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Abstract

Autonomy and connectivity are considered among the most promising
technologies to improve safety and mobility and reduce fuel
consumption and travel delay in transportation systems. In this paper,
we devise an optimal control-based trajectory planning model that can
provide safe and efficient trajectories for the subject vehicle while
incorporating platoon formation and lane changing decisions. We
embed this trajectory planning model in a simulation framework to
quantify its fuel efficiency and travel time reduction benefits for the
subject vehicle in a dynamic traffic environment. Specifically, we
compare and analyze the statistical performance of different controller
designs, in which lane changing or platooning may be enabled, under
different values of time for travelers. Results from extensive numerical
experiments indicate that our design can not only provide first-hand
cost savings for the subject vehicle, but also second-hand savings for
vehicles in upstream of the subject vehicle. Experiments also highlight
that the lane changing and platooning can both offer benefits,
depending of the relative values of fuel cost and the traveler’s value of
time: with a small value of time, the fuel efficiency benefits of
platooning outweighs time savings offered by lane changing.
However, a vehicle with a high value of time may find it more
beneficial to travel outside of a platoon and complete its trip faster by
leveraging lane changes.

Introduction

It is envisioned that in the near future transportation systems would be
composed of vehicles with varying levels of connectivity and
autonomy. Connected vehicle (CV) technology facilitates
communication among vehicles, the infrastructure, and other road
users [1], allowing vehicles to see beyond the driver’s line of sight,
and the transportation infrastructure to be proactive in responding to
stochastic changes in road conditions and travel demand [2].

Automated vehicle technology enables automation of vehicles at
different levels, where level 0 automation indicates no automation, and
automation levels 1 and 2 refer to a single and multiple driving
assistant systems being present in the vehicle, respectively. Level 3
automation allows the transfer of control authority between the human
driver and the autonomous entity when the automation fails. Level 4
autonomy allows for the vehicle to control all functionalities within
specified regions. Finally, in level 5 autonomy vehicles can travel
anywhere without any intervention from human drivers [3].

Although the connected and automated vehicle technologies can each
be deployed independently in a vehicle, when combined they can
provide a synergistic effect that goes beyond the sum of their
individual benefits. It is expected that upon deployment, the connected
and automated vehicle (CAV) technology could significantly improve
mobility, enhance safety and traffic flow stability, reduce congestion,
and improve fuel economy, among other benefits [4—8]. The degree to
which such benefits can be realized in real-world conditions depends

on a wide array of factors, among which trajectory planning of CAVs
plays a major role [9]. The main purpose of trajectory planning is to
provide a vehicle with a collision-free path, considering the vehicle
dynamics, the surrounding traffic environment, and traffic rules [10].
More comprehensive works could incorporate secondary objectives
such as achieving fuel economy [11—15] and time efficiency [16, 17].

Platooning is one of the applications of the CAV technology, which
allows for vehicles to travel with small gaps between them, thereby
reducing the aerodynamic drag on platoon members and increasing
fuel efficiency [18]. To enjoy the benefits of platooning, the trajectory
planning methods should be enhanced to include platooning decisions,
including (1) whether a vehicle should merge into a platoon, and (2)
among the existing platoons, which platoon should a vehicle join,
among others. Additionally, in the existence of platoons, lane changing
becomes a more complex task: for a platoon member to join lanes,
they should dissolve from the platoon and incur the energy cost of
such a decision. Furthermore, a decision on the part of a vehicle to
dissolve from a platoon will impact energy efficiency of other platoon
members. Similarly, merging into a platoon may require changing
lanes, which could offset some of the fuel efficiency benefits of
platooning. Therefore, accounting for platoon merging and lane
changing decisions is a critical part of trajectory planning in the era of
the connected and automated vehicle technology.

There are a number of classical methods on trajectory planning, such
as sampling-based [19, 20], optimization-based [21, 22], graph search-
based (Stahl et al. 2019), etc. These studies and their potential for use
in CAV systems will be discussed in detail in the Related Works
section. Despite the high performance of these methods on trajectory
planning, the transportation systems of the future are expected to have
high levels of autonomy and connectivity, thereby requiring the
existing methods to be reviewed and reevaluated within this new
context. More precisely, although current methods can plan vehicles’
lateral and longitudinal positions, they need to be enhanced to
explicitly make discrete decisions on platoon merging and lane
changing jointly with continuous decisions on trajectory planning. The
contributions of this paper are as follows:

e We put forward a joint cruising, lane changing, and platoon-
merging planner for a connected and automated vehicle, in a
dynamic environment with a mixed traffic consisting of connected
and legacy vehicles. The planner is capable of planning the future
geo-coordinates of the vehicle jointly with lane changing and
platoon merging decisions.

e We develop a simulation environment for traffic dynamics, in
which vehicles may enter or exit the traffic stream, merge into or
split from a platoon, change lanes, and adjust their velocities.

e We demonstrate that the subject vehicle (which is assumed to be
connected and automated) can obtain statistically significant fuel
and time savings, through extensive simulations in various traffic
states (i.e., free-flow, onset-of-congestion, and congested).



Table 1: Summary of parameters

Parameter Value Definition

tupd 0.4 secs the updating period of the trajectory of the subject vehicle

Pon 0.6 the probability that a vehicle is interested in joining the freeway from on-ramp
Doff 0.6 the probability that a vehicle is interested in taking at off-ramp

Pnpe 0.5 the probability that the vehicle is not platoon-enabled vehicle

Pmerge 0.6 the probability of that a vehicle intends to merge

Dchange 0.1 the probability of that the vehicle intends to change lane

tp 3.5 secs time gap between two successive vehicles not in a platoon

ty 0.55 secs time gap between two successive vehicles in a platoon

tiep 3.6 secs surrounding vehicles finish lane changing within this time

tic 5 secs the minimum time interval between two successive lane changes by successive vehicles
Ts 0.4 secs updating period of trajectory of surrounding vehicles

T, 1.0 secs reaction time delay in the car-following model

TN, 10 secs prediction horizon in the optimal control model

vle 20 m/s the velocity in the left lane when it reaches the maximum flow

vi 14 m/s the velocity in the right lane when it reaches the maximum flow
Url‘r?ax 30 m/s maximum velocity in the left lane

vH 20 m/s maximum velocity in the right lane

Amax 2 m/s? maximum acceleration for the subject vehicle

Jmax 3.5m/s’ maximum jerk for the subject vehicle

deg 50 m critical gap to decide whether it is feasible to change lanes

lear Sm length of a vehicle

hgt S5m vehicle would stop at headway of this value

a 2 m/s? the maximum desired acceleration

b 3 m/s? the comfortable deceleration

VAR 0.3987 coefficient for air resistance force

YRR 281.547 coefficient for rolling resistance force

YGR 0 coefficient for grade resistance force

VIR 1750 coefficient for inertial resistance force

Ul 5.98x108 dollars/Joule fuel cost for a unit energy consumed by the vehicle

Pscn {2, 10, 50} the scheduled splitting position can be in 2, 10 or 50 road pieces later
N(Uschr Osch) | N(2,5), left, N(—1,5), right | the normal distribution of the scheduled splitting position in two lane, respectively.

e We demonstrate that legacy vehicles traveling upstream the subject
vehicle can obtain statistically significant fuel efficiency benefits.

e We evaluate the performance of our design under different
minimum platoon-keeping distance requirements and values of time
for travelers.

The rest of the paper is organized as follows: First, we review the
literature on trajectory planning. Then, we formulate an optimal
control model for planning the trajectory of a CAV. Next, we present a
general framework for the study and our assumptions, as well as a
simulation environment that consists of a two-lane highway with
multiple on- and off-ramps and a dynamic traffic stream. In particular,
we describe how vehicles with various levels of autonomy and
connectivity interact with each other in the simulation environment.
Finally, we conduct a series of analyses under various traffic
conditions to quantify the fuel-efficiency benefits of our approach for
the subject vehicle as well as those of its surrounding vehicles within
platoons and as free agents. We end the paper by summarizing the
takeaways.

Related Works

Traditionally, trajectory planning has been mainly based on vehicle
dynamics constraints, such as acceleration range, steering
performance, etc. More advanced driving assistance systems (ADAS),
e.g., adaptive cruise control (ACC), enhance trajectory planning
through utilizing data collected by the vehicle’s on-board sensors. CV
technology provides an opportunity to incorporate more diverse types
of data (e.g., weather conditions) from a wider spatial range (e.g., from
objects beyond the line of sight of the vehicle). However, there is a
need to develop algorithmic tools that can incorporate this information
into trajectory planning. Several attempts, such as Connected Cruise
Control (CCC) [32, 33] and Cooperative Adaptive Cruise Control
(CACC) [34—37] have been made to incorporate vehicle-to-vehicle
(V2V) communications into trajectory planning. CACC is one of the
most promising technologies that allows CVs to autonomously, and
without the need for a central management system, plan their
trajectories using V2V communications [38]. The information flow
topology in a CACC system typically includes predecessor following,



predecessor-leader following, bidirectional topology, etc. [39].
Advanced communication protocols, such as Dedicated Short Range
Communications (DSRC), LTE, and 5G are proposed and developed
to improve the communication bandwidth of V2V communications
[40—42].

Table 2 summarizes recent studies in the literature that have focused
on trajectory planning of CAVs, with different levels of automation.
This table points out multiple attributes of these studies, including
whether obstacles are dynamic or not, the environment geometry,
whether the ego vehicle is capable of platoon formation, whether
lateral motion is considered or not, the penetration rate of connected
vehicles and their cost functions. The rest of this section elaborates on
the specifics of these attributes.

The ultimate goal of trajectory planning is to enable vehicles to travel
safely and efficiently in real traffic conditions. Therefore, different
trajectory planning algorithms are developed for implementation in
different contexts, to capture different abstractions of real-world
conditions, e.g., obstacles, curved roads, signal lights, mixed traffic
components, etc. [43]. In [24], Gu et al. focus on the subject vehicle’s
movement around a single static obstacle, and its distance-keeping and
overtaking of a single leading vehicle. [11] proposes a dynamic
programming (DP) algorithm for speed planning in a transportation
network with stop signs and traffic lights. [27] presents a method that
exploits the complete permissible road width in curvy road segments
to increase driving comfort and safety through minimized steering
actuation. [26] and [28] consider the impact of surrounding vehicles
with fixed velocity on trajectory planning of the subject vehicle. In
general, the degree to which different models are set to imitate real
traffic conditions depends on research priorities. The closer the
environment can resemble real-world conditions, the higher the
accuracy and reliability of trajectory planning, but the higher the
computational complexity and the worse the real-time performance.
[44] reviews planning and control algorithms for self-driving vehicles
in urban environment and highway scenarios. Review of the existing
studies reveals that, in general, the literature is very limited in
capturing the dynamics of the driving environment. In our work, we
develop a trajectory planning method for a general highway system
based on the work by [22]. However, we add several components, such
as on-ramps and off-ramps, lane changing capability, speed adjusting,

Table 2: Overview of the trajectory planning literature

and penetration of platoons to more accurately simulate the
surrounding traffic environment.

Lane changing is another important component of trajectory planning.
Lane changing is one of the most challenging driving maneuvers for
researchers to understand and predict, and one of the main causes of
congestion and collisions in the transportation system [45]. The real-
time information received from the driving environment and other road
users can be used to facilitate lane changing maneuvers that enhance
safety, comfort and traffic efficiency [22]. [46] proposes a distributed
algorithm to make lane changing decisions. The authors claim that this
mechanism can maximize the number of safe lane changes within the
entire system. However, they did not demonstrate the level of
improvement in system level performance. The developments in lane
changing models before 2014 are comprehensively reviewed in [47,
48]. Zheng et al. [48] claim that in real lane changing situations,
drivers can simultaneously monitor and evaluate multiple spacings in
the target lane and make a decision on where and how to execute the
lane change. In [45], two types of games are proposed for modeling
the lane changing behavior: under complete information in the
presence of CV technology, and under incomplete information in its
absence. Simulation results indicate that the game theoretic-based lane
changing models are more realistic than the basic gap-acceptance
model and the MOBIL model. Wang et al. [49] proposes a predictive
model for lane changing control that considers both discrete lane
changing decisions and continuous acceleration values. The lane
changing method proposed by Luo et al. in 2016 [22] executes lane
changing maneuvers; however, their model is not capable of making
lane-changing decisions. Review of the existing work on lane
changing demonstrates that most research in this area focuses either on
when or where to change lanes, or on the execution of lane changing
after the decision to change lanes has been made. [50] proposes a lane
changing method composed of three steps, that is, deciding whether to
change lanes, selecting the target position and the time instance to
initiate the lane changing process, and planning the trajectory.
However, these three steps are followed sequentially. In contrast, in
our work, we make all three decisions concurrently in an integrated
framework to minimize fuel and time costs. We move the state-of-the-
art one step forward by evaluating multiple spacings in the target lane
from the viewpoint of the feasibility of maneuvering, safety, and
efficiency. Furthermore, we evaluate the effects of lane changing in
long distance travels in a dynamic system.

Study Obstacle Environment Platoon ]lc/late.ral Connectivity - C(_)St
otion tracking  fuel time  comfort/safety
[24] dynamic curvy lanes no yes no yes no no yes
[11] static routes no no no no yes no no
[25] dynamic  curvy lanes no yes no no no no yes
[26] dynamic  lanes yes yes partial yes no no no
[27] dynamic  curvy lanes no no no no no no yes
[28] dynamic  lanes yes yes full no yes yes yes
[29] static curvy lanes no no no yes no no no
[23] dynamic  curvy lanes no yes no yes no no yes
[19] dynamic  curvy lanes no yes no no no yes yes
[20] static free space no yes no no no no yes
[30] dynamic  curvy lanes no yes no no no no yes
[31] static curvy lanes no yes no no no yes yes
This paper  dynamic lanes yes yes partial no yes yes yes




Platooning makes one of the most interesting and important
components of trajectory planning in the next generation of
transportation systems. The capability to incorporate platooning is
another factor that differentiates existing trajectory planning methods.
Platooning is a specific application of the CV technology that can
introduce a wide range of vehicle- and system-level benefits. A
platoon is a single-file line (i.e., a virtual train) of vehicles that, owing
to constant communication, are able to travel with small gaps between
them. Platoon formation can introduce many benefits including (i)
energy efficiency through reducing the aerodynamic drag force on
platoon members [51, 52]; (ii) reducing emissions [53]; (iii) increasing
road capacity through reducing the headways between vehicles; (iv)
reducing stochasticity in the traffic stream by having platoon members
follow the platoon leader, thereby reducing the likelihood of highway
traffic breakdown, improving travel times, and increasing travel time
reliability [54, 55]; and (v) facilitating real-time management of traffic
and improving mobility by aggregating the unit of traffic from an
individual vehicle to a cluster of vehicles. Table 2 lists studies in the
literature that incorporate platooning. Note that “yes’ for the field
‘platoon’ in this table indicates the capability of platoon formation,
rather than platoon control strategies [56, 57] or intra-platoon
communication [58, 59]. In our work, we model possible platoon
formations between the subject vehicle and its surrounding vehicles.
Furthermore, our method will make merging/splitting decisions along
with trajectory planning.

The ability to capture the heterogeneity in the level of connectivity and
autonomy of vehicles is another factor that differentiates existing
trajectory planning methods, as described in Table 2. Finally,
trajectory planning methods are different in terms of their objective
function. In general, the goal is to find the least-cost trajectory, where
the cost function could include any combination of the following
components: time cost of the trip (i.e., trip length), fuel consumption,
comfort and safety of on-board passengers, and precision in tracking
(i.e., the degree to which the vehicle deviates from a pre-specified
ideal trajectory).

There are a number of comprehensive reviews on path planning,
maneuver choice, and trajectory planning [60, 61]. A more recent work
utilizes optimal control to plan trajectories for automated vehicles,
where they leverage dynamic programming to provide an initial
trajectory based on a simplified optimal control problem [62].
However, they do not consider platooning, which is envisioned to be
an important component of future traffic streams, nor do they have the
benefits of utilizing optimal trajectories, neither through simulations
nor through real-world experiments.

Methods

The goal of this study is to design an optimal control-based trajectory
planning model that can be utilized by an automated (level 2 or higher
autonomy) vehicle, hereafter referred to as the subject vehicle. The
optimal control model will be designed to incorporate microscopic
traffic information from the traffic stream in the local neighborhood of
the subject vehicle, with the goal of devising fuel and time efficient
trajectories that may include merging into a platoon and changing
lanes. We start this section by describing the optimal control model.
We then describe the general framework and our assumptions, as well
as a simulation environment that we will use to quantify the overall
cost savings for the subject vehicle and its surrounding traffic.

Optimal Control Model

In this section, we devise an optimal control model to determine the
trajectory of the subject vehicle in real-time. It is noted that this work
focuses more on decision making and trajectory planning, rather than
trajectory tracking, so we simplify the vehicle dynamics model as a
mass point and assume we can directly control its longitudinal and
lateral acceleration, and thereby its trajectory. The proposed optimal
control model is provably safe, and is designed to account for fuel and
time efficiency as well as comfort of on-board passengers.

The optimal control model is a non-linear optimization model. The
state variables of this model include longitudinal and lateral positions,
platoon membership status (whether or not in a platoon, and the
scheduled splitting time if a platoon member), and the control
variables are longitudinal and lateral accelerations, the binary decision
to join a platoon, and the binary decision to change lanes. While
adjusting acceleration can be considered as a single action that can be
almost instantaneously carried out, a change in lane position and
platoon membership is a lengthier process and may require multiple
sub-actions, as described in Table 3. As demonstrated in this table, at
each time step the subject vehicle can be in one of the following six
states: (i) ‘left lane; free agent’, indicating that the vehicle is in the left
lane and is not part of any platoon, (ii) ‘right lane; free agent’,
indicating that the vehicle is in the right lane and is not part of any
platoon, (iii) ‘left lane; in platoon (active)’, indicating that the subject
vehicle is in the left lane and is the platoon leader, and the scheduled
platoon splitting position has not yet reached, (iv) ‘right lane; in
platoon (active)’, indicating that the subject vehicle is in the right lane
and is the platoon leader, and the scheduled platoon splitting position
has not yet reached, (v) ‘left lane; in platoon (passive)’, indicating that
the subject vehicle is in the left lane, the platoon splitting position has
reached, and the platoon the subject vehicle was formerly leading is in
the process of dissolving, and (vi) ‘right lane; in platoon (passive)’,
indicating that the subject vehicle is in the right lane, the platoon
splitting position has reached, and the platoon the subject vehicle was
formerly leading is in the process of dissolving.

Table 3 shows that at each time step, the subject vehicle switches from
its current state to a target state. Depending on its initial and target
states, the subject vehicle may need to complete a sequence of sub-
actions, including ‘wait’, ‘merge’, ‘split’ and ‘lane change’. The ‘wait’
sub-action indicates that the vehicle needs to maintain its state after
completing its previous sub-action. The sub-actions ‘merge’ and ‘split’
indicate merging into a platoon and splitting from a platoon,
respectively. Finally, the ‘lane change’ sub-action indicates changing
lanes. For example, if the target state ‘right lane; in platoon’ is the
selected action under the current state ‘left lane; in platoon (active)’,
then the subject vehicle needs to complete the sequence of sub-actions
‘split = wait — lane change — merge — wait’.

The trajectory function

Following [22], we use a quintic function, based on time, as our
trajectory function for each sub-action. The quintic function is selected
because it guarantees a smooth overall trajectory, even with multiple
different sub-actions. Eq. (1) shows the trajectory function,



Table 3: Sub-action sequences for each state-action tuple

Initial state Target state

Sub-action sequence

left lane; free agent

left lane; free agent left lane; in platoon

right lane; free agent
right lane; in platoon

wait

merge — wait

wait — lane change — wait

wait — lane change — merge — wait

left lane; free agent

right lane; free agent left lane; in platoon

right lane; free agent
right lane; in platoon

wait — lane change — wait

wait — lane change — merge — wait
wait

merge — wait

left lane; free agent

left lane; in platoon (active) left lane; in platoon

right lane; free agent
right lane; in platoon

split = wait

wait

split — wait — lane change — wait

split = wait — lane change — merge — wait

left lane; free agent

right lane; in platoon (active) left lane; in platoon

right lane; free agent
right lane; in platoon

split = wait — lane change — wait

split = wait — lane change — merge — wait
split = wait

wait

left lane; free agent

left lane; in platoon (passive) left lane; in platoon

right lane; free agent
right lane; in platoon

split — wait

split — wait — merge — wait

split = wait = lane change — wait

split — wait — lane change — merge — wait

left lane; free agent

right lane; in platoon (passive) left lane; in platoon

right lane; free agent
right lane; in platoon

split = wait — lane change — wait

split = wait — lane change — merge — wait
split = wait

split = wait — merge — wait

Now
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where x(t) and y(t) indicate the longitudinal and lateral positions of
the vehicle at time t, respectively, and N, denotes the number of sub-
actions the subject vehicle needs to complete. Coefficients ay through
a and b} through at are decision variables that determine the optimal
solution. Function f; (t) may be formulated as

tii1 St<t
otherwise

io={; @

where [t;_q, t;] is the time window for completing the i’th sub-action,
and ty,_ is the prediction horizon.
Boundary conditions

For every sub-action, the following boundary conditions must be
satisfied,

x(tio1) = x> X(Cim1) = Vx> (o) = Aty 3)
V(1) = Ye_ s Y(Eic1) = Vg, V(o) =y,
x(t;) = Xt x(t;) = Ux,t;» ¥(t;) = Ay t; 4)
V(&) =Yy, Y& = vy, V(&) = ayy,
where t;_, and t; are the starting and ending time for the ith sub-
action, respectively, and X¢,_, Vwr, ,» Qxt, s Veiy> Yy, a0d Gy

are the longitudinal and lateral geo-coordinates, velocity, and

acceleration for the starting point of the sub-action, respectively. These
values are accordant with the ending point for the last sub-action. For
each sub-action, the longitudinal coordinate, velocity and acceleration
at the end of the sub-action as well as the duration of the sub-action are
all free variables that are optimized.

Constraint sets

There are a number of constraints on the position, speed, acceleration,
and jerk of the subject vehicle, elaborated in the following.

1. Speed limitation: The longitudinal speed of the subject vehicle
should be no more than the maximum speed in its lane, and should
always be non-negative, as presented in Eq. (5):

0< Ux(t) = x(t) < Uch,maXf (5)

where v, (t) denotes the longitudinal speed of the subject vehicle, [
indicates the lane in which the vehicle is traveling, and v}amax denotes
the maximum vehicle speed in lane [.

2. Collision avoidance: The subject vehicle should maintain a
minimum time gap (denoted by tg,g) from its immediate downstream
vehicle during all sub-actions in all t, as indicated in Eq. (6),

xL(t) - xsub(t) > tsafe vsub(t) + lcarﬁ vVt € [tO , tNm]r (6)
where x; (t) is the position of the immediate downstream vehicle (i.e.,

the leader), x4, (t) and vy, (t) are the position and velocity of the

subject vehicle, respectively, and L ,, is the vehicle length.

3. Acceleration bound: During all sub-actions, the longitudinal or
lateral acceleration of the subject vehicle cannot exceed a maximum



value due to mechanical performance limitations and safety
considerations. This constraint is enforced in Eq. (7),

|ax,y| = |1.7x,y| < Gmax 7

where vy, is the velocity vector and apmay is the maximum
acceleration.

4. Jerk bound: Since the subject vehicle’s jerk directly influences the
comfort level and safety of its on-board passengers, we bound the jerk
by a maximum value as stated in Eq. (8),

|jx,y| = |ﬁx,y| < Jmaxs ®)
where jiax 1S the maximum jerk.

Objective function

We define the objective function as a linear combination of fuel and
time costs, as stated in Eq. (9) below,

ti
Coverall = min {nf Z:V:;‘ ﬂ(L) ( YARUZ(t) + Yrr
tioq )
+yar + y(a(®),) v(0) dt +n; T2 (6 — ti-1)}

The four terms y4gv2%(t), Yrr> YGr» and le(a(t))+ are the

aerodynamic resistance force, rolling resistance force, grade resistance
force and inertia resistance force, respectively. For detailed

expressions of these forces, we refer the reader to [63]. The parameter
7y is the fuel cost for a unit energy consumed by the vehicle, and is
measured in dollars. The parameter 7, is the unit cost of time, also
known as value of time, VoT), and is measured in dollars per unit of
time, e.g., a second. The parameter (i) indicates the fuel saving
coefficient for sub-action i. As reported in [51], fuel saving percentage
varies from 3% to 30% at different spacings with different number of
vehicles in a platoon in highway scenarios. Additionally, vehicles in
the middle of a platoon (that is, not at the head or tail of a platoon)
experience the most fuel savings. The platoon tail is the second best
position in terms of fuel saving, and the platoon leader has the least
fuel saving. Here, for simplicity, we assume a 10% fuel saving for all
vehicles in a platoon, and a 5% fuel saving when a vehicle engages in
merging or splitting processes. Thus, we set (i) = 1 for a free agent,
and B (i) = 0.9 for a platoon member. Furthermore, we set (i) =
0.95 for split and merge sub-actions, because in the transition state to
and from a platoon vehicles still experience fuel savings, but not to the
same extent as a platoon member. Note that despite the platoon-related
fuel efficiency benefits of the merge and split processes, the change in
velocity during the merge and split processes may lead to higher fuel
consumption levels. However, the optimization problem would
naturally accounts for such trade-offs.

General Framework and Assumptions

In this study, we consider a mixed traffic stream with various levels of
autonomy. Specifically, we model both vehicles that are human-driven
and not platoon-enabled, and platoon-enabled vehicles. A platoon-
enabled vehicle is a vehicle that has level 2 or higher autonomy (and is
equipped with distance sensing and keeping technology such as
adaptive cruise control) according to the Society of Automotive
Engineer’s (SAE’s) classification. Furthermore, in this study we
assume that all vehicles are connected; that is, all vehicles can
communicate with each other and with road side units (RSUs) using

dedicated short range communication (DSRC) devices, with a reliable
communication range of 300 meters. Figure 1 demonstrates the
communication and control framework of our work.

To develop a simulation environment for the system, we divide the
transportation network into a number of road pieces. We define a road
piece as a section of a road that satisfies the following two conditions:
(i) the macroscopic traffic conditions, to which we refer as “traffic
states”, are likely to be homogeneous within a road piece. For
example, on a highway segment the traffic conditions around on- and
off-ramps are typically different from their upstream and downstream
segments, indicating that on- and off-ramps require dedicated road
pieces; and (ii) vehicles within a road piece are able to communicate
with each other, either directly or through RSUs. This requirement
implies that in case of DSRC-enabled communication, the length of a
road piece cannot exceed 600m so as to enable all vehicles to stay
connected using a single RSU located in the middle of the road piece.
Limiting the length of a road piece ensures that, with strategic
positioning of RSUs, all connected vehicles can receive microscopic
traffic information of their neighbors (i.e., geo-coordinates, velocity,
acceleration, braking, steering angle, etc.), and use this information to
plan more informed and efficient trajectories.

In our modeling of a traffic stream characterized with full connectivity
and a heterogeneous level of autonomy, we account for the delay
between the occurrence of a stimulus and the execution of an action in
response to it. In case of a human driver, this delay is referred to as the
perception-reaction time [64], and accounts for the perception delay
(either by the driver or from the part of the vehicle sensors), the
decision-making delay, and the execution delay. In case of the
autonomous entity being in charge, this delay can be attributed to
sensory delay, delay in the communication network, computational
time, and actuation delay.

Surrounding vehicles

Surrounding vehicles’ trajectories will be simulated based on a
microscopic car-following model so as to reflect a realistic and
dynamic traffic environment. The surrounding traffic information will
get updated every T, = 0.4 seconds. Note that the value of 7 is
selected based on the human perception-reaction time, which is within
the range of 0.3-1.5 seconds [65]. However, this is a parameter that
can be easily adjusted in the model. At each updating step, four
functions will be executed by the surrounding vehicles in the following
sequence: join/exit from the highway, merge into/split from a platoon,
change lanes, and adjust velocity based on a car-following model.
These functions are elaborated in the following.

1. Join/exit from the highway: We assume that the probability that a
vehicle enters the highway from an on-ramp at each updating step is
Pon- The vehicle is assumed to be able to join the highway if it can
maintain a minimum time gap of length t,, from the vehicles both
upstream and downstream of the ramp entry point in the right lane of
the highway. We set the speed of this entering vehicle similar to the
speed of its downstream vehicle. Moreover, we set the probability of
the vehicle not being a platoon-enabled vehicle as pp,.. At each update
step, a vehicle can leave the highway if the following three conditions
are satisfied: (1) it is traveling on the right lane of the highway, (2) it is
located at the upstream of an off-ramp point, and (3) the time gap
between the vehicle and the off-ramp point is smaller than the update
step 5. Among all vehicles that satisfy these conditions, we assume
the probability that one vehicle intends to leave the highway is pogr.
This exiting vehicle and its profile is directly taken off the current
iteration.
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Figure 1: The communication and control framework

2. Merge into/split from a platoon: To ensure that our model remains
computationally tractable, we assume that a vehicle could hold only a
single platoon membership status (either a member or not a member)
throughout a road piece, i.e., the merging or splitting process can only
commence in the transition point between two road pieces. A vehicle
can merge into a platoon when it is already a platoon leader (resulting
in the merging of two platoons), or a platoon-enabled free agent.
Among all vehicles that qualify to merge into a platoon, the probability
that a vehicle intends to merge is assumed to be pyerge- There are two
cases regarding the profile of the vehicle in the immediate downstream
of the merging vehicle. If it is a platoon member, then the new
merging vehicle will have the same scheduled splitting position as
other vehicles in the platoon. If it is a free agent, the scheduled
splitting position Py, in the units of number of road pieces, will be
decided at this time using a normal distribution (For more details, see
section Platoon membership). Every time when a platoon passes the
transition point of two road pieces, the scheduled splitting position will
decrease by 1 unit until this value reaches 0, at which point the platoon
would split into free agents.

3. Lane change: [47] provides a comprehensive review of prior work
on lane changing models. For simplicity, in this paper we adopt the
random lane changing (RLC) model, in which vehicles may change
lanes once a minimum gap criterion is satisfied. We assume that in
every update step at most a single vehicle can change lanes.
Furthermore, for safety considerations, we require a minimum time (no
less than t;, = 5 seconds) between two successive lane changes by two
successive vehicles (immediate follower/leader) traveling in the same
lane. We allow only free agents, and not platoons, to change lanes. The
gap between the lane changing vehicle and surrounding vehicles (the
leading vehicle in the same lane, and the leading and following
vehicles in the target lane) should be at least d, to ensure a safe lane
changing maneuver. Finally, the following vehicle in the target lane
cannot be a follower in a platoon, indicating that the lane changing
process cannot insert vehicles into a platoon.

Not all vehicles that satisfy the conditions above intend to change
lanes. Among all qualified vehicles, the probability that a vehicle
intends to change lane is Pcpange- The lane changing process is assumed
to be completed within ¢,¢, seconds, after which the lateral position of
the lane changing vehicle would not change, and its longitudinal speed
has to have reached the speed of the leading vehicle in the target lane.

4. Adjusting velocity using a car-following model: Each vehicle needs
to continuously adjust its velocity to maintain a large enough safety
gap from its leading vehicle. For a free agent we use the Intelligent
Driver Model (IDM) [66] for adjusting velocity. For platoon members
in the steady state, the platoon leader will behave similarly to a free
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agent in terms of car-following behavior, and other platoon members
will instantaneously take the same acceleration and velocity as the
platoon leader to maintain a steady headway to their preceding vehicle.
In the splitting/merging state, the headway will increase/decrease
following a constant speed. (We use the speed of 5 meters/second in
our simulations.) The parameters used to calibrate IDM are
summarized in Table [Parameters summary]. For more information on
the car following model parameters, we refer the reader to [66]. For
more information on the optimal control model parameters, we refer
the reader to [22]. For fuel cost related parameters, we refer the reader
to [51, 63].

Subject vehicle

The subject vehicle updates its motion plan every t,,q = 0.4 seconds.
It is assumed that surrounding vehicles’ motion information is
available to the subject vehicle in real-time. Due to the long
computational time of trajectory planning and control in a dynamic
driving environment, it is problematic for the subject vehicle to obtain
the latest traffic information and then plan its own trajectory for the
immediate next period; that is, after the trajectory planning process is
completed, the planned trajectory would be already outdated. Thus, we
implement a receding horizon control method and consider the
computational delay explicitly in this paper. During this process, the
subject vehicle perceives the environment, estimates other vehicles’
motions for the next 2typd period, and makes its own trajectory plan
for the second following period, i.e., [t + typq , t + 2typa], Where ¢ is
the current time. This results in a trajectory that can still be effectively
followed during this window. The potential mismatch between the
estimated and actual trajectories of the surrounding vehicles can be
addressed by adopting the receding horizon planning approach. The
optimal trajectory is computed by a non-convex optimization solver in
MATLAB, called fmincon.

As discussed in [22], the subject vehicle may get involved in a
collision due to the surrounding vehicles’ sudden speed fluctuations
during the lane changing process. More specifically, the subject
vehicle may not be able to take any action without violating the
constraints of the optimal control model for the following reasons: (i)
sudden speed change of the surrounding vehicles; (ii) comfort-related
maximum acceleration and jerk constraints in the optimal control
model; and (iii) conservative constraints regarding the safety time gap
between the subject vehicle and any surrounding vehicles. In case of
there being no feasible solution for the optimal control model, the
Intelligent Driver car-following Model is utilized to provide a
longitudinal motion reference for the subject vehicle.



Platoon membership

This section elaborates on platoon formations. When merging, we
assume a free agent or a platoon can merge with its immediate
downstream free agent or platoon. That is, merging can occur between
two free agents, two platoons, or a free agent and a platoon. For the
purpose of simulations, we assume a finite number of possible
scheduled splitting positions, €1y, €4y, -+, €%y, in an ascending order
of time. Given the mean p, and the standard deviation gy, we draw
a random number pg, from the normal distribution NV (icp, Gger) to
schedule a splitting time, where £.5! < py, < €%, indicates selecting
the scheduling time Py, = €%, We set Py, = €7, if poopy > €7, At
the scheduled splitting position, platoon members will detach one by
one, starting from the platoon tail, by increasing their gap from their
immediate downstream vehicle.

Case Study and Numerical Experiments

In this section we conduct experiments in the simulation framework
laid out in the previous section, where the trajectory of the subject
vehicle is controlled by the proposed optimal control model. The
simulation framework consists of a two-lane highway, where the
subject vehicle is assumed to be initially traveling on the right lane.
The traveled path is composed of 20 road pieces, with two on-ramps in
the first and eighteenth road pieces, and three off-ramps on the fourth
and twelfth road pieces and the destination of the trip. The travel path
is 10.8 km in length, where the first, fourth, twelfth and eighteenth
road pieces are 400, 300, 200 and 300 meters in length, respectively,
and the rest of the road pieces are 600 meters in length. Recall that we
consider a road piece to be homogeneous in macroscopic traffic
conditions.

We quantify the implications of the optimal control model under
different configurations of platooning (enabled or not) and lane
changing (enabled or not), in different traffic environments.
Specifically, we consider three traffic states of free-flow traffic, onset-
of-congestion traffic, and congested traffic. In order to provide a
realistic simulation environment under each traffic state, we set up a
warm-up process during which we use the Greenberg’s fundamental
diagram [67, 68] to create simulation instances under each traffic state.
For details, refer to Appendix 7.

For each traffic state, we run seven simulation scenarios, each scenario
using a different controller for the subject vehicle, as displayed in
Table 4. We implement two basic controllers: CF refers to the IDM car
following model, and OC refers to a basic optimal control model.
More sophisticated controllers are introduced by adding platooning
and lane changing capabilities to these two basic controllers: the suffix
¢ M1’ indicates the platooning capability, where the vehicle is required
to keep its platoon membership for at least i km if it merges into a
platoon, the suffix ¢ L’ refers to the lane changing capability, and the

Table 4: List of controllers

suffix ° LMi’ refers to a controller that has both platooning and lane
changing capabilities. Finally, for all seven controllers listed in Table
4, VoT is assumed to be zero, indicating that the generalized cost
effectively turns into the fuel cost. we use the suffix  Tj’ at the end of
the controllers to denote a non-zero value of time of j. For each traffic
state, we run 25 random instances of each simulation scenario and
report the trip cost, which is a linear combination of the fuel and time
costs.

Efficiency Results for the Subject Vehicle

In this section we report the overall cost of the subject vehicle under
the seven introduced controllers, the three traffic states, and two
different values of time (VoTs). Figure 2 displays the results for the
value of time 7, = 0 dollars per hour, effectively comparing the fuel
efficiency benefits of the seven controllers. The values of the overall
fuel consumption by the subject vehicle under all scenario pairs are
compared using a two-tailed Student’s t-tests at the 5% significance
level to identify fuel savings that are statically significant.

The top plot in Figure 2 presents the results for the free-flow traffic
state. These results suggest that without lane changing, the optimal
control model, both with and without the ability to form a platoon,
(that is, OC, OC_MO0, and OC_M®6) can result in statistically
significant reductions in fuel cost (at the 5% significance level),
compared to the car-following model (CF). With lane changing, OC L
and OC_LMO result in even higher fuel costs than CF. This is because
the lane changing process itself may add to the fuel cost—a cost that
might be underestimated by the short-sighted optimal control model.
In general, if the subject vehicle is platoon-enabled and forced to keep
its platoon membership for at least 6km (i.e., the OC_M6 and
OC_LMG6 scenarios), the fuel savings are more significant compared to
OC alone. However, with lane changing, scenario OC_LMO0, where the
platoon can dissolve at any time after its formation, does not produce
statistically significant fuel savings compared to OC_L. These results
indicate that a stable, long-term platoon membership can have a
positive effect on fuel efficiency.

The middle plot in Figure 2 demonstrates the results for the onset-of-
congestion traffic state. Results indicate that similar to the free-flow
case, without lane changing, optimal control offers statistically
significant fuel savings compared to car-following for all control-
based scenarios (with and without platooning). With lane changing,
OC_L results in higher fuel cost compared with CF, and OC_LMO0 has
no significant difference with CF. However, comparison of OC,
OC_MO0, and OC_M6 scenarios in the onset-of-congestion traffic state
shows that OC_MO results in the least fuel saving, OC holds the
second place, while OC_M6 achieves the most fuel saving. These
results are intuitive since the frequent splitting of the subject vehicle
from platoons in the onset-of-congestion state leads to higher energy
consumption in the OC_MO scenario, and the energy savings from a
short-lived platoon cannot make up for this loss.

Controller Description

CF The intelligent driver car-following model [66]

oC Optimal control model

OC MO OC with platoon merging, but no minimum required distance to travel in a platoon

OC_M6 OC with platoon merging, but a minimum required distance of 6km to travel in a
platoon

OC L OC with lane changing enabled

OC LMO OC_MO with lane changing enabled

OC_LM6 OC_M6 with lane changing enabled
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Figure 2: The top, middle, and bottom figures represent the free-flow, onset-of-congestion, and congested traffic states, respectively. The vertical axes
in these figures show the overall costs in dollars for 10 km long trips. Along the horizontal axes, the overall costs of the subject vehicle under different

controllers are compared. The value of time is set to 0 dollars per hour in all simulations.

Finally, the bottom figure in Figure 2 displays the results for the
congested traffic state. Results indicate that similar to the two previous
traffic states, without lane changing, optimal control offers lower fuel
costs compared to car-following. The OC_MO controller does not offer
statistically significant improvements over OC for the same reason
stated above; however, OC_M6 can still offer statistically significant
fuel savings over both OC and OC_MO0.

In general, Figure 2 shows that regardless of traffic state, the OC
model can outperform the CF model in terms of energy efficiency.
Enabling platooning can increase these benefits even further if the
model does not allow the platoon to dissolve right after its formation,
and forces platoon members to travel together for a period of time.
Lane changing could reduce the fuel efficiency benefits of the optimal
control controllers to the point of matching fuel efficiency levels of

traditional CF models; however, when platoon-keeping is enforced, the
undesirable fuel efficiency implications of lane changing can be
negated to a great extent.

In Figure 3, we set the value of time to $20 per hour and conduct
simulations similar to those in Figure 2. This figure shows that
minimizing a generalized cost, which takes into account the driver’s
value of time in addition to fuel cost, turns lane changing into a more
desirable feature of the optimal control model.

Under VoT of 20, in the congested traffic state there is no significant
difference among all seven controllers. In the free-flow traffic state,
we observe no statistically significant difference among OC_L_T20,
OC_LMO_T20 and OC_LM6_T20, indicating that when lane changing
is enabled platooning does not induce a significant change in the
generalized cost. This is mainly due to the lower fuel cost compared to
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Figure 3: The generalized cost of a 10.8 km-long trip with VoT of $20 per hour under various traffic states and controllers.



VoT. In the onset-of-congestion traffic state, the OC_LM6_T20
controller results in a slightly higher overall cost compared with
OC_L T20. It is due to the fact that when forcing a platoon to hold for
6km, its members cannot change lanes, resulting in a larger time cost.
In free-flow and onset-of-congestion traffic states, different from
Figure 2, here the overall cost is reduced with lane changing. In both
the free-flow and onset-of-congestion traffic states, OC_MO0_T20 can
result in significant overall cost savings compared with OC_T20,
showcasing the importance of platooning in reducing the generalized
cost, while OC_M6_T20 has no significant difference compared with
OC_MO_T20.

By quantifying the effects of lane changing and platooning on the fuel
and time costs, Figures 2 and 3 allow us to infer policies on the
circumstances under which engaging in lane changing and/or platoon
merging can reduce a vehicle’s generalized cost of travel. In general,
platooning reduces fuel cost and lane changing reduces the time cost of
a trip. As such, the overall generalized cost becomes dependent on the
relative values of VoT and fuel cost—if the value of time is small
compared to the fuel cost, the contribution of platooning to the
generalized cost overweighs that of the time cost, indicating a cost-
minimizing policy of merging into platoons, committing to them for
long periods, and avoiding lane changes. On the other hand, if VoT is
large relative to the fuel cost, the time component of the generalized
cost overweighs the fuel cost, resulting in the cost-minimizing policy
of not blindly committing to a platoon for a long period, while taking
advantage of lane changing to reduce travel time when possible.

Efficiency Results for the Surrounding Vehicles

In this section, we analyze the simulation results to investigate whether
the different controllers used by the subject vehicle have a significant
impact on the overall cost of its upstream traffic. We use the average
cost of Ny, = 30 upstream vehicles of the subject vehicle in both lanes
as an approximation of the cost of a surrounding vehicle. We assume
that surrounding vehicles have the same value of time as the subject
vehicle.

Figure 4 displays the average cost of Ny, = 30 upstream vehicles to
the subject vehicle under the three traffic states and the seven

controllers, with value of time set to 0, thereby effectively measuring
the impact of the controllers on fuel efficiency. This figure suggests
that changing the subject vehicle controller from the car-following
model to the optimal control model may have different implications in
fuel consumption of the upstream vehicles depending on the traffic
state. More specifically, replacing CF with OC results in significant
fuel savings for the surrounding vehicles in the free-flow traffic, does
not introduce a significant change in the onset-of-congestion traffic
state, and induces a significant rise in fuel consumption under the
congested traffic state. This is due to the fact that when considering the
OC and CF controllers, fuel saving originates from efficient cruising.
As such, the higher the congestion level, the more abrupt changes in
acceleration are required to maintain a safety gap, resulting in higher
fuel costs. Vehicles upstream to the subject vehicle react to the subject
vehicle’s changes in velocity following a CF model. As such, the
oscillations in the velocity profile of the subject vehicle are directly
transferred to them. This could result in lack of fuel efficiency, or even
rise in fuel consumption, for vehicles traveling upstream to the subject
vehicle. As a result, the OC controller can provide statistically
significant fuel savings under the free flow state where smooth
cruising is more likely to occur. These benefits disappear under the
onset of congestion state, and are reversed under the congested state.

The controller OC_M6 outperforms CF, OC and OC_MO in all three
traffic states, indicating that a connected vehicle can create fuel
efficiency for its upstream traffic if it joins a platoon and commits to it.
Similarly, when lane changing is enabled, OC_LM®6 outperforms
OC_L and OC_LMO, confirming the same conclusion. Among all
controllers, OC_LMBG6 results in the most overall fuel savings for the
surrounding vehicles. Finally, the subject vehicle’s lane changing
decisions do not create a significant difference in the surrounding
vehicles’ fuel consumption.

In Figure 5, we set the value of time to $20 per hour for all vehicles.
There is no statistically significant difference among controllers in the
onset-of-congestion and congested traffic states. In the free-flow traffic
state, OC_T20 and OC_L_T20 result in larger costs for the
surrounding vehicles. This behavior results from the fact that under
this high value of time, the time cost becomes the overwhelming
portion of the total cost. As such, the subject vehicle’s steady behavior
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Figure 4: Average fuel cost of the surrounding traffic under different traffic states and controllers. The surrounding traffic consists of a total of 30
vehicles upstream of the subject vehicle, with 15 vehicles in the right lane and 15 vehicles in the left lane.
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Figure 5: Average generalized cost of the surrounding traffic with VoT of $20 per hour under different traffic states and controllers. The surrounding
traffic consists of a total of 30 vehicles upstream of the subject vehicle, with 15 vehicles in the right lane and 15 vehicles in the left lane.

under OC_M6_T20 or OC_LM6_T20 will not influence the
surrounding vehicles, but a short-sighted controller will perturb the
traffic and increase the time cost of surrounding vehicles. This
influence is not statistically significant in the onset-of-congestion and
congested traffic states, because the time cost under OC is already
significant.

Impact of Platooning

Figure 6 allows us to pinpoint the source of fuel efficiency induced by
the proposed model. This figure shows the velocity curves of the
subject vehicle and its immediate upstream vehicle in the onset-of-

congestion traffic state in an example trip with VoT of 0. The points at
the bottom of the plots in this figure mark the platoon membership
status of the subject vehicle under the OC_M6 and OC_MO controllers
at each time step. In Figure 6, only the first 500 seconds of the trip are
presented, and the fuel costs for this 500-second-long section of the
trip as well as the entire trip are shown in Table 6. This figure shows
that, compared to CF, the optimal control model provides smoother
velocity curves, thereby resulting in fuel savings for both the subject
vehicle and its immediate upstream vehicle. This figure also
demonstrates that the OC_MG6 controller provides the smoothest
trajectories, and therefore can provide the highest fuel-saving benefits.
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Figure 6: The vertical axis shows velocity, with the unit of meters per second. The horizontal axis is time, with the unit of seconds. The top plot
compares the speed curves of the subject vehicle under different controllers, and the bottom plot shows the corresponding speed curves of the

immediate upstream vehicle to the subject vehicle.
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Table 5: Fuel cost for subject vehicle and its immediate upstream vehicle in an example trip under the onset-of-congestion traffic state

fuel cost, First 500 seconds The entire trip
dollars per 10 km | subject vehicle following vehicle subject vehicle following vehicle
CF 0.3096 0.3519 0.3045 0.3518
oC 0.2420 0.2592 0.2422 0.2753
OC_MO0 0.2439 0.2614 0.2424 0.2556
OC_M6 0.2238 0.2431 0.2166 0.2295

Lane Changing and its Impact

Figure 7 allows us to demonstrate how the subject vehicle makes lane
changing decisions. This figure shows the fuel consumption curves of
the subject vehicle and those of its downstream vehicles (averaged
over 30 vehicles) on both the right and left lanes for an example trip in
the onset-of-congestion traffic state. The controller of the subject
vehicle is set to OC_L. The solid green line indicates the lane in which
the subject vehicle travels at each time step, where the value 1
indicates the left lane. At about 160 seconds, the subject vehicle
changes from the left lane to the right lane. This lane change can be
attributed to the lower fuel consumption of downstream traffic in the
right lane at about 140 to 160 seconds. At about 245 seconds, the
subject vehicle changes from the right lane to the left lane due to the
lower fuel consumption of downstream traffic in the left lane at about
245 to 260 seconds. The subject vehicle again switches from the left
lane to the right lane at about 290 seconds due to the lower fuel

fuel consumption of downstream vehicles and lane changing of subject vehicle
T T T

consumption in the right lane at about 275 to 290 seconds. As this
figure shows, changing lanes in response to reductions in fuel
consumption in the other lane may bring upon short-term fuel savings,
but the frequency of these lane changes may increase the total fuel
cost, as was demonstrated and discussed previously.

Figure 8 shows how the subject vehicle’s lane changing decisions can
influence the fuel consumption of the upstream traffic in both lanes.
This figure shows the fuel consumption curves of the subject vehicle
and its upstream vehicles (in both lanes) in an example trip under the
onset-of-congestion traffic state. The controller of the subject vehicle
and the lane indicator are the same as in Figure 7. At about 380
seconds, the subject vehicle changes from the left lane to the right
lane. Figure 8 shows that the subject vehicle switching to the right lane
does not negatively affect the fuel consumption in that lane, explaining
the general trends in Figure 4.
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Figure 7: The vertical axis shows the fuel consumption, with the unit of dollars per 10 km. The horizontal axis is time, with the unit of seconds.
Average fuel cost of vehicles in downstream of the subject vehicle in both lanes (15 vehicles in the left lane and 15 vehicles in the right lane), and the

fuel cost of the subject vehicle and its lane position are shown.
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Figure 8: The vertical axis shows fuel consumption, with the unit of dollars per 10 km. The horizontal axis is time, with the unit of seconds. Average
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Conclusion

In this paper we proposed an optimal control model for trajectory
planning of a CAV in a mixed traffic environment. The optimal
controller was developed to plan the trajectory of the subject vehicle,
including platoon formation and lane changing decisions, while
explicitly accounting for computation delay. The objective of the
optimal control model was to minimize the generalized cost of a trip,
which is a linear combination of its fuel and time costs. We developed
a simulation framework to quantify the effectiveness of the optimal
control model in providing first-hand cost savings for the subject
vehicle as well as second-hand savings for the vehicles traveling
upstream of the subject vehicle. Our experiments suggest that,
generally speaking, the optimal controller outperforms the IDM car-
following model in creating fuel efficiency. Results suggest that
making platooning decisions based on local information does not
necessarily lead to fuel savings; however, if a minimum platoon-
keeping distance is enforced by the model, platooning can offer
significant fuel-efficiency benefits, especially in the onset-of-
congestion and congested traffic states. Our experiments also indicate
that under the controller with enforced minimum platoon-keeping
distance, the non-connected vehicles upstream of the subject vehicle
may also experience second-hand statistically-significant fuel savings.
When a generalized cost of travel including both the time and fuel cost
is considered, lane changing may introduce time savings significant
enough to more than compensate the increased fuel consumption
during the lane change maneuver, and in fact reduce the overall cost of
a trip. As such, our experiments indicate the importance of the relative
values of fuel cost and value of time in a driver’s decision-making
process—with a higher value of time, lane changing becomes more
attractive, leading to the generalized cost preferring a shorter trip to a
more fuel-efficient one. Similarly, with a smaller value of time one
might benefit from merging into a platoon to reduce his/her fuel cost.
This interesting relationship can open doors for introducing
mechanisms between agents where those with lower values of time
might grant lane access to those with higher values of time for a
monetary compensation, thereby increasing utilities of all parties.

Appendix Al: Simulation Warm-Up

According to [69], many different models have been proposed to
capture the relationship among the three fundamental parameters of
traffic flow—traffic flow, speed, and traffic density. Here, we adopt
Greenberg’s model, which presents one of the earliest and most well-
known speed-density models (Greenshields et al. 1935; Pipes 1966).
Let v, and k., be the corresponding velocity and density when the

. . L1
flow reaches its maximum value, which is o We set ky = 0.3 kyy,
p

k) = 0.8 ky,, and k3 = 2 k,;, as the maximum density under the free-
flow, onset-of-congestion, and congested traffic states, respectively.
We then use Greenberg’s speed-density relationship in Eq. (A.1) to
compute the corresponding velocity of each of the three density cut-off
points,

V=, ln(%) (A1)

where v denotes the space-mean-speed, k denotes the traffic density,
vy, indicates the velocity when the flow reaches its maximum value,
and k; indicates the jam density. Value of k; is determined by the
parameters in the IDM model,
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_ (A.2)
lcar + hSt

kj=

where [, is the average vehicle length, and hg is the minimum
headway at which vehicles are at a complete stop. After generating
vehicle positions using the ideal time gap, we perturb these positions
using Gaussian noise to incorporate random deviations from an
idealized model. During the warm-up process all surrounding vehicles
run for 2 minutes following the IDM model.
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