈[n]×[K]

(think of K = logn),

which are subsets of [n];
• Bob gets K indices j1, . . . , jK ∈ [n] and K permutations

π1, . . . ,πK on [n];
• Alice sends a single message to Bob, whose goal is to learn

the set

S :=

K⊕
k=1

πk (T
(k)
jk

),

where ⊕ of sets is defined as the coordinate-wise XOR of

their indicator vectors, and π (T) := {π (a) : a ∈ T }.
In other words, Alice gets K collections of sets, each collection

consists of n sets, and each set is over [n]. Then Bob picks one set

from each collection, permutes the sets according to his input, and

he wishes to know the ⊕ of the K permuted sets.

Lower bound. We prove that for any two sets S1 and S2, if Alice’s
message has only n1.99 bits (note that her input has n2K bits), Bob

is not able to distinguish between S = S1 and S = S2, except
with probability exponentially small in K .5 Note that we prove a
much stronger form of lower bound than just a lower bound on the

error probability of computing S , such an indistinguishability lower

bound is crucial to obtain the Set-Hiding property of our graph

construction.

4
In the formal proof, the collection of 2

n
such random graphs, one for each subset of

[n], is called a Set-Hiding generator, and a single (deterministic) graph encoding a

set is called a Set-Encoding graph. We will not differentiate between the two when

discussing the intuition in this section.

5
Careful readers may have noticed that the statement as written here is technically

false, as Alice could send the parity of the size for each set, taking nK ≪ n1.99
bits. In

this case, Bob learns the parity of S , falsifying the statement for S1, S2 with different

parities. In the actual proof, Alice’s sets as well as Bob’s permutations will be over

[4n], and the set S is defined to be

⊕K
k=1 πk (T

(k)
jk

) restricted to the first n elements

[n]. It resolves the above parity issue, and the indistinguishability holds in this case.

The arguments below follow as well.

572

STOC ’21, June 21–25, 2021, Virtual, Italy Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu

The communication lower bound proof uses an XOR lemma for
the INDEX problem, which we prove in this paper. Suppose the

players only focus on deciding whether 1 ∈ S , then Alice’s input

can be viewed as K arrays of length n2, where the k-th array is the

concatenation of the n indicator vectors 1(T
(k)
j) for j ∈ [n], and

Bob’s input chooses one entry from each array. The bit indicating

1 ∈ S is precisely the XOR of the K chosen bits, i.e., the XOR of the

π−1k (1)-th bit inT
(k)
jk

for k ∈ [K] (observe that both the index jk and

the random permutation πk in the definition of the communication

problem are needed to ensure that Alice doesn’t know what entry

is chosen by Bob in array k).
The standard INDEX lower bound shows that for one array, if the

communication is less than n1.99, from Bob’s view the chosen bit is

still close to uniform, with bias at most n−Ω(1)
. If the players handle

all K arrays independently, then the K chosen bits are independent

from Bob’s view. Therefore, their XOR has bias at most n−Ω(K)
, by

the standard result on the XOR of independently random bits. In

general, an XOR lemma states that this bias bound holds even for

generic protocols. We prove such an XOR lemma for INDEX by

showing a discrepancy bound (a similar discrepancy bound was

(implicitly) proved in [32, 33] using a different argument). Finally,

we apply this XOR lemma and a hybrid argument to prove the

indistinguishability of any two sets S1 and S2. See the full version
for the XOR lemma for INDEX and the communication lower bound.

2.1.2 Constructing the
Set-Hiding Graph. To construct the Set-Hiding graph that hides

a set S , we first generate (T
(k)
j)(j,k) , (jk)k , (πk)k according to the

hard input distribution for the communication problem, conditioned
on the final set being S , i.e., S =

⊕K
k=1 πk (T

(k)
jk

). Then, we will

construct a graph that mimics the computation of

⊕K
k=1 πk (T

(k)
jk

),

and use the hardness of this communication problem to argue that

low-space streaming algorithms cannot learn anything about S .

Representing index selection – graphs for (T
(k)
1
, . . . ,T

(k)
n) and

T
(k)
jk

. To this end, we do this computation bottom-up, and let us

first see how to “compute” the set T
(k)
jk

for each k , i.e., select the

jk -th set from the collection (T
(k)
1
, . . . ,T

(k)
n). This is done using a

similar construction to [9], which uses the Ruzsa-Szemerédi graphs
(RS graphs). The version we use is a bipartite graph onm vertices,

whose edges form a disjoint union of t induced matchings of size r
(i.e., r by r bipartite subgraphs consisting of only r matching edges).

Such graphs were shown to exist for r , t =m · 2−Θ(
√
logm)

[47].

For each k , we first fix such an RS graph with r , t ≥ n. Then, we

associate the j-th matching with set T
(k)
j , and keep the i-th edge

in the matching if and only if i ∈ T
(k)
j . The RS graph encodes the

collection (T
(k)
1
, . . . ,T

(k)
n). Intuitively, we work with RS graphs

as they allow us to “pack” many sets into a small graph. We

select the jk -th set by connecting two vertex sets U and V to the

corresponding matching (see Figure 2a). In this way, ui ∈ U can

reach vi ∈ V if and only if i ∈ T
(k)
jk

, i.e., the reachability from U

to V encodes the selected set T
(k)
jk

(in the same way as Set-Hiding
graphs would encode S).

u1 v1

u2 v2

u3 v3

u4 v4

1
∈ Tj

2
∈ Tj

4
∈ Tj

3
/∈ Tj

U V

RS graph

.

.

. .

(a)

U VŨ Ṽ
π−1 π

7

.

.

. .

(b)

Figure 2: In (a), the red and blue boxes correspond to two
induced matchings in the RS graph, thin dashed edges exist
in the original RS graph, but are removed according to Tj .

Representing permutations: graph for πk (T
(k)
jk

). Next, we

implement the permutation by adding two more layers Ũ and Ṽ ,

and putting a matching corresponding to π−1k from Ũ toU , and a

matching corresponding to πk from V to Ṽ . Then the reachability

from Ũ to Ṽ encodes πk (T
(k)
jk

) (see Figure 2b).

Representing XOR: graph for
⊕K

k=1 πk (T
(k)
jk

). The last step is

to mimic the computation of ⊕ of K sets. We have constructed

K graphs such that in k-th graph, the reachability from Uk to Vk
encodes πk (T

(k)
jk

). We wish to combine them into a single graph,

573

Almost Optimal Super-Constant-Pass Streaming Lower Bounds for Reachability STOC ’21, June 21–25, 2021, Virtual, Italy

containingU andV as subsets of vertices, such that the reachability

fromU toV encodes ⊕Kk=1πk (T
(k)
jk

). The main idea is to use the fact

that there exists an {∧,∨,¬}-formula of size O (K2) that computes

the XOR of K-bit. For x1, . . . ,xK ∈ {True, False}, we can write

x1⊕x2⊕· · ·⊕xK as a small Boolean formula F which only uses AND,

OR andNOT gates. Moreover, we can assume that the NOTs are only

applied on the xi . F will be applied to the sets πk (T
(k)
jk

) coordinate-

wisely, computing ⊕Kk=1πk (T
(k)
jk

). We are going to construct the

graph recursively according to F .
For an AND gate in F , suppose its two operands are Ta and

Tb , and we have constructed a graph containing Ua and Va as

subsets of vertices that encodes Ta using the reachability fromUa
to Va , and a graph containing Ub and Vb that encodes Tb using the

reachability from Ub to Vb . Then the coordinate-wise AND of Ta
andTb (equivalently, the intersection) can be computed by merging

Va and Ub into one set (see Figure 3a). For an OR gate in F with

two operands Ta and Tb , their coordinate-wise OR (equivalently,

the union) can be computed by merging Ua and Ub into one set,

and merging Va and Vb into one set (see Figure 3b). Eventually, we

either reach an input variable corresponding to a graph that encodes

one πk (T
(k)
jk

), which we have already constructed, or reach the

negation of an input variable, which corresponds to the complement
of one πk (T

(k)
jk

). It suffices to also construct a graph that encodes

[n] \ πk (T
(k)
jk

) for each k . Note that [n] \ πk (T
(k)
jk

) = πk ([n] \T
(k)
jk

).

Therefore, this can be done by applying the construction in the last

paragraph on the complement of input sets ([n] \T
(k)
j)(j,k) (and

with the same indices jk and permutations πk).

The order of edges in the stream. The above construction

generates a graph that encodes the set S =
⊕K

k=1 πk (T
(k)
jk

), which

we wanted to hide. To determine the order of its edges in the stream,

observe that the edges in all RS (sub)graphs only depend on the sets

(T
(k)
j)(j,k) , and the rest of the graph only depends on the indices

(jk)k and permutations (πk)k . Hence, in the stream, we will first

give all edges in the RS graphs, then all remaining edges. By the

standard reduction from one-way communication to streaming

algorithms and the hardness of the communication problem, we

prove that S is hidden from any n1.99-space one-pass streaming

algorithm.

2.2 Generalizing to p Passes
Hiding the selected sets. The lower bound for the one-way

communication problem uses the fact that Alice does not know the

indices and permutations. Equivalently, the streaming algorithm

does not know the parts encoding (jk)k and (πk)k when it sees

the RS graphs, which encode (T
(k)
j)(j,k) . However, this is not the

case if the algorithm can read the stream even just twice, as it can

remember the indices and permutations in the first pass so that

the second time it sees the RS graphs, it already knows which sets

are selected. To generalize our hard instance to p passes, the main

idea is to also hide the indices and permutations, from (p − 1)-pass
streaming algorithms.

More specifically, we wish to construct subgraphs (gadgets) that

serve the same purposes as the parts encoding the indices and

Ua Va(= Ub) Vb

Ta Tb

7

7

7

.

.

(a)

Ua(= Ub) Va(= Vb)

7

7

7

Ta

Tb

.

.

. .

(b)

Figure 3: (a) shows a graph computingTa ∧Tb , and (b) shows
a graph computing Ta ∨Tb .

permutations (in terms of reachability), but additionally, for any

(jk)k , (πk)k and (j ′k)k , (π
′
k)k , any low-space (p − 1)-pass algorithm

should not be able to distinguish between the subgraphs constructed

based on them. Suppose we have such gadgets, then we may apply

the one-way communication lower bound to the p-th pass (after
replacing the edges fromU to the RS graph and from the RS graph

to V in Figure 2a by such gadgets, and replacing the edges from

Ũ andU and the edges from V to Ṽ in Figure 2b). This is because

when the streaming algorithm sees (T
(k)
j)(j,k) for the p-th time, it

has only scanned the parts encoding the indices and permutations

p − 1 times (recall that (T
(k)
j)(j,k) appears before all indices and

574

STOC ’21, June 21–25, 2021, Virtual, Italy Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu

permutations in the stream), and is not able to learn anything about

them. Therefore, the one-way communication lower bound still

holds.

Perm-Hiding graphs. To construct such subgraphs, we construct

a gadget that allows us to hide each permutation or index separately.

To be more precise, given a permutation π on [n], we want to

construct a (random) graph containing X and Y as subsets of

vertices, such that for each i ∈ [n], the only vertex in Y that ui can
reach is vπ (i) (the “indices” are special cases of the “permutations”,

and they can also be hidden using such gadgets, see the full version).

Moreover, for any π1,π2, any (p − 1)-pass low-space streaming

algorithm cannot distinguish between the graphs generated from

π1 and π2. We call such random graphs the Perm-Hiding graphs.

Hiding structured permutations via Set-Hiding graphs. We first

show that (assuming n is even) if π is structured such that for each

i , either π (2i) = 2i and π (2i + 1) = 2i + 1, or π (2i) = 2i + 1 and

π (2i + 1) = 2i (i.e., for each i , π either swaps 2i and 2i + 1, or maps

both to themselves), then we can construct a Perm-Hiding graph
for π using the Set-Hiding graphs against (p − 1)-pass streaming

algorithms. To see this, we add two extra layers X̃ , Ỹ of sizes 2n

between X and Y . Denote the vertices in X̃ and Ỹ by x̃ j,1, x̃ j,2 and
ṽj,1, ṽj,2 respectively for j ∈ [n]. For all i , we add the following

edges from X to X̃ and from Ỹ to Y :
• from x2i to x̃2i,1, x̃2i,2, from x2i+1 to x̃2i+1,1, x̃2i+1,2, and
• from ỹ2i,1, ỹ2i+1,1 to y2i , from ỹ2i,2, ỹ2i+1,2 to y2i+1.

Now if we add an edge from x̃2i,1 to ỹ2i,1 and an edge from

x̃2i+1,2 to ỹ2i+1,2, then x2i reaches y2i and x2i+1 reaches y2i+1
(see Figure 4a); if we add an edge from x̃2i,2 to ỹ2i,2 and an edge

from x̃2i+1,1 to ỹ2i+1,1, then x2i reaches y2i+1 and x2i+1 reaches
y2i (see Figure 4b). In the other words, such a permutation can

always be implemented by placing a set of parallel edges from X̃

to Ỹ . Therefore, to hide π , it suffices to put a Set-Hiding graph

between X̃ and Ỹ to hide the corresponding set over [2n]. Since
by the guarantee of Set-Hiding graphs, no low-space algorithm

can distinguish between any two sets, we prove that any such two

permutations cannot be distinguished.

Similarly, if there is a set of fixed ≤ n/2 disjoint pairs of

coordinates such that π may only swap two coordinates in a pair,

then the same argument from the last paragraph shows that such

permutations can be hidden from (p−1)-pass streaming algorithms

as well, assuming Set-Hiding graphs.

Hiding general permutations. Finally, we use the fact that there
exists d = O (logn) fixed sets of ≤ n/2 disjoint pairs,

6
such that

every permutation π can be decomposed into π = πd ◦ · · · ◦π2 ◦π1,
where πi may only swap (a subset of) the pairs in the i-th set

(e.g., this is a corollary of the existence of O (logn)-depth sorting

networks [1]). The final Perm-Hiding graph consists of d blocks

concatenated with identity matchings, where the i-th block applies

the construction from the last paragraph to swap pairs in the i-th
set. For each πi , we hide a set in the block using Set-Hiding. By a

standard hybrid argument, we conclude that no two permutations

can be distinguished.

6
It is important that the sets do not depend on π .

x2i+1 y2i+1

x2i y2i

...
...

...
...

X Y

x̃2i,1

x̃2i,2

ỹ2i,1

ỹ2i,2

X̃ Ỹ

...
...

...
...

(a)

x2i+1 y2i+1

x2i y2i

...
...

...
...

X Y

x̃2i,1

x̃2i,2

ỹ2i,1

ỹ2i,2

X̃ Ỹ

...
...

...
...

(b)

Figure 4: (a) shows the graph that does not swap 2i and 2i + 1,
(b) shows the graph that swaps 2i and 2i + 1. The edges from
X to X̃ and the edges from Ỹ to Y are fixed.

Putting it together. Overall, the p-pass Set-Hiding graphs use the
structure from Section 2.1, together with (p − 1)-pass Perm-Hiding
graphs. The (p − 1)-pass Perm-Hiding graphs, in turn, use (p − 1)-
pass Set-Hiding graphs, which are constructed recursively. One may

verify that the size of the graph blows up by a factor of 2
Θ(
√
logn)

in

each level of recursion, due to the parameters in RS graphs. Hence,

575

Almost Optimal Super-Constant-Pass Streaming Lower Bounds for Reachability STOC ’21, June 21–25, 2021, Virtual, Italy

when p = o(
√
logn), the final graph size N is at most n1+o (1) ,

implying the space lower bound of N 1.99
. See the full version for

the formal construction of Set-Hiding graphs, the construction of

Perm-Hiding graphs, and the recursive construction that combines

them.

3 PRELIMINARY
3.1 Notation
We often use bold font letters (e.g., X) to denote random variables,

and calligraphic font letters (e.g.,X) to denote distributions. For two

random variablesX andY , and for Y ∈ supp(Y), we use (X |Y = Y)
to denote X conditioned on Y = Y . For two lists a and b, we use
a ◦ b to denote their concatenation.

For two distributions D1 and D2 on set X and Y respectively.

We use D1 ⊗ D2 to denote their product distribution over X ×Y ,

and ∥D1 − D2∥TV to denote the total variation distance between

them.

Let n ∈ N. We use [n] to denote the set {1, . . . ,n}. For two sets
A,B ⊆ [n], we use A ∧ B and A ∨ B to denote the intersection and

the union of A and B, respectively. We also use ¬nA to denote the

set [n] \ A, and A ⊕ B to denote the set of elements appearing in

exactly one of A and B (i.e., the symmetric difference of the sets A
and B). Note that

A ⊕ B = (A ∧ ¬nB) ∨ (¬nA ∧ B).

When it is clear from the context, we drop the subscript in ¬n
for simplicity.

We also use Perm([n]) to denote the set of permutations on [n].
For a predicate P , we use 1(P) to denote the corresponding Boolean
value of P , that is, 1(P) = 1 if P is true, and 0 otherwise.

3.2 Layered Graphs and Layer-Arrival Model
In this paper we will mostly consider directed layered graphs such

that edges are always from one layer to its succeeding layer. We

will also associate an edge-layer ordering to the layered graphG ,
which will be very convenient when we are working with graph

streaming algorithms.

Directed Layered Graphs. Formally, a directed layered graph
G is a triple (V⃗ , E⃗, ℓ⃗), such that:

• V⃗ = (Vi)
k
i=1 is the collection of G’s layers, where k is the

number of layers in G;

• ℓ⃗ = (ℓi)
k−1
i=1 and E⃗ = (Ei)

k−1
i=1 is a list of disjoint sets of edges

on the vertex set V =
⋃k
i=1Vi . For each i ∈ [k − 1], Ei is the

set of all the edges inG betweenVℓi andVℓi+1. All the ℓi are
distinct integers in [k − 1].

For each i ∈ [k − 1], we call the set of edges between Vi and

Vi+1 the i-th edge-layer of G. That is, ℓ⃗ specifies an ordering of

edge-layers of G, we will call it the edge-layer ordering of G. We

remark that unless some edge-layers are empty, the edge list vector

E⃗ always uniquely determine the ordering ℓ⃗. In most cases we will

just specify the edge list vector E⃗ and the ℓ⃗ will be determined from

the context.

We will use E (G), V⃗ (G), k (G) and ℓ⃗(G) to denote the set of edges,
the list of layers ofG , the number of layers inG and the edge-layer

ordering of G, respectively. For i ∈ [k], we use Vi (G) to denote

the vertex set of the i-th layer of G. We also use V (G) to denote⋃k
i=1Vi (G).

We say a layered graph G is an (NG ,kG , ℓ⃗G) graph, if G has NG
vertices, kG layers and its edge-layer ordering is ℓ⃗G .

For a layered graph G = ((Vi)
k
i=1,E), we use First(G) to denote

V1 and Last(G) to denote Vk for convenience. For each layer, we

index all the vertices by consecutive integers starting from 1. For a

set S of vertices from a single layer of G (that is, S ⊆ Vi for some

i ∈ [k]), we use S
[i] to denote the vertex with the i-th smallest

index in S .
We note that a directed bipartite graph (all edges go from left

side to the right side) is a directed layered graph with two layers

(for which the list E⃗ only contains one set of all edges in the graph,

and ℓ⃗ = (1)). Unless explicitly stated otherwise, we will always

use layered graphs or bipartite graphs to refer to their directed

versions. (The only place we study undirected graph is in Section 5.1

and Section 5.2.)

Concatenation of two layered graphs. For two layered graphs

G1,G2 such that |Last(G1) | = |First(G2) |, we use H = G1 ⊙ G2 to

denote their concatenation by identifying Last(G1) and First(G2).
That is, for each i ∈ [|Last(G1) |], we identify the vertex Last(G1)[i]
and First(G2)[i]. We also set E⃗ (H) = E⃗ (G1) ◦ E⃗ (G2) to specify the

edge-layer ordering of H .

The layer-arrival model. Our lower bounds actually holds for the
layer-arrival setting, which is stronger than the usually studied

edge-arrival or vertex-arrival models. In the following we formally

define this model.

Definition 3.1 (Layer-arrival model). Given a layered graph
G = (V⃗ , E⃗, ℓ⃗) of k layers, a randomized p-pass streaming algorithm
A with space s in the layer-arrival setting works as follows:
• The algorithm makes p-pass over the graph, each pass has
(k − 1) phases. Hence, there are (k − 1) · p phases in total. The
algorithm starts with memory statew0 = 0

s . Additionally, at
the beginning A can draw an unbounded number of random
bits, from a fixed distribution Drand. These random bits are
read-only and A can always access them freely.7

• For i ∈ [p] and j ∈ [k−1], let t = (i−1) ·p+ j . In the t-phase,A
can use unlimited computational resource to compute another
statewt of s bits, given the previous statewt−1 together with
the edge set Ej . (Note that wt is indeed a random variable
depending onwt−1 and Ej , since A is randomized).
• Finally, A’s output only depends on the last statewp (k−1) and
its random bits.

In other words, the streaming algorithm is allowed to access the

graph layer by layer, and can use unlimited computational resources

to process each layer. The only constraint is that it can restore at

most s bits of information after processing one layer.

Clearly, lower bounds for graph streaming algorithms in the

layer-arrival model immediately imply the same lower bounds for

graph streaming algorithms in the edge-arrival model or vertex-

arrival model.

7
That is, randomness is free for A and are not charged in the space complexity of A.
This is very important for the hybrid argument used in this paper, see Section 3.4.

576

STOC ’21, June 21–25, 2021, Virtual, Italy Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu

3.3 Ruzsa-Szemerédi Graphs
A bipartite graph GRS = (L ⊔ R,E) is a called an (r , t)-Ruzsa-
Szemerédi graph (RS graph for short) iff its edge-set E can be

partitioned into t induced matchings M1, . . . ,Mt , each of size r .
We will use the original construction of RS graphs due to Ruzsa

and Szemerédi [47] based on the existence of large sets of integers

with no 3-term arithmetic progression, proven by Behrend [12].

Proposition 3.2 ([47]). There is an absolute constant cRS ≥ 1

such that, for all sufficiently large n, there is an integer N ≤

n1+c
RS/
√
logn such that there are (n,n)-RS graphs with N vertices on

each side of the bipartition.

For convenience, we define NRS (n) = n1+c
RS/
√
logn

. We also

need the following construction of RS graphs with different

parameters by [28].

Proposition 3.3 ([28]). There is an absolute constant cRS
2
> 0

such that, for all sufficiently large n, there are (n,nc
RS
2
/ log logn)-RS

graphs with 4n vertices on each side of the bipartition.

3.4 Indistinguishability and The Hybrid
Argument

We say two distributions on layered graphs D1 and D2 are ε-
indistinguishable for p-pass streaming algorithms with space s
in the layer-arrival model. If for every p-pass streaming algorithm

A with space s in the layer-arrival model

∥A(D1) −A(D2)∥TV ≤ ε,

where for each i ∈ [2], A(Di) is the output distribution of A given

an input graph drawn from Di .

Note that the above notation of indistinguishability also

generalizes to streaming algorithms in the edge-arrival model or

vertex-arrival model. But throughout this paper we will mostly

study indistinguishability with respect to multi-pass streaming

algorithms in the layer-arrival model. Hence, we will just omit this

model name whenever it is clear from the context.

Given t layered graphs G1, . . . ,Gt . They can be treated as a

single input to a p-pass streaming algorithm A as follows: there are

p passes, in each pass A process (the edges of) G1, . . . ,Gt in order.

We use (G1, . . . ,Gk)seq to denote this new input to A.
The following lemma shows that the standard hybrid argument

also applies to the setting of multi-pass graph streaming algorithms.

The hybrid argument will be used throughout our proofs, and we

give a proof here for completeness.

Lemma 3.4 (Hybrid argument for multi-pass streaming

algorithms). Let k be a positive integer. Let ε ∈ Rk
≥0

denote k
parameters. Let (D1,D

′
1
), (D2,D

′
2
), . . . , (Dk ,D

′
k) be k pairs of

distributions over graphs. Suppose for each i ∈ [k], Di and D ′i is εi -
indistinguishable for p-pass streaming algorithms with space s , then
(D1, . . . ,Dk)seq and (D ′

1
, . . . ,D ′k)seq are ∥ϵ ∥1-indistinguishable

for p-pass streaming algorithms with space s .8

8 (D1, . . . , Dk)seq denotes the distribution obtained by for each i ∈ [k],
independently drawing Di ← Di , and outputting (D1, . . . , Dk)seq .

Proof. Our proof is based on a standard hybrid argument. For

each j ∈ {0, 1, . . . ,k }, let

Hj = (D1, . . . ,Dj ,D
′
j+1, . . . ,D

′
k)seq

Observe that H0 = (D ′
1
, . . . ,D ′k)seq and Hk = (D1, . . . ,Dk)seq.

Let A be a p-pass streaming algorithms with space s .
We claim that for each j ∈ [k],

∥A(Hj) −A(Hj−1)∥TV ≤ εj .

Assuming the claim above holds, the lemma follows from the

triangle inequality.

To prove the claim above, we show how to construct another

streaming algorithm B with the same pass and space complexity as

A, such that ∥A(Hj) −A(Hj−1)∥TV = ∥B (Dj) − B (D
′
j)∥TV. Given

an input graphG , B first draws sample graphsG1 ∼ D1, . . . ,G j−1 ∼

Dj−1, and then draws sample graphs G j+1 ∼ D
′
j+1, . . . ,Gk ∼ D

′
k .

B then simulates A on the input (G1,G2, . . . ,Gk).
Recall that our definition of randomized streaming algorithms

(see Definition 3.1) allows unbounded randomness from any fixed

distribution (which are independent from the input distribution),

and the random bits are not counted in space usage. The k − 1

sample graphs of B are then regarded as B’s randomness. Hence, B
has the same pass and space complexity ofA. Moreover, one can see

that B (Dj) distributes as A(Hj) and B (D
′
j) distributes as A(Hj−1).

Since Dj and D
′
j are εj -indistinguishable for p-pass streaming

algorithms with space s , we have

∥A(Hj) −A(Hj−1)∥TV = ∥B (Dj) − B (D
′
j)∥TV ≤ εj ,

which completes the proof of the claim. □

3.5 Set-Encoding/Perm-Encoding Graphs and
Set-Hiding/Perm-Hiding Generators

3.5.1 Set-Encoding Graphs and Perm-Encoding Graphs. The
following two special layered graphs will be studied throughout

the paper.

Definition 3.5 (Set-Encoding Graphs and Perm-Encoding
Graphs).

(1) (Set-Encoding Graphs) For a set S ⊆ [n], we say a layered
graphG with first and last layer each having exactly n vertices
is a Set-Encn (S) graph (i.e., a Set-Encoding graph for the set
S). If for each (i, j) ∈ [n]×[n], First(G)

[i] can reach Last(G)
[j]

if and only if i = j and i ∈ S .
(2) (Perm-Encoding Graphs) For a permutation π : [n] → [n],

we say a layered graph G with first and last layer each
having exactly n vertices is a Perm-Encn (π) graph (i.e., a
Perm-Encoding graph for the permutation π). If for each
(i, j) ∈ [n] × [n], First(G)

[i] can reach Last(G)
[j] if and only

if π (i) = j.

3.5.2 Set-Hiding Generators and Perm-Hiding Generators. Note
that a single Set-Encoding graph (resp. Perm-Encoding graph)

just encodes a set, and does not hide it. Now we formally

define Set-Hiding generators and Perm-Hiding generators, which
generate distributions over Set-Enc/Perm-Enc graphs that hides the
encoded set/permutation from multi-pass streaming algorithms.

577

Almost Optimal Super-Constant-Pass Streaming Lower Bounds for Reachability STOC ’21, June 21–25, 2021, Virtual, Italy

Definition 3.6 (ε-secure Set-Hiding generators). Let n ∈ N,
and let G be a function from subsets of [n] to distributions over layered
graphs. We say G is ε-Set-Hiding for subsets of [n] against p-pass
algorithms with space s , if the following statements hold:

(1) For every S ⊆ [n], G (S) is a distribution over Set-Encn (S)
graphs.

(2) For every two sets S,T ⊆ [n], the distributions G (S) and G (T)
are ε-indistinguishable for p-pass streaming algorithms with
space s .

Definition 3.7 (ε-secure Perm-Hiding generators). Letn ∈ N,
and let G be a function from Perm([n]) to distributions over layered
graphs. We say G is ε-Perm-Hiding for permutations in Perm([n])
against p-pass algorithms with space s , if the following statements
hold:

(1) For every π ∈ Perm([n]), G (π) is a distribution over
Perm-Encn (π) graphs.

(2) For every two permutations π1,π2 ∈ Perm([n]), the
distributions G (π1) and G (π2) are ε-indistinguishable for p-
pass streaming algorithms with space s .

For a generator G as in Definition 3.6 and Definition 3.7, we say

G always outputs (NG ,kG , ℓ⃗G) graphs, if for all possible inputs x ,
the distribution G (x) is supported on NG-vertex layered graphs

with kG layers and edge-layer ordering ℓ⃗G .

Remark 3.8. The property that G always outputs (NG ,kG , ℓ⃗G)
graphs for some triple (NG ,kG , ℓ⃗G) is pretty strong since it forces G
to always output graphs with the same number of vertices, the same
number of layers and the same edge-layer ordering. We remark here
that all our constructions in this paper have this property.

For simplicity, we will often use GSH
n (resp. GPH

n) to denote an

ε-Set-Hiding (resp. ε-Perm-Hiding) generator G for subsets of [n]
(resp. permutations in Perm([n])). We may also write GSH

n,p (resp.

GPH
n,p) to indicate that the generator is against p-pass streaming

algorithms.

4 CONSTRUCTION OF Set-Hiding
GENERATORS

In this section, we will give a construction overview of the

Set-Hiding generators, which summarizes some key technical

lemmas which will be proved in the later sections.

Now we are ready to state the main theorem of this section.

Theorem 4.1 (Main Theorem). There is a constant c > 1 and
an integer N0 ∈ N such that for every p ∈ N and every integer
n satisfying n ≥ N0 and p ≤ c−1 ·

√
logn, there is a generator

GSH
n,p such that: (1) it always outputs (NGSH ,kGSH , ℓ⃗GSH) graphs,

where NGSH ≤ c · n1+cp/
√
logn and kGSH ≤ c · (c logn)2p ; (2) it is

(n−1)-Set-Hiding against p-pass streaming algorithms with space n2.

We remark that Theorem 4.1 is all we need to prove the lower

bounds for streaming algorithms in Section 5. The rest of this

section is a proof of Theorem 4.1, with key technical lemmas proved

in later sections.

Overview of the construction. Our construction works recursively.
The base case will be generators against 0-pass streaming

algorithms. Clearly, trivial constructions suffice for this base case

since 0-pass streaming algorithms cannot read the input at all.

Next, for the case against p-pass streaming algorithms,

Lemma 4.2 shows how to construct Set-Hiding generators againstp-
pass streaming algorithms from Perm-Hiding generators for (p−1)-
pass streaming algorithms, and Lemma 4.3 shows how to construct

Perm-Hiding generators against p-pass streaming algorithms from

Set-Hiding generators for p-pass streaming algorithms. The formal

proofs of Lemma 4.2 and Lemma 4.3 can be found in the full version.

Lemma 4.2 (From Perm-Hiding generators to Set-Hiding
generators). Let n be a sufficiently large integer. Let p, s ∈ N
such that s ≤ n2, and let N = NRS (4n). Let ε ∈ [0, 1) such that
ε ≥ 1/n10. Suppose there is a generator GPH

N ,p−1 which always outputs

(NGPH ,kGPH , ℓ⃗GPH) graphs and is (ε/ log2 n)-Perm-Hiding against
(p − 1)-pass streaming algorithms with space s . Then there is a
generator GSH

n,p such that: (1) it always outputs (NGSH ,kGSH , ℓ⃗GSH)

graphs, where NGSH = O (NGPH · log
2 n) and kGSH = O (kGPH · logn);

(2) it is ε-Set-Hiding against p-pass streaming algorithms with space
s .

Lemma 4.3 (From Set-Hiding generators to Perm-Hiding
generators). Let n be a sufficiently large integer. Let s ∈ N and let
ε ∈ [0, 1). Suppose there is a generator GSH

3n,p which always outputs

(NGSH ,kGSH , ℓ⃗GSH) graphs and is (ε/ log2 n)-Set-Hiding against p-
pass streaming algorithms with space s . Then there is a generator
such that: (1) it always outputs (NGPH ,kGPH , ℓ⃗GPH) graphs where
NGPH = O (NGSH · logn) and kGPH = O (kGSH · logn); (2) it is
ε-Perm-Hiding against p-pass streaming algorithms with space s .

Finally, Theorem 4.1 follows by applying Lemma 4.2

and Lemma 4.3 repeatedly.

Proof of Theorem 4.1. Let N0 be a sufficiently large constant

to be specified later.Wewill setN0 so that Lemma 4.2 and Lemma 4.3

holds for all integers n ≥ N0. Let c ≥ 2 be a sufficiently large

constant to be specified later.

We will prove the theorem by induction on p. The theorem

trivially holds when p = 0: since 0-pass streaming algorithm cannot

read anything from the input, given an input subset S , one can

simply output a bipartite graph of size (n,n) such that the i-th
vertex on the left side is connected to the i-th vertex on the right

side if and only if i ∈ S . Clearly, this output is a Set-Encn (S) graph.
Now, suppose the theorem holds for p − 1, we show it holds

for p as well. We fix an n ≥ N0 such that p ≤ c−1 ·
√
logn, and

we will show how to construct the desired generator GSH
n,p . Let

n2 = NRS (4n) and n1 = 3n2. We proceed as follows:

(1) Since n1 ≥ n ≥ N0, it follows that (p − 1) ≤ c−1 ·
√
logn1.

Hence, by the induction hypothesis, there is a generator

GSH
n1,p−1 such that: (1) it always outputs (N(1) ,k(1) , ℓ⃗(1))

graphs, where N(1) ≤ c · n
1+c (p−1)/

√
logn1

1
and k(1) ≤

c · (c logn1)
2(p−1)

; (2) it is ε(1)-Set-Hiding against (p − 1)-

pass streaming algorithms with space n2
1
, where ε(1) = 1/n1.

578

STOC ’21, June 21–25, 2021, Virtual, Italy Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu

(2) Since n2 ≥ N0 and n1 = 3n2, combining Lemma 4.3 with

the generator GSH
n1,p−1, there is a generator GPH

n2,p−1 such

that: (1) it always outputs (N(2) ,k(2) , ℓ⃗(2)) graphs where

N(2) ≤ O (N(1) · logn2) and k(2) ≤ O (k(1) · logn2); (2) it is
ε(2)-Perm-Hiding against (p − 1)-pass streaming algorithms

with space n2
1
, where ε(2) = ε(1) · (logn2)

2
.

(3) Since n ≥ N0 and n2 = NRS (4n), combining Lemma 4.2

with the generator GPH
n2,p−1, there is a generator G

SH
n,p such

that: (1) it always outputs (N(3) ,k(3) , ℓ⃗(3)) graphs, where

N(3) ≤ O (N(2) · log
2 n) and k(3) ≤ O (k(2) · logn); (2) it is

ε(3)-Set-Hiding against p-pass streaming algorithms with

space n2, where ε(3) = ε(2) · (logn)
2
.

Now we verify that the last generator GSH
n,p satisfies our

requirements. Noting that logn2 = O (logn), it follows that

N(3) ≤ O

(
c · log3 n · n

1+c (p−1)/
√
logn1

1

)
. (1)

Setting N0 to be sufficiently large, we have n1 = 3 · NRS (4n) ≤

n1+2c
RS/
√
logn

, and hence

logn1 ≤ logn + 2cRS ·
√
logn. (2)

Taking log of both sides of Equation 1, it follows that

logN(3) ≤ O (1) + 3 log logn + logn1 + c (p − 1) ·
√
logn1. (3)

Setting N0 to

be sufficiently large and noting that

√
x + 2cRS

√
x ≤

√
x + 2cRS

for any x > 0, it follows from Equation 2 that√
logn1 ≤

√
logn + 2cRS. (4)

Plugging Equation 2 and Equation 4 in Equation 3 and setting c
to be sufficiently large, we have

logN(3) (5)

≤ O (1) + 3 log logn + logn + 2cRS ·
√
logn (6)

+ c (p − 1) · (
√
logn + 2cRS)

≤ logn + (3cRS + c (p − 1)) ·
√
logn + c (p − 1) · 2cRS

≤ logn + (5cRS + c (p − 1)) ·
√
logn (cp ≤

√
logn)

≤ logn + cp ·
√
logn. (c is sufficiently large)

Noting that logn2 = O (logn) and setting c to be sufficiently

large, it follows that

k(3) ≤ O (log2 n · k(1))

≤ (c/10 log2 n) · c · (c logn1)
2(p−1)

≤ (c/10 log2 n) · c · (c logn)2(p−1) · *
,
1 +

2cRS√
logn

+
-

2(p−1)

(Equation 2)

≤ c · (c logn)2p . (p ≤ c−1
√
logn and c is sufficiently large)

Finally, since n1 = 4NRS (4n) ≥ n1+Ω(1/
√
logn)

, setting N0 to be

sufficiently large, we also have ε(3) = 1/n1 · (logn2)
2 · (logn)2 ≤ 1/n.

This completes the proof. □

In the full version, we also have the following different

construction of Set-Hiding generators.

Remark 4.4. For every p (n) = o(logn/ log logn), for every
sufficiently large integer n, there is a generator GSH

n,p (n) such that:

(1) it always outputs (NGSH ,kGSH , ℓ⃗GSH) graphs, where NGSH ≤

n · (logn)O (p (n)) ; (2) it is (n−1)-Set-Hiding against p-pass streaming
algorithms with space n1+c

RS
2
/ log logn .

5 LOWER BOUNDS FOR MULTI-PASS
STREAMING ALGORITHMS

In this section, we show that Theorem 4.1 implies our lower bounds

for multi-pass streaming algorithms.

• In Section 5.1, we prove the lower bounds for s-t reachability
and s-t undirected shortest-path.

• In Section 5.2, we prove our lower bounds for (approximate)

bipartite perfect matching.

• In Section 5.3, we prove our lower bounds for estimating the

rank of a matrix.

• In Section 5.4, we prove our lower bounds for linear

programing in the row-streaming model.

5.1 s-t Reachability and s-t Undirected
Shortest-Path

As already discussed in Section 2, Theorem 4.1 directly implies

the following lower bounds for s-t directed connectivity against

multi-pass streaming algorithms.

Theorem 5.1 (Detailed version of Theorem 1.1 and

Theorem 1.2). The following statements hold.

(1) Given an n-vertex directed graph G = (V ,E) with two
designated vertices s, t ∈ V , no randomized o(

√
logn)-pass

streaming algorithm with space n2−ε for some constant ε > 0

can determine whether s can reach t in G with probability at
least 2/3.

(2) Given an undirected graph G = (V ,E) and two designated
vertices s, t ∈ V , no randomized o(

√
logn)-pass streaming

algorithm with space n2−ε for some constant ε > 0 can output
the length of the shortest s-t-path in G.
Moreover, for p (n)-pass streaming algorithms where p (n) =
o(

√
logn), the lower bound above for s-t undirected shortest-

path still holds if the algorithm is only required to compute
an (1 + ω (logn)−2p (n

2))-approximation to the length of the
shortest path between s and t .

Proof. We first prove the theorem for s-t reachability, and then
show how to adapt the proof for s-t undirected shortest-path.

Lower bounds for s-t reachability. Suppose for the sake of

contradiction that there is p (n) ≤ o(
√
logn) and a constant ε > 0

such that there is a p (n)-pass streaming algorithm AstReach with

n2−ε space, which solves s-t reachability with probability at least

579

Almost Optimal Super-Constant-Pass Streaming Lower Bounds for Reachability STOC ’21, June 21–25, 2021, Virtual, Italy

2/3. We further assume that AstReach outputs 1 if it determines that

s can reach t , and 0 otherwise.

By Theorem 4.1 and noting that p (n2) ≤ o(
√
logn), there is

m(n) = n1+o (1) such that for every sufficiently large n, there

is a generator GSH
n,p (n2)

which always outputs (m(n),kGSH , ℓ⃗GSH)

graphs and is (1/10)-Set-Hiding for subsets of [n] against p (n2)-
pass streaming algorithms with space n2. For a layered graph G
in the support of GSH

n,p (∅) or G
SH
n,p ({1}), we set s = First(G)

[1]
and

t = Last(G)
[1]

(s and t do not depend on the choice of graph G).
Since AstReach solves s-t reachability with probability at least

2/3, it follows that

Pr

G←GSH
n,p ({1})

[AstReach (G) = 1] ≥ 2/3,

Pr

G←GSH
n,p (∅)

[AstReach (G) = 0] ≥ 2/3.

The above means

that ∥AstReach (G
SH
n,p (∅)) − AstReach (G

SH
n,p ({1}))∥TV ≥ 1/3. This

contradicts the fact thatGSH
n,p (n2)

is (1/10)-Set-Hiding againstp (n2)-

pass algorithms with space n2, since AstReach takes p (m) ≤ p (n2)
passes andm2−ε ≤ n2 space.

Lower bounds for s-t undirected shortest-path. We will use the

same reduction in [9, Theorem 6]. Again suppose for the sake of

contradiction that there is a p (n)-pass streaming algorithmAstUpath
with n2−ε space, which solves s-t undirected shortest-path with

probability at least 2/3.

Recall that GSH
n,p (n2)

always outputs graphs with exactly kGSH

layers. LetG be the undirected version of the layered graphG in the

support of GSH
n,p (∅) or G

SH
n,p ({1}) (that is,G is obtained by removing

the directions on all edges of G), we claim that s can reach t in G

if and only if the shortest path between s and t in G has length

exactly kGSH − 1.

To see the claim above, note that (1) the shortest path between s

and t inG has length at least kGSH −1, since there are kGSH layers in

G; (2) if s can reach t inG , then the same path gives us a (kGSH − 1)-

length path from s to t in G, and vice versa. Therefore, AstUpath

can be similarly used to distinguish the distributions GSH
n,p (∅) and

GSH
n,p ({1}), a similar argument as in the case of s-t reachability gives

us the desired lower bound for s-t undirected shortest-path.

Finally, AstUpath is in fact only required to distinguish between

(1) the shortest path between s and t inG has length exactly kGSH−1

and (2) the shortest path between s and t in G has length at least

kGSH . By Theorem 4.1 it holds that kGSH ≤ O (logn)2p (n
2)
. Hence,

it suffices for AstUpath to compute a (1 + (kGSH)−1) approximation

to the shortest path between s and t in G, and the theorem is

proved by noting ω (logm(n))2p (n
2) ≥ kSH

G
(recall that G hasm(n)

vertices). □

Remark 5.2. If we apply Remark 4.4 instead of Theorem 4.1 in
the proof of Theorem 5.1, then it follows that s-t reachability or s-t
undirected shortest-path cannot be solved by o(logn/(log logn)2)-
pass streaming algorithms with n1+o (1/ log logn) space.

Proof sketch. We will just sketch the proof for s-t reachability
here. The proof of s-t undirected shortest-path is identical.

Suppose for the sake of contradiction that there is p (n) ≤

o(logn/(log logn)2) and s (n) = n1+o (1/ log logn) such that there

is a p (n)-pass streaming algorithm AstReach with s (n) space, which
solves s-t reachability with probability at least 2/3.

By Remark 4.4 and noting p (n2) ≤ o(logn/ log logn), there is

m(n) = n1+o (1/ log logn) such that for every sufficiently large n,
there is a generator GSH

n,p (n2)
which always outputs m(n)-vertex

graphs and is (1/10)-Set-Hiding against p (n2)-pass streaming

algorithms with space n1+c
RS
2
/ log logn

. Noting that p (m(n)) ≤ p (n2)

and s (m(n)) ≤ n1+c
RS
2
/ log logn

and applying the same argument as

in Theorem 5.1, we can useAstReach to break the generator G
SH
n,p (n2)

,

which finishes the proof. □

5.2 Bipartite Perfect Matching
The goal of this section is to prove Theorem 5.3, which has two

parts : the exact case and the approximate case.

Theorem 5.3 (Detailed version of Theorem 1.3). No
o(

√
logn)-pass streaming algorithm with n2−ε space for some ε > 0

can determine whether a bipartite graph G = (L ⊔ R,E) with
|L| = |R | = n has a perfect matching with probability at least 2/3.

Moreover, for p (n)-pass streaming algorithms where p (n) =

o(
√
logn), the lower bound above still holds if the algorithm is only

required to distinguish with probability at least 2/3 between (1) G
has a perfect matching of size n and (2) G has no matching of size at

least n · (1 − δ (n)), for some δ (n) = 2
−cp (n2)/

√
logn , where c > 1 is

an absolute constant.

Proof. We will adapt a folklore reduction from reachability to

perfect matching, which is also used in [9, Theorem 5].

Suppose for the sake of contradiction that there is p (n) ≤

o(
√
logn) and a constant ε > 0 such that there is a p (n)-pass

streaming algorithm Amatching with n2−ε space, which determine

whether a bipartite graph has perfect matching or not with

probability at least 2/3. By Theorem 4.1 and noting that p (n2) ≤

o(
√
logn), there is m(n) = n1+o (1) and such that for every

sufficiently large n, there is a generator GSH
n,p (n2)

which always

outputs (m(n),kGSH , ℓ⃗GSH) graphs and is (1/10)-Set-Hiding for

subsets of [n] against p (n2)-pass streaming algorithms with space

n2.
For a layered graph G in the support of GSH

n,p (n2)
(∅) or

GSH
n,p (n2)

([n]), let Vmid =
⋃k

GSH−1

i=2 Vi (G). That is, Vmid is the set

of vertices in the middle layers of G. We will construct a bipartite

graph H = (L ∪ R,EH)9 as follows:

9EH here is a list of edges, which specify the order that the streaming algorithm read

the graph.

580

STOC ’21, June 21–25, 2021, Virtual, Italy Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu

Bipartite Perfect Matching from Set-Hiding
Generators

(1) For every vertex v ∈ Vmid, we add a vertex vℓ to L
and a vertex vr to R. For every vertex s ∈ First(G),

we add a vertex sℓ to L. For every vertex t ∈ Last(G),
we add a vertex tr to R.

(2) Next we enumerate all the (directed) edges (u,v)

in G according to their ordering in E⃗ (G), with ties

broken according the lexicographically order
a
: for

each edge (u,v) ∈ E (G), we add an edge (uℓ ,vr) to
EH . (Note that vertices in First(G) has no incoming

edges, and vertices in Last(G) has no outgoing ones.)
For every vertex v ∈ Vmid, we also add an edge

(vℓ ,vr) to EH .

a
That is, we first enumerate edges in E1 (G) in lexicographical order, then

edges in E2 (G) and so on

From the construction above, one can verify easily that |L| =
|R | = |Vmid | + n = m(n) − n. Let nH = |L|. The following claim is

crucial for the proof.

Claim 5.4.

(1) If G is a Set-Encn ([n]) graph, then H has a perfect matching
of size nH .

(2) if G is a Set-Encn (∅) graph, then the maximum matching in
G has at most |Vmid | = nH − n edges.

To see Item (1) of Claim 5.4, consider the matching M =

{(vℓ ,vr) : v ∈ Vmid}. Note that |M | = |Vmid | = nH −n, and the only

unmatched vertices are sℓ and tr for s ∈ First(G) and t ∈ Last(G).
For every s ∈ First(G) and t ∈ Last(G), any augmenting path of

this matchingM in H between sℓ and tr corresponds to a directed

path from s to t in G. If G is a Set-Encn ([n]) graph, we can find

|First(G) | disjoint augmenting paths, in which the i-th path is from

First(G)
[i] to Last(G)

[i].
10

This means that H has a matching of

size |M | + n = nH , which is a perfect matching.

For Item (2) of Claim 5.4, if G is a Set-Encn (∅) graph, then no

augmenting path between the unmatched vertices sℓ and tr can

be found, since for every (i, j) ∈ [n] × [n], First(G)
[i] cannot reach

First(G)
[j]. Hence,M is a maximum matching of H .

Note that H can be generated “on the fly” in the streaming

setting. Hence, since Amatching takes p (|L|) ≤ p (n2) passes and

(|L|)2−ε ≤ m(n)2−ε ≤ n2 space. By Claim 5.4, Amatching can

be used to distinguish between the distributions GSH
n,p (n2)

(∅) and

GSH
n,p (n2)

([n]), contradicts the security of the generator. This proves

the first part of the theorem.

Finally, note thatAmatching is indeed only required to distinguish

between (1) H has perfect matching of size |L| = m(n) − n and

(2) H has no matching of size greater than |Vmid | = m(n) − 2n.

10
By the definition of a Set-Encn ([n]) graph, for each i ∈ [n], there exists a directed

path Pi from First(G)
[i] to Last(G)

[i] in G . We further observe that these n paths

are vertex-disjoint. As otherwise, if Pi share a vertex v with Pj for i , j , then it

means First([G])
[i] can first reach v can then reach Last(G)

[j] , which contradicts

the definition of Set-Encn ([n]) graphs.

By Theorem 4.1, we have m(n) ≤ c · n1+cp (n
2)/
√
logn

for some

constant c > 1, the second part of the theorem then follows.

□

Remark 5.5. Consider the edge list EH constructed in the proof of
Theorem 5.3, for every left vertex uℓ ∈ L, its adjacent edges (uℓ ,vr)
are listed consecutively in EH . (Except for the edge (uℓ ,vℓ), which is
an auxiliary edge that does not depend on the given graph G.)

5.3 Matrix Rank
Estimating the rank of an n × n matrix is an interesting problem in

the streaming. There has been several results studying this problem,

we refer the readers to [7, 8, 14, 39]. The goal of this section is

present a lower bound for the rank estimation problem.

The following corollary follows from Theorem 5.3 and the well-

known reduction from computing the size of maximum matching

for bipartite graphs to computing the rank of matrices (see, e.g., [43,

Page 167] and [41]), we will consider the row streaming model in

which the streaming algorithms get the rows of the matrix one by

one in some arbitrary order.

Corollary 5.6 (Detailed version of Theorem 1.4). No
o(

√
logn)-pass streaming algorithm with n2−ε space for some ε > 0

can determine whether a given matrix M ∈ Fn×nq for some prime
power q = ω (n) has full rank with probability at least 2/3.

Moreover, for p (n)-pass streaming algorithms where p (n) =

o(
√
logn), the lower bound above still holds if the algorithm is

only required to distinguish with probability at least 2/3 between
(1) rank(M) = n and (2) rank(M) ≤ n · (1 − δ (n)), for some

δ (n) = 2
−cp (n2)/

√
logn , where c > 1 is an absolute constant.

Proof. For a bipartite graph G = (L ⊔ R,E) where L =
{u1, . . . ,un } and R = {v1, . . . ,vn }, we consider the Edmonds matrix
M defined over the variables x⃗ = (xi, j)(i, j)∈[n]×[n]:

M (i, j) :=



xi, j if (ui ,vj) ∈ E,

0 otherwise.

Let prime power q = ω (n) be a prime power. We know

that rank(M) (rank of M over the polynomial ring Z [x⃗] =
Z [x1,1, . . . ,xn,n]) equals the size of the maximum matching in

H . For a vector r⃗ = (ri, j)(i, j)∈[n]×[n] ∈ F
n×n
q , we use M (r⃗) to

denote the matrix over Fq obtained by substituting xi, j by ri, j for
each (i, j) ∈ [n] × [n]. Applying the Schwartz-Zippel lemma, it

holds that if all the ri, j are i.i.d. uniform distributed over Fq , then
Prr⃗ [rank(M (r⃗)) = rank(M)] ≥ 1 − o(1).

Therefore, computing the size of the maximum matching in G
can be reduced to computing the rank ofM (r⃗) over Fq . The proof
is then finished by combing Theorem 5.3 and Remark 5.5. □

5.4 Linear Programming
Linear programming (LP) is a fundamental problem in optimization.

The fastest LP solver for general dense matrix is dense to [37].

It takes nω time with O (n2) space, where ω ≈ 2.37286 is the

exponent of current matrix multiplication [2]. For the situation

where LP has roughly n constraints/variables, it is not known how

to extend the classical result [37] into streaming setting with o(n)
passes and o(n2) space. For matrix related problems such as linear

581

Almost Optimal Super-Constant-Pass Streaming Lower Bounds for Reachability STOC ’21, June 21–25, 2021, Virtual, Italy

regression and low-rank approximation [13, 20, 21, 45, 48], there

are two natural streaming models, one is row model and the other

is entry model. Our linear programming focuses on the row model,

which is discussed below.

The row streaming model for LP.. Our lower bounds holds for
the feasibility of LP in the row streaming model: in which the

streaming algorithms get the constraints of the LP one by one in

some arbitrary order, and is required to decide whether all the

constraints can be simultaneously satisfied. Note that algorithms in

the entry streaming model for LP also work in the row streaming

model, hence our lower bounds hold for the entry streaming model

as well.

Theorem 5.7. No o(
√
logn)-pass algorithm with n2−ε space for

some ε > 0 in the row streaming model can determine if a linear
program of n variables and n constraints with coefficients in {0, 1} is
feasible or not.

Proof. We will show a reduction from s-t reachability over

layered graphs to the feasibility to an LP problem. Consider a

layered graph G with n vertices and s and t be two vertices in

G. We construct the following linear program P with n variables:

LP from s-t Reachability

(1) Variables: For each vertexv ofG , we add a variable
xv to P . Note that as in the standard formulation of

LP, all xv are non-negative.

(2) Constraints: For each vertexv ofG such thatv , s ,
we add a constraint

xv ≥
∑

u : edge (u, v) ∈ E (G))

xu

to P
We also add two constraints xt ≤ 0 and xs ≥ 1 to P .

(3) Constraints Ordering: The constraints xt ≤ 0

and xs ≥ 1 come first. Note that each of the

other constraints correspond to one vertex v and

all its incoming edges, which are all in the same

edge-layer of G. We say this edge-layer is the

corresponding edge-layer of that constraint. Then

we list all the other constraints in the ordering of

their corresponding edge-layers in ℓ⃗(G) (with ties

broken arbitrarily).

Clearly, one can see that if s can reach t inG , then xs ≥ 1 implies

xt ≥ 1 as well, and the LP instance P is not feasible. On the other

hand, if s cannot reach t inG , then one can construct an assignment

to all variables x so that for every vertex v which is not reachable

from s , xv is set to 0. Hence, xt = 0 as well and P is then feasible.

Finally, since the LP instance can be generated “on the fly”, an

algorithm decidingwhether P is feasible in the row streamingmodel

also implies a streaming algorithm deciding whether s can reach t
in G in the layer-arrival model. This completes the proof. □

ACKNOWLEDGMENTS
The authors would like to thank Sepehr Assadi for useful

discussions.

Lijie Chen is supported by an IBM Fellowship. Zhao Song is

supported in part by Ma Huateng Foundation, Schmidt Foundation,

Simons Foundation, NSF, DARPA/SRC, Google and Amazon AWS.

REFERENCES
[1] Miklós Ajtai, János Komlós, and Endre Szemerédi. 1983. An O (n logn) sorting

network. In Proceedings of the fifteenth annual ACM symposium on Theory of
computing (STOC). 1–9.

[2] Josh Alman and Virginia Vassilevska Williams. 2021. A Refined Laser Method

and Faster Matrix Multiplication. In SODA. https://arxiv.org/pdf/2010.05846.pdf.
[3] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. 2019. Polynomial pass lower

bounds for graph streaming algorithms. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing (STOC). 265–276.

[4] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. 2019. Sublinear algorithms for (∆
+ 1) vertex coloring. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). SIAM, 767–786.

[5] Sepehr Assadi, Nikolai Karpov, and Qin Zhang. 2019. Distributed and Streaming

Linear Programming in LowDimensions. In Proceedings of the 38th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS). ACM, 236–

253.

[6] Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2016. Tight bounds for single-

pass streaming complexity of the set cover problem. In 48th Annual ACM
SIGACT Symposium on Theory of Computing (STOC). Association for Computing

Machinery, 698–711.

[7] Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2017. On estimating maximum

matching size in graph streams. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 1723–1742.

[8] Sepehr Assadi, Gillat Kol, Raghuvansh R Saxena, and Huacheng Yu. 2020. Multi-

Pass Graph Streaming Lower Bounds for Cycle Counting, MAX-CUT, Matching

Size, and Other Problems. In FOCS. https://arxiv.org/pdf/2009.03038.pdf.
[9] Sepehr Assadi and Ran Raz. 2020. Near-Quadratic Lower Bounds for Two-Pass

Graph Streaming Algorithms. In FOCS. https://arxiv.org/pdf/2009.01161.pdf.
[10] Greg Barnes and Jeff A Edmonds. 1998. Time–Space Lower Bounds for Directed

st-Connectivity on Graph Automata Models. SIAM J. Comput. 27, 4 (1998), 1190–
1202.

[11] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph

Lenzen. 2017. Near-Optimal Approximate Shortest Paths and Transshipment in

Distributed and Streaming Models. In DISC, Vol. 91. 7:1–7:16.
[12] Felix A. Behrend. 1946. On sets of integers which contain no three terms in

arithmetical progression. Proceedings of the National Academy of Sciences of the
United States of America 32, 12 (1946), 331.

[13] Christos Boutsidis, David P Woodruff, and Peilin Zhong. 2016. Optimal principal

component analysis in distributed and streaming models. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing (STOC). 236–249.

[14] Marc Bury and Chris Schwiegelshohn. 2015. Sublinear estimation of weighted

matchings in dynamic data streams. In ESA. 263–274.
[15] Amit Chakrabarti, Prantar Ghosh, Andrew McGregor, and Sofya Vorotnikova.

2020. Vertex ordering problems in directed graph streams. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM,

1786–1802.

[16] Amit Chakrabarti and Anthony Wirth. 2016. Incidence geometries and the pass

complexity of semi-streaming set cover. In Proceedings of the twenty-seventh
annual ACM-SIAM symposium on Discrete algorithms (SODA). SIAM, 1365–1373.

[17] Timothy M. Chan and Eric Y. Chen. 2007. Multi-Pass Geometric Algorithms.

Discret. Comput. Geom. 37, 1 (2007), 79–102.
[18] Yi-Jun Chang, Martin Farach-Colton, Tsan-Sheng Hsu, and Meng-Tsung Tsai.

2020. Streaming complexity of spanning tree computation, In STACS. arXiv
preprint arXiv:2001.07672.

[19] Rajesh Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi, and Morteza

Monemizadeh. 2014. Parameterized streaming: Maximal matching and vertex

cover. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete
algorithms (SODA). SIAM, 1234–1251.

[20] Kenneth L Clarkson and David P Woodruff. 2009. Numerical linear algebra in

the streaming model. In Proceedings of the forty-first annual ACM symposium on
Theory of computing (STOC). 205–214.

[21] Kenneth L Clarkson and David P Woodruff. 2013. Low rank approximation and

regression in input sparsity time. In Proceedings of the forty-fifth annual ACM
symposium on Theory of Computing (STOC). 81–90.

[22] Graham Cormode, Jacques Dark, and Christian Konrad. 2019. Independent Sets in

Vertex-Arrival Streams. In 46th International Colloquium on Automata, Languages,
and Programming (ICALP). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

582

https://arxiv.org/pdf/2010.05846.pdf
https://arxiv.org/pdf/2009.03038.pdf
https://arxiv.org/pdf/2009.01161.pdf

STOC ’21, June 21–25, 2021, Virtual, Italy Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu

[23] Jeff Edmonds. 1993. Time-space trade-offs for undirected st-connectivity on a

JAG. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing. 718–727.

[24] Jeff Edmonds, Chung Keung Poon, and Dimitris Achlioptas. 1999. Tight lower

bounds for st-connectivity on the NNJAG model. SIAM J. Comput. 28, 6 (1999),
2257–2284.

[25] Yuval Emek and Adi Rosén. 2014. Semi-Streaming Set Cover. In International
Colloquium on Automata, Languages, and Programming (ICALP). Springer, 453–
464.

[26] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian

Zhang. 2004. On graph problems in a semi-streaming model. In International
Colloquium on Automata, Languages, and Programming (ICALP). Springer, 531–
543.

[27] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian

Zhang. 2009. Graph distances in the data-stream model. SIAM J. Comput. 38, 5
(2009), 1709–1727.

[28] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld,

and Alex Samorodnitsky. 2002. Monotonicity testing over general poset domains.

In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing
(STOC). 474–483.

[29] Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. 2019.

Weighted matchings via unweighted augmentations. In Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing (PODC). 491–500.

[30] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and

Ronitt Rubinfeld. 2018. Improved massively parallel computation algorithms for

mis, matching, and vertex cover. In Proceedings of the 2018 ACM Symposium on
Principles of Distributed Computing (PODC). 129–138.

[31] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. 2012. On the communication

and streaming complexity of maximum bipartite matching. In Proceedings of the
twenty-third annual ACM-SIAM symposium on Discrete Algorithms (SODA). SIAM,

468–485.

[32] Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. 2020. Automating

cutting planes is NP-hard. In Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing (STOC). ACM, 68–77.

[33] MikaGoos, Toniann Pitassi, and ThomasWatson. 2017. Query-to-Communication

Lifting for BPP. In FOCS.
[34] Venkatesan Guruswami and Krzysztof Onak. 2016. Superlinear lower bounds for

multipass graph processing. Algorithmica 76, 3 (2016), 654–683.
[35] Sariel Har-Peled, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. 2016. Towards

tight bounds for the streaming set cover problem. In Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS).

371–383.

[36] Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. 1998.

Computing on data streams. External memory algorithms 50 (1998), 107–118.
[37] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. 2021. Faster

dynamic matrix inverse for faster lps. In 53rd Annual ACM Symposium on Theory
of Computing (STOC). arXiv preprint arXiv:2004.07470.

[38] Michael Kapralov. 2013. Better bounds for matchings in the streaming model.

In Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete
algorithms (SODA). SIAM, 1679–1697.

[39] Yi Li and David P Woodruff. 2016. On approximating functions of the singular

values in a stream. In Proceedings of the forty-eighth annual ACM symposium on
Theory of Computing (STOC). 726–739.

[40] S Cliff Liu, Zhao Song, and Hengjie Zhang. 2020. Breaking the n-Pass Barrier: A
Streaming Algorithm for Maximum Weight Bipartite Matching. arXiv preprint
arXiv:2009.06106 (2020).

[41] László Lovász and Michael D Plummer. 2009. Matching theory. Vol. 367. American

Mathematical Soc.

[42] Andrew McGregor. 2005. Finding graph matchings in data streams. In

Approximation, Randomization and Combinatorial Optimization. Algorithms and
Techniques. Springer, 170–181.

[43] Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms.
Cambridge University Press.

[44] Sagnik Mukhopadhyay and Danupon Nanongkai. 2020. Weighted min-cut:

sequential, cut-query, and streaming algorithms. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing (STOC). 496–509.

[45] Jelani Nelson and Huy L Nguyên. 2013. OSNAP: Faster numerical linear algebra

algorithms via sparser subspace embeddings. In 2013 ieee 54th annual symposium
on foundations of computer science (FOCS). IEEE, 117–126.

[46] Aviad Rubinstein, Tselil Schramm, and Seth MatthewWeinberg. 2018. Computing

exact minimum cuts without knowing the graph. In 9th Innovations in Theoretical
Computer Science (ITCS). Schloss Dagstuhl-Leibniz-Zentrum fur Informatik

GmbH, Dagstuhl Publishing, 39.

[47] Imre Z Ruzsa and Endre Szemerédi. 1978. Triple systems with no six points

carrying three triangles. Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai
18 (1978), 939–945.

[48] Zhao Song, David P Woodruff, and Peilin Zhong. 2017. Low rank approximation

with entrywise l1-norm error. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing (STOC). 688–701.

[49] Mariano Zelke. 2011. Intractability of min-and max-cut in streaming graphs.

Inform. Process. Lett. 111, 3 (2011), 145–150.

583

	Abstract
	1 Introduction
	1.1 Our Main Result: Lower Bound for s-t Reachability
	1.2 Lower Bounds for Other Streaming Problems

	2 Technical Overview
	2.1 Set-Hiding Graphs Against One-Pass Algorithms
	2.2 Generalizing to p Passes

	3 Preliminary
	3.1 Notation
	3.2 Layered Graphs and Layer-Arrival Model
	3.3 Ruzsa-Szemerédi Graphs
	3.4 Indistinguishability and The Hybrid Argument
	3.5 Set-Encoding/Perm-Encoding Graphs and Set-Hiding/Perm-Hiding Generators

	4 Construction of Set-Hiding Generators
	5 Lower Bounds for Multi-Pass Streaming Algorithms
	5.1 s-t Reachability and s-t Undirected Shortest-Path
	5.2 Bipartite Perfect Matching
	5.3 Matrix Rank
	5.4 Linear Programming

	References

