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Abstract—Unmanned Aerial Vehicle (UAV) systems with high-
resolution video cameras are used for many operations such as
aerial imaging, search and rescue, and precision agriculture.
Multi-drone systems operating in Flying Ad Hoc Networks
(FANETS) are inherently insecure and require efficient security
schemes to defend against cyber-attacks such as e.g., Man-in-
the-middle, Replay and Denial of Service attacks. In this paper,
we propose a cloud-based, end-to-end security framework viz.,
“DroneNet-Sec” that provides secure network-edge connectivity,
and computation security for drone video analytics to defend
against common attack vectors in UAV systems. The DroneNet-
Sec features a dynamic security scheme that uses machine learn-
ing to detect anomaly events and adopts countermeasures for
computation security of containerized video analytics tasks. The
security scheme comprises of a custom secure packet designed
with MAVLink protocol for ensuring data privacy and integrity,
without high degradation of the performance in a real-time
FANET deployment. We evaluate DroneNet-Sec in a hybrid
testbed that synergies simulation and emulation via an open-
source network simulator (NS-3) and a research platform for mo-
bile wireless networks (POWDER). Our performance evaluation
experiments in our holistic hybrid-testbed show that DroneNet-
Sec successfully detects learned anomaly events and effectively
protects containerized tasks execution as well as communication
in drones video analytics in a light-weight manner.

Index Terms—UAV systems, security layer, secure hybrid
testbed, ns-3, Powder

I. INTRODUCTION

Unmanned Aerial Vehicle (UAV) systems with video ana-
lytics tasks are an emerging need in applications such as smart
agriculture, disaster scene scenarios, surveillance, military
applications, and package delivery. Multi-drone systems with
such tasks have significant challenges in terms of security and
privacy. For instance, they are susceptible to not only malicious
attacks that cause disastrous misuses, but also can be impacted
by accidental adversaries who could cause broken cameras or
serious drone misconfigurations [1], [2].

Malicious communications, jams or spoofs in Ground Con-
trol Station (GCS) signals, or Denial of Service (DoS) attacks
that disrupt the drones operations (e.g., cause data integrity
or loss of privacy issues) are reported frequently and have
raised concerns [3]. Hence, building UAV systems increasingly
involves overcoming challenges in terms of security and
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Fig. 1. GCS communication with UAVs and integration with a cloud/edge
network infrastructure; Cyber-attacks can target UAV flights, GCS communi-
cation, or containerized data processing tasks.

privacy of data affected by malicious attacks while performing
computation offloading (CO) and control networking (CoNet)
[4]–[6] as shown in Fig. 1. Moreover, drone operations in
FANETS are inherently insecure and need to be integrated with
effective security schemes to be capable of defending against
cyber-attacks [7] during continuous video stream transmission
from drones to GCS, and processing with edge resources.

In this paper, we address the above security challenges
and develop the “DroneNet-Sec”, which is an cloud-based,
end-to-end security framework addressing common attacks
(e.g., Man-in-the-middle (MITM), Replay, DoS attacks) that
have significant impact on UAV systems. The DroneNet-
Sec features a security scheme that comprises of a custom
secure packet designed with MAVLink protocol. The packets
use nonce, encryption and message authentication code in
drone and GCS communications to provide secure network-
edge connectivity to defend against data privacy and integrity
attacks, without high degradation of performance in a real-time
FANET deployment. Our DroneNet-Sec uses an intelligent at-
tack detection method based on machine learning together with
a fully containerized design to improve computation security.
The components of the DroneNet-Sec are compatible with
architectural designs that are suitable for cloud applications
that use micro-services in management of UAV systems. In
addition, they are easily deployable and scalable, providing
extensibility to include a flexible number of tasks and video
analytics processes.



The design of DroneNet-Sec uses the Zero Trust Architec-
ture (ZTA) paradigm that is based upon “never Trust, always
verify” principles. The ZTA is commonly used as part of
security mechanisms which assume that all network commu-
nications are hostile. In addition, ZTA creates the necessity of
constant monitoring of the system to check every transmission
as a suspicious activity, taking possible precautions to ensure
the reliability of the communication in between the parties
with the assumption that there is always an intruder that can
intervene.

We validate our DroneNet-Sec approach using a hybrid
testbed that can support scalable simulation and emulation
experiments for a variety of drone video analytics purposes.
We specifically use this testbed to verify whether, adding a
security layer would degrade the performance of the control
networking and the computation offloading of given set of data
processing pipelines involving UAV systems. Our experiments
show that the DroneNet-Sec approach allows for a light-weight
security mechanism and also ensures the computation security,
data privacy and integrity of the containerized real drone-video
analytics tasks, while minimizing any possible degradation in
the processing performance.

The main contributions of this paper can be summarized as
follows:

A novel security framework for real-time UAV systems with
containerized video analytics tasks, combining two schemes:

• A secure messaging scheme with custom packet design
enforcing data privacy and data integrity, securing the
messaging in between drone-to-drone and drone-to-edge
servers providing a secure protocol over MAVLink [8].

• A machine learning based anomaly detection, control
and countermeasure scheme with constant monitoring for
computation security, which can be updated dynamically
to improve the security of a UAV system further.

A hybrid testbed to be used in experimentation of schemes to
improve network-edge connectivity and computation security
for multi-UAV systems. The hybrid testbed contains:

• A FANET network simulation on ns-3 [9] for scalability
of the FANET nodes, a variety of mobility models and
network transmission protocols.

• An emulation of edge resources on allocated virtual
machines on real nodes on the Powder infrastructure
[10] for scalability of the resources that is needed for
offloading of computationally intensive tasks to edge
resources.

The remainder of this paper is organized as follows: In
Section II, we present related work. Section III details our
DroneNet-Sec framework solution and implementation. In
Section IV, we describe performance evaluation experiments
and findings. Finally, Section V concludes the paper.

II. RELATED WORK

A. UAV Systems and Security Issues
UAV systems can be considered as a representative ap-

plication of embedded systems in Internet of Things (IoT)

scenarios. Several technological ecosystems can converge in a
multi-drone video analytics platform involving e.g., different
communication technologies such as WiFi, 4G/5G cellular, and
leveraging edge/fog and cloud/edge computing resources [11].

In multi-UAV systems featuring highly resource intensive
tasks involving data collection and video analytics (i.e. video
stabilization, motion detection, and tracking), the resources
of on-board components are easily overwhelmed. In order to
process high volumes of images with commensurate comput-
ing, memory and storage capabilities, some of those tasks
can be offloaded to resources on edge and cloud servers
by using different policies to decide ‘when and how’ to
perform offloading [5], [12]. In such systems where offloading
policies are applied, the vulnerabilities of UAV systems are
higher since there is a direct connection to edge servers that
constantly send and receive video-stream processes over the
network [13]. Moreover, the limited resources on UAVs brings
additional constraints on any security scheme that can be
applied to the common protocols in the UAV systems.

The targets of these attacks can be classified into three main
categories: (i) the availability of the system, (ii) data integrity
and (iii) confidentiality in the data communications and storage
[7]. Fig. 2 provides an overview of three malicious cyber-
attack categories and the selected attack types under those
categories that compromise the communication and data safety
in UAV systems.

Fig. 2. Attacks on UAV system communication links and data processing
servers in edge computing resources.

In availability attacks, the attacker can jeopardize the avail-
ability through control and disruption of the communica-
tion among UAVs and GCS nodes. Integrity attacks can be
launched in two ways: (i) the attacker modifies data, or
(ii) the attacker fabricates malicious data. In confidentiality
attacks, the attacker gets unauthorized access to classified data,
intercepts signals, and sends data to other unauthorized entities
via eavesdropping on communication links.

In this work, the first focus is on communication interrup-
tion, targeting availability of the system, in particular Denial
of Service (DoS) attacks [14]. The second focus is on data
modification targeting the integrity of the data, specifically
Replay attacks [15]. The third focus is on data interception,
targeting the data confidentiality, in which Man in the Middle
(MITM) [16] attacks might occur.

B. Securing UAV Systems
There are many recent works that proposed different so-

lutions with variety of techniques for UAV security issues
pertaining to possible attacks. Several works focus on using
machine learning for misuse, intrusion and anomaly detection
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with Intrusion Detection Systems (IDS) in wireless networks
in general, and UAV systems specifically, by classifying inputs
in the network [17]–[19].

On the other hand, there are several works on the commu-
nication security aspect on UAV systems; policy-based finger-
print features and methods for data redundancy [20], software
defined network (SDN) based architecture [21], using artificial
intelligence on incident command response co-ordination [22]
as well as authentication of trusted drones in the GCS [23],
encrypted communication channel and authentication to pre-
vent hijacking [24]. One of the recent works, MAVSec [25],
proposed a security-integrated version of the commonly used,
lightweight UAV communication protocol, MAVLink to ad-
dress its vulnerabilities. Their comparison of different encryp-
tion algorithms including AES varieties, RC4 and ChaCha20
in terms of memory usage and CPU consumption showed
that ChaCha20 can be integrated into MAVLink without
affecting its performance drastically. Furthermore, ChaCha20-
Poly1305 authentication encryption, which is a combination of
ChaCha20 stream cipher with Poly1305 message authenticator
has been shown to be suitable as a fast and secure transport
layer security protocol for IoT devices and remote cloud
servers [26], [27]. Motivated by this work, we also consider the
feasibility for the implementation of ChaCha20 stream cipher
with Poly1305 message authenticator in UAV systems.

There are many existing methods on the communication
side, i.e., static encryption schemes, and on the intrusion
detection side, i.e., static and machine learning approaches.
However, development of a feasible holistic security scheme
that ensures the security of the entire system, especially
when there is computation offloading with continuous video
streaming processes [28], is still an open problem. Such a
security scheme should not only consider the low resource
constraints on-board UAVs, but also minimize degradation of
the throughput of the data.

As shown in many previous works, machine learning tech-
niques are successful candidates for the intrusion detection on
multi-UAV systems. However, the hardship and the challenges
on acquiring data to train, together with the dynamics of the
system, creates a need to have a system that is suited to
adopt machine learning models. Moreover, most of the existing
datasets [29]–[31] that have been used for training IDS are
not specifically created for UAV systems, and hence are not
relevant to e.g. computation security in FANETs around video
analytics. There is a need for data collection on a realistic
simulated and/or emulated multi-UAV testbed that can be
used for training different learning algorithms. In addition,
there is a need for computation security solutions that are
not cost-prohibitive and are portable when experimenting on
real systems. Our work helps equip UAV systems through the
novel DroneNet-Sec frameworks and algorithms for training
and testing data to develop IDS with selected machine learning
models that improve computation security in video analytics
tasks in UAV systems.

C. Testbeds for UAV Systems
In order to have realistic testbeds for testing and val-

idating innovative solutions and schemes that are related
but not limited to security, policies, protocols, energy and
performance optimization methods for multi-UAV FANETs,
simulation is necessary, but not sufficient by itself in terms of
resource requirements and computation capabilities. To have
enhanced experiments by leveraging the advantages of both
simulations, i.e., the scalability, and emulations, practicality
and resourcefulness, there have been many prior studies to
create end-to-end-frameworks on both sides in the context
of FANETs. Recent works such as [32], [33] detailed the
implementation of Virtualized Environments (VE) for multi-
UAV network emulation, and testing of multi-UAV FANET
simulations along with network service deployments on VEs.

To meet the needs of experimenting a solution on multi-
UAV systems featuring FANETs as described, there are also
several works that created hybrid testbeds combining different
simulators and emulators to cover multiple components. A
recent study that focused on creating a hybrid testbed for
validating experiments viz., VENUE [34] proposed a VE for
multi-UAV emulation for realistic experiments with service
deployments that can be integrated with 5G technologies.
VENUE is built on Linux Containers (LXC), using ns-3
simulator and emulations on real UAVs. An implementation
of the emulation module with TapBridge model (virtual TAP
interface and a Linux Bridge) inside ns-3 is used to make
it interact with external real devices and VEs. This work
however, did not consider the applicability of mobility models
for multi-UAV system applications or the pre-installation of
routing capabilities, which are the features needed for more
realistic application implementations.

Apart from VE, there are other prior approaches such as
[35] that provided a hybrid implementation, creating a setting
that features the injection of traffic generated from a network
simulator to an emulated live [36] network and vice-versa. This
work did not test network protocols such as routing protocols,
or extended their implementation for distributed networks,
making it hard to have a more realistic network simulator.

In order to implement, test and validate our security mech-
anisms in a scalable, and end-to-end manner, a hybrid testbed
was needed, combining simulation on ns-3 with emulation of
VEs that can be deployed on any physical machine that is
located on the ground or on the cloud, specifically Powder
nodes [10]. Our hybrid testbed jointly integrates network and
UAV simulation, extending features that are not available in
these wireless facilities. Ns-3 provides models (e.g., battery,
mobility) and helps us to instantiate a rich wireless topology.
Our work novelty is in the consideration of cloud-based
testbeds, joining extendable and resizable network simulator
and wireless facilities capabilities to deploy hybrid testbed
environments to support development of schemes to secure
network-edge connectivity and improve computation security
in drone video analytics.
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III. DRONENET-SEC FRAMEWORK IMPLEMENTATION

A. DroneNet-Sec Overview
In this section, we detail the DroneNet-Sec framework

implementation illustrated in Fig. 3 that is based on the
Zero Trust Architecture paradigm. Our approach combines
secure messaging for network-edge connectivity security, and
attack detection with countermeasures on edge resources for
computation security. A secure messaging scheme with custom
packet design in MAVLink protocol is deployed in a FANET
module in order to secure the communication in between
drone-to-drone and drone-to-edge server nodes. Apart from
the secure messaging module, the FANET includes an attack
monitoring and detection module, a deamon controlling simu-
lation commands and metrics collection and a video analytics
containers manager. Our framework provides measures for
data integrity and confidentiality by implementing a secure
messaging scheme, as well as for data access controllability,
realizing the design based on the ZTA paradigm. DroneNet-
Sec also includes a secure mechanism deployed in the edge
server, in a UAV system with containerized video analytics
tasks, focusing on attack types in Fig. 2.

There is a pre-trained machine learning model, i.e. decision
tree, deployed on edge server for anomaly detection, with a
control and countermeasure scheme that constantly monitors
the system through a simulation control for computation secu-
rity. This pre-trained model is updated dynamically, since it is
being trained further continuously with the feedback received
from the simulation control, as well as the investigation results
of the compromised parties. This secure mechanism, detects
DoS attacks and can launch security controls such as e.g.,
pausing of containers inside compromised UAV or edge server
components, for further investigation and recovery.

Fig. 3. DroneNet-Sec framework components involving FANET and edge
server resources that are integrated with security incident response.

In the following, we provide details of our system threat
model, and also describe our use of zero trust architec-
ture as well as the hybrid testbed deveopment for studying
network-edge connectivity security and computation security
in DroneNet-Sec.

B. Threat Model
Amongst the numerous targeted attacks on availability,

integrity and privacy in UAV systems, our focus as shown
in Fig. 2 is on DoS, (i.e., UDP flooding), Replay attack and
MITM attack types. Our threat models is created considering

specific scenarios as listed in Table I to be implemented and
tested on the hybrid testbed.

For UDP flooding, a compromised UAV starts flooding
while the normal network flow with image transmissions
continue concurrently. Each incoming packet is monitored
inside the edge resources, and a prediction is made with
the pre-trained Decision Tree model. In order to filter false
positives, a threshold is used to decide whether to detect an
attack occurrence. This threshold, selected as 500 after running
experiments helps us to decide on a high enough volume
to exclude false positives and on a low enough volume to
quickly detect and deploy a countermeasure to mitigate the
attack. Once the number of packets received and classified
as suspicious by the model reaches the above threshold, the
source UAV is labeled as untrusted, and the countermeasures
for computation security are enforced. The containers inside
the compromised UAV are paused after getting a snapshot, a
message is sent to the UAV to ground it, and all the other
network activities are halted on that UAV, to prevent further
impact of the violation.

In the case of Replay attacks, when one of the UAVs is
compromised and eavesdropped, it replays a previous message
that is spoofed. In order to prevent Replay attacks, the receiver
UAV/edge keeps tracks of the nonce values of the packets it
receives, updates the biggest nonce each time it receives a
packet with a valid nonce i.e., greater than the previous largest
number of nonce. If the incoming nonce is smaller than or
equal to the tracked largest nonce, replay attack is logged and
the packet is discarded.

In the case of MITM attacks, a Poly-1305 message authen-
tication code (MAC) is used to authenticate the sender on the
receiver side i.e., on the UAV/edge server.

TABLE I
THREAT MODEL FOR A UAV SYSTEM.

Attack Scenarios Countermeasure/Prevention

DoS - UDP
flood

A UAV is
compromised and

attacks edge server
nodes

Countermeasure: Constant
monitoring and detection with

pre-trained Decision Tree
model on edge nodes

Replay A UAV is
compromised and

attacks other
UAV/edge server

nodes

Prevention: Using nonce in
custom message packet with

nonce tracking & checking on
the receiver UAV/edge nodes

MITM
Prevetion: Using Poly-1305

MAC for source
authentication on the receiver

UAV/edge nodes

C. Use of Zero Trust Architecture
Our DroneNet-Sec is based on the Zero Trust Architecture

(ZTA) paradigm [37] that uses the “never Trust, always ver-
ify” principles. DroneNet-Sec provides intelligent mechanisms
with secure communication and image data messaging, to
dynamically adapt the security of the multi-UAV system as
shown in Fig. 4. We can see that our system with ZTA involves
reducing access to resources to only those who are “trusted”
agents. We validate all access as necessary and continuously
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verify the identity of every access request, providing a col-
lection of concepts, designs, and architectures that are created
with the purpose of eliminating the risk.

Fig. 4. A new UAV’s attempt to access the system resources will be
considered as untrusted and moderated using a Policy Decision Point (PDP)
and a Policy Enforcement Point (PEP) by DroneNet-Sec to protect the UAV
system assets in the operational environment.

Our ZTA approach focuses on eliminating unauthorized ac-
cess to data and services of the system, making access control
enforcement as granular as possible. High granularity i.e., di-
viding access control privileges to a resource into small pieces
that allow fine-grained authorizations to known agents/UAVs
as needed without over/under-provisioning of privileges. We
enforce policies to allow data/resource assets access to only
authorized and approved agents, security groups. All other
agents, attackers, unknown agents, etc. are not authorized and
prohibited from accessing the data or resource assets.

The ZTA-enabled infrastructure ensures users are trustwor-
thy, and allows only valid system requests to be authorized
through the PDP and PEP functionality. Two basic rules are
applied with the ZTA, first, authentication, and then authoriza-
tion. Policies such as, can the system remove any uncertainty
about an agent trying to access the system? Is the access
justified? Is the agent trusted? For resource access, risk-based
policies need to be implemented to ensure that authorization
policies are performed accurately. Implied trusted zone, out-
lines an area where all the agents are trusted to at least the
level of the last PDP and PEP gateway. For instance, a UAV
has to pass these policies to be allowed to have access to a
common trusted zone, safe perimeter in the operational UAV
environment.

We remark that the PDP and PEP rules utilize a set of
controls and mechanisms such as all traffic beyond the trusted
zone have a common level of trust. These rules must not
operate or apply policies beyond its location in the flow
of traffic. Furthermore, the implied trusted zone must be
considered as small as possible as a best practice.

D. Hybrid Testbed Development
We deployed a hybrid testbed for the purposes of this study

as shown in Fig. 5. The testbed setup includes two allocated
wireless nodes, one for our computation tasks on the edge, and
another node for our FANET implementation in a real-time
network simulator that instantiates a richer wireless topology
for our agent drones.

The components employed for the deployment of our hybrid
testbed include, Powder [10] a platform for Open Wireless
Data-driven Experimental Research, that provides us with

computing resources to allocate our edge server and FANET
resources. This platform is composed synergestically with ns-3
[9], an open-source network simulator primarily used in net-
working research. The system communicates with MAVLink
[8], a hybrid lightweight messaging protocol used for com-
munication amongst drones. It also provides communication
between on-board drone components, following a modern
hybrid publish-subscribe and point-to-point design pattern.

An autopilot system, Ardupilot [38], supports the flight
controllers, sensors and frame types. A simulator allows us
to test the behaviour of real drones without any software.
Software In The Loop, [39] and data located in Docker
[40] containers that allows container-based applications are
deployed in an easy, lightweight and consistent manner [41]
in our hybrid testbed.

E. Network-Edge Connectivity Security
The main components of our hybrid testbed related to

experiments with network-edge connectivity security can be
described as follows:
Communication between Powder nodes. We implemented a
ns3::TapBridgeHelper class and used it for the ns-3 side on the
FANET to facilitate P2P (Peer-to-Peer) drone communications.
Reliable User Datagram Protocol (RUDP). While User
Datagram Protocol (UDP) is simpler and faster than Trans-
mission Control Protocol (TCP), it does not provide sequenced
message delivery. We made the decision to use UDP over TCP
because UDP is message-based and not stream-based com-
pared to TCP. Despite the fact that UDP structure is relatively
simple and offers high processing capabilities, its reliability is
low as it does not check whether packets have been delivered
to the destination or not. Another main drawback of UDP is
that it keeps transmitting regardless of reliability issues, and
also sometimes packets are not delivered sequentially [42].
To address above issues, we implemented a custom reliable
UDP (RUDP) protocol for use in the drone-to-drone and
drone-to-edge communications (i.e., in the non inter-drone
services). Our reliable protocol attempts to decrease packet
loss, and guarantees sequenced data delivery. This aids not just
to improve the data throughput but also reduces the latency
on data packets, which is achieved with the employment of
sequence numbers, acknowledgment numbers, and timers to
monitor packet loss and sequence of the packets received.
Secure Messaging. MAVLink packets are encrypted with
ChaCha20-Poly1305 directly [27], with no need for Transport
Layer Security (TLS) certificates. This also allows us to pre-
vent Replay attacks through the use of an incrementing nonce.
In addition, packet encryption can also be easily toggled within
our experiments to test performance impacts. Fig. 6 gives an
overview of the custom encrypted packets, with information
about target sysid, nonce, MAC tag and encrypted MAVLink
packet in terms of size.
Encrypted packets sender and receiver with ChaCha20-
Poly1305 algorithm. Fig. 7 shows how ChaCha20-Poly1305
[27] was implemented. The implementation was done with the
package available at [43], which is a self-contained Python
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Fig. 5. Hybrid testbed that includes two allocated wireless nodes, one node for our computation tasks on the edge, and another node for multi-UAV nodes
implementation; built using ns-3 bridge/tap functionality, containers for video data processing as microservices, and MAVLink lightweight messaging protocol
to facilitate peer-to-peer drone communication in a repeatable and scalable experiment setup.

Fig. 6. Secure messaging with packet encryption in our MAVLink protocol implementation.

package of low-level cryptographic primitives. Authenticated
encryption is implemented following one of our basic ZTA
rules for authentication, which simultaneously assure the con-
fidentiality and authenticity of data. The process of encryption
and decryption of packages works as follows. The sender,
provides a plain text in MAVLink protocol, simultaneously,
a ChaCha20-Poly1305 cipher from the shared key and cur-
rent nonce is generated. This updated cipher with receiver’s
MAVLink sysid is later encrypted together with the plain text
from MAVLink. Finally, the nonce is incremented and an
encrypted packet is sent. From the receiver side, a received
encrypted data alongside with nonce and sysid is received.
After this happens, a series of decisions are made before
the plain text is decrypted. For instance if the current or
the previous received nonce is not received, then the packet
must be discarded, providing a log replay attack. Otherwise,
decisions such as updating the received nonce or save current
received nonce are also made before the ChaCha20-Poly1305
algorithm is generated in order to decrypt the plain text.
Scalable number of containers in ns-3. Our framework is
implemented with Docker containers, which run the FANET
ns-3 simulations. We implemented a Python script that scales
the number of containers in our ns-3 implementation. This
implementation supports reliable and more configurable code
that helps with an easy integration and supports updates for
future work involving container orchestration. Our system can
support any number up to around 254 drones as MAVLink
supports 255 total systems and a numeric naming scheme is

used for the bridges/taps, which is necessary for our peer-to-
peer FANET setup.
Image simulation, sending packages from edge to server
and viceversa. Our experimentation relies on the open-source
10-class geospatial object detection dataset [44]. This also
aimed us to evaluate the image/data transmission simulation
performance of our proposed hybrid testbed. For each image, it
splits into chunks that fit the MAVLink data packet (253 bytes)
until it waits for the edge server to send a data transmission
handshake request. It responds with an acknowledgment, then
it sends out each image chunk consecutively in MAVLink
encapsulated data packs. It does this until the image has been
sent out fully, then waits for the next request from the edge.
The goal is to generate network traffic, once all the images in
the dataset are exhausted, it just restarts the process.
A secure messaging scheme with custom packet design
enforcing data privacy and data integrity, securing the
messaging in between drone to drone and drone to edge
server providing a secure protocol over MAVLink. Custom
messaging design enforces encryption [27] on the MAVLink
packet for data privacy. This includes nonce information
that can be used for enhancing data integrity by keeping
track of last nonce, detecting and preventing possible replay
attacks. The message authentication code (MAC) in the custom
message is used to prevent MITM attacks by ensuring the
source of the message as a trusted party. The custom packet
is highly scalable, and can provide the secure messaging up
to 254 UAVs with MAVLink protocol.
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Fig. 7. Encrypted packets sent between the sender and receiver using the ChaCha20-Poly1305 algorithm.

F. Computation Security
In order to ensure secure computation task offloading in

the drone video analytics, we need to address security mea-
sures for data confidentiality, data integrity, and data access
controllability. There is a need of a dynamic framework to
determine if the source UAV is trusted i.e., the data it sends can
be received and used in the processes in the recipient drone.
Based on the ZTA, the trusted execution environment allows
drones to execute video analytic tasks to run with container-
ized data as shown in Fig. 8. In support of such a functionality,
a machine learning algorithm that we implemented decides if
the source is trusted or not.

Fig. 8. Cloud-hosted monitoring and anomaly detection module that dynam-
ically ensures computation security by controlling container execution only
on trusted UAV nodes.

Computation security is achieved by implementing a frame-
work that is dynamic, persistent, and intelligent. Our frame-
work continuously checks the status of the edge server and

the components (UAV, UAV systems, and machines) that are
part of the system. Our machine learning algorithm uses
system monitoring data, including the outputs received from
UAV-to-edge and vice versa. Any device that attempts to get
access to the system must be verified, including data that
can be accessed and compromised. The framework provides a
robust solution to put all containerized computation safe and
mitigates impact of any potential DoS attacks on the system.
While constantly monitoring the system, our machine learning
implementation is trained for DoS attack detection and thus
classifies all the traffic deployed on the edge. Dynamicity of
the framework comes from the constant monitoring and the
ability to learn from more data produced in the system in
order to handle new attack types.

When there is a DoS attack detected, in order to avoid
possible false positive effects, a threshold is used before decid-
ing to pause the containers inside a compromised component.
When the threshold is reached, meaning the suspicious activity
that has been classified as an attack, the containers inside the
compromised component are paused and the network traffic
for that party is halted for further investigation and recovery.
Once the containers are paused, the data inside and the state
of the container is preserved by a snapshot, while halting the
network also prevents the compromised party to do further
damage.

The integrated cloud resources for the machine learning pro-
cess help with computationally intensive operations involved
in the training step. Our cloud-hosted machine learning scheme
forms a key aspect in dynamically and successfully configuring
the security of the drone flights at the network-edge. In order
to test our cloud-hosted machine learning implementation, we
utilize the BOUN DDoS dataset [45]. The dataset is generated
through Hping3 traffic generator software by flooding TCP
SYN, and UDP packets, towards a server where over 4000
active user traffic was flowing on the router at the same time
with the attacks. It includes attack-free user traffic and attack
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traffic that makes it suitable for the evaluation of network-
based DDos attacks detection.

We trained a machine learning model and deployed it on
an edge server for anomaly detection, in which training data
can be any existing data set and/or real data collected from
the hybrid testbed. Model weights are updated continuously
and dynamically as new data is monitored from the system as
illustrated in Fig. 9

Fig. 9. Machine learning data training steps with existing or collected data
from the hybrid testbed.

Algorithm 1: Dynamic DoS Attack Mitigation
Result: secure computation on trusted drone nodes
initialization;
while communication between drone and GCS happens do

continues monitoring;
if drone is compromised then

identified as untrusted;
labeled as untrusted;
containers are paused;
network access is disabled;
last stage and data inside container is preserved, further

damage is mitigated;
admin is attached to the container for

recovery/investigation process;
else

drone is trusted;
containers are active;

end
end

Algorithm 1 shows the steps for the anomaly detection
process that consists of a continuous monitoring of the system.
Once an attack is detected by the pre-trained Decision Tree
model on the edge server, the agent is identified and labeled
as untrusted. A snapshot of the containers inside the com-
promised drone is taken, then the containers are paused. The
network communications are also halted with a message that
is sent to the compromised drone to ground itself for further
investigation and recovery.

The containerized design of the tasks allows the investiga-
tion and recovery phase to be performed faster. This is because
the snapshots can be used to examine the problem further,
and rebooting the compromised drone or adding a new drone
to the system instead of the compromised one can be done
by deploying the corresponding images. Moreover, isolating
the compromised drone prevents the spread of the effect.
This scheme uses the monitored network flow to detect an
attack that has been used in the training of the model weights,

specifically DoS - UDP flooding attacks, which are deployed
on the edge server. The model can be updated dynamically
to detect more complicated attacks and a variety of attacks
during on-going system operations.

IV. PERFORMANCE EVALUATION

In this section, we present experiments that demonstrate the
effectiveness of our DroneNet-Sec framework. All experiments
are simulated in our hybrid testbed, in which UAVs run con-
tainers in a multi-hierarchical manner, with centralized-control
communication networks, and leveraging edge server data.
Each drone is operated by one GCS and all commands and
computation processes are controlled by a single edge server.
We also provide experiments to evaluate the performance
of our proposed hybrid testbed. Two Powder wireless nodes
include FANET and edge server respectively. Seven drones
running via ns-3 simulator, Docker containers and Daemon
running on host node acts as the container manager. We
monitor the system CPU and memory measurements for each
container, during both normal flows and flows with attacks.

A. Network-Edge Connectivity Security Experiments
We implemented a novel secure and realistic configuration

of computing resources that are extendable and resizable on
the ns-3 side. Through this configuration, we simulate a large
number of UAVs, that interface with the Powder side for
emulating various edge and cloud computing resources. In
addition, we develop an image-offloading simulation between
the FANET network and edge server in a secure manner
through a scheme that defends against MITM and Replay
attacks. Further, we implement a protocol that is specific
to drones and running experiments with the best encryption
method to secure the communication between UAVs and GCS.
Specifically, we use a custom encrypted packet that is designed
with MAVLink messages using ChaCha20-Poly1305 for ef-
ficiency and light-weight functionality. Chacha20-Poly1305
is the combination of two algorithms, the Chacha20 stream
cipher and the Poly1305 MAC, both designed separately by
Daniel J. Bernstein. These two algorithms were designed
to be fast in software and are widely adopted. They also
present excellent options to provide encrypted communication
between, low resourced or constrained UAVs [27].
ChaCha20-Poly1305 is efficient and has little overhead for
on-board UAV resources. In order to show that ChaCha20-
Poly1305 is indeed efficient and has little overhead for on-
board UAV resources, we compare the performance of the
system with and without encryption. Fig. 10 shows the CPU
Usage %, and Fig. 11 shows the Memory Consumption mea-
surements of messaging in the system without encryption and
with different encryption algorithms: ChaCha20-Poly1305,
AES GCM, AES EAX and AES CCM.

Our performance evaluation results demonstrate that our se-
curity mechanism guarantees secure message transmission and
communication between drone-to-drone and drone-to-GCS
links, with less degradation of CPU consumption and memory
usage, compared to other common encryption algorithms. In
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Fig. 10. CPU usage performance comparison with different encryption
methods and without encryption.

Fig. 11. Memory consumption performance comparison with different en-
cryption methods and without encryption.

these results, we can see that the average CPU % consumption
for ChaCha20 is the closest one to the consumption without
any encryption, which is the second smallest as expected.
On the other hand, in memory consumption %, we can see
that ChaCha20 has the closest value to no encryption case,
which is the second highest. The reason of the reverse trend
we see on memory consumption when compared to CPU
consumption is as follows: a faster messaging allows more
images being transmitted with packets, leading to more packets
in the RUDP queue. Hence, the memory consumption is the
highest in the no encryption case, followed by the ChaCha20
case. Therefore, our evaluation results show that ChaCha20-
Poly1305 performs in a more efficient manner compared
with other encryption schemes (i.e., AES CCM, AES EAX,
AES GCM) and no encryption (i.e., plain-text). Thus, we
demonstrate our novel security mechanism which has the
capacity to save memory and battery for drones that have
resource constraints in the network-edge within a UAV system.

B. Computation Security Experiments
Dynamic security scheme with machine learning accurately
detects anomaly events. While the system is being monitored
on both UAV and edge sides, we run experiments that involve
launching DoS attacks i.e., UDP flooding. Either external UAV
system or a machine might be manipulated to instantiate an
attack, in order to interrupt the system availability and thereby
the system communications. Fig. 12 shows one experiment in

which an external agent tries to get access to a trusted agent.
Since the machine learning implementation runs continuously,
it checks the status of all the agents that are part of the
mission. Once the external agent is detected, the trusted agent
container is immediately paused, and a snapshot of the state
and data is obtained. Concurrently, all network communication
is halted and the trusted UAV is sent to GCS for further
analysis and recovery. It is important to highlight that even
if one agent’s container is paused, the rest of the agents that
are part of the mission are still working. This prevents the
spread of the breach in the system to other trusted parties,
which is important in cloud systems to avoid amplification
of a breach at cloud-scale. Moreover, the offline analysis and
recovery phase will provide valuable information to improve
the security of the system, while rebooting the compromised
UAV will be fast with containerization.

In order to understand better the severity of this type of
attacks, we run a series of experiments to demonstrate the
number of transmitted images with no attacks and the system
under increasing number of attackers. In Fig. 13 shows the
number of transmitted packets with a normal network traffic
and when 1, 2 and 3 attackers flooding the network traffic,
respectively. As expected, the degradation on the system gets
more severe as the number of attackers and the duration of
attacks increase.
Security framework improves the network throughput
under DoS attack. We considered an experiment scenario to
demonstrate network throughput improvement using the secu-
rity framework under DoS attacks. In the experiment scenario,
the packets are sent for the first 60 seconds without any attack,
on the 60th second, the first attacker starts UDP flooding. On
120th second, the second attacker starts UDP flooding. On
the 180th second, the third attacker starts UDP flooding. The
number of packets received by the attack monitoring on the
edge server under this experiment can be found in Fig. 14. This
experiment shows how the framework handles the attacks in
short time and the throughput does not flatten as in Fig. 13,
where there are no security measures. Also, the throughput
does not drop after attacks start, but packets are received
continuously, while under attack, since only the compromised
UAV container is paused.
Machine learning classification methods implementation
utility. We tested a variety of classical machine
learning classification methods on the BOUN DDoS
dataset [45]. To do this, we made significant changes
to the implementation associated with work [46],
and made several changes to their classical machine
learning code for our purposes. We selected 4 features;
T ime, Frame length, Source ip,Destination IP with
respect to our monitoring collections of packets from our
hybrid testbed that are relevant to our setup. The data from
BOUN containing UDP flood attacks with the 4 features
were used to train 6 different models. Given that all IPs are
the same, the port is used as a weight against the IP with a
bitwise XOR, and the dataset relies on inference between IP
addresses, packet size and time.
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Fig. 12. Experiment scenario illustration to handle an attacker’s attempt to get unauthorized access to information from a secure drone, which involves
anomaly detection and a security control initiation to pause the relevant container in a compromised UAV node.

Fig. 13. Total images received without any security measures for cases
involving: no attacker, one, two and three UDP flooding attackers.

Fig. 14. Total packets received under UDP flooding attack experiment
scenario involving: packets sent without any attack in first 60 seconds, and
consequent attack initiations with a 60 second inter-attack period.

With respect to the testing measurements of the trained
models that can be seen in Table II, Decision Tree, and
KNN classifiers performed the best, followed by Random
Forest; all models achieved greater than 90 percent F1 score,
while Logistic Regression, Naive Bayes, AdaBoost performed
poorly. Table III shows timing characteristics to demonstrate

TABLE II
MACHINE LEARNING BASED CLASSIFICATION RESULTS

Accuracy Precision Recall F1
Logistic Regression 0.947 0.5 0.723 0.599
Naive Bayes 0.947 0.5 0.723 0.591
KNN 0.988 0.948 0.923 0.935
Decision Tree 0.988 0.917 0.957 0.937
AdaBoost 0.953 0.557 0.959 0.703
Random Forest 0.894 0.894 0.967 0.929

that using machine learning models (especially Decision Tree)
to perform inference continuously is suitable in terms of speed
and accuracy in a real-time UAV system.

TABLE III
MACHINE LEARNING TRAINING AND TESTING TIME RESULTS

Training Time (sec) Test Time (sec)
Logistic Regresion 43.371 0.3435

Naive Bayes 4.175 1.0653
KNN 192.563 178.699

Decision Tree 39.4376 0.2643
AdaBoost 1415.65 43.738

Random Forest 2254.22 26.634

Using the collected statistics and timing results from these
experiments, we chose to implement the Decision Tree model
that was the fastest and most accurate model in comparison
with the other models. As a final step, we evaluated this
chosen model on more than 14,000 simulated packets that
were collected from our hybrid testbed implementation, with
an average prediction time per packet being less than half a
second. The accuracy achieved on the real data experiments
on the testbed is 0.977, where precision is 1, recall is 0.920
and the F1 measure is 0.958, compared to the results obtained
from the training dataset. The results on the real data thus
show that our chosen model is highly suitable for detecting
UDP flood attacks and allows UAV system operators to make
the necessary corrective actions with high speed and accuracy.
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V. CONCLUSION

In this paper, we proposed a framework to secure drone
communications and improve computation security in video
processing container tasks in terms of data privacy, integrity
and availability. Our scheme features an intelligent and dy-
namic decision algorithm to detect anomaly events in a
UAV system with FANET configuration without decreasing
the performance. Our scheme performance can be improved
continuously with the feedback from the system itself, as
the system operates in the field. We created and deployed a
hybrid testbed management module that synergized simulation
and emulation experiments as part of realistic scenarios for
evaluation studies. Hybrid testbed experiment results showed
that our proposed security framework successfully detects
anomaly events on drones in a fast and accurate manner,
allows for secure messaging with the MAVLink protocol, and
provides UAV system operators the necessary knowledge to
securely operate containers for drone video analytics.

As part of future work, we are planning to create investi-
gation and recovery schemes for video processing pipelines,
along with forensic investigation techniques based on offline
analysis. This will help in analyzing the snapshots or images of
the paused containers for providing feedback to the system to
further improve the security scheme by using transfer learning.
Future work can also support multiple FANETs in the edge
server, and provide more options such as drones going out of
range, or operating on different FANET topologies. Further,
our work on using machine learning models can be extended to
detect and mitigate the impact of other attacks such as probing,
GPS jamming or zero-day anomalies.
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