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Abstract 
Autonomy and connectivity are considered among the most promising 
technologies to improve safety and mobility and reduce fuel 
consumption and travel delay in transportation systems. In this paper, 
we devise an optimal control-based trajectory planning model that can 
provide safe and efficient trajectories for the subject vehicle while 
incorporating platoon formation and lane changing decisions. We 
embed this trajectory planning model in a simulation framework to 
quantify its fuel efficiency and travel time reduction benefits for the 
subject vehicle in a dynamic traffic environment. Specifically, we 
compare and analyze the statistical performance of different controller 
designs, in which lane changing or platooning may be enabled, under 
different values of time for travelers. Results from extensive numerical 
experiments indicate that our design can not only provide first-hand 
cost savings for the subject vehicle, but also second-hand savings for 
vehicles in upstream of the subject vehicle. Experiments also highlight 
that the lane changing and platooning can both offer benefits, 
depending of the relative values of fuel cost and the traveler’s value of 
time: with a small value of time, the fuel efficiency benefits of 
platooning outweighs time savings offered by lane changing. 
However, a vehicle with a high value of time may find it more 
beneficial to travel outside of a platoon and complete its trip faster by 
leveraging lane changes.  

Introduction 
It is envisioned that in the near future transportation systems would be 
composed of vehicles with varying levels of connectivity and 
autonomy. Connected vehicle (CV) technology facilitates 
communication among vehicles, the infrastructure, and other road 
users [1], allowing vehicles to see beyond the driver’s line of sight, 
and the transportation infrastructure to be proactive in responding to 
stochastic changes in road conditions and travel demand [2]. 

Automated vehicle technology enables automation of vehicles at 
different levels, where level 0 automation indicates no automation, and 
automation levels 1 and 2 refer to a single and multiple driving 
assistant systems being present in the vehicle, respectively. Level 3 
automation allows the transfer of control authority between the human 
driver and the autonomous entity when the automation fails. Level 4 
autonomy allows for the vehicle to control all functionalities within 
specified regions. Finally, in level 5 autonomy vehicles can travel 
anywhere without any intervention from human drivers [3]. 

Although the connected and automated vehicle technologies can each 
be deployed independently in a vehicle, when combined they can 
provide a synergistic effect that goes beyond the sum of their 
individual benefits. It is expected that upon deployment, the connected 
and automated vehicle (CAV) technology could significantly improve 
mobility, enhance safety and traffic flow stability, reduce congestion, 
and improve fuel economy, among other benefits [4−8]. The degree to 
which such benefits can be realized in real-world conditions depends  

 

on a wide array of factors, among which trajectory planning of CAVs 
plays a major role [9]. The main purpose of trajectory planning is to 
provide a vehicle with a collision-free path, considering the vehicle 
dynamics, the surrounding traffic environment, and traffic rules [10]. 
More comprehensive works could incorporate secondary objectives 
such as achieving fuel economy [11−15] and time efficiency [16, 17]. 

Platooning is one of the applications of the CAV technology, which 
allows for vehicles to travel with small gaps between them, thereby 
reducing the aerodynamic drag on platoon members and increasing 
fuel efficiency [18]. To enjoy the benefits of platooning, the trajectory 
planning methods should be enhanced to include platooning decisions, 
including (1) whether a vehicle should merge into a platoon, and (2) 
among the existing platoons, which platoon should a vehicle join, 
among others. Additionally, in the existence of platoons, lane changing 
becomes a more complex task: for a platoon member to join lanes, 
they should dissolve from the platoon and incur the energy cost of 
such a decision. Furthermore, a decision on the part of a vehicle to 
dissolve from a platoon will impact energy efficiency of other platoon 
members. Similarly, merging into a platoon may require changing 
lanes, which could offset some of the fuel efficiency benefits of 
platooning. Therefore, accounting for platoon merging and lane 
changing decisions is a critical part of trajectory planning in the era of 
the connected and automated vehicle technology. 

There are a number of classical methods on trajectory planning, such 
as sampling-based [19, 20], optimization-based [21, 22], graph search-
based (Stahl et al. 2019), etc. These studies and their potential for use 
in CAV systems will be discussed in detail in the Related Works 
section. Despite the high performance of these methods on trajectory 
planning, the transportation systems of the future are expected to have 
high levels of autonomy and connectivity, thereby requiring the 
existing methods to be reviewed and reevaluated within this new 
context. More precisely, although current methods can plan vehicles’ 
lateral and longitudinal positions, they need to be enhanced to 
explicitly make discrete decisions on platoon merging and lane 
changing jointly with continuous decisions on trajectory planning. The 
contributions of this paper are as follows: 

• We put forward a joint cruising, lane changing, and platoon-
merging planner for a connected and automated vehicle, in a 
dynamic environment with a mixed traffic consisting of connected 
and legacy vehicles. The planner is capable of planning the future 
geo-coordinates of the vehicle jointly with lane changing and 
platoon merging decisions. 

• We develop a simulation environment for traffic dynamics, in 
which vehicles may enter or exit the traffic stream, merge into or 
split from a platoon, change lanes, and adjust their velocities. 

• We demonstrate that the subject vehicle (which is assumed to be 
connected and automated) can obtain statistically significant fuel 
and time savings, through extensive simulations in various traffic 
states (i.e., free-flow, onset-of-congestion, and congested). 
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Table 1: Summary of parameters 

Parameter Value Definition 
𝑡upd   0.4 secs the updating period of the trajectory of the subject vehicle 
𝑝on 0.6 the probability that a vehicle is interested in joining the freeway from on-ramp 
𝑝off 0.6  the probability that a vehicle is interested in taking at off-ramp 
𝑝npe 0.5  the probability that the vehicle is not platoon-enabled vehicle 
𝑝merge 0.6 the probability of that a vehicle intends to merge 
𝑝change 0.1 the probability of that the vehicle intends to change lane 
𝑡𝑝 3.5 secs time gap between two successive vehicles not in a platoon 
𝑡𝑔  0.55 secs time gap between two successive vehicles in a platoon 
𝑡lcp 3.6 secs surrounding vehicles finish lane changing within this time 
𝑡lc 5 secs  the minimum time interval between two successive lane changes by successive vehicles 
𝜏𝑠 0.4 secs updating period of trajectory of surrounding vehicles 
𝜏𝑐𝑓  1.0 secs reaction time delay in the car-following model 
𝜏𝑁act 10 secs prediction horizon in the optimal control model 
𝑣m
le 20 m/s the velocity in the left lane when it reaches the maximum flow 
𝑣m
ri 14 m/s the velocity in the right lane when it reaches the maximum flow 
𝑣max
le  30 m/s maximum velocity in the left lane 
𝑣max
ri  20 m/s maximum velocity in the right lane 
𝑎max 2 m/s2 maximum acceleration for the subject vehicle 
𝑗max 3.5 m/s3 maximum jerk for the subject vehicle 
𝑑cg 50 m critical gap to decide whether it is feasible to change lanes 
𝑙car 5 m length of a vehicle 
ℎst 5 m vehicle would stop at headway of this value 
𝑎 2 m/s2 the maximum desired acceleration 
𝑏 3 m/s2 the comfortable deceleration 
𝛾AR 0.3987 coefficient for air resistance force 
𝛾RR 281.547 coefficient for rolling resistance force 
𝛾GR 0 coefficient for grade resistance force 
𝛾IR 1750 coefficient for inertial resistance force 
𝜂𝑓 5.98×10-8 dollars/Joule   fuel cost for a unit energy consumed by the vehicle  
𝑃sch {2, 10, 50} the scheduled splitting position can be in 2, 10 or 50 road pieces later 
𝑁(𝜇sch,  𝜎sch)  𝑁(2, 5), left, 𝑁(−1, 5), right the normal distribution of the scheduled splitting position in two lane, respectively. 

 

• We demonstrate that legacy vehicles traveling upstream the subject 
vehicle can obtain statistically significant fuel efficiency benefits. 

• We evaluate the performance of our design under different 
minimum platoon-keeping distance requirements and values of time 
for travelers. 

The rest of the paper is organized as follows: First, we review the 
literature on trajectory planning. Then, we formulate an optimal 
control model for planning the trajectory of a CAV. Next, we present a 
general framework for the study and our assumptions, as well as a 
simulation environment that consists of a two-lane highway with 
multiple on- and off-ramps and a dynamic traffic stream. In particular, 
we describe how vehicles with various levels of autonomy and 
connectivity interact with each other in the simulation environment. 
Finally, we conduct a series of analyses under various traffic 
conditions to quantify the fuel-efficiency benefits of our approach for 
the subject vehicle as well as those of its surrounding vehicles within 
platoons and as free agents. We end the paper by summarizing the 
takeaways. 

Related Works 
Traditionally, trajectory planning has been mainly based on vehicle 
dynamics constraints, such as acceleration range, steering 
performance, etc. More advanced driving assistance systems (ADAS), 
e.g., adaptive cruise control (ACC), enhance trajectory planning 
through utilizing data collected by the vehicle’s on-board sensors. CV 
technology provides an opportunity to incorporate more diverse types 
of data (e.g., weather conditions) from a wider spatial range (e.g., from 
objects beyond the line of sight of the vehicle). However, there is a 
need to develop algorithmic tools that can incorporate this information 
into trajectory planning. Several attempts, such as Connected Cruise 
Control (CCC) [32, 33] and Cooperative Adaptive Cruise Control 
(CACC) [34−37] have been made to incorporate vehicle-to-vehicle 
(V2V) communications into trajectory planning. CACC is one of the 
most promising technologies that allows CVs to autonomously, and 
without the need for a central management system, plan their 
trajectories using V2V communications [38]. The information flow 
topology in a CACC system typically includes predecessor following, 



 3 

predecessor-leader following, bidirectional topology, etc. [39]. 
Advanced communication protocols, such as Dedicated Short Range 
Communications (DSRC), LTE, and 5G are proposed and developed 
to improve the communication bandwidth of V2V communications 
[40−42]. 

Table 2 summarizes recent studies in the literature that have focused 
on trajectory planning of CAVs, with different levels of automation. 
This table points out multiple attributes of these studies, including 
whether obstacles are dynamic or not, the environment geometry, 
whether the ego vehicle is capable of platoon formation, whether 
lateral motion is considered or not, the penetration rate of connected 
vehicles and their cost functions. The rest of this section elaborates on 
the specifics of these attributes. 

The ultimate goal of trajectory planning is to enable vehicles to travel 
safely and efficiently in real traffic conditions. Therefore, different 
trajectory planning algorithms are developed for implementation in 
different contexts, to capture different abstractions of real-world 
conditions, e.g., obstacles, curved roads, signal lights, mixed traffic 
components, etc. [43]. In [24], Gu et al. focus on the subject vehicle’s 
movement around a single static obstacle, and its distance-keeping and 
overtaking of a single leading vehicle. [11] proposes a dynamic 
programming (DP) algorithm for speed planning in a transportation 
network with stop signs and traffic lights. [27] presents a method that 
exploits the complete permissible road width in curvy road segments 
to increase driving comfort and safety through minimized steering 
actuation. [26] and [28] consider the impact of surrounding vehicles 
with fixed velocity on trajectory planning of the subject vehicle. In 
general, the degree to which different models are set to imitate real 
traffic conditions depends on research priorities. The closer the 
environment can resemble real-world conditions, the higher the 
accuracy and reliability of trajectory planning, but the higher the 
computational complexity and the worse the real-time performance. 
[44] reviews planning and control algorithms for self-driving vehicles 
in urban environment and highway scenarios. Review of the existing 
studies reveals that, in general, the literature is very limited in 
capturing the dynamics of the driving environment. In our work, we 
develop a trajectory planning method for a general highway system 
based on the work by [22]. However, we add several components, such 
as on-ramps and off-ramps, lane changing capability, speed adjusting,  

and penetration of platoons to more accurately simulate the 
surrounding traffic environment. 

Lane changing is another important component of trajectory planning. 
Lane changing is one of the most challenging driving maneuvers for 
researchers to understand and predict, and one of the main causes of 
congestion and collisions in the transportation system [45]. The real-
time information received from the driving environment and other road 
users can be used to facilitate lane changing maneuvers that enhance 
safety, comfort and traffic efficiency [22]. [46] proposes a distributed 
algorithm to make lane changing decisions. The authors claim that this 
mechanism can maximize the number of safe lane changes within the 
entire system. However, they did not demonstrate the level of 
improvement in system level performance. The developments in lane 
changing models before 2014 are comprehensively reviewed in [47, 
48]. Zheng et al. [48] claim that in real lane changing situations, 
drivers can simultaneously monitor and evaluate multiple spacings in 
the target lane and make a decision on where and how to execute the 
lane change. In [45], two types of games are proposed for modeling 
the lane changing behavior: under complete information in the 
presence of CV technology, and under incomplete information in its 
absence. Simulation results indicate that the game theoretic-based lane 
changing models are more realistic than the basic gap-acceptance 
model and the MOBIL model. Wang et al. [49] proposes a predictive 
model for lane changing control that considers both discrete lane 
changing decisions and continuous acceleration values. The lane 
changing method proposed by Luo et al. in 2016 [22] executes lane 
changing maneuvers; however, their model is not capable of making 
lane-changing decisions. Review of the existing work on lane 
changing demonstrates that most research in this area focuses either on 
when or where to change lanes, or on the execution of lane changing 
after the decision to change lanes has been made. [50] proposes a lane 
changing method composed of three steps, that is, deciding whether to 
change lanes, selecting the target position and the time instance to 
initiate the lane changing process, and planning the trajectory. 
However, these three steps are followed sequentially. In contrast, in 
our work, we make all three decisions concurrently in an integrated 
framework to minimize fuel and time costs. We move the state-of-the-
art one step forward by evaluating multiple spacings in the target lane 
from the viewpoint of the feasibility of maneuvering, safety, and 
efficiency. Furthermore, we evaluate the effects of lane changing in 
long distance travels in a dynamic system.

Table 2: Overview of the trajectory planning literature 

Study Obstacle Environment Platoon Lateral 
Motion Connectivity 

Cost 
tracking fuel time comfort/safety 

[24] dynamic curvy lanes no yes no yes no no yes 
[11] static routes no no no no yes no no 
[25] dynamic curvy lanes no yes no no no no yes 
[26] dynamic lanes yes yes partial yes no no no 
[27] dynamic curvy lanes no no no no no no yes 
[28] dynamic lanes yes yes full no yes yes yes 
[29] static curvy lanes no no no yes no no no 
[23] dynamic curvy lanes no yes no yes no no yes 
[19] dynamic curvy lanes no yes no no no yes yes 
[20] static free space no yes no no no no yes 
[30] dynamic curvy lanes no yes no no no no yes 
[31] static curvy lanes no yes no no no yes yes 
This paper dynamic lanes yes yes partial no yes yes yes 
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Platooning makes one of the most interesting and important 
components of trajectory planning in the next generation of 
transportation systems. The capability to incorporate platooning is 
another factor that differentiates existing trajectory planning methods. 
Platooning is a specific application of the CV technology that can 
introduce a wide range of vehicle- and system-level benefits. A 
platoon is a single-file line (i.e., a virtual train) of vehicles that, owing 
to constant communication, are able to travel with small gaps between 
them. Platoon formation can introduce many benefits including (i) 
energy efficiency through reducing the aerodynamic drag force on 
platoon members [51, 52]; (ii) reducing emissions [53]; (iii) increasing 
road capacity through reducing the headways between vehicles; (iv) 
reducing stochasticity in the traffic stream by having platoon members 
follow the platoon leader, thereby reducing the likelihood of highway 
traffic breakdown, improving travel times, and increasing travel time 
reliability [54, 55]; and (v) facilitating real-time management of traffic 
and improving mobility by aggregating the unit of traffic from an 
individual vehicle to a cluster of vehicles. Table 2 lists studies in the 
literature that incorporate platooning. Note that ‘yes’ for the field 
‘platoon’ in this table indicates the capability of platoon formation, 
rather than platoon control strategies [56, 57] or intra-platoon 
communication [58, 59]. In our work, we model possible platoon 
formations between the subject vehicle and its surrounding vehicles. 
Furthermore, our method will make merging/splitting decisions along 
with trajectory planning. 

The ability to capture the heterogeneity in the level of connectivity and 
autonomy of vehicles is another factor that differentiates existing 
trajectory planning methods, as described in Table 2. Finally, 
trajectory planning methods are different in terms of their objective 
function. In general, the goal is to find the least-cost trajectory, where 
the cost function could include any combination of the following 
components: time cost of the trip (i.e., trip length), fuel consumption, 
comfort and safety of on-board passengers, and precision in tracking 
(i.e., the degree to which the vehicle deviates from a pre-specified 
ideal trajectory). 

There are a number of comprehensive reviews on path planning, 
maneuver choice, and trajectory planning [60, 61]. A more recent work 
utilizes optimal control to plan trajectories for automated vehicles, 
where they leverage dynamic programming to provide an initial 
trajectory based on a simplified optimal control problem [62]. 
However, they do not consider platooning, which is envisioned to be 
an important component of future traffic streams, nor do they have the 
benefits of utilizing optimal trajectories, neither through simulations 
nor through real-world experiments. 

Methods 
The goal of this study is to design an optimal control-based trajectory 
planning model that can be utilized by an automated (level 2 or higher 
autonomy) vehicle, hereafter referred to as the subject vehicle. The 
optimal control model will be designed to incorporate microscopic 
traffic information from the traffic stream in the local neighborhood of 
the subject vehicle, with the goal of devising fuel and time efficient 
trajectories that may include merging into a platoon and changing 
lanes. We start this section by describing the optimal control model. 
We then describe the general framework and our assumptions, as well 
as a simulation environment that we will use to quantify the overall 
cost savings for the subject vehicle and its surrounding traffic. 

Optimal Control Model 
In this section, we devise an optimal control model to determine the 
trajectory of the subject vehicle in real-time. It is noted that this work 
focuses more on decision making and trajectory planning, rather than 
trajectory tracking, so we simplify the vehicle dynamics model as a 
mass point and assume we can directly control its longitudinal and 
lateral acceleration, and thereby its trajectory. The proposed optimal 
control model is provably safe, and is designed to account for fuel and 
time efficiency as well as comfort of on-board passengers. 

The optimal control model is a non-linear optimization model. The 
state variables of this model include longitudinal and lateral positions, 
platoon membership status (whether or not in a platoon, and the 
scheduled splitting time if a platoon member), and the control 
variables are longitudinal and lateral accelerations, the binary decision 
to join a platoon, and the binary decision to change lanes. While 
adjusting acceleration can be considered as a single action that can be 
almost instantaneously carried out, a change in lane position and 
platoon membership is a lengthier process and may require multiple 
sub-actions, as described in Table 3. As demonstrated in this table, at 
each time step the subject vehicle can be in one of the following six 
states: (𝑖) ‘left lane; free agent’, indicating that the vehicle is in the left 
lane and is not part of any platoon, (𝑖𝑖) ‘right lane; free agent’, 
indicating that the vehicle is in the right lane and is not part of any 
platoon, (𝑖𝑖𝑖) ‘left lane; in platoon (active)’, indicating that the subject 
vehicle is in the left lane and is the platoon leader, and the scheduled 
platoon splitting position has not yet reached, (𝑖𝑣) ‘right lane; in 
platoon (active)’, indicating that the subject vehicle is in the right lane 
and is the platoon leader, and the scheduled platoon splitting position 
has not yet reached, (𝑣) ‘left lane; in platoon (passive)’, indicating that 
the subject vehicle is in the left lane, the platoon splitting position has 
reached, and the platoon the subject vehicle was formerly leading is in 
the process of dissolving, and (𝑣𝑖) ‘right lane; in platoon (passive)’, 
indicating that the subject vehicle is in the right lane, the platoon 
splitting position has reached, and the platoon the subject vehicle was 
formerly leading is in the process of dissolving. 

Table 3 shows that at each time step, the subject vehicle switches from 
its current state to a target state. Depending on its initial and target 
states, the subject vehicle may need to complete a sequence of sub-
actions, including ‘wait’, ‘merge’, ‘split’ and ‘lane change’. The ‘wait’ 
sub-action indicates that the vehicle needs to maintain its state after 
completing its previous sub-action. The sub-actions ‘merge’ and ‘split’ 
indicate merging into a platoon and splitting from a platoon, 
respectively. Finally, the ‘lane change’ sub-action indicates changing 
lanes. For example, if the target state ‘right lane; in platoon’ is the 
selected action under the current state ‘left lane; in platoon (active)’, 
then the subject vehicle needs to complete the sequence of sub-actions 
‘split → wait → lane change → merge → wait’. 

The trajectory function 
Following [22], we use a quintic function, based on time, as our 
trajectory function for each sub-action. The quintic function is selected 
because it guarantees a smooth overall trajectory, even with multiple 
different sub-actions. Eq. (1) shows the trajectory function, 
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Table 3: Sub-action sequences for each state-action tuple 

Initial state Target state Sub-action sequence 

left lane; free agent 

left lane; free agent 
left lane; in platoon 
right lane; free agent 
right lane; in platoon 

wait 
merge → wait 
wait → lane change → wait 
wait → lane change → merge → wait 

right lane; free agent 

left lane; free agent 
left lane; in platoon 
right lane; free agent 
right lane; in platoon 

wait → lane change → wait 
wait → lane change → merge → wait 
wait 
merge → wait 

left lane; in platoon (active) 

left lane; free agent 
left lane; in platoon 
right lane; free agent 
right lane; in platoon 

split → wait 
wait 
split → wait → lane change → wait 
split → wait → lane change → merge → wait 

right lane; in platoon (active) 

left lane; free agent 
left lane; in platoon 
right lane; free agent 
right lane; in platoon 

split → wait → lane change → wait 
split → wait → lane change → merge → wait 
split → wait 
wait 

left lane; in platoon (passive) 

left lane; free agent 
left lane; in platoon 
right lane; free agent 
right lane; in platoon 

split → wait 
split → wait → merge → wait 
split → wait → lane change → wait 
split → wait → lane change → merge → wait 

right lane; in platoon (passive) 

left lane; free agent 
left lane; in platoon 
right lane; free agent 
right lane; in platoon 

split → wait → lane change → wait 
split → wait → lane change → merge → wait 
split → wait 
split → wait → merge → wait 

 

{
 
 

 
 
𝑥(𝑡) =∑(

𝑁act

𝑖=1

𝑎5
𝑖 𝑡5 + 𝑎4

𝑖 𝑡4 + 𝑎3
𝑖 𝑡3 + 𝑎2

𝑖 𝑡2 + 𝑎1
𝑖 𝑡 + 𝑎0

𝑖 )𝑓𝑖(𝑡)

𝑦(𝑡) =∑(

𝑁act

𝑖=1

𝑏5
𝑖 𝑡5 + 𝑏4

𝑖 𝑡4 + 𝑏3
𝑖 𝑡3 + 𝑏2

𝑖 𝑡2 + 𝑏1
𝑖 𝑡 + 𝑏0

𝑖 )𝑓𝑖(𝑡)

, (1) 

where 𝑥(𝑡) and 𝑦(𝑡) indicate the longitudinal and lateral positions of 
the vehicle at time 𝑡, respectively, and 𝑁act denotes the number of sub-
actions the subject vehicle needs to complete. Coefficients 𝑎0𝑖  through 
𝑎5
𝑖  and 𝑏0𝑖  through 𝑎5𝑖  are decision variables that determine the optimal 

solution. Function 𝑓𝑖(𝑡) may be formulated as 

 
𝑓𝑖(𝑡) = {

1 𝑡𝑖−1 ≤ 𝑡 < 𝑡𝑖
0 otherwise

 (2) 

where [𝑡𝑖−1 ,  𝑡𝑖] is the time window for completing the 𝑖’th sub-action, 
and 𝑡𝑁act is the prediction horizon. 

Boundary conditions 
For every sub-action, the following boundary conditions must be 
satisfied, 

 
{
𝑥(𝑡𝑖−1) = 𝑥𝑡𝑖−1,  𝑥̇(𝑡𝑖−1) = 𝑣𝑥,𝑡𝑖−1,  𝑥̈(𝑡𝑖−1) = 𝑎𝑥,𝑡𝑖−1,

𝑦(𝑡𝑖−1) = 𝑦𝑡𝑖−1,  𝑦̇(𝑡𝑖−1) = 𝑣𝑦,𝑡𝑖−1 ,  𝑦̈(𝑡𝑖−1) = 𝑎𝑦,𝑡𝑖−1
 (3) 

 
{
𝑥(𝑡𝑖) = 𝑥𝑡𝑖,  𝑥̇(𝑡𝑖) = 𝑣𝑥,𝑡𝑖 ,  𝑥̈(𝑡𝑖) = 𝑎𝑥,𝑡𝑖
𝑦(𝑡𝑖) = 𝑦𝑡𝑖,  𝑦̇(𝑡𝑖) = 𝑣𝑦,𝑡𝑖,  𝑦̈(𝑡𝑖) = 𝑎𝑦,𝑡𝑖

 (4) 

where 𝑡𝑖−1 and 𝑡𝑖  are the starting and ending time for the 𝑖th sub-
action, respectively, and 𝑥𝑡𝑖−1, 𝑣𝑥,𝑡𝑖−1, 𝑎𝑥,𝑡𝑖−1 , 𝑦𝑡𝑖−1, 𝑣𝑦,𝑡𝑖−1 and 𝑎𝑦,𝑡𝑖−1 
are the longitudinal and lateral geo-coordinates, velocity, and  

 

acceleration for the starting point of the sub-action, respectively. These 
values are accordant with the ending point for the last sub-action. For 
each sub-action, the longitudinal coordinate, velocity and acceleration 
at the end of the sub-action as well as the duration of the sub-action are 
all free variables that are optimized. 

Constraint sets 
There are a number of constraints on the position, speed, acceleration, 
and jerk of the subject vehicle, elaborated in the following. 

1. Speed limitation: The longitudinal speed of the subject vehicle 
should be no more than the maximum speed in its lane, and should 
always be non-negative, as presented in Eq. (5): 

 0 ≤ 𝑣𝑥(𝑡) = 𝑥̇(𝑡) ≤ 𝑣𝑥,max
𝑙 , (5) 

where 𝑣𝑥(𝑡) denotes the longitudinal speed of the subject vehicle, 𝑙 
indicates the lane in which the vehicle is traveling, and 𝑣𝑥,max𝑙  denotes 
the maximum vehicle speed in lane 𝑙. 

2. Collision avoidance: The subject vehicle should maintain a 
minimum time gap (denoted by 𝑡safe) from its immediate downstream 
vehicle during all sub-actions in all 𝑡, as indicated in Eq. (6),  

 𝑥𝐿(𝑡) − 𝑥sub(𝑡) > 𝑡safe 𝑣sub(𝑡) + 𝑙car,   ∀𝑡 ∈ [𝑡0 ,  𝑡𝑁act], (6) 

where 𝑥𝐿(𝑡) is the position of the immediate downstream vehicle (i.e., 
the leader), 𝑥sub(𝑡) and 𝑣sub(𝑡) are the position and velocity of the 

 

subject vehicle, respectively, and 𝑙car is the vehicle length. 

3. Acceleration bound: During all sub-actions, the longitudinal or 
lateral acceleration of the subject vehicle cannot exceed a maximum 
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value due to mechanical performance limitations and safety 
considerations. This constraint is enforced in Eq. (7), 

 |𝑎𝑥,𝑦| = |𝑣̇𝑥,𝑦| < 𝑎max, (7) 

where 𝑣𝑥,𝑦 is the velocity vector and 𝑎max is the maximum 
acceleration. 

4. Jerk bound: Since the subject vehicle’s jerk directly influences the 
comfort level and safety of its on-board passengers, we bound the jerk 
by a maximum value as stated in Eq. (8), 

 |𝑗𝑥,𝑦| = |𝑣̈𝑥,𝑦| < 𝑗max, (8) 

where 𝑗max is the maximum jerk. 

Objective function 
We define the objective function as a linear combination of fuel and 
time costs, as stated in Eq. (9) below,   

 
𝐶overall = min {𝜂𝑓  𝛴𝑖=1

𝑁act 𝛽(𝑖)  ∫ (
𝑡𝑖

𝑡𝑖−1

 𝛾AR𝑣
2(𝑡) + 𝛾RR

+𝛾GR + 𝛾IR(𝑎(𝑡))+) 𝑣
(𝑡) 𝑑𝑡 + 𝜂𝑡  𝛴𝑖=1

𝑁act  (𝑡𝑖 − 𝑡𝑖−1)}

 (9) 

The four terms 𝛾AR𝑣
2(𝑡), 𝛾RR, 𝛾GR, and 𝛾IR(𝑎(𝑡))  are the 

+
aerodynamic resistance force, rolling resistance force, grade resistance 
force and inertia resistance force, respectively. For detailed 

expressions of these forces, we refer the reader to [63]. The parameter 
𝜂𝑓 is the fuel cost for a unit energy consumed by the vehicle, and is 
measured in dollars. The parameter 𝜂𝑡 is the unit cost of time, also 
known as value of time, VoT), and is measured in dollars per unit of 
time, e.g., a second. The parameter 𝛽(𝑖) indicates the fuel saving 
coefficient for sub-action 𝑖. As reported in [51], fuel saving percentage 
varies from 3% to 30% at different spacings with different number of 
vehicles in a platoon in highway scenarios. Additionally, vehicles in 
the middle of a platoon (that is, not at the head or tail of a platoon) 
experience the most fuel savings. The platoon tail is the second best 
position in terms of fuel saving, and the platoon leader has the least 
fuel saving. Here, for simplicity, we assume a 10% fuel saving for all 
vehicles in a platoon, and a 5% fuel saving when a vehicle engages in 
merging or splitting processes. Thus, we set 𝛽(𝑖) = 1 for a free agent, 
and 𝛽(𝑖) = 0.9 for a platoon member. Furthermore, we set 𝛽(𝑖) =
0.95 for split and merge sub-actions, because in the transition state to 
and from a platoon vehicles still experience fuel savings, but not to the 
same extent as a platoon member. Note that despite the platoon-related 
fuel efficiency benefits of the merge and split processes, the change in 
velocity during the merge and split processes may lead to higher fuel 
consumption levels. However, the optimization problem would 
naturally accounts for such trade-offs. 

General Framework and Assumptions 
In this study, we consider a mixed traffic stream with various levels of 
autonomy. Specifically, we model both vehicles that are human-driven 
and not platoon-enabled, and platoon-enabled vehicles. A platoon-
enabled vehicle is a vehicle that has level 2 or higher autonomy (and is 
equipped with distance sensing and keeping technology such as 
adaptive cruise control) according to the Society of Automotive 
Engineer’s (SAE’s) classification. Furthermore, in this study we 
assume that all vehicles are connected; that is, all vehicles can 
communicate with each other and with road side units (RSUs) using 

dedicated short range communication (DSRC) devices, with a reliable 
communication range of 300 meters. Figure 1 demonstrates the 
communication and control framework of our work. 

To develop a simulation environment for the system, we divide the 
transportation network into a number of road pieces. We define a road 
piece as a section of a road that satisfies the following two conditions: 
(𝑖) the macroscopic traffic conditions, to which we refer as “traffic 
states”, are likely to be homogeneous within a road piece. For 
example, on a highway segment the traffic conditions around on- and 
off-ramps are typically different from their upstream and downstream 
segments, indicating that on- and off-ramps require dedicated road 
pieces; and (𝑖𝑖) vehicles within a road piece are able to communicate 
with each other, either directly or through RSUs. This requirement 
implies that in case of DSRC-enabled communication, the length of a 
road piece cannot exceed 600m so as to enable all vehicles to stay 
connected using a single RSU located in the middle of the road piece. 
Limiting the length of a road piece ensures that, with strategic 
positioning of RSUs, all connected vehicles can receive microscopic 
traffic information of their neighbors (i.e., geo-coordinates, velocity, 
acceleration, braking, steering angle, etc.), and use this information to 
plan more informed and efficient trajectories. 

In our modeling of a traffic stream characterized with full connectivity 
and a heterogeneous level of autonomy, we account for the delay 
between the occurrence of a stimulus and the execution of an action in 
response to it. In case of a human driver, this delay is referred to as the 
perception-reaction time [64], and accounts for the perception delay 
(either by the driver or from the part of the vehicle sensors), the 
decision-making delay, and the execution delay. In case of the 
autonomous entity being in charge, this delay can be attributed to 
sensory delay, delay in the communication network, computational 
time, and actuation delay. 

Surrounding vehicles 
Surrounding vehicles’ trajectories will be simulated based on a 
microscopic car-following model so as to reflect a realistic and 
dynamic traffic environment. The surrounding traffic information will 
get updated every 𝜏𝑠 = 0.4 seconds. Note that the value of 𝜏 is 
selected based on the human perception-reaction time, which is within 
the range of 0.3-1.5 seconds [65]. However, this is a parameter that 
can be easily adjusted in the model. At each updating step, four 
functions will be executed by the surrounding vehicles in the following 
sequence: join/exit from the highway, merge into/split from a platoon, 
change lanes, and adjust velocity based on a car-following model. 
These functions are elaborated in the following. 

1. Join/exit from the highway: We assume that the probability that a 
vehicle enters the highway from an on-ramp at each updating step is 
𝑝on. The vehicle is assumed to be able to join the highway if it can 
maintain a minimum time gap of length 𝑡𝑝 from the vehicles both 
upstream and downstream of the ramp entry point in the right lane of 
the highway. We set the speed of this entering vehicle similar to the 
speed of its downstream vehicle. Moreover, we set the probability of 
the vehicle not being a platoon-enabled vehicle as 𝑝npe. At each update 
step, a vehicle can leave the highway if the following three conditions 
are satisfied: (1) it is traveling on the right lane of the highway, (2) it is 
located at the upstream of an off-ramp point, and (3) the time gap 
between the vehicle and the off-ramp point is smaller than the update 
step 𝜏𝑠. Among all vehicles that satisfy these conditions, we assume 
the probability that one vehicle intends to leave the highway is 𝑝off. 
This exiting vehicle and its profile is directly taken off the current 
iteration. 
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Figure 1: The communication and control framework 

 

2. Merge into/split from a platoon: To ensure that our model remains 
computationally tractable, we assume that a vehicle could hold only a 
single platoon membership status (either a member or not a member) 
throughout a road piece, i.e., the merging or splitting process can only 
commence in the transition point between two road pieces. A vehicle 
can merge into a platoon when it is already a platoon leader (resulting 
in the merging of two platoons), or a platoon-enabled free agent. 
Among all vehicles that qualify to merge into a platoon, the probability 
that a vehicle intends to merge is assumed to be 𝑝merge. There are two 
cases regarding the profile of the vehicle in the immediate downstream 
of the merging vehicle. If it is a platoon member, then the new 
merging vehicle will have the same scheduled splitting position as 
other vehicles in the platoon. If it is a free agent, the scheduled 
splitting position 𝑃sch, in the units of number of road pieces, will be 
decided at this time using a normal distribution (For more details, see 
section Platoon membership). Every time when a platoon passes the 
transition point of two road pieces, the scheduled splitting position will 
decrease by 1 unit until this value reaches 0, at which point the platoon 
would split into free agents. 

3. Lane change: [47] provides a comprehensive review of prior work 
on lane changing models. For simplicity, in this paper we adopt the 
random lane changing (RLC) model, in which vehicles may change 
lanes once a minimum gap criterion is satisfied. We assume that in 
every update step at most a single vehicle can change lanes. 
Furthermore, for safety considerations, we require a minimum time (no 
less than 𝑡lc = 5 seconds) between two successive lane changes by two 
successive vehicles (immediate follower/leader) traveling in the same 
lane. We allow only free agents, and not platoons, to change lanes. The 
gap between the lane changing vehicle and surrounding vehicles (the 
leading vehicle in the same lane, and the leading and following 
vehicles in the target lane) should be at least 𝑑cg to ensure a safe lane 
changing maneuver. Finally, the following vehicle in the target lane 
cannot be a follower in a platoon, indicating that the lane changing 
process cannot insert vehicles into a platoon.  

Not all vehicles that satisfy the conditions above intend to change 
lanes. Among all qualified vehicles, the probability that a vehicle 
intends to change lane is 𝑝change. The lane changing process is assumed 
to be completed within 𝑡lcp seconds, after which the lateral position of 
the lane changing vehicle would not change, and its longitudinal speed 
has to have reached the speed of the leading vehicle in the target lane. 

4. Adjusting velocity using a car-following model: Each vehicle needs 
to continuously adjust its velocity to maintain a large enough safety 
gap from its leading vehicle. For a free agent we use the Intelligent 
Driver Model (IDM) [66] for adjusting velocity. For platoon members 
in the steady state, the platoon leader will behave similarly to a free 

agent in terms of car-following behavior, and other platoon members 
will instantaneously take the same acceleration and velocity as the 
platoon leader to maintain a steady headway to their preceding vehicle. 
In the splitting/merging state, the headway will increase/decrease 
following a constant speed. (We use the speed of 5 meters/second in 
our simulations.) The parameters used to calibrate IDM are 
summarized in Table [Parameters summary]. For more information on 
the car following model parameters, we refer the reader to [66]. For 
more information on the optimal control model parameters, we refer 
the reader to [22]. For fuel cost related parameters, we refer the reader 
to [51, 63]. 

Subject vehicle 
The subject vehicle updates its motion plan every 𝑡upd = 0.4 seconds. 
It is assumed that surrounding vehicles’ motion information is 
available to the subject vehicle in real-time. Due to the long 
computational time of trajectory planning and control in a dynamic 
driving environment, it is problematic for the subject vehicle to obtain 
the latest traffic information and then plan its own trajectory for the 
immediate next period; that is, after the trajectory planning process is 
completed, the planned trajectory would be already outdated. Thus, we 
implement a receding horizon control method and consider the 
computational delay explicitly in this paper. During this process, the 
subject vehicle perceives the environment, estimates other vehicles’ 
motions for the next 2𝑡upd period, and makes its own trajectory plan 
for the second following period, i.e., [𝑡 + 𝑡upd ,  𝑡 + 2𝑡upd], where 𝑡 is 
the current time. This results in a trajectory that can still be effectively 
followed during this window. The potential mismatch between the 
estimated and actual trajectories of the surrounding vehicles can be 
addressed by adopting the receding horizon planning approach. The 
optimal trajectory is computed by a non-convex optimization solver in 
MATLAB, called fmincon. 

As discussed in [22], the subject vehicle may get involved in a 
collision due to the surrounding vehicles’ sudden speed fluctuations 
during the lane changing process. More specifically, the subject 
vehicle may not be able to take any action without violating the 
constraints of the optimal control model for the following reasons: (𝑖) 
sudden speed change of the surrounding vehicles; (𝑖𝑖) comfort-related 
maximum acceleration and jerk constraints in the optimal control 
model; and (𝑖𝑖𝑖) conservative constraints regarding the safety time gap 
between the subject vehicle and any surrounding vehicles. In case of 
there being no feasible solution for the optimal control model, the 
Intelligent Driver car-following Model is utilized to provide a 
longitudinal motion reference for the subject vehicle. 

Non-platoon-enabled vehicle Platoon-enabled vehicle Road Side Unit

Subject vehicle Communication
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Platoon membership 
This section elaborates on platoon formations. When merging, we 
assume a free agent or a platoon can merge with its immediate 
downstream free agent or platoon. That is, merging can occur between 
two free agents, two platoons, or a free agent and a platoon. For the 
purpose of simulations, we assume a finite number of possible 
scheduled splitting positions, ℓ1sch, ℓ2sch, ⋯, ℓ𝑛sch, in an ascending order 
of time. Given the mean 𝜇sch and the standard deviation 𝜎sch, we draw 
a random number 𝑝sch from the normal distribution 𝒩(𝜇sch, 𝜎sch) to 
schedule a splitting time, where ℓ𝑖−1sch < 𝑝sch ≤ ℓ𝑖sch indicates selecting 
the scheduling time 𝑃sch = ℓ

𝑖
sch. We set 𝑃sch = ℓ𝑛sch if 𝑝sch > ℓ𝑛sch. At 

the scheduled splitting position, platoon members will detach one by 
one, starting from the platoon tail, by increasing their gap from their 
immediate downstream vehicle. 

Case Study and Numerical Experiments 
In this section we conduct experiments in the simulation framework 
laid out in the previous section, where the trajectory of the subject 
vehicle is controlled by the proposed optimal control model. The 
simulation framework consists of a two-lane highway, where the 
subject vehicle is assumed to be initially traveling on the right lane. 
The traveled path is composed of 20 road pieces, with two on-ramps in 
the first and eighteenth road pieces, and three off-ramps on the fourth 
and twelfth road pieces and the destination of the trip. The travel path 
is 10.8 km in length, where the first, fourth, twelfth and eighteenth 
road pieces are 400, 300, 200 and 300 meters in length, respectively, 
and the rest of the road pieces are 600 meters in length. Recall that we 
consider a road piece to be homogeneous in macroscopic traffic 
conditions. 

We quantify the implications of the optimal control model under 
different configurations of platooning (enabled or not) and lane 
changing (enabled or not), in different traffic environments. 
Specifically, we consider three traffic states of free-flow traffic, onset-
of-congestion traffic, and congested traffic. In order to provide a 
realistic simulation environment under each traffic state, we set up a 
warm-up process during which we use the Greenberg’s fundamental 
diagram [67, 68] to create simulation instances under each traffic state. 
For details, refer to Appendix 7. 

For each traffic state, we run seven simulation scenarios, each scenario 
using a different controller for the subject vehicle, as displayed in 
Table 4. We implement two basic controllers: CF refers to the IDM car 
following model, and OC refers to a basic optimal control model. 
More sophisticated controllers are introduced by adding platooning 
and lane changing capabilities to these two basic controllers: the suffix 
‘_Mi’ indicates the platooning capability, where the vehicle is required 
to keep its platoon membership for at least i km if it merges into a 
platoon, the suffix ‘_L’ refers to the lane changing capability, and the 

suffix ’_LMi’ refers to a controller that has both platooning and lane 
changing capabilities. Finally, for all seven controllers listed in Table 
4, VoT is assumed to be zero, indicating that the generalized cost 
effectively turns into the fuel cost. we use the suffix ‘_Tj’ at the end of 
the controllers to denote a non-zero value of time of j. For each traffic 
state, we run 25 random instances of each simulation scenario and 
report the trip cost, which is a linear combination of the fuel and time 
costs. 

Efficiency Results for the Subject Vehicle 
In this section we report the overall cost of the subject vehicle under 
the seven introduced controllers, the three traffic states, and two 
different values of time (VoTs). Figure 2 displays the results for the 
value of time 𝜂𝑡 = 0 dollars per hour, effectively comparing the fuel 
efficiency benefits of the seven controllers. The values of the overall 
fuel consumption by the subject vehicle under all scenario pairs are 
compared using a two-tailed Student’s t-tests at the 5% significance 
level to identify fuel savings that are statically significant. 

The top plot in Figure 2 presents the results for the free-flow traffic 
state. These results suggest that without lane changing, the optimal 
control model, both with and without the ability to form a platoon, 
(that is, OC, OC_M0, and OC_M6) can result in statistically 
significant reductions in fuel cost (at the 5% significance level), 
compared to the car-following model (CF). With lane changing, OC_L 
and OC_LM0 result in even higher fuel costs than CF. This is because 
the lane changing process itself may add to the fuel cost–a cost that 
might be underestimated by the short-sighted optimal control model. 
In general, if the subject vehicle is platoon-enabled and forced to keep 
its platoon membership for at least 6km (i.e., the OC_M6 and 
OC_LM6 scenarios), the fuel savings are more significant compared to 
OC alone. However, with lane changing, scenario OC_LM0, where the 
platoon can dissolve at any time after its formation, does not produce 
statistically significant fuel savings compared to OC_L. These results 
indicate that a stable, long-term platoon membership can have a 
positive effect on fuel efficiency. 

The middle plot in Figure 2 demonstrates the results for the onset-of-
congestion traffic state. Results indicate that similar to the free-flow 
case, without lane changing, optimal control offers statistically 
significant fuel savings compared to car-following for all control-
based scenarios (with and without platooning). With lane changing, 
OC_L results in higher fuel cost compared with CF, and OC_LM0 has 
no significant difference with CF. However, comparison of OC, 
OC_M0, and OC_M6 scenarios in the onset-of-congestion traffic state 
shows that OC_M0 results in the least fuel saving, OC holds the 
second place, while OC_M6 achieves the most fuel saving. These 
results are intuitive since the frequent splitting of the subject vehicle 
from platoons in the onset-of-congestion state leads to higher energy 
consumption in the OC_M0 scenario, and the energy savings from a 
short-lived platoon cannot make up for this loss. 

 

Table 4: List of controllers 

Controller Description 
CF The intelligent driver car-following model [66] 
OC Optimal control model 
OC_M0 OC with platoon merging, but no minimum required distance to travel in a platoon 
OC_M6 OC with platoon merging, but a minimum required distance of 6km to travel in a 

platoon 
OC_L OC with lane changing enabled 
OC_LM0 OC_M0 with lane changing enabled 
OC_LM6 OC_M6 with lane changing enabled 
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Figure 2: The top, middle, and bottom figures represent the free-flow, onset-of-congestion, and congested traffic states, respectively. The vertical axes 
in these figures show the overall costs in dollars for 10 km long trips. Along the horizontal axes, the overall costs of the subject vehicle under different 
controllers are compared. The value of time is set to 0 dollars per hour in all simulations. 

 

Finally, the bottom figure in Figure 2 displays the results for the 
congested traffic state. Results indicate that similar to the two previous 
traffic states, without lane changing, optimal control offers lower fuel 
costs compared to car-following. The OC_M0 controller does not offer 
statistically significant improvements over OC for the same reason 
stated above; however, OC_M6 can still offer statistically significant 
fuel savings over both OC and OC_M0. 

In general, Figure 2 shows that regardless of traffic state, the OC 
model can outperform the CF model in terms of energy efficiency. 
Enabling platooning can increase these benefits even further if the 
model does not allow the platoon to dissolve right after its formation, 
and forces platoon members to travel together for a period of time. 
Lane changing could reduce the fuel efficiency benefits of the optimal 
control controllers to the point of matching fuel efficiency levels of 

traditional CF models; however, when platoon-keeping is enforced, the 
undesirable fuel efficiency implications of lane changing can be 
negated to a great extent.  

In Figure 3, we set the value of time to $20 per hour and conduct 
simulations similar to those in Figure 2. This figure shows that 
minimizing a generalized cost, which takes into account the driver’s 
value of time in addition to fuel cost, turns lane changing into a more 
desirable feature of the optimal control model. 

Under VoT of 20, in the congested traffic state there is no significant 
difference among all seven controllers. In the free-flow traffic state, 
we observe no statistically significant difference among OC_L_T20, 
OC_LM0_T20 and OC_LM6_T20, indicating that when lane changing 
is enabled platooning does not induce a significant change in the 
generalized cost. This is mainly due to the lower fuel cost compared to 

 
Figure 3: The generalized cost of a 10.8 km-long trip with VoT of $20 per hour under various traffic states and controllers.  
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VoT. In the onset-of-congestion traffic state, the OC_LM6_T20 
controller results in a slightly higher overall cost compared with 
OC_L_T20. It is due to the fact that when forcing a platoon to hold for 
6km, its members cannot change lanes, resulting in a larger time cost. 
In free-flow and onset-of-congestion traffic states, different from 
Figure 2, here the overall cost is reduced with lane changing. In both 
the free-flow and onset-of-congestion traffic states, OC_M0_T20 can 
result in significant overall cost savings compared with OC_T20, 
showcasing the importance of platooning in reducing the generalized 
cost, while OC_M6_T20 has no significant difference compared with 
OC_M0_T20. 

By quantifying the effects of lane changing and platooning on the fuel 
and time costs, Figures 2 and 3 allow us to infer policies on the 
circumstances under which engaging in lane changing and/or platoon 
merging can reduce a vehicle’s generalized cost of travel. In general, 
platooning reduces fuel cost and lane changing reduces the time cost of 
a trip. As such, the overall generalized cost becomes dependent on the 
relative values of VoT and fuel cost–if the value of time is small 
compared to the fuel cost, the contribution of platooning to the 
generalized cost overweighs that of the time cost, indicating a cost-
minimizing policy of merging into platoons, committing to them for 
long periods, and avoiding lane changes. On the other hand, if VoT is 
large relative to the fuel cost, the time component of the generalized 
cost overweighs the fuel cost, resulting in the cost-minimizing policy 
of not blindly committing to a platoon for a long period, while taking 
advantage of lane changing to reduce travel time when possible. 

Efficiency Results for the Surrounding Vehicles 
In this section, we analyze the simulation results to investigate whether 
the different controllers used by the subject vehicle have a significant 
impact on the overall cost of its upstream traffic. We use the average 
cost of 𝑁sur = 30 upstream vehicles of the subject vehicle in both lanes 
as an approximation of the cost of a surrounding vehicle. We assume 
that surrounding vehicles have the same value of time as the subject 
vehicle. 

Figure 4 displays the average cost of 𝑁sur = 30 upstream vehicles to 
the subject vehicle under the three traffic states and the seven 

controllers, with value of time set to 0, thereby effectively measuring 
the impact of the controllers on fuel efficiency. This figure suggests 
that changing the subject vehicle controller from the car-following 
model to the optimal control model may have different implications in 
fuel consumption of the upstream vehicles depending on the traffic 
state. More specifically, replacing CF with OC results in significant 
fuel savings for the surrounding vehicles in the free-flow traffic, does 
not introduce a significant change in the onset-of-congestion traffic 
state, and induces a significant rise in fuel consumption under the 
congested traffic state. This is due to the fact that when considering the 
OC and CF controllers, fuel saving originates from efficient cruising. 
As such, the higher the congestion level, the more abrupt changes in 
acceleration are required to maintain a safety gap, resulting in higher 
fuel costs. Vehicles upstream to the subject vehicle react to the subject 
vehicle’s changes in velocity following a CF model. As such, the 
oscillations in the velocity profile of the subject vehicle are directly 
transferred to them. This could result in lack of fuel efficiency, or even 
rise in fuel consumption, for vehicles traveling upstream to the subject 
vehicle. As a result, the OC controller can provide statistically 
significant fuel savings under the free flow state where smooth 
cruising is more likely to occur. These benefits disappear under the 
onset of congestion state, and are reversed under the congested state. 

The controller OC_M6 outperforms CF, OC and OC_M0 in all three 
traffic states, indicating that a connected vehicle can create fuel 
efficiency for its upstream traffic if it joins a platoon and commits to it. 
Similarly, when lane changing is enabled, OC_LM6 outperforms 
OC_L and OC_LM0, confirming the same conclusion. Among all 
controllers, OC_LM6 results in the most overall fuel savings for the 
surrounding vehicles. Finally, the subject vehicle’s lane changing 
decisions do not create a significant difference in the surrounding 
vehicles’ fuel consumption. 

In Figure 5, we set the value of time to $20 per hour for all vehicles. 
There is no statistically significant difference among controllers in the 
onset-of-congestion and congested traffic states. In the free-flow traffic 
state, OC_T20 and OC_L_T20 result in larger costs for the 
surrounding vehicles. This behavior results from the fact that under 
this high value of time, the time cost becomes the overwhelming 
portion of the total cost. As such, the subject vehicle’s steady behavior 

 
Figure 4: Average fuel cost of the surrounding traffic under different traffic states and controllers. The surrounding traffic consists of a total of 30 
vehicles upstream of the subject vehicle, with 15 vehicles in the right lane and 15 vehicles in the left lane. 
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Figure 5: Average generalized cost of the surrounding traffic with VoT of $20 per hour under different traffic states and controllers. The surrounding 
traffic consists of a total of 30 vehicles upstream of the subject vehicle, with 15 vehicles in the right lane and 15 vehicles in the left lane. 

 

under OC_M6_T20 or OC_LM6_T20 will not influence the 
surrounding vehicles, but a short-sighted controller will perturb the 
traffic and increase the time cost of surrounding vehicles. This 
influence is not statistically significant in the onset-of-congestion and 
congested traffic states, because the time cost under OC is already 
significant. 

Impact of Platooning 
Figure 6 allows us to pinpoint the source of fuel efficiency induced by 
the proposed model. This figure shows the velocity curves of the 
subject vehicle and its immediate upstream vehicle in the onset-of-

congestion traffic state in an example trip with VoT of 0. The points at 
the bottom of the plots in this figure mark the platoon membership 
status of the subject vehicle under the OC_M6 and OC_M0 controllers 
at each time step. In Figure 6, only the first 500 seconds of the trip are 
presented, and the fuel costs for this 500-second-long section of the 
trip as well as the entire trip are shown in Table 6. This figure shows 
that, compared to CF, the optimal control model provides smoother 
velocity curves, thereby resulting in fuel savings for both the subject 
vehicle and its immediate upstream vehicle. This figure also 
demonstrates that the OC_M6 controller provides the smoothest 
trajectories, and therefore can provide the highest fuel-saving benefits. 

 

 

 
Figure 6: The vertical axis shows velocity, with the unit of meters per second. The horizontal axis is time, with the unit of seconds. The top plot 
compares the speed curves of the subject vehicle under different controllers, and the bottom plot shows the corresponding speed curves of the 
immediate upstream vehicle to the subject vehicle. 
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Table 5: Fuel cost for subject vehicle and its immediate upstream vehicle in an example trip under the onset-of-congestion traffic state 
 

fuel cost, 
dollars per 10 km 

First 500 seconds The entire trip 
subject vehicle following vehicle subject vehicle following vehicle 

CF 0.3096 0.3519 0.3045 0.3518 
OC 0.2420 0.2592 0.2422 0.2753 

OC_M0 0.2439 0.2614 0.2424 0.2556 
OC_M6 0.2238 0.2431 0.2166 0.2295 

 
Lane Changing and its Impact 
Figure 7 allows us to demonstrate how the subject vehicle makes lane 
changing decisions. This figure shows the fuel consumption curves of 
the subject vehicle and those of its downstream vehicles (averaged 
over 30 vehicles) on both the right and left lanes for an example trip in 
the onset-of-congestion traffic state. The controller of the subject 
vehicle is set to OC_L. The solid green line indicates the lane in which 
the subject vehicle travels at each time step, where the value 1 
indicates the left lane. At about 160 seconds, the subject vehicle 
changes from the left lane to the right lane. This lane change can be 
attributed to the lower fuel consumption of downstream traffic in the 
right lane at about 140 to 160 seconds. At about 245 seconds, the 
subject vehicle changes from the right lane to the left lane due to the 
lower fuel consumption of downstream traffic in the left lane at about 
245 to 260 seconds. The subject vehicle again switches from the left 
lane to the right lane at about 290 seconds due to the lower fuel  

 

consumption in the right lane at about 275 to 290 seconds. As this 
figure shows, changing lanes in response to reductions in fuel 
consumption in the other lane may bring upon short-term fuel savings, 
but the frequency of these lane changes may increase the total fuel 
cost, as was demonstrated and discussed previously. 

Figure 8 shows how the subject vehicle’s lane changing decisions can 
influence the fuel consumption of the upstream traffic in both lanes. 
This figure shows the fuel consumption curves of the subject vehicle 
and its upstream vehicles (in both lanes) in an example trip under the 
onset-of-congestion traffic state. The controller of the subject vehicle 
and the lane indicator are the same as in Figure 7. At about 380 
seconds, the subject vehicle changes from the left lane to the right 
lane. Figure 8 shows that the subject vehicle switching to the right lane 
does not negatively affect the fuel consumption in that lane, explaining 
the general trends in Figure 4.

 
Figure 7: The vertical axis shows the fuel consumption, with the unit of dollars per 10 km. The horizontal axis is time, with the unit of seconds. 
Average fuel cost of vehicles in downstream of the subject vehicle in both lanes (15 vehicles in the left lane and 15 vehicles in the right lane), and the 
fuel cost of the subject vehicle and its lane position are shown.  

 
Figure 8: The vertical axis shows fuel consumption, with the unit of dollars per 10 km. The horizontal axis is time, with the unit of seconds. Average 
fuel cost of vehicles in upstream of the subject vehicle in both lanes (15 vehicles in the left lane and 15 vehicles in the right lane), and the fuel cost of 
subject vehicle and its lane position are shown. 
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Conclusion 
In this paper we proposed an optimal control model for trajectory 
planning of a CAV in a mixed traffic environment. The optimal 
controller was developed to plan the trajectory of the subject vehicle, 
including platoon formation and lane changing decisions, while 
explicitly accounting for computation delay. The objective of the 
optimal control model was to minimize the generalized cost of a trip, 
which is a linear combination of its fuel and time costs. We developed 
a simulation framework to quantify the effectiveness of the optimal 
control model in providing first-hand cost savings for the subject 
vehicle as well as second-hand savings for the vehicles traveling 
upstream of the subject vehicle. Our experiments suggest that, 
generally speaking, the optimal controller outperforms the IDM car-
following model in creating fuel efficiency. Results suggest that 
making platooning decisions based on local information does not 
necessarily lead to fuel savings; however, if a minimum platoon-
keeping distance is enforced by the model, platooning can offer 
significant fuel-efficiency benefits, especially in the onset-of-
congestion and congested traffic states. Our experiments also indicate 
that under the controller with enforced minimum platoon-keeping 
distance, the non-connected vehicles upstream of the subject vehicle 
may also experience second-hand statistically-significant fuel savings. 
When a generalized cost of travel including both the time and fuel cost 
is considered, lane changing may introduce time savings significant 
enough to more than compensate the increased fuel consumption 
during the lane change maneuver, and in fact reduce the overall cost of 
a trip. As such, our experiments indicate the importance of the relative 
values of fuel cost and value of time in a driver’s decision-making 
process–with a higher value of time, lane changing becomes more 
attractive, leading to the generalized cost preferring a shorter trip to a 
more fuel-efficient one. Similarly, with a smaller value of time one 
might benefit from merging into a platoon to reduce his/her fuel cost. 
This interesting relationship can open doors for introducing 
mechanisms between agents where those with lower values of time 
might grant lane access to those with higher values of time for a 
monetary compensation, thereby increasing utilities of all parties. 

Appendix A1: Simulation Warm-Up 
According to [69], many different models have been proposed to 
capture the relationship among the three fundamental parameters of 
traffic flow—traffic flow, speed, and traffic density. Here, we adopt 
Greenberg’s model, which presents one of the earliest and most well-
known speed-density models (Greenshields et al. 1935; Pipes 1966). 
Let 𝑣m and 𝑘m be the corresponding velocity and density when the 
flow reaches its maximum value, which is 1

𝑡p
. We set 𝑘1 = 0.3 𝑘m, 

𝑘2 = 0.8 𝑘m, and 𝑘3 = 2 𝑘m as the maximum density under the free-
flow, onset-of-congestion, and congested traffic states, respectively. 
We then use Greenberg’s speed-density relationship in Eq. (A.1) to 
compute the corresponding velocity of each of the three density cut-off 
points, 

 
𝑣 = 𝑣m ln(

𝑘j

𝑘
) (A. 1) 

where 𝑣 denotes the space-mean-speed, 𝑘 denotes the traffic density, 
𝑣m indicates the velocity when the flow reaches its maximum value, 
and 𝑘j indicates the jam density. Value of 𝑘j is determined by the 
parameters in the IDM model, 

 
𝑘j =

1

𝑙car + ℎst
 (A. 2) 

where 𝑙car is the average vehicle length, and ℎst is the minimum 
headway at which vehicles are at a complete stop. After generating 
vehicle positions using the ideal time gap, we perturb these positions 
using Gaussian noise to incorporate random deviations from an 
idealized model. During the warm-up process all surrounding vehicles 
run for 2 minutes following the IDM model. 
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