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Abstract—UAV and object detection technology can automate
object counting tasks, but low-altitude images, providing better
inferences, require greater energy expenditure. Cooperative UAV
teams can overcome this shortcoming, particularly when object
density information is predetermined. We consider an aerial
object-counting problem for a conservation use case: multiple
quadrotor UAVs operating in a continuous region with a known
probability distribution of objects (waterfowl). We build upon
single-drone algorithms, generating density-based subregions
covered by UAVs with unique roles. This approach scales with
mission parameters, resulting in an F1 score improvement of
more than 0.2 under various conditions compared to naive
multiple-drone approaches.

Index Terms—Unmanned aerial vehicle, small object detection,
aerial image, UAV path planning

I. INTRODUCTION

The expansion of unmanned aerial vehicles (UAVs or
drones) into the consumer market has allowed many difficult
aerial imaging tasks to be automated and simplified, including
applications such as search and rescue, remote sensing, and
wildlife monitoring [1]. One such task has been counting
wildlife such as waterfowl to aid in conservation efforts,
providing crucial information to issue hunting licenses, define
protected areas, and monitor populations. Currently, this task is
typically done using a manned fixed-wing aircraft flying over
refuge areas, with a human passenger estimating the number
of waterfowl below on the spot. We intend to automate this
process, covering the area with a team of quadrotor UAVs
and using an object detection algorithm to find and count
waterfow] based on the high-quality images produced. This
requires an algorithm which dynamically creates a path for
each UAV in a team, covering as much area as possible while
taking into account objects detected during the flyover. Since
altitude has a strong effect on image resolution and therefore
object detection (as indicated in Figure 1), such paths may
revisit objects at a lower altitude as needed [2].

This specific type of UAV path planning problem presents
difficulties and opportunities not represented in classical cov-
erage path planning or trajectory planning problems. Existing
studies with ground robots (and those which treat UAVs as
analogous to ground robots) account for neither the greater

This research was supported in part by NSF Grant CNS-1950873 and a
grant from the Missouri Department of Conservation.

University of California, Berkeley

Angel Flores
University of Puget Sound
Tacoma, Washington
aherreraflores @pugetsound.edu

Yi Shang
University of Missouri
Columbia, Missouri
shangy @missouri.edu

freedom of movement of an aerial environment nor the possi-
ble change in field of view available to UAVs by ascending or
descending. However, these approaches can provide a helpful
basis for an initial, predetermined plan before any objects have
been detected.

In typical multiple-agent coverage path planning, every k-
fold increase in team size can at most improve coverage
efficiency by a factor of k, assuming homogeneous agents
and a simple area. In this detection quality regulated UAV
object detection problem, however, it may be desirable to take
multiple images of the same object from different altitudes,
meaning that strategic placement of UAVs can improve cover-
age even further. For instance, UAVs flying at a high altitude
can provide a detailed map of the objects below to a low-
altitude UAYV, avoiding unnecessary ascents and descents and
splitting the problem into high-altitude coverage path planning
and low altitude point-by-point visits.

The extent to which larger UAV team sizes can leverage this
effect depends on the exact distribution of objects. Fortunately,
in cases such as waterfowl counting, historical records and
congregation patterns can inform algorithms of the relative
importance of subregions of the area, which merit more
detailed imaging (though it may still be important to cover the
entire area). In fact, as demonstrated in Figure 2, the preferred
approach changes fundamentally based on object density - at
a low density, it is effective for UAVs to descend immediately
upon detecting an object to gain more detailed imagery, while
at a high density, it is easier to allocate the detailed imaging
task to a lower-altitude drone (represented by the green path

in Figure 2).

‘

Fig. 1. Decoy waterfowl at various altitudes. As the number of pixels per
waterfowl decreases with altitude, detection accuracy does so as well.



Fig. 2. Intuitive two-drone approaches for low (left) and high (right) object
density.

Our mission is to operate a team of drones through a
polygon-defined area, using predetermined density information
to collect high-quality imagery which produces accurate object
detection results. We assume the team of UAVs consists of
effectively identical quadcopters equipped with cameras of
fixed aspect ratio. Using the intuitive distinction between high-
and low-density regions shown above, an approach can scale
well with both area size and object quantity and achieve better
detection than either approach alone or naive methods.

II. RELATED WORK
A. Classical Coverage Path Planning (CPP)

With a single drone and no altitude effects (on tool size
or detection confidence), the UAV routing problem described
here is equivalent to a standard coverage path planning (CPP)
problem, which has been studied extensively in the literature.
The general logistics of CPP are as follows: Given an area of
interest and a robot with an attached tool (often a sensor, or,
in this case, a camera), determine a path that allows the robot
to cover the area’s entire environment with the tool, and avoid
obstacles if possible [3]. Fortunately, as we are using aerial
robots at a fairly high altitude, we need not consider physical
obstacles.

There are several various CPP setups that have been pro-
posed, including methods to extend CPP to multiple drones
and various ways to decompose complex areas into simpler
ones. We assume the input area can be described as a polygon,
which may be concave. Many CPP algorithms use a decom-
position method which simplifies the traversal of a concave
area by dividing it into subregions. [3] divides these meth-
ods into “exact” and “approximate” cellular decompositions.
Approximate cellular decompositions can better account for
abnormalities such as deep concavities and missing spaces
within the area by constructing an inexact grid representation
of the area, at the cost of unnecessary coverage around the
edges where the grid may not line up with the area.

One particularly interesting CPP algorithm, based on an ap-
proximate cellular decomposition, is Spanning Tree Coverage
(STC) [4]. In this approach, an area is divided into cells dilated
by a factor of two with respect a robot’s tool size. Then, a
minimum spanning tree (MST) is calculated, where each cell is
a node and each edge is a possible branch. A circumnavigation

of this MST will cause the entire area to be covered, and the
robot will return to its original position. Because STC can be
expanded to multiple drones and always returns to the start
point, it is especially promising for large areas which a team
of drones may be expected to handle; as such we incorporate
STC as a component of our UAV counting approach below.

Classical CPP does not typically account for multiple
robots, though some approaches like the one above can be
extended easily to this case [4]-[6]. While it is trivial to split
a long, single-drone coverage path into equal segments to be
followed by other agents, this may interfere with start location
limitations.

B. Energy Efficient Path Planning

To further optimize path planning strategies, it is important
for UAVs to fly at an optimal speed during the counting
process. This optimal speed varies based on path length and
current speed [7], and UAVs travelling in short, interrupted
paths may have decreased air time compared to long-distance
UAVs. Within our simulations, optimal speed is calculated
automatically based on the work from [7] and does take into
account the benefits of long-distance flight.

Furthermore, it is also important to consider that once the
mission starts, it is preferable for a UAV to be in motion if
possible. A UAV which is motionless is still spending energy
hovering while not contributing to traversal, and compared to
the energy cost of simply staying in the air, motion is relatively
inexpensive [8]. To avoid this, hovering UAVs awaiting assign-
ments from other drones in the team can follow along another
UAV’s path, under the assumption that incoming assignments
will be within that UAV’s field of view and therefore nearby.

C. Multiple UAV Path Planning

There is also a significant body of work which considers
task management among UAV teams in a three-dimensional
environment. Mazdin and Rinner [9] suggest a framework for
UAVs imaging three-dimensional objects in which a UAV can
take one of four essential jobs, which they name “Explore,”
“Cover,” “Auction,” and “Observe.” Drones shift through these
roles to detect objects, calculate observation points, assign
those observation points to other drones, and visit those obser-
vation points respectively. As our object-counting problem can
involve stages analogous to “Explore” and “Observe,” in which
objects are first detected and then visited at a low altitude, this
framework is a useful basis for an approach. In our use case it
is especially important to tailor the Explore and Auction roles,
as waterfowl are much smaller than the objects considered by
[9] and may be clustered such that multiple waterfowl can be
covered with a single auctioned point.

Authors in [10] provide an important decision making
strategy to find the next movement to be taken among a drone
team. We consider both the current energy level of a UAV and
the proximity of other agents around each UAV to determine
a path. Furthermore, we also use the current position and
path of each drone to decide which UAVs are suited for new
assignments.



As far as area coverage is concerned, some authors consider
multi-UAV coverage as similar to classical CPP, while others
have proposed fundamentally different approaches. [11], for
instance, generates multiple partial approximate cellular de-
compositions with different cell sizes to account for a team
of non-identical UAVs, while [12] proposes a similar method
based on an exact cellular decomposition - mirroring the
existing dichotomy between CPP approaches. On the other
hand, [13] suggests an interesting online approach which is
easily adapted to multiple drones, in which an initial image
is improved upon by recursively repeating the process on
subareas which contain objects of interest. Unfortunately, areas
large enough to warrant multi-drone coverage cannot fit into
a single image at a reasonable altitude. For this reason, any
multiple-UAV system with an object counting mission adheres
to some constraints of two-dimensional, single-drone path
planning.

Our method, below, is related to these existing multi-UAV
approaches, but better accounts for a varied distribution of
objects. This method is inspired primarily by Mazdin and
Rinner [9]’s approach of assigning distinct jobs to UAVs, and
Santamaria [11]’s approach in decomposing the region into
different-sized cells to account for individual UAV require-
ments.

III. APPROACH
A. Problem Formulation

Existing coverage formulation: This work uses a variation
of the dynamic-height coverage path problem discussed in
[2]. In that formulation, we know the following about the
region R (considered to be a 2 dimensional subspace of R3
at height 0) and the objects it contains:

p(j, h), the detection confidence at altitude h of object j;
1(4), an indicator for the ground truth of object j; and
7(p € R3), the objects within the field of view from point p.

Of those, 7(p) and p(j,h) are available to a function
5({po--pi—1},{7(po)..7(pi—1)}), which produces the next
point p; to which a drone should travel based on points it has
already traveled to and the objects detected at those points.

Expanded formulation: There are two additions to this
formulation required to fit it to a density-aware, multiple-drone
use case. First, we assume that there is a function ((q € R3)
which is a probability density function over the region R such
that ((¢ ¢ R) = 0 and fqeR C(q) = 1. In a conservation
use case, ((g) can be determined from historical records and
environmental knowledge of where waterfowl congregate.

Second, we must account for the inclusion of multiple
drones in the team. We assume all n drones have the same
capabilities and energy capacity. For a drone indexed ¢ in the
team, let 0;(P,T) output the next point in the path of that
drone, where P is the set of past points for all drones and
and T is the set of objects detected at each of those points;
that is, T'= {7(p) : ¥p € P). We do assume that all drones
have access to the complete state of every other drone no

matter their relative distance (as the wireless range of modern
drones exceeds the width of any area which can be practically
covered.) Note that the relationship among the §; may be
complex, as not every point in R requires the same amount of
travel time and energy. Furthermore, detected objects found by
other drones may affect T' before drone ¢ has finished reaching
its next point, requiring an abrupt change of plan. The exact
behavior is dependent on a motion model of the drones, and
though difficult to analyze directly may be reflected through
simulation.

To determine the effectiveness of our algorithm, we have
used F1 score as a metric (treating the problem as primarily
a question of object detection). This metric is easily extracted
from the formulation with the indicators 7(j) (indicating
ground truth) and p(j,k(j)) > ¢ (indicating detected truth)
for an object j, the lowest altitude at which it was detected
k(j), and a confidence threshold t.

B. UAV Team Division

The formulation above allows UAVs to more wisely divide
and cover an area by splitting the task not only according to
the amount of area which must be covered, but also the density
of objects in that area.

Intuitively, the preferred strategy for covering an area with
a high confidence is differs based on the density of objects
within the area. As mentioned, at a low density, a single drone
may immediately descend upon detecting objects because most
images will contain no objects and therefore descent is rarely
required. However, a high density requires frequent descent,
incurring a significant energy cost which cannot be planned for
and may result in failure to traverse the entire area. While this
is a significant hurdle for a single drone, with multiple drones
it is possible to strategically divide the workload to avoid this
effect. The object-counting approach given here differs from
others found in the literature by capitalizing on this fact.

Figure 3 demonstrates the distinction between direct-descent
and layered strategies by showing simulation results for two-
drone systems implementing each strategy. Both strategies
were tested with twenty trials against a one-kilometer-wide
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Fig. 3. FI1 score comparison for two two-drone approaches. In the "layered”
approach one drone scans at a high altitude and another visits detected objects
at a low altitude; in the “direct” approach each drone descends itself upon
object detection.



area containing a variable number of equally distributed ob-
jects. According to these results, the object density at which
the preferred strategy changes is around one hundred objects
in the area (about 127 per square kilometer - relatively few in
the waterfowl counting case).

To take advantage of this, we have used a framework similar
to the one presented in [9], in which every drone may take
one of three roles. The subregions covered by each role are
determined by density. Continuous regions in which the object
density is greater than a threshold are calculated, forming a
set of high density areas such that each is a polygon. Next,
each drone is assigned to one of the following roles:

“Traverse”: Drones with the “Traverse” role cover high
density areas at a medium altitude, ensuring that all objects in
those areas are found, albeit with some false positives.

“Explore”: Drones assigned to the “Explore” role cover
low density areas, detecting outliers while conserving energy
by flying at a high altitude.

“Observe”: “Observe” drones remain at a very low altitude,
visiting nearby objects as directed by “Traverse” drones to
achieve high confidence on as many as possible.

Roles are assigned using parameters p and g, such that p%
of all drones are “Traverse” or “Observe”, and q% of those
are “Observe”. Figure 4 visually demonstrates each of these
roles. Below, we discuss each in greater detail.

C. Low Density Exploration

At a low density where there are relatively few objects, ex-
ploration resembles a height-variant but otherwise traditional
coverage path planning problem. While we assume that it
is important to cover the entire area in case of unexpected
clusters (and to provide imagery which can be analyzed by a
human if desired), most images will not contain objects, and
any energy spent diverging from the path to inspect objects at a
lower altitude will be small compared to the energy cost of the
path as a whole. Due to the large size of any area warranting
coverage by multiple drones, it is of greater importance here
to end exploration near the start point.

Area division
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Fig. 4. Flowchart of the algorithm.

With these considerations in mind, this algorithm is based
on work done in [4], using elements of wavefront transform
methods ( [14]) to expand it to be compatible with multiple
drones. [4] demonstrates that a discretized area’s spanning tree
can be circumnavigated to create a complete coverage path
throughout a region, simultaneously causing an agent follow-
ing it to return to its starting position, saving energy in return
flights. This utilizes an approximate cellular decomposition
according to the hierarchy presented in [3], appropriate as the
low-density area may have holes and irregularities where high-
density areas have been removed.

We discretize R into rectangular, “major” cells through a
grid overlay, each major cell of area 4a and of aspect ratio
l % w, with major cells lying within a high-density polygon
disconsidered. These major cells can then be subdivided into
“minor” cells of size a with the same aspect ratio. To split the
cells among all drones with the “Explore” role, each cell in
this discretized area is scored based on its distance from the
edge of the entire traversal area. Starting at some initial point,
each drone selects the single cell which fulfills the following
criteria:

« It is orthogonally adjacent to a cell already in that drone’s
tree (or if no cells fulfill this property, it is as close as
possible);

¢ no other drone’s tree contains this cell; and

« it has the lowest score among such cells.

This process repeats until no cells remain, ensuring that all
drones’ spanning trees have the same number of cells, trace
the edge when possible, and contain a point near the start.
Paths are generated by circumnavigating these trees.

When an “Explore” drone encounters an object, it will
descend to a low-altitude point above the detected object and
take a detailed image independently, then return on its normal
path. It does not delegate this task to another drone.

D. High Density Traversal

In areas of high density, it is important to achieve a high-
quality initial traversal in order to ensure that most objects
are detected with any confidence initially (as a decrease in
resolution not only decreases detection confidence but also
decreases detection likelihood.) It is also less feasible to visit
detected objects mid-traversal due to the increased quantity.

Since these subregions are polygonal, they are traversed
effectively with an exact cellular decomposition. As these
subregions tend to be relatively simple but may be narrow
(e.g., along edges of the area), we have selected a simple plow
motion in the direction of greatest width of the subregion. A
corresponding path is calculated for each high density area,
and every “Traverse” drone is assigned one or more such
subregions to cover.

If there are more “Traverse” drones than high-density areas,
the extraneous drones are given the “Observe” role.

E. Single Point Observation

As indicated above, drones traversing high-density areas
(with the “Traverse” role) should not visit detected objects



themselves but instead delegate the task to drones which are
already nearby and at a low altitude. In our algorithm, this is
the task of drones with the “Observe” role.

Visiting each individual object that has been detected
essentially forms a traveling salesman problem which can
be solved using any TSP solver. Since the path must be
recomputed every time the drone receives information about a
new object, a quick heuristic solver is preferred in simulation.
The results shown here therefore use a simple greedy solver,
but a more nuanced solver will improve the path: for instance,
[15] describes a genetic algorithm approach to the multiple-
traveling-salesmen problem which not only creates an effective
path over objects already assigned to a drone but also reassigns
objects as necessary.

As drones with the "Observe” role do not have a predeter-
mined path, it is possible that they will be required to idle
due to a lack of detected points. In this case, an ”Observe”
drone follows the path of the nearest “Traverse” drone, staying
nearby (at a lower altitude) until objects are detected.

IV. ANALYSIS
A. Simulation

Our analysis of this approach uses the lightweight simulator
for detection confidence regulated path planning problems
presented in [2], with modifications to allow for arbitrary
object distribution and the execution of multiple simultaneous
UAVs. Since choreographing multiple UAV actions (or, more
mathematically, selecting the next §; with which to build
a list of visited points) requires significant precision, the
modifications include a simple UAV motion model built out
to follow the empirical energy data reported in [7]. UAVs are
allowed to interrupt established routes of other team members
as if by broadcasting new data, and final calculations are made
based on all images gathered by the team.

All simulation results presented here are accurate to the
Iris Quadcopter, a simple, consumer-grade UAV which is apt
for use in small swarms due to its versatility and relatively
low cost. Within the simulator, the quadcopter is capable of
taking images while in motion, which prevents unnecessary
slowing and conserves energy. All drones within a team start
at the same point near the edge of the area. The region itself
is assumed to be flat with no aerial obstacles, and must be a
continuous region which can be represented by a polygon.

Object detection within the simulator is based on confidence
results from Faster R-CNN model trained on a relatively small
set of images taken across altitudes. As a result, algorithm
effectiveness within the simulator is limited by this model:
even when all objects are detected at ten meters of altitude
(the minimum permitted in the simulator), F1 score is rarely
greater than 0.85, reflecting the inherent difficulties of small
object detection that merit this detailed imaging algorithm.

B. Comparisons

To determine the improvement of this method over naive
multi-drone methods, we collected simulation results for
four different approaches: a naive, fixed-height approach in
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Fig. 6. Comparison across team size (n=4, d=100, w=3000)

which a boustrophedon coverage path is split equally across
drones ("Naive Plows”), a dynamic-height approach similar
to that in [2] but with an overview path split equally across
drones ("Height Variant Plows”), the approach described above
("Hotspotter”), and a hypothetical, superoptimal approach
where a single drone has existing knowledge of every object
and visits each one by one (”Oracle”). Since most realistic
single-drone approaches cannot even finish traversal on the
large areas which may be covered by multi-UAV teams, the
“oracle” method is used as a stand-in.

Each test was conducted with twenty trials on randomly
generated hexagonal areas. Algorithms were evaluated by F1
score over various area sizes (w), object quantities (j), object
densities (d), and drone team sizes (n). Figures 5, 6, 7, and 8
show these results, respectively.

The density-aware approach presented above (“Hotspotter’)
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Fig. 7. Comparison across object density (j=100, w=3000, n=4)
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scales well with all four of these parameters, with behav-
ior based on different object density highlighting the most
notable discrepancy between this approach and multi-drone
approaches which do not account for existing knowledge of
object density. Per Figure 7, there is a significant “sweet
spot” of object spread in which most detectable objects (95%,
assuming a distribution close to Gaussian) lie within 10% or
less of the area. With a less strongly clustered object spread,
the “Hotspotter” and “Height Variant Plow” methods begin to
converge.

Note also that there are a few situations in which this
approach is actually even more effective than the “oracle”
approach. For instance, as demonstrated in Figure 6, the F1
score of the “oracle” approach is inversely related to the
number of objects due to the requirement of visiting every
one, whereas in the “hotspotter” approach presented here, a
drone in the “Traverse” role will cover the entire high density
area regardless of how many objects it actually contains. (A
drone in the “Observe” role will face the same struggle to
reach every point as the “oracle,” but even if the observe
drone fails to visit all objects delegated to it due to energy
constraints, it is guaranteed that at least some image on those
objects already exists.) The “oracle” also fails dramatically for
the same reasons with a wide distribution of objects.

Figure 8 indicates the improvement made upon adding
additional drones to various teams. Note that while there seems
to be only a relatively small increase in the effectiveness of
any algorithm as the team size increases, the area size remains
the same as the team grows, and at a certain team size the area
is already being covered effectively.

V. CONCLUSION

As seen from the figures above, our analysis shows that
this multiple-drone, density-aware approach to the UAV object
counting problem shows significant improvements to naive
multiple-drone approaches, collecting higher-quality object
imagery (increasing detection F1 score by approximately 0.2
under a variety of conditions) and scaling well with drone
team size, area size, and object quantity.

Many improvements can be made to this type of object
detection approach. For instance, our low-altitude ’Observe”
drones travel in a traveling-salesman type fashion to each

object that our “Traverse” drones detect, which is inefficient
in cases of very dense clusters - it may be more effective
to group nearby objects to be imaged together, avoiding ex-
traneous short-distance travel between objects. This approach
also displays shortcomings of the CPP algorithms on which
it is based. For instance, because low-density coverage uses a
grid-based approximate decomposition, a ”staircasing” motion
can result when area edges do not align with the grid. An
improved or different CPP basis algorithm may alleviate this
issue. Finally, future research may involve more flexibility
between certain drone roles. Perhaps there are conditions under
which ”Observe” drones should convert into “Traverse” or
“Explore” drones, and vice versa, allowing for the team to
be more dynamic and adaptive.

REFERENCES

[1] M. A. Khan, A. Safi, I. M. Qureshi, and I. U. Khan, “Flying ad-hoc
networks (fanets): A review of communication architectures, and routing
protocols,” in 2017 First International Conference on Latest trends
in Electrical Engineering and Computing Technologies (INTELLECT),
2017, pp. 1-9.

[2] M. Krusniak, K. Leppanen, Z. Tang, F. Gao, Y. Wang, and Y. Shang,
“A detection confidence-regulated path planning (dcrpp) algorithm for
improved small object counting in aerial images,” in 2020 IEEE Inter-
national Conference on Consumer Electronics (ICCE). 1EEE, 2020,
pp. 1-6.

[3] T. M. Cabreira, L. B. Brisolara, and P. R. Ferreira Jr., “Survey on
coverage path planning with unmanned aerial vehicles,” 2019.

[4] Y. Gabriely and E. Rimon, “Spanning-tree based coverage of contin-
uous areas by a mobile robot,” Annals of mathematics and artificial
intelligence, vol. 31, no. 1-4, pp. 77-98, 2001.

[5] E. Galceran and M. Carreras, “A survey on coverage path planning for
robotics,” Robotics and Autonomous systems, vol. 61, no. 12, pp. 1258-
1276, 2013.

[6] N. Hazon and G. A. Kaminka, “Redundancy, efficiency and robustness
in multi-robot coverage,” in Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, 2005, pp. 735-741.

[7]1 C. Di Franco and G. Buttazzo, “Energy-aware coverage path planning
of uavs,” in 2015 IEEE International Conference on Autonomous Robot
Systems and Competitions. 1EEE, 2015, pp. 111-117.

[8] T. Dietrich, S. Krug, and A. Zimmermann, “An empirical study on
generic multicopter energy consumption profiles,” in 2017 Annual IEEE
International Systems Conference (SysCon), 2017, pp. 1-6.

[9] P. Mazdin and B. Rinner, “Coordination of mobile agents for simulta-

neous coverage,” in PRIMA 2019: Principles and Practice of Multi-

Agent Systems, M. Baldoni, M. Dastani, B. Liao, Y. Sakurai, and

R. Zalila Wenkstern, Eds.  Cham: Springer International Publishing,

2019, pp. 170-185.

M. Messous, S. Senouci, and H. Sedjelmaci, “Network connectivity and

area coverage for uav fleet mobility model with energy constraint,” in

2016 IEEE Wireless Communications and Networking Conference, 2016,

pp. 1-6.

E. Santamaria, F. Segor, and I. Tchouchenkov, “Rapid aerial mapping

with multiple heterogeneous unmanned vehicles.” in ISCRAM. Citeseer,

2013.

I. Maza and A. Ollero, “Multiple uav cooperative searching operation

using polygon area decomposition and efficient coverage algorithms,” in

Distributed Autonomous Robotic Systems 6, R. Alami, R. Chatila, and

H. Asama, Eds. Tokyo: Springer Japan, 2007, pp. 221-230.

S. A. Sadat, J. Wawerla, and R. T. Vaughan, “Recursive non-uniform

coverage of unknown terrains for uvavs,” in 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2014, pp. 1742-1747.

A. Zelinsky, R. A. Jarvis, J. Byrne, and S. Yuta, “Planning paths of

complete coverage of an unstructured environment by a mobile robot,” in

Proceedings of international conference on advanced robotics, vol. 13,

1993, pp. 533-538.

O. K. Sahingoz, “Flyable path planning for a multi-uav system with

genetic algorithms and bezier curves,” in 2013 International Conference

on Unmanned Aircraft Systems (ICUAS), 2013, pp. 41-48.

(10]

[11]

[12]

[13]

[14]

[15]



