Almost Optimal Super-Constant-Pass Streaming Lower Bounds
for Reachability

Lijie Chen Gillat Kol Dmitry Paramonov
MIT Princeton University Princeton University
USA USA USA
Raghuvansh R. Saxena Zhao Song Huacheng Yu
Princeton University Institute for Advanced Study Princeton University
USA USA USA

ABSTRACT

We give an almost quadratic n?=°() lower bound on the space
consumption of any o(+4/log n)-pass streaming algorithm solving
the (directed) s-t reachability problem. This means that any such
algorithm must essentially store the entire graph. As corollaries,
we obtain almost quadratic space lower bounds for additional
fundamental problems, including maximum matching, shortest
path, matrix rank, and linear programming.

Our main technical contribution is the definition and
construction of set hiding graphs, that may be of independent
interest: we give a general way of encoding a set S C [k] as
a directed graph with n = ko) vertices, such that deciding
whether i € S boils down to deciding if t; is reachable from s;, for a
specific pair of vertices (s;, t;) in the graph. Furthermore, we prove
that our graph “hides” S, in the sense that no low-space streaming
algorithm with a small number of passes can learn (almost) anything
about S.

CCS CONCEPTS

Theory of computation — Streaming models;
Communication complexity.

KEYWORDS
Graph Streaming, Communication Complexity, Lower Bounds

ACM Reference Format:

Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao
Song, and Huacheng Yu. 2021. Almost Optimal Super-Constant-Pass
Streaming Lower Bounds for Reachability. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing (STOC °21), June 21-25,
2021, Virtual, Italy. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3406325.3451038

1 INTRODUCTION

Graph streaming algorithms are designed to process massive graphs
and have been studied extensively over the last two decades. This

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC °21, June 21-25, 2021, Virtual, Italy

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8053-9/21/06.

https://doi.org/10.1145/3406325.3451038

570

study is timely as huge graphs naturally arise in many modern
applications, particularly in those with structured data representing
the relationships between a set of entities (e.g., friendships in a social
network). A graph streaming algorithm is typically presented with
a sequence of graph edges in an arbitrary order and it can read
them one-by-one in the order in which they appear in the sequence.
We want the algorithm to only make one or few passes through
the edge sequence and use limited memory, ideally much smaller
than the size of the graph.

Much of the streaming literature was devoted to the study of
one-pass algorithms, and for many basic graph problems Q(n?)
lower bounds were shown, where n is the number of vertices. This
implies that the trivial algorithm that stores the entire graph and
then uses an offline algorithm to compute the output is essentially
optimal. Such quadratic lower bounds were shown for maximum
matching and minimum vertex cover [26, 31], s-t reachability and
topological sorting [15, 26, 36], shortest path and diameter [26, 27],
minimum or maximum cut [49], maximal independent set [4, 22],
dominating set [6, 25], and many others.

Recently, the multi-pass streaming setting received quite a bit
of attention. For some graph problems, it was shown that going
from a single pass to even a few passes can reduce the memory
consumption of a streaming algorithm dramatically. For example,
semi-streaming algorithms (which are algorithms that only use O(n)
space and are often considered “tractable”) with few passes were
designed for various graph problems previously shown to admit
quadratic lower bounds for single pass streaming. These include a
two-pass algorithm for minimum cut in undirected graphs [46], an
O(1)-pass algorithm for approximate matching [29, 31, 38, 42], an
O(log log n)-pass algorithm for maximal independent set [4, 22, 30],
and O(logn)-pass algorithms for approximate dominating set
[6, 16, 35] and weighted minimum cut [44].

1.1 Our Main Result: Lower Bound for s-t
Reachability

Our main result is a near-quadratic lower bound on the space
complexity of any streaming algorithm that solves s-t reachability
(a.k.a, directed connectivity) and uses o(+/log n) passes:

THEOREM 1.1 (REACHABILITY). Any randomized o(+/log n)-pass
streaming algorithm that, given an n-vertex directed graph G = (V, E)
with two designated vertices s, t € V, can determine whether there is
a directed path froms tot in G requires nz-o(1) space.

https://doi.org/10.1145/3406325.3451038
https://doi.org/10.1145/3406325.3451038
https://doi.org/10.1145/3406325.3451038

STOC ’21, June 21-25, 2021, Virtual, Italy

The s-t reachability problem is amongst the most basic graph
problems’ and was also one of the first to be studied in the context
of streaming [36]. Prior to our work, an almost-quadratic lower
bound was only known for two-pass streaming algorithms by
the very recent breakthrough of [9]. Prior to that, a quadratic
lower bound was shown for one-pass streaming [27, 36]. For p-
pass streaming algorithms with p > 3, the best space lower
bound was Q(n!*1/(27+2)) [34]. We mention that the hard instance
constructed and analyzed by [9] is easy (admits a semi-streaming
algorithm), even with only three passes. Additionally, the hard
instance used by [34] to prove their lower bound against p-pass
streaming algorithms can be solved in n!*1/2(®) space with a single
pass and with O(n) space with p + 1 passes. Thus, Theorem 1.1
cannot be shown using the hard instances constructed by previous
papers, and we indeed design a very different instance.

Using a slightly different instance, the techniques used to
prove Theorem 1.1 also give a non-trivial lower bound for more
than o(4/log n) passes. Specifically, we obtain a lower bound of
nl*1/0(oglogn) o the space used by any streaming algorithm
with o(log n/(log log n)?) passes (see Remark 5.2). For p satisfying
p = o(loglogn) and p = o(log n/(loglog n)?), this improves over
the Q(n'*1/(2P*2)) Jower bound of [34]. Still, proving super-linear
n!*€ space lower bounds for né-pass streaming algorithms solving s-
t reachability with ¢ > 0is a great problem that we leave open. (Note
that with O(n)-passes, semi-streaming is possible by implementing
a BFS search).

Since the s-t reachability problem is a special case of the s-
t minimum cut problem in directed graphs, the lower bound in
Theorem 1.1 can also be applied to minimum cut. We note that
space efficient algorithms are known for the undirected versions
of both these problems: s-t connectivity (the undirected version of
s-t reachability) has a one-pass semi-streaming algorithm (e.g., by
maintaining a spanning forest [26]) and there is also a two-pass
streaming algorithm for s-t minimum cut in undirected graphs that
only requires 0(n5/3) space ([46], see also [3]).

Technique: Set Hiding. We derive Theorem 1.1 as a special case
of a more general framework: given a set S C [k], we are able to
construct a random graph Gg that “hides” S, in the sense that for
any two different sets S and S’, no small-space streaming algorithm
with a small number of passes can distinguish between Gs and Gg
with any reasonable advantage. The graph Gg we construct has
only n = k1*°() vertices, out of which k are “designated source
vertices” U = {uy,--- ,ux} and k are “designated sink vertices”
V = {v1, - ,v}. There is a directed path from the source u; to
the sink v; in Gg if and only if i € S. See Section 2 for a detailed
sketch of this construction.

Theorem 1.1 now follows by the following argument: let s := u;
and ¢t v1 and observe that Gg) has a directed path from s
to t, while Gy does not. This suggests that any algorithm for s-¢
reachability can also distinguish between G, and Gy, violating the
hiding property, which is impossible for a small-space algorithm
with a small number of passes. In fact, this argument proves a
stronger statement: the s-t reachability problem remains hard even

! Time-space tradeoffs for s-¢ reachability in various graph automata models were
shown in [10, 23, 24].

571

Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu

under the promise that in the n-vertex input graph, either there
are no paths from s to t or there are at least k = n'=°() such
paths, that are vertex disjoint?. This stronger statement allows us
to obtain lower bounds for approximate versions of related graph
problems (with modest, sub-constant approximation factors), as
detailed below.

1.2 Lower Bounds for Other Streaming
Problems

Matching, shortest path, and rank. As in the case of the two-
pass lower bound for s-t reachability proved by [9], Theorem 1.1
also implies multi-pass lower bounds for the shortest path length,
maximum bipartite matching size, and matrix rank problems. This
can be shown by (by now standard) reductions: s-¢ reachability <
shortest path, and s-t reachability < maximum matching < matrix
rank.

THEOREM 1.2 (SHORTEST PATH). Any randomized o(n/log n)-pass
streaming algorithm that, given an n-vertex undirected graph G =
(V,E) and two designated vertices s,t € V, can output the length of
the shortest path connecting s and t in G requires nz—o() space.

THEOREM 1.3 (MATCHING). Any randomized o(+/logn)-pass
streaming algorithm that, given an n-vertex undirected bipartite
graph G = (LUR, E) can determine whether G has a perfect matching

2—-0(1)

requires n space.

THEOREM 1.4 (MATRIX RANK). Any randomized o(n/logn)-pass
streaming algorithm that, given the rows of a matrix M € FZX" where
q = w(n), can determine whether the matrix has full rank requires
n?=°() space.

When it comes to lower bounds, the state of affairs for (exact)
shortest path, maximum matching, and matrix rank is similar to that
of s-t reachability: Q(n?) for one-pass streaming [19, 26], Q (n2-o(D)y
for two passes [9], and Q(n'*1/(2P*2)) for any p > 3 [34]. On the
upper bound front, semi-streaming algorithms with O(v/|E|) passes
are known for (weighted) maximum matching [40], and with O(+/n)
passes for shortest path [18]. Understanding the pass-space trade-
offs for these problems is a great goal.

Lower bounds for approximation algorithms. Our proofs of
the above theorems also give some non-trivial results in the
approximation setting. Specifically, for constant p, our almost
quadratic lower bounds continue to hold even for p-pass algorithms
that only give a (1 + w(log n)~?P)-approximation to the length of

the shortest s-t path (see Theorem 5.1), or a (1 + Z_QP(‘/@))—
approximation to the size of the maximum matching or to the
rank of a given matrix (see Theorem 5.3 and Corollary 5.6).
These lower bounds for approximate maximum matching and
approximate matrix rank are possible because our lower bound for
s-t reachability holds even when there are many (vertex) disjoint
paths from s to t (see Section 1.1). In the reduction from s-t
reachability to maximum matching, the number of such paths
translates into the difference in the size of the maximum matchings
that the streaming algorithm is unable to distinguish between.

To get this, start with the graph G and add two vertices, a global source s and a
global sink ¢. Add directed edges from s to every u; and from every v; to ¢.

Almost Optimal Super-Constant-Pass Streaming Lower Bounds for Reachability

) '
U1l o [—N\NANNN 0 (U1
1e S8
U2[o |=— —>| o |V2
2€ S8
U3| o |t ...) N1 3| o |U3
3¢S
Uil o |—ANNN\ | o V4

4 €S —/

U \%

Figure 1: A graph that encodes the set {1,2,4} using the
reachability from U to V. Vertex u; cannot reach v; for i # j.

Since O,(1)-pass semi-streaming algorithms for (1 + ¢)-
approximations to the size of the maximum matching and single-
source shortest path are known [11, 42], our above lower bounds for

these problems cannot be strengthened to deal with constant ¢. A

polynomial (but sub-linear) lower bound of n'~¢ 0P o1 the space

complexity of p-pass streaming algorithms that obtain a (1 + ¢)-
approximation of maximum matching and of matrix rank was very
recently proved by [8].

Lower bounds for additional problems. Via other known
reductions, the lower bound in Theorem 1.1 can be shown to
imply lower bounds for additional streaming problems, such as
estimating the number of reachable vertices from a given source
[36] and approximating the minimum feedback arc set [15].

We also consider the linear programming feasibility (LP
feasibility) problem, where given a set of n linear constraints
(inequalities) over d variables, one needs to decide if all constraints
can be satisfied simultaneously. We prove that Theorem 1.1 implies
a similar lower bound for the LP feasibility problem with d ~ n, see
Theorem 5.7 (for the low dimension d < n regime, see [5, 17]). To
this end, we devise a reduction from s-t reachability to LP feasibility
that exploits the fact that our hard s-t reachability instance is a
layered graph?.

2 TECHNICAL OVERVIEW

Our proof proceeds by designing a carefully structured hard
instance for s-t reachability. The key component in our lower bound
proof is a construction that hides a set in a random (directed) graph
from streaming algorithms. Specifically, let S C [n] be a set, and
U,V be two sets of n vertices. We will construct a random graph,
possibly adding more vertices, such that u; (the i-th vertex in U)
cannot reach v; (the j-th vertex in V) for any i # j; and u; can reach
v; if and only if i € S (see Figure 1). That is, the graph encodes
the set S using the reachability from U to V. The most important
feature of this random graph construction is that (with a proper

3While there are known reductions from s-¢ reachability to LP feasibility, to the
best of our knowledge, our reduction is the only one that is both deterministic and
generates ©(n) dense constraints with super small coefficients ({0, 1, —1} coefficients),
as opposed to polynomially large ones.

572

STOC ’21, June 21-25, 2021, Virtual, Italy

ordering of its edges in a stream) any p-pass (for some small p) low-
space streaming algorithm A cannot “learn anything” about S, in
the sense that for any S; and Sy, A cannot distinguish between the
random graphs generated based on S; or Sy except with probability
at most 1/n. We call such a random graph a Set-Hiding graph.*

Assuming such a graph construction, the s-t reachability lower
bound follows easily. To see this, we set S; := 0 and Sy := {1},
let the source s be u; and the sink t be v1. Then in a Set-Hiding
graph that hides Sj, s cannot reach t; and in a Set-Hiding graph
that hides Sy, s can reach ¢. But any p-pass low-space streaming
algorithm cannot distinguish between the two cases. In particular,
it is impossible for such an algorithm to solve s-t reachability. In
the following, we will focus on the construction of such Set-Hiding
graphs.

2.1 Set-Hiding Graphs Against One-Pass
Algorithms

Let us for now set the goal to constructing graphs that hide
a set S from any low-space one-pass streaming algorithm, as a
demonstration of the idea.

2.1.1 A New Communication Problem.

The problem. It turns out that the indistinguishablility stems from
the hardness of the following one-way communication problem:
o Alice gets nK sets (Y}(k))g,k)e[n]x[K] (think of K = logn),
which are subsets of [n];
e Bob gets K indices ji, ..
T, ...,TK on [n];
o Alice sends a single message to Bob, whose goal is to learn

the set
K o
5= @ﬁk(Tj(k),
k=1

where @ of sets is defined as the coordinate-wise XOR of
their indicator vectors, and 7(T) := {n(a) : a € T}.
In other words, Alice gets K collections of sets, each collection
consists of n sets, and each set is over [n]. Then Bob picks one set
from each collection, permutes the sets according to his input, and
he wishes to know the & of the K permuted sets.

.,Jjk € [n] and K permutations

Lower bound. We prove that for any two sets S; and Sy, if Alice’s
message has only n!-%? bits (note that her input has n?K bits), Bob
is not able to distinguish between S = S; and S = 52, except
with probability exponentially small in K.°> Note that we prove a
much stronger form of lower bound than just a lower bound on the
error probability of computing S, such an indistinguishability lower
bound is crucial to obtain the Set-Hiding property of our graph
construction.

“In the formal proof, the collection of 2" such random graphs, one for each subset of
[n], is called a Set-Hiding generator, and a single (deterministic) graph encoding a
set is called a Set-Encoding graph. We will not differentiate between the two when
discussing the intuition in this section.

5Careful readers may have noticed that the statement as written here is technically
false, as Alice could send the parity of the size for each set, taking nK < n'-* bits. In
this case, Bob learns the parity of S, falsifying the statement for Sy, S with different
parities. In the actual proof, Alice’s sets as well as Bob’s permutations will be over

[4n], and the set S is defined to be @f:l n'k(Tj(:)) restricted to the first n elements

[n]. It resolves the above parity issue, and the indistinguishability holds in this case.
The arguments below follow as well.

STOC ’21, June 21-25, 2021, Virtual, Italy

The communication lower bound proof uses an XOR lemma for
the INDEX problem, which we prove in this paper. Suppose the
players only focus on deciding whether 1 € S, then Alice’s input
can be viewed as K arrays of length n?, where the k-th array is the
concatenation of the n indicator vectors H(Tj(k)) for j € [n], and
Bob’s input chooses one entry from each array. The bit indicating
1 € S is precisely the XOR of the K chosen bits, i.e., the XOR of the
”21 (1)-th bit in T](,f) for k € [K] (observe that both the index j; and
the random permutation 73 in the definition of the communication
problem are needed to ensure that Alice doesn’t know what entry
is chosen by Bob in array k).

The standard INDEX lower bound shows that for one array, if the
communication is less than n!-%, from Bob’s view the chosen bit is
still close to uniform, with bias at most n~2(!)_ If the players handle
all K arrays independently, then the K chosen bits are independent
from Bob’s view. Therefore, their XOR has bias at most n~ QK), by
the standard result on the XOR of independently random bits. In
general, an XOR lemma states that this bias bound holds even for
generic protocols. We prove such an XOR lemma for INDEX by
showing a discrepancy bound (a similar discrepancy bound was
(implicitly) proved in [32, 33] using a different argument). Finally,
we apply this XOR lemma and a hybrid argument to prove the
indistinguishability of any two sets S; and Ss. See the full version
for the XOR lemma for INDEX and the communication lower bound.

2.1.2 Constructing the
Set-Hiding Graph. To construct the Set-Hiding graph that hides
a set S, we first generate (Tj(k))(j,k), U)k» (7)k according to the
hard input distribution for the communication problem, conditioned
on the final set being S, i.e., S = @le T (T](If)) Then, we will

construct a graph that mimics the computation of @Ille Tk (Tj(]f)),
and use the hardness of this communication problem to argue that
low-space streaming algorithms cannot learn anything about S.

Representing index selection — graphs for (Tl(k), .. .,T,(lk)) and
TJ.(IZC). To this end, we do this computation bottom-up, and let us
first see how to “compute” the set Tj(f) for each k, i.e., select the

Jji-th set from the collection (Tl(k), cee, T,(lk)). This is done using a
similar construction to [9], which uses the Ruzsa-Szemerédi graphs
(RS graphs). The version we use is a bipartite graph on m vertices,
whose edges form a disjoint union of ¢ induced matchings of size r

(i.e., r by r bipartite subgraphs consisting of only matching edges).

Such graphs were shown to exist for r, t = m - 2-9(Vlogm) [47],
For each k, we first fix such an RS graph with r,t > n. Then, we

associate the j-th matching with set Tj(k), and keep the i-th edge

in the matching if and only if i € T;k), The RS graph encodes the

collection (Tl(k), e, T,(,k)). Intuitively, we work with RS graphs
as they allow us to “pack” many sets into a small graph. We
select the ji-th set by connecting two vertex sets U and V to the
corresponding matching (see Figure 2a). In this way, u; € U can

reach v; € Vifand only ifi € Tj(:), i.e,, the reachability from U

to V encodes the selected set T](]f) (in the same way as Set-Hiding
graphs would encode S).

573

Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu

o
— o \\,—~
U1| o — o AN o (V1
~ \\\
u2| o o o o |V2
\ﬂ o \\

Uslo |l—a 316 o \ o V3
Ug| o |—t2|° |- 7=~~~ >[e o |V4
__J o|l-=-=-—-—-— N __J
U o |— o v
RS graph
()

) o [—N\N\N\N\ST— o)
) o [—N\N\N\N\ST— o)
o O |t/ N X N—a—| o o
0 |m—| o0 [\ N\ NS0 |—|o0
= =
U U |4 \%
(b)

Figure 2: In (a), the red and blue boxes correspond to two
induced matchings in the RS graph, thin dashed edges exist
in the original RS graph, but are removed according to T;.

Representing permutations: graph for my (Tj(lf)). Next, we
implement the permutation by adding two more layers U and V,
and putting a matching corresponding to ”/;1 from U to U, and a
matching corresponding to 7 from V to V. Then the reachability
from U to V encodes Tk (Tj(lf)) (see Figure 2b).

Representing XOR: graph for @Ik(:l Jzk(Tj(If)). The last step is
to mimic the computation of @ of K sets. We have constructed
K graphs such that in k-th graph, the reachability from Uy to Vj
encodes 7y (T;f)). We wish to combine them into a single graph,

Almost Optimal Super-Constant-Pass Streaming Lower Bounds for Reachability

containing U and V as subsets of vertices, such that the reachability

from U to V encodes @szlﬂ’k (Tj(lf)) The main idea is to use the fact

that there exists an {A, V, ~}-formula of size O(K?) that computes
the XOR of K-bit. For x1,...,xg € {True, False}, we can write
X1®x28- - -®xg as a small Boolean formula F which only uses AND,
OR and NOT gates. Moreover, we can assume that the NOTs are only

applied on the x;. F will be applied to the sets 7 (Tj(:)) coordinate-

wisely, computing EBszlﬂ'k (T](]f)) We are going to construct the
graph recursively according to F.

For an AND gate in F, suppose its two operands are T, and
Ty, and we have constructed a graph containing U, and V, as
subsets of vertices that encodes T, using the reachability from U,
to Vg, and a graph containing Up, and V}, that encodes Tj, using the
reachability from Uj, to V3. Then the coordinate-wise AND of T,
and Ty (equivalently, the intersection) can be computed by merging
Va and Up, into one set (see Figure 3a). For an OR gate in F with
two operands T, and T}, their coordinate-wise OR (equivalently,
the union) can be computed by merging U, and U}, into one set,
and merging V, and Vj, into one set (see Figure 3b). Eventually, we
either reach an input variable corresponding to a graph that encodes
one Jfk(Tj(:)), which we have already constructed, or reach the
negation of an input variable, which corresponds to the complement

of one g, (Tj(f)). It suffices to also construct a graph that encodes

[n] \ 7y (Tj(]f)) for each k. Note that [n] \ mx (Tj(f)) = mr([n] \ Tj(]f))
Therefore, this can be done by applying the construction in the last
paragraph on the complement of input sets ([n] \ Tj(k))(j.k) (and
with the same indices ji and permutations).

The order of edges in the stream. The above construction
generates a graph that encodes the set S = @115:1 Tk (Tj(f)), which
we wanted to hide. To determine the order of its edges in the stream,
observe that the edges in all RS (sub)graphs only depend on the sets
(T;k))u, k)» and the rest of the graph only depends on the indices
(jx)k and permutations (73). Hence, in the stream, we will first
give all edges in the RS graphs, then all remaining edges. By the
standard reduction from one-way communication to streaming
algorithms and the hardness of the communication problem, we
prove that S is hidden from any n'-%’-space one-pass streaming
algorithm.

2.2 Generalizing to p Passes

Hiding the selected sets. The lower bound for the one-way
communication problem uses the fact that Alice does not know the
indices and permutations. Equivalently, the streaming algorithm
does not know the parts encoding (ji)r and (7z)r when it sees
the RS graphs, which encode (Tj(k))(j,k)- However, this is not the
case if the algorithm can read the stream even just twice, as it can
remember the indices and permutations in the first pass so that
the second time it sees the RS graphs, it already knows which sets
are selected. To generalize our hard instance to p passes, the main
idea is to also hide the indices and permutations, from (p — 1)-pass
streaming algorithms.

More specifically, we wish to construct subgraphs (gadgets) that
serve the same purposes as the parts encoding the indices and

574

STOC ’21, June 21-25, 2021, Virtual, Italy

Ta Ty
—> o [—\N\N\N\ST| ©
o |—— X Ny 0
| o [—N\ANANAN | 0
> o |—N= X Na—l o
Ua Vo (= Up) Vi
(a)
Ta
NNNN
NNNN
70 X
NNNNS
Ty
MN\NNN
VN X
Ua (= Ub)
N\NANN
VM N— X
(b)

Figure 3: (a) shows a graph computing T, A Tp, and (b) shows
a graph computing T, V Tj,.

permutations (in terms of reachability), but additionally, for any
(U)k» () and UL)k’ (ﬂli)k, any low-space (p — 1)-pass algorithm
should not be able to distinguish between the subgraphs constructed
based on them. Suppose we have such gadgets, then we may apply
the one-way communication lower bound to the p-th pass (after
replacing the edges from U to the RS graph and from the RS graph
to V in Figure 2a by such gadgets, and replacing the edges from
U and U and the edges from V to Vin Figure 2b). This is because
when the streaming algorithm sees (Tj(k))(j, k) for the p-th time, it
has only scanned the parts encoding the indices and permutations

p — 1 times (recall that (Tj(k))(j,k) appears before all indices and

STOC ’21, June 21-25, 2021, Virtual, Italy

permutations in the stream), and is not able to learn anything about
them. Therefore, the one-way communication lower bound still
holds.

Perm-Hiding graphs. To construct such subgraphs, we construct
a gadget that allows us to hide each permutation or index separately.
To be more precise, given a permutation 7 on [n], we want to
construct a (random) graph containing X and Y as subsets of
vertices, such that for each i € [n], the only vertex in Y that u; can
reach is v, (;) (the “indices” are special cases of the “permutations”,
and they can also be hidden using such gadgets, see the full version).
Moreover, for any 1, 72, any (p — 1)-pass low-space streaming
algorithm cannot distinguish between the graphs generated from
1 and ;2. We call such random graphs the Perm-Hiding graphs.

Hiding structured permutations via Set-Hiding graphs. We first
show that (assuming n is even) if 7 is structured such that for each
i, either 7 (2i) = 2i and 7 (2i + 1) = 2i + 1, or 7 (2i) = 2i + 1 and
7(2i + 1) = 2i (i.e., for each i, & either swaps 2i and 2i + 1, or maps
both to themselves), then we can construct a Perm-Hiding graph
for 7 using the Set-Hiding graphs against (p — 1)-pass streaming
algorithms. To see this, we add two extra layers)?, Y of sizes 2n
between X and Y. Denote the vertices in X and Y by Xj,1,xj,2 and
vj,1,0j,2 respectively for j € [n]. For all i, we add the following
edges from X to X and from Y to Y:

o from xz; to X241, X2i,2, from x2;4+1 to X2i+1,1, X2i+1,2, and

e from yo; 1, Y2i+1,1 t0 Y2i, from Yz; 2, Y2i+1,2 10 Yoit1.
Now if we add an edge from Xy; 1 to y2;1 and an edge from
§2i+1,2 to ,y.2i+l’2’ then xy; reaches yp; and x3;41 reaches yaji1
(see Figure 4a); if we add an edge from X; 2 to y2;,2 and an edge
from X2i+41,1 t0 Y2i+1,1, then xy; reaches yz;41 and x;41 reaches
y2i (see Figure 4b). In the other words, such a permutation can
always be implemented by placing a set of parallel edges from X
to Y. Therefore, to hide 7, it suffices to put a Set-Hiding graph
between X and Y to hide the corresponding set over [2n]. Since
by the guarantee of Set-Hiding graphs, no low-space algorithm
can distinguish between any two sets, we prove that any such two
permutations cannot be distinguished.

Similarly, if there is a set of fixed < n/2 disjoint pairs of
coordinates such that 7 may only swap two coordinates in a pair,
then the same argument from the last paragraph shows that such
permutations can be hidden from (p — 1)-pass streaming algorithms
as well, assuming Set-Hiding graphs.

Hiding general permutations. Finally, we use the fact that there
exists d = O(logn) fixed sets of < n/2 disjoint pairs,® such that
every permutation s can be decomposed into 7 = 7z 00 mp oy,
where 7; may only swap (a subset of) the pairs in the i-th set
(e.g., this is a corollary of the existence of O(log n)-depth sorting
networks [1]). The final Perm-Hiding graph consists of d blocks
concatenated with identity matchings, where the i-th block applies
the construction from the last paragraph to swap pairs in the i-th
set. For each 7;, we hide a set in the block using Set-Hiding. By a
standard hybrid argument, we conclude that no two permutations
can be distinguished.

Tt is important that the sets do not depend on 7.

575

Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu

' '

S1720,1 0 5| o [U24,1] :
L2 | o [—| 0 o|¥2i,2| 0 |Y2i
24,2 ><
L2i+1 |0 >| o) / o|Y2i+1
| \ o I |
—/ . . —/

X : : Y
—/ —/

X Y
()

' e
Z2i,1 o o |¥24,1| :
T2i|o[—| o)o%oy%
T24,2 ><
L2i4+1 |0 > o > o / o|Y2i+1
. \ . . _

—/ . . —/

X ’ ’ Y
—/ —/

X Y

(b)

Figure 4: (a) shows the graph that does not swap 2i and 2i + 1,
(b) shows the graph that swaps 2i and 2i + 1. The edges from
X to X and the edges from Y to Y are fixed.

Putting it together. Overall, the p-pass Set-Hiding graphs use the
structure from Section 2.1, together with (p — 1)-pass Perm-Hiding
graphs. The (p — 1)-pass Perm-Hiding graphs, in turn, use (p — 1)-
pass Set-Hiding graphs, which are constructed recursively. One may
verify that the size of the graph blows up by a factor of 20(Vlogn) iy
each level of recursion, due to the parameters in RS graphs. Hence,

Almost Optimal Super-Constant-Pass Streaming Lower Bounds for Reachability

when p = o(+4/logn), the final graph size N is at most nito(d)
implying the space lower bound of N1, See the full version for
the formal construction of Set-Hiding graphs, the construction of
Perm-Hiding graphs, and the recursive construction that combines
them.

3 PRELIMINARY
3.1 Notation

We often use bold font letters (e.g., X) to denote random variables,
and calligraphic font letters (e.g., X) to denote distributions. For two
random variables X and Y, and for Y € supp(Y), we use (X|Y =Y)
to denote X conditioned on Y = Y. For two lists a and b, we use
a o b to denote their concatenation.

For two distributions 9, and D on set X and Y respectively.
We use D1 ® Dy to denote their product distribution over X X Y,
and || D
them.

Let n € N. We use [n] to denote the set {1, ..., n}. For two sets
A,B C [n], we use AA B and AV B to denote the intersection and
the union of A and B, respectively. We also use —, A to denote the
set [n] \ A, and A @ B to denote the set of elements appearing in
exactly one of A and B (i.e., the symmetric difference of the sets A
and B). Note that

— Dy |ITy to denote the total variation distance between

A®B=(AA-pB)V (=nAA B).

When it is clear from the context, we drop the subscript in -,
for simplicity.

We also use Perm([n]) to denote the set of permutations on [n].
For a predicate P, we use 1 (P) to denote the corresponding Boolean
value of P, that is, 1(P) = 1if P is true, and 0 otherwise.

3.2 Layered Graphs and Layer-Arrival Model

In this paper we will mostly consider directed layered graphs such
that edges are always from one layer to its succeeding layer. We
will also associate an edge-layer ordering to the layered graph G,
which will be very convenient when we are working with graph
streaming algorithms.

Directed Layered Graphs. Formally, a directed layered graph
G is a triple (X?, E, Z) such that:
oV = (Vi)lk:1 is the collection of G’s layers, where k is the
number of layers in G;
= (t’,—)lk:_l1 and E = (E,-)ll‘:_l1 is a list of disjoint sets of edges
on the vertex set V = Ui?:l V;. For each i € [k — 1], E; is the
set of all the edges in G between Vp, and Vp, 1. All the ¢; are
distinct integers in [k — 1].

For each i € [k — 1], we call the set of edges between V; and
Vit1 the i-th edge-layer of G. That is, ’ specifies an ordering of
edge-layers of G, we will call it the edge-layer ordering of G. We
remark that unless some edge-layers are empty, the edge list vector
E always uniquely determine the orderlng £. In most cases we will
just specify the edge list vector F and the £ will be determined from
the context.

We will use E(G), V(G), k(G) and E(G) to denote the set of edges,
the list of layers of G, the number of layers in G and the edge-layer

576

STOC ’21, June 21-25, 2021, Virtual, Italy

ordering of G, respectively. For i € [k], we use V;(G) to denote
the vertex set of the i-th layer of G. We also use V(G) to denote
UL, Vi(G).

We say a layered graph G is an (Ng. kg, Eg) graph, if G has Ng
vertices, kg layers and its edge- layer ordering is Eg.

For a layered graph G = ((Vl)l 1»E), we use First(G) to denote
V1 and Last(G) to denote Vi for convenience. For each layer, we
index all the vertices by consecutive integers starting from 1. For a
set S of vertices from a single layer of G (that is, S € V; for some
i € [k]), we use S[;] to denote the vertex with the i-th smallest
index in S.

We note that a directed bipartite graph (all edges go from left
side to the right side) is a directed layered graph with two layers
(for which the list E only contains one set of all edges in the graph,
and £ = (1)). Unless explicitly stated otherwise, we will always
use layered graphs or bipartite graphs to refer to their directed
versions. (The only place we study undirected graph is in Section 5.1
and Section 5.2.)

Concatenation of two layered graphs. For two layered graphs
G1, Gy such that |Last(Gy)| = |First(G2)|, we use H = G; © Gz to
denote their concatenation by identifying Last(G;) and First(G2).
That is, for each i € [|Last(G1)], we identify the vertex Last(G1)[;]
and First(Gz)[;)- We also set E(H) = E(Gl) o E(Gz) to specify the
edge-layer ordering of H.

The layer-arrival model. Our lower bounds actually holds for the
layer-arrival setting, which is stronger than the usually studied
edge-arrival or vertex-arrival models. In the following we formally
define this model.

DEFINITION 3.1 (LAYER-ARRIVAL MODEL). Given a layered graph
= (V,E, E) of k layers, a randomized p-pass streaming algorithm
A with space s in the layer-arrival setting works as follows:

o The algorithm makes p-pass over the graph, each pass has
(k — 1) phases. Hence, there are (k — 1) - p phases in total. The
algorithm starts with memory state wy = 0°. Additionally, at
the beginning A can draw an unbounded number of random
bits, from a fixed distribution D, 4. These random bits are
read-only and A can always access them freely.

e Forie [plandj € [k—1],lett = (i—1)-p+j. In the t-phase, A
can use unlimited computational resource to compute another
state w; of s bits, given the previous state wy_1 together with
the edge set Ej. (Note that w; is indeed a random variable
depending on wy_1 and Ej, since A is randomized).

e Finally, A’s output only depends on the last state wpy(x_1) and
its random bits.

In other words, the streaming algorithm is allowed to access the
graph layer by layer, and can use unlimited computational resources
to process each layer. The only constraint is that it can restore at
most s bits of information after processing one layer.

Clearly, lower bounds for graph streaming algorithms in the
layer-arrival model immediately imply the same lower bounds for
graph streaming algorithms in the edge-arrival model or vertex-
arrival model.

"That is, randomness is free for A and are not charged in the space complexity of A.
This is very important for the hybrid argument used in this paper, see Section 3.4.

STOC ’21, June 21-25, 2021, Virtual, Italy

3.3 Ruzsa-Szemerédi Graphs

A bipartite graph GRS = (L UR,E) is a called an (r, t)-Ruzsa-
Szemerédi graph (RS graph for short) iff its edge-set E can be
partitioned into t induced matchings My, . .., My, each of size r.
We will use the original construction of RS graphs due to Ruzsa
and Szemerédi [47] based on the existence of large sets of integers
with no 3-term arithmetic progression, proven by Behrend [12].

ProOPOSITION 3.2 ([47]). There is an absolute constant cR5 > 1
such that, for all sufficiently large n, there is an integer N <

RS
ni*te /N8R ek that there are (n, n)-RS graphs with N vertices on
each side of the bipartition.

For convenience, we define NRS(n) = nl+e®/Viogn e also
need the following construction of RS graphs with different
parameters by [28].

PrOPOSITION 3.3 ([28]). There is an absolute constant c;zs >0

RS
such that, for all sufficiently large n, there are (n,n /1081087 Rg
graphs with 4n vertices on each side of the bipartition.

3.4 Indistinguishability and The Hybrid
Argument

We say two distributions on layered graphs D; and D; are e-
indistinguishable for p-pass streaming algorithms with space s
in the layer-arrival model. If for every p-pass streaming algorithm
A with space s in the layer-arrival model

IA(D1) = A(D2)lITv < &,

where for each i € [2], A(D;) is the output distribution of A given
an input graph drawn from ;.

Note that the above notation of indistinguishability also
generalizes to streaming algorithms in the edge-arrival model or
vertex-arrival model. But throughout this paper we will mostly
study indistinguishability with respect to multi-pass streaming
algorithms in the layer-arrival model. Hence, we will just omit this
model name whenever it is clear from the context.

Given ¢ layered graphs Gj,...,G;. They can be treated as a
single input to a p-pass streaming algorithm A as follows: there are
p passes, in each pass A process (the edges of) Gy, ..., Gy in order.
We use (Gi, . . ., Gk)seq to denote this new input to A.

The following lemma shows that the standard hybrid argument
also applies to the setting of multi-pass graph streaming algorithms.
The hybrid argument will be used throughout our proofs, and we
give a proof here for completeness.

LEMMA 3.4 (HYBRID ARGUMENT FOR MULTI-PASS STREAMING
ALGORITHMS). Let k be a positive integer. Let ¢ € Rl;o denote k
parameters. Let (D1, D)), (D2, D;), ..., (Dk’Dl’c) be k pairs of
distributions over graphs. Suppose for each i € [k], D; and D] is &;-
indistinguishable for p-pass streaming algorithms with space s, then
(D1, .., Di)seq and (D1, . .. ,D,’C)SEq are ||€|l1 -indistinguishable
for p-pass streaming algorithms with space s.2

8Dy, ..., Dy)seq denotes the distribution obtained by for each i €
independently drawing D; « D;, and outputting (D1, . . ., Dg)seq-

[k],

577

Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu

ProoF. Our proof is based on a standard hybrid argument. For
eachje {0,1,...,k},let

Hj = (Dr..... D5, D},

~-,D//()seq
Observe that Hy = (Dy,. .. ’Dl,c)seq and H, = (Dy, ..

Let A be a p-pass streaming algorithms with space s.
We claim that for each j € [k],

IA(H;) — A(Hj-1)lltv < ¢

< z)k)seq-

Assuming the claim above holds, the lemma follows from the
triangle inequality.

To prove the claim above, we show how to construct another
streaming algorithm B with the same pass and space complexity as
A, such that ||A(7‘{J) — A(?‘{j_l)HTv = ||B(DJ) — B(DJ/-)”TV- Given

an input graph G, B first draws sample graphs G; ~ Dy, ...,Gj-1 ~
Dj_1, and then draws sample graphs Gj.1 ~ Z)J’.+1, .G ~ Dy
B then simulates A on the input (G1, Ga, . . ., Gg).

Recall that our definition of randomized streaming algorithms
(see Definition 3.1) allows unbounded randomness from any fixed
distribution (which are independent from the input distribution),
and the random bits are not counted in space usage. The k — 1
sample graphs of B are then regarded as B’s randomness. Hence, B
has the same pass and space complexity of A. Moreover, one can see
that B(Dj) distributes as A(%;) and B(D}’) distributes as A(H;-1).
Since D; and Z)Jf are ¢j-indistinguishable for p-pass streaming
algorithms with space s, we have

IA(H;) = A(Hj-1)llty = 1B(D;) = B(D)) v < ¢j,

which completes the proof of the claim.

3.5 Set-Encoding/Perm-Encoding Graphs and
Set-Hiding/Perm-Hiding Generators

3.5.1 Set-Encoding Graphs and Perm-Encoding Graphs. The
following two special layered graphs will be studied throughout
the paper.

DEFINITION 3.5 (Set-Encoding GrapHs AND Perm-Encoding
GRAPHS).

(1) (Set-Encoding Graphs) For a set S C [n], we say a layered
graph G with first and last layer each having exactly n vertices
is a Set-Enc,, (S) graph (i.e., a Set-Encoding graph for the set
S). If for each (i, j) € [n]X[n], First(G)[;] can reach Last(G)[;]
if and only ifi = j andi € S.

(2) (Perm-Encoding Graphs) For a permutation w: [n] — [n],
we say a layered graph G with first and last layer each
having exactly n vertices is a Perm-Enc, () graph (ie., a
Perm-Encoding graph for the permutation). If for each
(i,j) € [n] X [n], First(G)(;) can reach Last(G)(; if and only
if7(i) =)

3.5.2 Set-Hiding Generators and Perm-Hiding Generators. Note
that a single Set-Encoding graph (resp. Perm-Encoding graph)
just encodes a set, and does not hide it. Now we formally
define Set-Hiding generators and Perm-Hiding generators, which
generate distributions over Set-Enc/Perm-Enc graphs that hides the
encoded set/permutation from multi-pass streaming algorithms.

Almost Optimal Super-Constant-Pass Streaming Lower Bounds for Reachability

DEFINITION 3.6 (6-SECURE Set-Hiding GENERATORS). Letn € N,
and let G be a function from subsets of [n] to distributions over layered
graphs. We say G is e-Set-Hiding for subsets of [n] against p-pass
algorithms with space s, if the following statements hold:

(1) For every S C [n], G(S) is a distribution over Set-Ency(S)
graphs.

(2) For every two sets S, T C [n], the distributions G(S) and G(T)
are e-indistinguishable for p-pass streaming algorithms with
space s.

DEFINITION 3.7 (¢-SECURE Perm-Hiding GENERATORS). Letn € N,
and let G be a function from Perm([n]) to distributions over layered
graphs. We say G is e-Perm-Hiding for permutations in Perm([n])
against p-pass algorithms with space s, if the following statements
hold:

(1) For every m € Perm([n]), G(x) is a distribution over
Perm-Enc, () graphs.

(2) For every two permutations my,my € Perm([n]), the
distributions G (1) and G () are e-indistinguishable for p-
pass streaming algorithms with space s.

For a generator G as in Definition 3.6 and Definition 3.7, we say
G always outputs (Ng, kg, ‘) graphs, if for all possible inputs x,
the distribution G(x) is supported on Ng-vertex layered graphs
with kg layers and edge-layer ordering l G-

REMARK 3.8. The property that G always outputs (Ng, kg, t?g)
graphs for some triple (Ng, kg, Eg) is pretty strong since it forces G
to always output graphs with the same number of vertices, the same
number of layers and the same edge-layer ordering. We remark here
that all our constructions in this paper have this property.

For simplicity, we will often use QEH (resp. Q,F; M) to denote an
e-Set-Hiding (resp. e-Perm-Hiding) generator G for subsets of [n]
(resp. permutations in Perm([n])). We may also write ggj, (resp.

g,’j';',) to indicate that the generator is against p-pass streaming
algorithms.

4 CONSTRUCTION OF Set-Hiding
GENERATORS

In this section, we will give a construction overview of the
Set-Hiding generators, which summarizes some key technical
lemmas which will be proved in the later sections.

Now we are ready to state the main theorem of this section.

THEOREM 4.1 (MAIN THEOREM). There is a constant ¢ > 1 and
an integer No € N such that for every p € N and every integer
n satisfying n > Ny and p < ¢! - \[logn, there is a generator
Q,Sf;, such that: (1) it always outputs (NQSH,’CQSH,EQSH) graphs,
where Ngsn < c - ni+ep/Nlogn gng kgsn < c- (clog n)?P; (2) it is
(n~1)-Set-Hiding against p-pass streaming algorithms with space n®.

We remark that Theorem 4.1 is all we need to prove the lower
bounds for streaming algorithms in Section 5. The rest of this
section is a proof of Theorem 4.1, with key technical lemmas proved
in later sections.

578

STOC ’21, June 21-25, 2021, Virtual, Italy

Overview of the construction. Our construction works recursively.
The base case will be generators against 0-pass streaming
algorithms. Clearly, trivial constructions suffice for this base case
since 0-pass streaming algorithms cannot read the input at all.

Next, for the case against p-pass streaming algorithms,
Lemma 4.2 shows how to construct Set-Hiding generators against p-
pass streaming algorithms from Perm-Hiding generators for (p—1)-
pass streaming algorithms, and Lemma 4.3 shows how to construct
Perm-Hiding generators against p-pass streaming algorithms from
Set-Hiding generators for p-pass streaming algorithms. The formal
proofs of Lemma 4.2 and Lemma 4.3 can be found in the full version.

LEMMA 4.2 (FRoMm Perm-Hiding GENERATORs TO Set-Hiding
GENERATORS). Let n be a sufficiently large integer. Let p,s € N
such thats < n?, and let N = N®S(4n). Let ¢ € [0,1) such that
e > 1/n10. Suppose there is a generator gllif]:lp—l which always outputs

(Ngpu, kg, 57ng) graphs and is (¢/ log® n)-Perm-Hiding against
(p — 1)-pass streaming algorithms with space s. Then there is a
generator g,sfl', such that: (1) it always outputs (Ngs, kgsn,fgsn)
graphs, where Ngsu = O(Ngen -log? n) and kgsn = O(kgen -logn);
(2) it is e-Set-Hiding against p-pass streaming algorithms with space
s.

LEmMA 4.3 (FRoM Set-Hiding GENERATORs TO Perm-Hiding
GENERATORS). Let n be a sufficiently large integer. Let s € N and let

€ € [0,1). Suppose there is a generator gg,t'p which always outputs

(Ngsn, kgsH,E’gSH) graphs and is (¢/ log? n)-Set-Hiding against p-
pass streaming algorithms with space s. Then there is a generator
such that: (1) it always outputs (NgPH,kgPH,ggPH) graphs where
Ngen = O(Ngsn - logn) and kgen = O(kgsn - logn); (2) it is
e-Perm-Hiding against p-pass streaming algorithms with space s.

Finally, Theorem 4.1 follows by applying Lemma 4.2
and Lemma 4.3 repeatedly.

Proor or THEOREM 4.1. Let Ny be a sufficiently large constant
to be specified later. We will set Np so that Lemma 4.2 and Lemma 4.3
holds for all integers n > Np. Let ¢ > 2 be a sufficiently large
constant to be specified later.

We will prove the theorem by induction on p. The theorem
trivially holds when p = 0: since 0-pass streaming algorithm cannot
read anything from the input, given an input subset S, one can
simply output a bipartite graph of size (n,n) such that the i-th
vertex on the left side is connected to the i-th vertex on the right
side if and only if i € S. Clearly, this output is a Set-Enc, (S) graph.

Now, suppose the theorem holds for p — 1, we show it holds
for p as well. We fix an n > Ny such that p < ¢7! - \flogn, and
we will show how to construct the desired generator Q;Q;";, Let

ng = NRS(4n) and n; = 3ny. We proceed as follows:
(1) Since n; > n > Ny, it follows that (p — 1) < ¢! - y/logn;.

Hence, by the induction hypothesis, there is a generator

QSH

i p—1 such that: (1) it always outputs (N(l),k(l),f(l))
graphs, where Ny < c - niﬂ(p_l)/ Vieg s 1nd kqy <
¢ - (clogny)2®=D; (2) it is ¢(1)-Set-Hiding against (p — 1)-

pass streaming algorithms with space n%, where £(1) = 1/n3.

STOC ’21, June 21-25, 2021, Virtual, Italy

(2) Since ny = Ny and n; = 3ny, combining Lemma 4.3 with
the generator g,SHH 10 there is a generator QS:' -1 such
that: (1) it always outputs (N(z),k(z),f(z)) graphs where
N(z) < O(N(l) -logny) and k(z) < O(k(l) -logny); (2) it is
£(2)-Perm-Hiding against (p — 1)-pass streaming algorithms
with space n%, where .5y = (7 - (log nz)2.

(3) Since n > Ny and ny = NRS(4n), combining Lemma 4.2

with the generator gf;ZH 10 there is a generator gﬁ*}, such

that: (1) it always outputs (N(3),k(3),£7(3)) graphs, where
N(z) < O(N(y) - log®n) and k(3; < O(k(z) - logn); (2) it is
£(3)-Set-Hiding against p-pass streaming algorithms with
space n?, where £3) =€) - (log n)2.
Now we verify that the last generator gﬁ'}) satisfies our
requirements. Noting that log ny = O(log n), it follows that

N3 <0 (c log®n- niﬂ:(p_l)/ log n1) . (1)

Setting Np to be sufficiently large, we have nj = 3 - NRS(4n) <
pl+2c®/ Vlogn and hence

logn < logn + 2¢® - \[logn. 2

Taking log of both sides of Equation 1, it follows that

log N(3) < O(1) + 3loglogn +logni +c(p — 1) - yflogni. (3)
Setting No to

be sufficiently large and noting that 4/x + 2cRSy/x < i + 2¢RS
for any x > 0, it follows from Equation 2 that

\logny < \flogn + 2cRS, 4)

Plugging Equation 2 and Equation 4 in Equation 3 and setting c
to be sufficiently large, we have

log N3 (5)

< 0(1) + 3loglogn + logn + 2¢*S - \/10; (6)
+c(p—1) - (yJlogn +2cR%)

<logn+ (3c®S + c(p—1)) - Jlogn + c(p — 1) - 2¢RS

(cp < \flogn)

(c is sufficiently large)

<logn+ (5¢R° + c(p — 1)) - yflogn
<logn+cp - +/logn.

Noting that logny = O(logn) and setting ¢ to be sufficiently
large, it follows that

k(3) < O(logz n- k(l))
< (c/10log?n) - ¢ - (clog ny)?®@~Y

(»-1) Ll

< (c/lOlog2 n)-c-(clogn)2 -1 .(1+)
ylogn

(Equation 2)

<c-(clogn)®. (p <c'\flogn and c is sufficiently large)

Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu

Finally, since n; = 4NRS(4n) > n!+Q(1/Vlogn) setting Nj to be
sufficiently large, we also have ¢(3) = 1/n1 - (log n2)?-(logn)? < 1/n.
This completes the proof. O

In the full version, we also have the following different
construction of Set-Hiding generators.

REMARK 4.4. For every p(n) = o(logn/loglogn), for every
sufficiently large integer n, there is a generator Qﬁ;‘)(”) such that:

(1) it always outputs (NgSH,kgSH,EgSH) graphs, where Ngsn <
n-(log n)O@(m); (2) it is (n~Y)-Set-Hiding against p-pass streaming

RS
algorithms with space n*¢ /loglogn,

5 LOWER BOUNDS FOR MULTI-PASS
STREAMING ALGORITHMS

In this section, we show that Theorem 4.1 implies our lower bounds
for multi-pass streaming algorithms.

e In Section 5.1, we prove the lower bounds for s-t reachability
and s-t undirected shortest-path.

e In Section 5.2, we prove our lower bounds for (approximate)
bipartite perfect matching.

o In Section 5.3, we prove our lower bounds for estimating the
rank of a matrix.

e In Section 5.4, we prove our lower bounds for linear
programing in the row-streaming model.

5.1 s-t Reachability and s-t Undirected
Shortest-Path

As already discussed in Section 2, Theorem 4.1 directly implies
the following lower bounds for s-t directed connectivity against
multi-pass streaming algorithms.

THEOREM 5.1 (DETAILED VERSION OF THEOREM 1.1 AND
THEOREM 1.2). The following statements hold.

(1) Given an n-vertex directed graph G = (V,E) with two
designated vertices s,t € V, no randomized o(+/log n)-pass
streaming algorithm with space n®~¢ for some constant e > 0
can determine whether s can reach t in G with probability at
least 2/3.

(2) Given an undirected graph G = (V,E) and two designated

vertices s,t € V, no randomized o(n/logn)-pass streaming
algorithm with space n®=¢ for some constant ¢ > 0 can output
the length of the shortest s-t-path in G.
Moreover, for p(n)-pass streaming algorithms where p(n) =
o(+/log n), the lower bound above for s-t undirected shortest-
path still holds if the algorithm is only required to compute
an (1 + w(log n)_zl’(”z))—approximation to the length of the
shortest path between s and t.

Proor. We first prove the theorem for s-t reachability, and then
show how to adapt the proof for s-t undirected shortest-path.

Lower bounds for s-t reachability. Suppose for the sake of
contradiction that there is p(n) < o(4/logn) and a constant ¢ > 0
such that there is a p(n)-pass streaming algorithm Aggeach With
n?~¢ space, which solves s-t reachability with probability at least

Almost Optimal Super-Constant-Pass Streaming Lower Bounds for Reachability

2/3. We further assume that Agireach Outputs 1 if it determines that
s can reach t, and 0 otherwise.

By Theorem 4.1 and noting that p(n?) < o(+/logn), there is
m(n) = nito() such that for every sufficiently large n, there
n,p(n?)
graphs and is (1/10)-Set-Hiding for subsets of [n] against p(n?)-
pass streaming algorithms with space n?. For a layered graph G
in the support of gﬁ'}, (0) or Qi‘}',({l}), we set s = First(G)[;) and
t = Last(G)[q] (s and t do not depend on the choice of graph G).

Since AgtReach solves s-t reachability with probability at least
2/3, it follows that

is a generator G which always outputs (m(n), kgSH,EgSH)

Pr [AstReach (G) = 1] > 2/3,
GG, (1))
Pr [AstReach(G) = 0] > 2/3.
GG, (0)
The above means
that ”AstReach(gSH()) - AstReach(gg,Hp({l}))”TV > 1/3. This

contradicts the fact that QSH is (1/10)-Set-Hiding against p(n?)-

p(n?)
pass algorithms with space n?, since Agreach takes p(m) < p(n?)

passes and m?=¢ < n? space.

Lower bounds for s-t undirected shortest-path. We will use the
same reduction in [9, Theorem 6]. Again suppose for the sake of
contradiction that there is a p(n)-pass streaming algorithm Asiypath
with n?=¢ space, which solves s-t undirected shortest-path with
probability at least 2/3.

Recall that g p(n?)

layers. Let G be the undlrected version of the layered graph G in the
support of Q ((Z)) or g (}) (that is, G is obtained by removing
the dlrectlons on all edges of G), we claim that s can reach t in G

always outputs graphs with exactly kgsn

if and only if the shortest path between s and ¢ in G has length
exactly kgsu — 1.

To see the claim above, note that (1) the shortest path between s
and t in G has length at least kgSH —1, since there are kgSH layers in
G; (2)if s can reach t in G, then the same path givesusa (kgsn —1)-
length path from s to ¢ in G, and vice versa. Therefore, AstUpath
(0) and
Qgi‘, ({1}), a similar argument as in the case of s-t reachability gives

us the desired lower bound for s-t undirected shortest-path.
Finally, Astupath is in fact only required to distinguish between

can be similarly used to distinguish the distributions le;,

(1) the shortest path between s and ¢ in G has length exactly kgsn—1
and (2) the shortest path between s and ¢ in G has length at least
kgs. By Theorem 4.1 it holds that kgsn < O(log)2 (") Hence,
it suffices for Agpypath to compute a (1 + (kgsn)~1) approximation
to the shortest path between s and t in G, and the theorem is
proved by noting w(log m(n))zP("z) > kSgH (recall that G has m(n)

vertices). O

REMARK 5.2. If we apply Remark 4.4 instead of Theorem 4.1 in
the proof of Theorem 5.1, then it follows that s-t reachability or s-t

undirected shortest-path cannot be solved by o(log n/(loglog n)?)-
pass streaming algorithms with n1*o(1/loglogn) ¢q0,

580

STOC ’21, June 21-25, 2021, Virtual, Italy

Proor skeTcH. We will just sketch the proof for s-t reachability
here. The proof of s-t undirected shortest-path is identical.
Suppose for the sake of contradiction that there is p(n) <
o(log n/(loglogn)?) and s(n) = nlito(1/loglogn) oych that there
is a p(n)-pass streaming algorithm Agigeach With s(n) space, which
solves s-t reachability with probability at least 2/3.

By Remark 4.4 and noting p(n?) < o(log n/loglogn), there is
m(n) = nito(l/loglogn) such that for every sufficiently large n,
n?)
graphs and is (1/10)- Set Hiding against p(n®)-pass streaming
algorithms with space nltes’/loglogn, Noting that p(m(n)) < p(n?)
and s(m(n)) < nites’/loglogn 5 g applying the same argument as
in Theorem 5.1, we can use Agtpeach to break the generator G

there is a generator g which always outputs m(n)-vertex

n,p(n®)’

which finishes the proof. O

5.2 Bipartite Perfect Matching

The goal of this section is to prove Theorem 5.3, which has two
parts : the exact case and the approximate case.

THEOREM 5.3 (DETAILED VERSION OF THEOREM 1.3). No
o(ylog n)-pass streaming algorithm with n?>=¢ space for some ¢ > 0
can determine whether a bipartite graph G = (L U R,E) with
|L| = |R| = n has a perfect matching with probability at least 2/3.

Moreover, for p(n)-pass streaming algorithms where p(n)
o(+/log n), the lower bound above still holds if the algorithm is only
required to distinguish with probability at least 2/3 between (1) G
has a perfect matching of size n and (2) G has no matching of size at
leastn - (1 — &(n)), for some 6(n) = Z_CP("Z)/\/@, wherec > 1 is

an absolute constant.

Proor. We will adapt a folklore reduction from reachability to
perfect matching, which is also used in [9, Theorem 5].

Suppose for the sake of contradiction that there is p(n)
o(+/logn) and a constant ¢ > 0 such that there is a p(n)-pass
streaming algorithm Apatching with n?~¢ space, which determine
whether a bipartite graph has perfect matching or not with
probability at least 2/3. By Theorem 4.1 and noting that p(n?) <
o(\/loﬂ there is m(n) =

sufficiently large n, there is a generator g

n1to(M) and such that for every

2
)
outputs (m(n),kgsn,ﬁ’gsn) graphs and is (1/10) Set-Hiding for

which always

subsets of [n] against p(n®)-pass streaming algorithms with space
2
n

For a layered graph G in the support of G5 (@) or

) n,p(n?)
np(2)([n]), let Vinig = U;2 gSH Vi(G). That is, V;3iq is the set

of vertices in the middle layers of G. We will construct a bipartite
graph H = (LU R, E)? as follows:

°Ep here is a list of edges, which specify the order that the streaming algorithm read
the graph.

STOC ’21, June 21-25, 2021, Virtual, Italy

Bipartite Perfect

Generators

Matching from Set-Hiding

(1) For every vertex v € Vjiq, we add a vertex vl toL
and a vertex v” to R. For every vertex s € First(G),
we add a vertex s¢ to L. For every vertex t € Last(G),
we add a vertex t" to R.

(2) Next we enumerate all the (directed) edges (u,v)
in G according to their ordering in E(G), with ties
broken according the lexicographically order?: for
each edge (u,v) € E(G), we add an edge @f,v") to
Epy. (Note that vertices in First(G) has no incoming
edges, and vertices in Last(G) has no outgoing ones.)
For every vertex v € V,iq, we also add an edge
(vf,v") to Ex.

That is, we first enumerate edges in E1(G) in lexicographical order, then
edges in E»(G) and so on

From the construction above, one can verify easily that |L| =
[Rl = |Vmidl + n = m(n) — n. Let ng = |L|. The following claim is
crucial for the proof.

CrLAaM 5.4.

(1) IfG is a Set-Encp, ([n]) graph, then H has a perfect matching
of size ng.

(2) if G is a Set-Ency, (0) graph, then the maximum matching in
G has at most |Viniq|l = ng — n edges.

To see Item (1) of Claim 5.4, consider the matching M
{(vf,0") : v € Vo). Note that [M| = |[Vinigl = ngr —n, and the only
unmatched vertices are s¢ and " for s € First(G) and t € Last(G).
For every s € First(G) and ¢ € Last(G), any augmenting path of
this matching M in H between s¢ and " corresponds to a directed
path from s to ¢t in G. If G is a Set-Ency([n]) graph, we can find
[First(G)| disjoint augmenting paths, in which the i-th path is from
First(G)[; to Last(G)[i].lo This means that H has a matching of
size |M| + n = ng, which is a perfect matching.

For Item (2) of Claim 5.4, if G is a Set-Ency (0) graph, then no
augmenting path between the unmatched vertices s’ and ¢" can
be found, since for every (i, j) € [n] X [n], First(G)[; cannot reach
First(G)[;)- Hence, M is a maximum matching of H.

Note that H can be generated “on the fly” in the streaming
setting. Hence, since Amatching takes p(|L]) < p(n?) passes and

(ILD)?7¢ < m(n)®>~¢ < n? space. By Claim 5.4, Amatching €an
be used to distinguish between the distributions QiH (@) and

.p(n?)
ng (n2) ([n]), contradicts the security of the generator. This proves

the first part of the theorem.
Finally, note that Apatching is indeed only required to distinguish
between (1) H has perfect matching of size |L| = m(n) — n and

(2) H has no matching of size greater than |V,;q| = m(n) — 2n.

1By the definition of a Set-Enc,, ([n]) graph, for each i € [n], there exists a directed
path P; from First(G)j;) to Last(G)f;) in G. We further observe that these n paths
are vertex-disjoint. As otherwise, if P; share a vertex v with P; for i # j, then it
means First([G])[;] can first reach v can then reach Last(G)(;}, which contradicts
the definition of Set-Enc,, ([n]) graphs.

581

Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu

By Theorem 4.1, we have m(n) < c - nitep(*)/Vlogn gor some
constant ¢ > 1, the second part of the theorem then follows.
[m]

REMARK 5.5. Consider the edge list Eyy constructed in the proof of
Theorem 5.3, for every left vertex u® € L, its adjacent edges (u’,v")
are listed consecutively in Eg. (Except for the edge (u®, v?), which is
an auxiliary edge that does not depend on the given graph G.)

5.3 Matrix Rank

Estimating the rank of an n X n matrix is an interesting problem in
the streaming. There has been several results studying this problem,
we refer the readers to [7, 8, 14, 39]. The goal of this section is
present a lower bound for the rank estimation problem.

The following corollary follows from Theorem 5.3 and the well-
known reduction from computing the size of maximum matching
for bipartite graphs to computing the rank of matrices (see, e.g., [43,
Page 167] and [41]), we will consider the row streaming model in
which the streaming algorithms get the rows of the matrix one by
one in some arbitrary order.

COROLLARY 5.6 (DETAILED VERSION OF THEOREM 1.4). No
o(+/log n)-pass streaming algorithm with n>~¢ space for some ¢ > 0
can determine whether a given matrix M € FZX" for some prime
power q = w(n) has full rank with probability at least 2/3.

Moreover, for p(n)-pass streaming algorithms where p(n)
o(+/logn), the lower bound above still holds if the algorithm is
only required to distinguish with probability at least 2/3 between
(1) rank(M) = n and (2) rank(M) < n - (1 — §(n)), for some
§(n) = 2‘”1’(”2)/‘/@, where ¢ > 1 is an absolute constant.

Proor. For a bipartite graph G (L U R,E) where L
{ui,...,up}and R = {vq,...,v,}, we consider the Edmonds matrix
M defined over the variables X = (x; ;) ;. j)e[n]x[n]*

o if (u;,v;) € E,
M(i.j) = {x” i)
0 otherwise.
Let prime power ¢ = w(n) be a prime power. We know

that rank(M) (rank of M over the polynomial ring Z[¥]
Z[x1,1,---,%n,n]) equals the size of the maximum matching in
H. For a vector ¥ = (ri,j)(i,j)e[n]x[n] € Fgq " We use M(F) to
denote the matrix over Fy obtained by substituting x; j by r; j for
each (i,j) € [n] X [n]. Applying the Schwartz-Zippel lemma, it
holds that if all the r; ; are i.i.d. uniform distributed over Fg, then
Pry[rank(M(7)) = rank(M)] > 1 — o(1).

Therefore, computing the size of the maximum matching in G
can be reduced to computing the rank of M(7) over Fq. The proof
is then finished by combing Theorem 5.3 and Remark 5.5. O

5.4 Linear Programming

Linear programming (LP) is a fundamental problem in optimization.
The fastest LP solver for general dense matrix is dense to [37].
It takes n® time with O(n?) space, where w 2.37286 is the
exponent of current matrix multiplication [2]. For the situation
where LP has roughly n constraints/variables, it is not known how
to extend the classical result [37] into streaming setting with o(n)
passes and o(n?) space. For matrix related problems such as linear

Almost Optimal Super-Constant-Pass Streaming Lower Bounds for Reachability

regression and low-rank approximation [13, 20, 21, 45, 48], there
are two natural streaming models, one is row model and the other
is entry model. Our linear programming focuses on the row model,
which is discussed below.

The row streaming model for LP.. Our lower bounds holds for
the feasibility of LP in the row streaming model: in which the
streaming algorithms get the constraints of the LP one by one in
some arbitrary order, and is required to decide whether all the
constraints can be simultaneously satisfied. Note that algorithms in
the entry streaming model for LP also work in the row streaming
model, hence our lower bounds hold for the entry streaming model
as well.

THEOREM 5.7. No o(+/log n)-pass algorithm with n*>=¢ space for
some ¢ > 0 in the row streaming model can determine if a linear
program of n variables and n constraints with coefficients in {0, 1} is
feasible or not.

Proor. We will show a reduction from s-t reachability over
layered graphs to the feasibility to an LP problem. Consider a
layered graph G with n vertices and s and t be two vertices in
G. We construct the following linear program P with n variables:

LP from s-t Reachability

(1) Variables: For each vertex v of G, we add a variable
xp to P. Note that as in the standard formulation of
LP, all x,, are non-negative.

Constraints: For each vertex v of G such that v # s,
we add a constraint

@

Xy =

Xy
u : edge (u, v) € E(G))
toP
We also add two constraints x; < 0 and xg > 1to P.
Constraints Ordering: The constraints x; < 0
and xs > 1 come first. Note that each of the
other constraints correspond to one vertex v and
all its incoming edges, which are all in the same
edge-layer of G. We say this edge-layer is the
corresponding edge-layer of that constraint. Then
we list all the other constraints in the ordering of
their corresponding edge-layers in i (G) (with ties
broken arbitrarily).

®)

Clearly, one can see that if s can reach ¢ in G, then x; > 1 implies
x¢ > 1 as well, and the LP instance P is not feasible. On the other
hand, if s cannot reach t in G, then one can construct an assignment
to all variables x so that for every vertex v which is not reachable
from s, x,, is set to 0. Hence, x; = 0 as well and P is then feasible.

Finally, since the LP instance can be generated “on the fly”, an
algorithm deciding whether P is feasible in the row streaming model
also implies a streaming algorithm deciding whether s can reach ¢
in G in the layer-arrival model. This completes the proof. O

582

STOC ’21, June 21-25, 2021, Virtual, Italy

ACKNOWLEDGMENTS

The authors would like to thank Sepehr Assadi for useful
discussions.

Lijie Chen is supported by an IBM Fellowship. Zhao Song is
supported in part by Ma Huateng Foundation, Schmidt Foundation,
Simons Foundation, NSF, DARPA/SRC, Google and Amazon AWS.

REFERENCES

[1] Miklés Ajtai, Janos Komlés, and Endre Szemerédi. 1983. An O(n log n) sorting
network. In Proceedings of the fifteenth annual ACM symposium on Theory of
computing (STOC). 1-9.

Josh Alman and Virginia Vassilevska Williams. 2021. A Refined Laser Method
and Faster Matrix Multiplication. In SODA. https://arxiv.org/pdf/2010.05846.pdf.
Sepehr Assadi, Yu Chen, and Sanjeev Khanna. 2019. Polynomial pass lower
bounds for graph streaming algorithms. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing (STOC). 265-276.

Sepehr Assadi, Yu Chen, and Sanjeev Khanna. 2019. Sublinear algorithms for (A
+ 1) vertex coloring. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). SIAM, 767-786.

Sepehr Assadi, Nikolai Karpov, and Qin Zhang. 2019. Distributed and Streaming
Linear Programming in Low Dimensions. In Proceedings of the 38th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS). ACM, 236-
253.

Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2016. Tight bounds for single-
pass streaming complexity of the set cover problem. In 48th Annual ACM
SIGACT Symposium on Theory of Computing (STOC). Association for Computing
Machinery, 698-711.

Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2017. On estimating maximum
matching size in graph streams. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 1723-1742.
Sepehr Assadi, Gillat Kol, Raghuvansh R Saxena, and Huacheng Yu. 2020. Multi-
Pass Graph Streaming Lower Bounds for Cycle Counting, MAX-CUT, Matching
Size, and Other Problems. In FOCS. https://arxiv.org/pdf/2009.03038.pdf.
Sepehr Assadi and Ran Raz. 2020. Near-Quadratic Lower Bounds for Two-Pass
Graph Streaming Algorithms. In FOCS. https://arxiv.org/pdf/2009.01161.pdf.
Greg Barnes and Jeff A Edmonds. 1998. Time-Space Lower Bounds for Directed
st-Connectivity on Graph Automata Models. SIAM J. Comput. 27, 4 (1998), 1190—
1202.

Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph
Lenzen. 2017. Near-Optimal Approximate Shortest Paths and Transshipment in
Distributed and Streaming Models. In DISC, Vol. 91. 7:1-7:16.

Felix A. Behrend. 1946. On sets of integers which contain no three terms in
arithmetical progression. Proceedings of the National Academy of Sciences of the
United States of America 32, 12 (1946), 331.

Christos Boutsidis, David P Woodruff, and Peilin Zhong. 2016. Optimal principal
component analysis in distributed and streaming models. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing (STOC). 236-249.
Marc Bury and Chris Schwiegelshohn. 2015. Sublinear estimation of weighted
matchings in dynamic data streams. In ESA. 263-274.

Amit Chakrabarti, Prantar Ghosh, Andrew McGregor, and Sofya Vorotnikova.
2020. Vertex ordering problems in directed graph streams. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM,
1786-1802.

Amit Chakrabarti and Anthony Wirth. 2016. Incidence geometries and the pass
complexity of semi-streaming set cover. In Proceedings of the twenty-seventh
annual ACM-SIAM symposium on Discrete algorithms (SODA). SIAM, 1365-1373.
Timothy M. Chan and Eric Y. Chen. 2007. Multi-Pass Geometric Algorithms.
Discret. Comput. Geom. 37, 1 (2007), 79-102.

Yi-Jun Chang, Martin Farach-Colton, Tsan-Sheng Hsu, and Meng-Tsung Tsai.
2020. Streaming complexity of spanning tree computation, In STACS. arXiv
preprint arXiv:2001.07672.

Rajesh Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi, and Morteza
Monemizadeh. 2014. Parameterized streaming: Maximal matching and vertex
cover. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete
algorithms (SODA). SIAM, 1234-1251.

Kenneth L Clarkson and David P Woodruff. 2009. Numerical linear algebra in
the streaming model. In Proceedings of the forty-first annual ACM symposium on
Theory of computing (STOC). 205-214.

Kenneth L Clarkson and David P Woodruff. 2013. Low rank approximation and
regression in input sparsity time. In Proceedings of the forty-fifth annual ACM
symposium on Theory of Computing (STOC). 81-90.

Graham Cormode, Jacques Dark, and Christian Konrad. 2019. Independent Sets in
Vertex-Arrival Streams. In 46th International Colloquium on Automata, Languages,
and Programming (ICALP). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[2]
[3]

[7

[8

[9

(11]

[12

[13

(14

[16

[17

(18

[19

™
=

[21

[22

https://arxiv.org/pdf/2010.05846.pdf
https://arxiv.org/pdf/2009.03038.pdf
https://arxiv.org/pdf/2009.01161.pdf

STOC ’21, June 21-25, 2021, Virtual, Italy

[23] Jeff Edmonds. 1993. Time-space trade-offs for undirected st-connectivity on a

JAG. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing. 718-727.

[24] Jeff Edmonds, Chung Keung Poon, and Dimitris Achlioptas. 1999. Tight lower

bounds for st-connectivity on the NNJAG model. SIAM J. Comput. 28, 6 (1999),
2257-2284.

Yuval Emek and Adi Rosén. 2014. Semi-Streaming Set Cover. In International
Colloquium on Automata, Languages, and Programming (ICALP). Springer, 453~
464.

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. 2004. On graph problems in a semi-streaming model. In International
Collogquium on Automata, Languages, and Programming (ICALP). Springer, 531-
543.

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. 2009. Graph distances in the data-stream model. SIAM J. Comput. 38, 5
(2009), 1709-1727.

Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Alex Samorodnitsky. 2002. Monotonicity testing over general poset domains.
In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing
(STOC). 474-483.

Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. 2019.
Weighted matchings via unweighted augmentations. In Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing (PODC). 491-500.
Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovi¢, and
Ronitt Rubinfeld. 2018. Improved massively parallel computation algorithms for
mis, matching, and vertex cover. In Proceedings of the 2018 ACM Symposium on
Principles of Distributed Computing (PODC). 129-138.

Ashish Goel, Michael Kapralov, and Sanjeev Khanna. 2012. On the communication
and streaming complexity of maximum bipartite matching. In Proceedings of the
twenty-third annual ACM-SIAM symposium on Discrete Algorithms (SODA). SIAM,
468-485.

Mika Go66s, Sajin Koroth, Ian Mertz, and Toniann Pitassi. 2020. Automating
cutting planes is NP-hard. In Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing (STOC). ACM, 68-77.

Mika Goos, Toniann Pitassi, and Thomas Watson. 2017. Query-to-Communication
Lifting for BPP. In FOCS.

Venkatesan Guruswami and Krzysztof Onak. 2016. Superlinear lower bounds for
multipass graph processing. Algorithmica 76, 3 (2016), 654-683.

Sariel Har-Peled, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. 2016. Towards
tight bounds for the streaming set cover problem. In Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS).

[36

[37

[38

[39

=
=

[41

[42

[43

[44

(46

[47]

[48

[49

Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu

371-383.

Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. 1998.
Computing on data streams. External memory algorithms 50 (1998), 107-118.
Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. 2021. Faster
dynamic matrix inverse for faster Ips. In 53rd Annual ACM Symposium on Theory
of Computing (STOC). arXiv preprint arXiv:2004.07470.

Michael Kapralov. 2013. Better bounds for matchings in the streaming model.
In Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete
algorithms (SODA). SIAM, 1679-1697.

Yi Li and David P Woodruff. 2016. On approximating functions of the singular
values in a stream. In Proceedings of the forty-eighth annual ACM symposium on
Theory of Computing (STOC). 726-739.

S Cliff Liu, Zhao Song, and Hengjie Zhang. 2020. Breaking the n-Pass Barrier: A
Streaming Algorithm for Maximum Weight Bipartite Matching. arXiv preprint
arXiv:2009.06106 (2020).

Laszl6 Lovasz and Michael D Plummer. 2009. Matching theory. Vol. 367. American
Mathematical Soc.

Andrew McGregor. 2005. Finding graph matchings in data streams. In
Approximation, Randomization and Combinatorial Optimization. Algorithms and
Techniques. Springer, 170-181.

Rajeev Motwani and Prabhakar Raghavan. 1995.
Cambridge University Press.

Sagnik Mukhopadhyay and Danupon Nanongkai. 2020. Weighted min-cut:
sequential, cut-query, and streaming algorithms. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing (STOC). 496-509.

Jelani Nelson and Huy L Nguyén. 2013. OSNAP: Faster numerical linear algebra
algorithms via sparser subspace embeddings. In 2013 ieee 54th annual symposium
on foundations of computer science (FOCS). IEEE, 117-126.

Aviad Rubinstein, Tselil Schramm, and Seth Matthew Weinberg. 2018. Computing
exact minimum cuts without knowing the graph. In 9th Innovations in Theoretical
Computer Science (ITCS). Schloss Dagstuhl-Leibniz-Zentrum fur Informatik
GmbH, Dagstuhl Publishing, 39.

Imre Z Ruzsa and Endre Szemerédi. 1978. Triple systems with no six points
carrying three triangles. Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai
18 (1978), 939-945.

Zhao Song, David P Woodruff, and Peilin Zhong. 2017. Low rank approximation

with entrywise 11-norm error. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing (STOC). 688-701.

Mariano Zelke. 2011. Intractability of min-and max-cut in streaming graphs.
Inform. Process. Lett. 111, 3 (2011), 145-150.

Randomized Algorithms.

	Abstract
	1 Introduction
	1.1 Our Main Result: Lower Bound for s-t Reachability
	1.2 Lower Bounds for Other Streaming Problems

	2 Technical Overview
	2.1 Set-Hiding Graphs Against One-Pass Algorithms
	2.2 Generalizing to p Passes

	3 Preliminary
	3.1 Notation
	3.2 Layered Graphs and Layer-Arrival Model
	3.3 Ruzsa-Szemerédi Graphs
	3.4 Indistinguishability and The Hybrid Argument
	3.5 Set-Encoding/Perm-Encoding Graphs and Set-Hiding/Perm-Hiding Generators

	4 Construction of Set-Hiding Generators
	5 Lower Bounds for Multi-Pass Streaming Algorithms
	5.1 s-t Reachability and s-t Undirected Shortest-Path
	5.2 Bipartite Perfect Matching
	5.3 Matrix Rank
	5.4 Linear Programming

	References

