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Abstract. We prove that for entire functions f of finite order,
there is a sequence of integers S such that as n→∞ through S,

min {|f − [n/n]| (z) , |f − [n− 1/n− 1]| (z)} → 0

uniformly for z in compact subsets of the plane. More generally this
holds for sequences of Newton-Padé approximants and for func-
tions whose errors of approximation by rational functions of type
(n, n) decays faster than exp

(
−n
√
log n

)
. This establishes George

Baker’s Patchwork Conjecture for large classes of entire functions.

Padé approximation, Multipoint Padé approximants, spurious poles,
Baker Patchwork Conjecture. 41A21, 41A20, 30E10.

1. Introduction1

Let

f (z) =
∞∑
j=0

ajz
j

be a formal power series. Given a non-negative integer n, the (n, n)
Padé approximant is a rational function [n/n] = Pn/Qn, where Pn, Qn

are polynomials of degree ≤ n with Qn not identically 0 and

(fQn − Pn) (z) = O
(
z2n+1

)
.

The convergence of Padé approximants is a much studied subject.
One of the pitfalls of the method is the phenomenon of spurious poles,
namely poles that do not reflect the analytic properties of the func-
tion f . For this reason, the most general results, such as the Nuttall-
Pommerenke theorem, involve convergence in capacity, rather than uni-
form convergence. In 1961, Baker, Gammel, and Wills nevertheless
conjectured that at least a subsequence of the diagonal Padé sequence
converges locally uniformly.

Baker-Gammel-Wills Conjecture (1961)

Date: February 2, 2020.
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Let f be meromorphic in B1 = {z : |z| < 1} and analytic at 0. Then
there is a subsequence {[n/n]}n∈S of {[n/n]}n≥1 that converges uni-
formly to f in compact subsets of B1 omitting poles of f .

The author showed in 2001 [26] that the conjecture is false, by con-
sidering the Rogers-Ramanujan function with a value of q on the unit
circle. A.P. Buslaev quickly followed [6] with an analytic counterex-
ample, formed from an algebraic function, and then showed that even
the Rogers-Ramanujan function provides an analytic counterexample
[7]. One of the unresolved issues is whether the Baker-Gammel-Wills
conjecture is valid for entire functions, or perhaps even functions mero-
morphic in the whole plane. To date, there is still no counterexample.
The author proved [21] that the Baker-Gammel-Wills conjecture is true
for most entire functions in the sense of category, and subsequently that
a more general form involving multipoint Padé approximants [ ] also
holds in the sense of category.

After his original conjecture was disproved, George Baker [3] noted
that in the counterexamples, just two subsequences together provide
locally uniform convergence in the unit ball. He went on to conjecture
that a patchwork of finitely many subsequences can provide locally
uniform convergence for functions meromorphic in the ball [4].

Here is a precise statement:

George Baker’s Patchwork Conjecture (2005)
Let the function f be analytic in B1 = {z : |z| ≤ 1} except for a finite
number of poles in the interior. There there exists a finite number of
infinite subsequences {Sk}Lk=1 of positive integers such that these subse-
quences can be patched together in such a manner that for any z ∈ B1,
for some 1 ≤ k ≤ L,

lim
n→∞,n∈Sk

[n/n] (z) = f (z)

on the sphere.

Here on the sphere means in the chordal metric - so that at poles
of f , the approximants diverge to ∞ in absolute value. In this paper,
we shall show Baker’s patchwork conjecture is true for entire functions
whose errors of rational approximation decay suffi cently rapidly, and in
particular for all entire functions of finite order. Moreover, we obtain a
sequence of integers S such that either [n/n] or [n− 1/n− 1] converges
for n ∈ S, so just two subsequences are enough.
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We note that one consequence of the Nuttall-Pommerenke theorem,
is that for functions f meromorphic in the plane (and more generally
with singularities of capacity 0), there is a subsequence S of integers
and a set E of capacity 0, such that

lim inf
n→∞,n∈S

|f − [n/n]| (z)1/n = 0, z ∈ C\E .

Baker’s Patchwork Conjecture tries to avoid that unknown set E .
For any compact set K ⊂ C and a function f continuous on C, we

define

Enn (f ;K) = inf

{∥∥∥∥f − P

Q

∥∥∥∥
L∞(K)

: deg (P ) , deg (Q) ≤ n

}
.

A special case of our results is:

Theorem 1
Assume that f is entire and that

(1.1) lim
n→∞

Enn (f ;B1)
1/(n

√
logn) = 0.

Then there is an infinite sequence of positive integers S such that uni-
formly in compact subsets of the plane

lim
n→∞,n∈S

min {|f − [n/n]| (z) , |f − [n− 1/n− 1]| (z)} = 0.

Remarks
(a) The condition (1.1) is satisfied by all entire functions of finite order:
indeed for those functions

lim
n→∞

Enn (f ;B1)
1/(n logn) = 0.

We believe the result above holds for all entire functions.
(b) Note that this does not imply locally uniform convergence of either
[n/n] or [n− 1/n− 1].
(c) We discuss the density of the the "good" subsequence in Section ?
(d) Given ρ ∈ (0, 1), we can also ensure that

lim
n→∞,n∈S

(
min

{
|f − [n/n]| (z)
Enn (f ;B1)

ρ ,
|f − [n− 1/n− 1]| (z)
En−1,n−1 (f ;B1)

ρ

})
= 0,

so that the convergence rate is close to optimal.
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Our method also allows us to treat Newton-Padé approximation. Let
{zj}∞j=1 be a sequence of not necessarily distinct points in the plane and

ωn (z) =
n∏
j=1

(z − zj) .

We say Rn = Pn/Qn where Pn, Qn have degree at most n and Qn is
not identically 0, is a Newton-Pade approximant to f if

fQn − Pn
ω2n+1

is analytic at the zeros of ω2n+1. Note that as n increases, we keep
earlier interpolation points. Theorem 1 is a special case of :

Theorem 2
Let {zj}∞j=1 be a sequence of not necessarily distinct points lying in a
compact set in the plane. Let {Rn} be the corresponding Newton-Padé
approximants to an entire function satisfying (1.1). Then there is an
infinite sequence of positive integers S such that uniformly in compact
subsets of the plane

lim
n→∞,n∈S

(min {|f −Rn| (z) , |f −Rn−1| (z)}) = 0.

We can also handle functions that are only analytic in an open set
containging the interpolation points, but withe errors of approximation
satisfying something like ( ).

Theorem 3

The paper is organized as follows:
In the sequel,

BR = {z : |z| < R} .
cap denotes logarithmic capacity, while m2 denotes planar measure.

2. Ideas of Proof

Write Rn = Pn/Qn, with some normalization of Pn,Qn and

(2.1) ∆n = fQn − Pn.

Then

(2.2) Pn+1Qn − PnQn+1 = ∆nQn+1 −∆n+1Qn
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vanishes at the zeros of ω2n+1. But then as the left-hand side is a
polynomial of degree at most 2n+ 1, so for some constant An,

(2.3) Pn+1Qn − PnQn+1 = Anω2n+1.

Hence also

(2.4) ∆nQn+1 −∆n+1Qn = Anω2n+1.

Now comes the key observation. Suppose that for some ζn that is not
an interpolation point, and m = n, n+ 1, we have, say,

|f −Rm| (ζn) > 1.

(If this inequality was initially only known at an interpolation point,
then by lower semi-continuity, it would also hold in a neighborhood, so
would hold at some ζn that is not an interpolation point). Then for
m = n, n+ 1,

|∆m| (ζn) > |Qm (ζn)| .
Substituing these inequalities into (2.4) gives

|An| |ω2n+1 (ζn)| ≤ 2 |∆n∆n+1| (ζn) .
If Γ is a simple closed curve enclosing ζm, the maximum modulus prin-
ciple gives

|An| ≤ 2

∥∥∥∥∆n∆n+1

ω2n+1

∥∥∥∥
L∞(Γ)

.

Here ω2n+1 may be controlled. So we have a bound on |An| decaying
roughly like the square of ‖∆n‖, whereas it really ought to decay like
‖∆n‖. It is this simple fact that makes our proofs work.

Next, we choose m < n and write, using (2.3),

Rn −Rm =
n−1∑
j=m

Ajω2j+1

QjQj+1

,

or equivalently

PnQm − PmQn = QnQm

n−1∑
j=m

Ajω2j+1

QjQj+1

and

(2.5) ∆nQm −∆mQn = QnQm

n−1∑
j=m

Ajω2j+1

QjQj+1

.

Then also

|f −Rn| ≤ |f −Rm|+
n−1∑
j=m

∣∣∣∣Ajω2j+1

QjQj+1

∣∣∣∣
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We can use Polya’s estimate on the size of a set where monic polyno-
mials are small, to bound

∑n−1
j=m

∣∣∣Ajω2j+1

QjQj+1

∣∣∣ outside a set of not too large

measure. (Cartan’s lemma could also be used for this). This leads to
estimates for PmQn − PnQm on a set of fixed positive area. Poten-
tial theory (Bernstein-Walsh’s inequality) then provides estimates for
PmQn − PnQm on any disk. This in turn allows us to show that

|f −Rn| < |f −Rm|+ a small term.

If n is large enough compared to m, and lies in a suitable subsequence
if integers, then this contradicts the rate of approximation provided
by Newton-Padé approximants. It follows that the ζn above does not
exist, at least for a subsequence. Of course the rigorous details involve
work.

3. Preliminary Lemmas

We start with a simple growth lemma. We use area measure rather
than one dimensional Hausdorff measure and Cartan’s lemma, and in-
stead of capacity as it leads to smaller estimates for the size of an
exceptional set. In the sequel, m2 denotes planar Lebesgue measure.

Lemma 3.1
Let K be a compact set in |z| ≤ R of positive capacity.
(a) Then for n ≥ 1 and polynomials P of degree ≤ n,

‖P‖L∞(BR) ≤
(

2R

cap (K)

)n
‖P‖L∞(K) .

(b) Assume now that K is a compact set in |z| ≤ R of positive area.
Then for n ≥ 1 and polynomials P of degree ≤ n,

‖P‖L∞(BR) ≤ 3n
(

πR2

m2 (K)

)n
2

‖P‖L∞(K) .

Proof
(a) Let us assume, as we may, that P is monic of degree n. Let µ be
the equilibrium measure for K in the sense of potential theory, and g
be the Green function for K. Thus

g (z) =

∫
log |z − t| dµ (t)− log cap (K)

We have for z in the unbounded component of C\K, [Ransford]

|P (z)| ≤ ‖P‖L∞(K) e
ng(z).
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Here for |z| ≤ R, we see that

g (z) ≤ log (|z|+R)− log cap (K) ≤ log (2R)− log cap (K) .

Then for |z| = R,

|P (z)| ≤
(

2R

cap (K)

)n
‖P‖L∞(K) .

The maximum modulus principle also shows that this holds for all
|z| ≤ R.
(b) Normalize P as follows:

P (z) = c
∏
|v|≤2R

(z − v)
∏
|v|≥2R

(
1− z

v

)
.

We may assume that c 6= 0. Assume there are k terms in the first
product and ` in the second. Choose ε such that

‖P‖L∞(K) = εdeg(P ) = εk+`.

Then in K,

εk+` ≥ |c|

∣∣∣∣∣∣
∏
|v|≤2R

(z − v)

∣∣∣∣∣∣
(
1

2

)`
so ∣∣∣∣∣∣

∏
|v|≤2R

(z − v)

∣∣∣∣∣∣ ≤ |c|−1 2`εk+`.

By Polya’s lemma, for any δ > 0

m2

z :
∣∣∣∣∣∣
∏
|v|≤2R

(z − v)

∣∣∣∣∣∣ ≤ δk


 ≤ πδ2.

so

m2 (K) ≤ π
[
|c|−1 2`εk+`

]2/k
.

So

|c| ≤ 2`εk+`

(
π

m2 (K)

) k
2

.
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From our normalization, and choice of ε,

‖P‖L∞(BR) ≤ |c| (2R)k
(
3

2

)`
≤ 2`εk+`

(
π

m2 (K)

) k
2

(3R)k
(
3

2

)`
≤ 3k+`

(
πR2

m2 (K)

) k
2

‖P‖L∞(K)

≤ 3n
(

πR2

m2 (K)

)n
2

‖P‖L∞(K)

as m2 (K) ≤ πR2.�

Next, a well known consequence of Polya’s Lemma on the area of lem-
niscates:

Lemma 3.2
Let R ≥ 1 > ε > 0. Let Q be a polynomial of degree ≤ n, admitting
representation

Q (z) =
∏
|v|≤2R

(z − v)
∏
|v|≥2R

(
1− z

v

)
We then say Q is normalized w.r.t. the ball B2R.
(a) Then for |z| ≤ R,

|Q (z)| ≤ (3R)n

while if k is the number of zeros of Q in B2R,

1

|Q (z)| ≤
2n

εk
.

for |z| ≤ R, z /∈ E, where cap(E) ≤ ε and m2 (E) ≤ πε2.
(b) If S ≥ 1,

‖Q‖L∞(BS) ≥ 2−n.

Proof
(a) Suppose n1 is the degree of Q. Let k be the number of zeros in
|z| ≤ 2R and ` be the number of zeros outside this disk. We see that
for |z| ≤ R,

|Q (z)| =
∏
|v|≤2R

(R + 2R)
∏
|v|>2R

(
1 +

1

2

)
≤ (3R)n .
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Next for |z| ≤ R,

1

|Q (z)| =
1∣∣∣∣∣∣

∏
|v|≤2R

(z − v)

∣∣∣∣∣∣
∣∣∣∣∣∣
∏
|v|>2R

(
1− z

v

)∣∣∣∣∣∣
≤

(
ε−k
) (

2`
)
≤
(
2

ε

)n
outside a set E of planar measure at most πε2. Also this is outside a
set of cap ≤ ε.
(b) By standard estimates for monic polynomials,∥∥∥∥∥∥

∏
|v|≤2R

(z − v)

∥∥∥∥∥∥
L∞(BS)

≥ Sk.

Also, by the maximum-modulus principle,∥∥∥∥∥∥
∏
|v|>2R

(
1− z

v

)∥∥∥∥∥∥
L∞(BS)

≥ 1.

Then by the inequality of Kroo-Pritsker,

‖Q‖L∞(BS) ≥ 2−n+1

∥∥∥∥∥∥
∏
|v|≤2R

(z − v)

∥∥∥∥∥∥
L∞(BS)

∥∥∥∥∥∥
∏
|v|>2R

(
1− z

v

)∥∥∥∥∥∥
L∞(BS)

≥ 2−n+1Sk ≥ 2−n+1.

�
We shall make substantial use of a result of Goncar and Grigorjan.

If f is meromorphic inside a simply connected domain D, then we can
form the sum Rf of the principal parts of f in D, so that

Rf (z) =
∑
j

∑
k≥1

cjk (z − bj)−k

where {bj} are the poles of f in D. The analytic part of f in D is then

Af = f −Rf .

The following remarkable result is a weaker form of the results of
Goncar and Grigorjan, see [13], [15]:

Lemma 3.3
Let D be a bounded simply connected domain with boundary Γ. Let f
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be meromorphic in D with poles of total multiplicity at most n, and
analytic on Γ. Then

‖Af‖L∞(Γ) ≤ 7n2 ‖f‖L∞(Γ) .

Proof
This follows directly from Theorem 1 in [13, p. 571]. �

4. Comparing ∆n and Enn on different sets

In this section, we compare sup norms of ∆n and Enn, also on dif-
ferent sets. Throughout we assume that

(4.1) lim
n→∞

Enn
(
f ;B1

)1/(nφ(n))
= 0,

where φ : [1,∞)→ (0,∞) is an increasing function such that

lim
x→∞

φ (2x)

φ (x)
= 1.

A typical example will be φ (x) =
√
log (1 + x).

We first compare errors of approximation on different sets:

Lemma 4.1
Let T and S be compact sets of positive logarithmic capacity. Let η > 0.
Then for large enough n,

Enn (f ;T ) ≤ Enn (f ;S)
1− η

φ(n) .

Remark
In the sequel, we often apply this lemma with φ replaced by φ/2 or
some other multiple of φ.
Proof
Choose R∗n = P ∗n/Q

∗
n such that

‖f −R∗n‖L∞(T ) = Enn (f ;T ) .

Now choose R > 1 so large that BR−1 contains both S and T . We
initially assume that more generally than (4.1),

(4.2) lim
n→∞

Enn
(
f ;BR

)1/(nφ(n))
= 0,

Choose the smallest integer k ≥ n such that

(4.3) Ekk
(
f ;BR

)
≤ Enn (f ;T ) .

Then either k = n or

(4.4) Ek−1,k−1

(
f ;BR

)
> Enn (f ;T ) .
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Choose R#
k = P#

k /Q
#
k such that

(4.5)
∥∥∥f −R#

k

∥∥∥
L∞(BR)

= Ekk
(
f ;BR

)
.

Then from (4.3), ∥∥∥R#
k −R∗n

∥∥∥
L∞(T )

≤ 2Enn (f ;T ) .

We may normalize the numerators and denominators in R∗n and R#
k as

we please. It is convenient to normalize them as in Lemma 3.2 so that

‖Q∗n‖L∞(BR) ≤ (3R)n ;∥∥∥Q#
k

∥∥∥
L∞(BR)

≤ (3R)k .

Then ∥∥∥P#
k Q

∗
n − P ∗nQ

#
k

∥∥∥
L∞(T )

≤ 2 (3R)k+nEnn (f ;T ) .

By Lemma 3.1, there exists a constant A > 0 depending only on T and
R such that∥∥∥P#

k Q
∗
n − P ∗nQ

#
k

∥∥∥
L∞(BR)

≤ 2 (3AR)k+nEnn (f ;T ) .

Also by Lemma 3.2,

(4.6)
1∣∣∣Q∗nQ#
k

∣∣∣ (z) ≤ 4n+k

outside a set E of capacity ≤ 1
2
. The radial projection {|z| : z ∈ E}

of this set onto the positive real axis will also have capacity ≤ 1
2
. It

then follows that we can choose r ∈ (R− 1, R) such that the circle
Γr = {z : |z| = r} does not intersect E, and hence the estimate (4.6)
holds on Γr. Then also∥∥∥R#

k −R∗n
∥∥∥
L∞(Γr)

≤ 2 (12AR)k+nEnn (f ;T ) .

Hence using (4.5), (4.3),

‖f −R∗n‖L∞(Γr)
≤ Enn (f ;T )

{
1 + 2 (12AR)k+n

}
.

From the Gonchar-Grigorjan Lemma, if A (f −R∗n) = f −AR∗n is the
analytic part of f −R∗n inside Γr, we have

‖f −AR∗n‖L∞(Γr)
≤
(
7n2
)
Enn (f ;T )

{
1 + 2 (12AR)k+n

}
.

As AR∗n is also a rational function of type (n, n), we obtain

Enn
(
f ;Br

)
≤
(
7n2
)
Enn (f ;T )

{
1 + 2 (12AR)k+n

}
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and since Br contains BR−1 and hence S, so

(4.7) Enn (f ;S) ≤
(
7n2
)
Enn (f ;T )

{
1 + 2 (12AR)k+n

}
.

Now if η > 0,

lim
n→∞

(
Enn (f ;T )

1/φ(n)
)1/n

= 0,

so if k = n, (
7n2
){

1 + 2 (12AR)k+n
}
≤ Enn (f ;T )

−η/φ(n) .

If on the other hand k > n, then given any constant C, for large
enough k,

Ck ≤ Ek−1,k−1 (f ;T )
−η/φ(k)

≤ Enn (f ;T )
−η/φ(k) ≤ Enn (f ;T )

−η/φ(n).

It follows from (4.7) that

Enn (f ;S) ≤ Enn (f ;T )
1− 1

φ(n) .

We still need to deal with the assumption (4.2), which is more general
than our original (4.1) involving only R = 1. To do this, we proceed
as follows: first note that for any R > 0, we have as f is entire,

lim
n→∞

E
1
2n
nn

(
f ;BR

)
= 0.

Then choosing φ̂ (x) = 2, x ∈ [1,∞), we have

lim
n→∞

E
1/(nφ̂(n))
nn

(
f ;BR

)
= 0.

Our proof above applied to S = BR, T = B1 and φ̂ rather than φ shows
that for large enough n,

Enn
(
f ;BR

)
≤ Enn

(
f ;B1

)1− 1
φ(n) = Enn

(
f ;B1

)1/2

Then the more general (4.2) follows from (4.1), so our extra hypothesis
is satisfied. �

Lemma 4.2
Assume that f is analytic in an open connected set U that contains 0.
Let K be a compact subset of U and assume that in K, the Newton-
Padé approximant Rn has at least Nn poles counting multiplicity. As-
sume also that Ko is simply connected. Let Γ be a simple closed contour
that contains K in its interior and that lies in U . Assume also that Γ
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contains all the zeros of ω2n+1 at a distance ≥ δ from Γ.
(a) Then

En−Nn,n−Nn (f ;K) ≤ Cn
1Enn (f ; Γ) ,

where C1 depends only on Γ, δ and K but not on f, n.
(b) We can find for large enough n a contour Γn enclosing K in its
interior but lying inside Γ, such that

‖f −Rn‖L∞(Γn) ≤ Cn
2Enn (f ; Γ) ,

where C2 depends only on Γ, δ and K but not on f,Γn, n.
Proof
(a) Let R∗n = P ∗n/Q

∗
n be a best approximant to f on Γ. Write Rn =

Pn/Qn. Then we have for z inside Γ,

(Q∗n (fQn − Pn)) (z) =
1

2πi

∫
Γ

Qn (t) (fQ
∗
n − P ∗n) (t)

t− z
ω2n+1 (z)

ω2n+1 (t)
dt.

Recall this follows from the fact that (Q∗nPn − P ∗nQn) (t) / ((t− z)ω2n+1 (t)) =
O (t−2) at ∞. From this we obtain for z inside Γ

|f −Rn| (z) ≤
1

2πdist (Γ, z)
Enn (f ; Γ) sup

t∈Γ

|QnQ
∗
n| (t)

|QnQ∗n| (z)
maxt∈Γ |ω2n+1 (t)|
mint∈Γ |ω2n+1 (t)|

.

Here as all zeros of ω2n+1 lie inside Γ at a distance ≥ δ from Γ, so for
some constant c > 0 depending on Γ, δ, but not on n,

maxt∈Γ |ω2n+1 (t)|
mint∈Γ |ω2n+1 (t)|

≤ c2n+1.

We assume that QQ∗n is normalized w.r.t. BR for R such that the circle
center 0 radius R encloses Γ, as in Lemma 3.2. Then

sup
t∈Γ

|QnQ
∗
n| (t)

|QnQ∗n| (z)
≤
(
3R

ε

)2n

outside a union B#
n = ∪jBn,j of at most 2n open balls whose sum of

diameters is at most 4eε by Cartan. We now choose ε to be the distance
from Γ to K divided by 100. Notice that ε depends only on K,Γ and
not on n. Moreover the sum of the diameters of the balls in B#

n is at
most 1

4
of the distance from Γ to K. Then we can choose a contour

Γn between Γ and K that is simple and closed and does not intersect
B#
n and is at least ε distance from Γ. To see this, let A be the annular

region between K and Γ. If we can’t find such a Γn in A, then some of
the balls in B#

n from a continuum that starts at some point in K and
ends at some point in Γ, which is impossible as the sum of diameters
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of all the balls in B#
n is much smaller than the distance from Γ to K.

Then

(4.8) sup
z∈Γn

|f −Rn| (z) ≤
1

2πε
Enn (f ; Γ)

(
3R

ε

)2n

c2n+1.

Next we use the lemma of Gonchar-Grigorjan. Let ARn denote the
analytic part of [n/n] inside Γn, that is [n/n] minus the sume of its
principal parts inside Γn. Also then as f is analytic inside Γ, we have

A (f −Rn) = f −ARn.

By Gonchar-Grigorjan as f − Rn has at most n poles inside Γn, we
have

sup
z∈Γn

|f −ARn| (z) = sup
z∈Γn

|A(f −Rn)| (z)

≤ 7n2 sup
z∈Γn

|f −Rn| (z) .

By the maximum-modulus principle,

sup
z∈K
|f −ARn| (z) ≤ 7n2 sup

z∈Γn

|f −Rn| (z) .

Here since Rn has ≥ Nn poles inside K, which lies inside Γn, ARn is a
rational function of type (n−Nn, n−Nn) so we have

En−Nn,n−Nn (f ;K) ≤ 7n2 sup
z∈Γn

|f −Rn| (z)

≤ Cn
1Enn (f ; Γ)

where C1 depends only on Γ, δ and K, by (4.8).
(b) This was established at (4.8). �

Lemma 4.3
Assume that f is analytic in an open connected set U that contains
0. Let K,L and T be compact subsets of U such that K,L have non-
empty interior while T has positive capacity. Let Rn = Pn/Qn de-
note the Newton-Padé approximant Rn to f at the zeros of ω2n+1 and
∆n = fQn−Pn, where for some R > 0, Qn is normalized as in Lemma
3.2.
(a) For n large enough,

(4.9) Enn (f ;T )
1+ 1

φ(n) ≤ ‖∆n‖L∞(K) ≤ Enn (f ;T )
1− 1

φ(n) .

(b) For n large enough,

(4.10) ‖∆n‖
1+ 1

φ(n)

L∞(L) ≤ ‖∆n‖L∞(K) ≤ ‖∆n‖
1− 1

φ(n)

L∞(L) .
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Proof
(a) First assume that K is as in the previous lemma. Then for some
contour Γn enclosingK but lying inside Γ, we have from Lemma 4.2(b),

‖∆n‖L∞(Γn) ≤ ‖Qn‖L∞(Γn) C
n
2Enn (f ; Γ) ≤ Cn

3Enn (f ; Γ)

in view of our normalization of Qn. Then using the fact that for large
enough n,

(4.11) Cn
3 ≤ Enn (f ; Γ)

− −1
2φ(n)

we obtain from the maximum modulus principle

‖∆n‖L∞(K) ≤ Enn (f ; Γ)
1− 1

2φ(n) .

In view of Lemma 4.1, we then obtain for large enough n,

‖∆n‖L∞(K) ≤ Enn (f ;T )
(1− 1

2φ(n))
2

≤ Enn (f ;T )
1− 1

φ(n) .

Next, if K does not satisfy the requirement of Lemma 4.2 that its in-
terior is simply connected, we may simply increase it in size and apply
the maximum-modulus principle. So we have the upper bound in (4.9).

For the lower bound, since K has non-empty interior, we may sim-
ply assume that K is a ball of radius r > 0. By Lemma 3.2, we can
choose a circle Γn, concentric with the ball K, and of radius between
r/2 and r such that

1

|Qn (z)|
≤ cn on Γn

with c depending only on r. Then

‖f −Rn‖L∞(Γn) ≤ ‖∆n‖L∞(K) c
n.

By the Gonchar-Grigorjan Lemma, irrespective of if there are poles of
Rn inside K or not,

Enn (f ; Γn) ≤ 7n2 ‖f −ARn‖L∞(Γn) ≤ 7n2cn ‖∆n‖L∞(K) .

If K1 is the ball concentric with K but of radius r/2, also then

Enn (f ;K1) ≤ 7n2cn ‖∆n‖L∞(K)

≤ Enn (f ;K1)
− 1
φ(n) ‖∆n‖L∞(K)

for n large enough. Here we are using that K1 does not depend on n.
So we have the lower bound in (4.9) when T is replaced by K1. We can
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replace it by T using Lemma 4.1, again using φ/2 instead of φ.
(b) From (a), applied twice,

‖∆n‖L∞(K) ≤ Enn (f ;L)
1− 1

φ(n)

≤ ‖∆n‖

1− 1
φ(n)

1+ 1
φ(n)

L∞(L) .

Again applying this with φ replaced by φ/2 leads to the right inequality
in (4.10) and the left-hand one is similar. �

5. Proof of Theorems 1 and 2

In this section for a given n, we let

Mn =

[
A

n

φ (n)

]
,

where A is a large enough positive number and [x] denotes the largest
integer ≤ x. We also let

ηn = Enn
(
f ;B1

)1/(nφ(n))

and choose an infinite sequence of integers S such that for n ∈ S,
(5.1) ηn ≤ ηk, 1 ≤ k ≤ n.

Of course as {ηn} has limit 0, such an infinite sequence exists. We also
assume that

lim
x→∞

φ (x) =∞;

while

lim
x→∞

φ (x)

x
= 0.

We first make a simple observation:

Lemma 5.1
(a) Let ρ > 0. If A > ρ+ 2, then for all large enough n ∈ S, we have
for any compact set T of positive capacity,

(5.2) En−Mn,n−Mn (f ;T ) > Enn (f ;T )
1− ρ

φ(n) .

(b) If A > 4, given any ball BR, for large enough n ∈ S, Rn has <
Mn poles in BR, counting multiplicity.
Proof
(a) From (5.1),

Enn
(
f ;B1

)
≤ En−Mn,n−Mn

(
f ;B1

) nφ(n)
(n−Mn)φ(n−Mn) .
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Using Lemma 4.1, we obtain

Enn (f ;T ) ≤ En−Mn,n−Mn (f ;T )

nφ(n)
(n−Mn)φ(n−Mn)

1− 1
φ(n)

1+ 1
φ(n)

If (5.2) is false, we then obtain

(5.3) Enn (f ;T ) ≤ Enn (f ;T )

nφ(n)
(n−Mn)φ(n−Mn)

(1− 1
φ(n))(1−

ρ
φ(n))

1+ 1
φ(n) .

Here the exponent is, using that φ is increasing, and that Mn

n
= A

φ(n)
+

O
(

1
n

)
,

nφ (n)

(n−Mn)φ (n−Mn)

(
1− 1

φ(n)

)(
1− ρ

φ(n)

)
1 + 1

φ(n)

≥ 1

1−
(

A
φ(n)

+O
(

1
n

))(1− ρ+ 2

φ (n)
+O

(
1

φ (n)2

)
)

= 1 +
A− ρ− 2

φ (n)
+O

(
1

n

)
+O

(
1

φ (n)2

)
As A > ρ + 2, and ( ) holds, we obtain the the exponent in the right
-hand side of (5.3) exceeds 1 for large enough n, leading to a contra-
diction. So we must have (5.2).
(b) Suppose Rn has at least Mn poles in BR. We may assume R is so
large that BR contains all the interpolation points. By Lemma 4.2,

En−Mn,n−Mn (f ;BR) ≤ Ck
1Enn (f ; Γ) ,

where Γ is a suitable contour enclosing BR, that is independent of n.
For n large enough and corresponding k (note that k/n→ 1),

En−Mn,n−Mn (f ;BR) ≤ Enn (f ;BR)
1− 2

φ(n) ,

contradicting (a). �

Remark
This shows that Rn has O

(
n

φ(n)

)
poles in any compact set when n ∈ S,

which is of independent interest.

Proof of Theorem 2
Suppose that the conclusion of Theorem 2 fails. Then there exists
R > 0 and A > 0 such that

lim inf
n→∞

(
sup
z∈BR

(min {|f −Rn (z)| , |f −Rn−1| (z)})
)
> A > 0.
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Then for large enough n, there exists ζn ∈ BR such that for m =
n, n+ 1,

(5.4) |f −Rm| (ζn) > A.

By lower semi-continuity, this also holds in a neighborhood of ζn, so
we may assume that ζn is not an interpolation point. Assume that
Rm = Pm/Qm where Qm is normalized as in Lemma 3.2 We then have
for n = m,m+ 1,

|Qm (ζn)| <
1

A
|∆m (ζn)| .

Then with the notation of Section 2,

|An| = |ω2n+1 (ζn)|
−1 |∆nQn+1 −∆n+1Qn| (ζn)

≤ 2

A

|∆n∆n+1| (ζn)
|ω2n+1 (ζn)|

≤ 2

A

∥∥∥∥∆n∆n+1

ω2n+1

∥∥∥∥
L∞(BR)

,(5.5)

by the maximum-modulus principle. We may assume that R is large
enough so that all interpolation points are contained in the disk BR−1 so
that |ω2n+1| ≥ 1 on the circle |z| = R. We now consider two subcases.
Let

Mn =

[
5

n

φ (n)

]
and

m = n−Mn.

Let n ∈ S.
Case I: Rk has < Mn poles in B2R for n ≥ k ≥ n−Mn

We already know that this is true for k = n by Lemma 5.1. (Recall
there R was arbitrary). We let m = n−Mn and use that as in Section
2,

(5.6) PnQm − PmQn = QnQm

n−1∑
j=m

Ajω2j+1

QjQj+1

.

Let
εn = (n+ 1)−1/2 .

Now by Lemma 3.2,
1

|Qj (z)|
≤ 2j

εMn
n

in BR\Ej where m2 (Ej) ≤ πε2
n. Let

Em,n =

n⋃
j=m

Ej,



DIAGONAL MULTIPOINT PADÉ APPROXIMATION 19

so that
m2 (Em,n) ≤ (n−m+ 1) πε2

n ≤ π.

It follows that in BR\Em,n,

|PmQn − PnQm| ≤
2

A
(3R)n+m

n−1∑
j=m

ε−2Mn−1
n

‖ω2j+1‖L∞(BR)

min|t|=R |ω2j+1 (t)|
‖∆j∆j+1‖L∞(BR) .

Here as all zeros of ω2j+1 lie in BR−1, so for some C1 depending only
on R,

‖ω2j+1‖L∞(BR)

min|t|=R |ω2j+1 (t)|
≤ Cj

1

As BR\Em,n has area at least πR2 − π, so by Lemma 3.1, and this last
inequality,

‖PmQn − PnQm‖L∞(B2R) ≤ Cn
2

n−1∑
j=m

ε−2Mn
n ‖∆j∆j+1‖L∞(BR)

where C2 depends only on R and not on m,n. The same estimate then
holds for ∆mQn − ∆nQm and hence if Γn is any simple closed curve
inside BR,

min
t∈Γn
|Qn (t)| ‖∆m‖L∞(Γn) ≤ ‖∆n‖L∞(B2R) (6R)

m+Cn
2

n−1∑
j=m

ε−2Mn
n ‖∆j∆j+1‖L∞(BR) .

Here by Lemma 3.1, we may choose a curve Γn lying in the annulus
inside B2R and outisde the ball BR such that |Qn| ≥ 1 on Γn. Thus
the maximum modulus principle gives

‖∆m‖L∞(BR) ≤ ‖∆n‖L∞(B2R) (6R)
m + Cn

2

n−1∑
j=m

ε−2Mn
n ‖∆j∆j+1‖L∞(BR) .

Using Lemmas 4.1 and 4.3, we then have for large enough n, and cor-
responding m, as well as using the monotonicity of errors of best ap-
proximation,

E
1+ 1

φ(m)
mm (f ;BR) ≤ Enn (f ;BR)

1− 2
φ(n)+(n−m) ε−2Mn

n Emm (f ;BR)
2− 2

φ(n) .

(5.7)

Recall that m = n−
[
6 n
φ(n)

]
. By Lemma 5.1,

E
1+ 1

φ(m)
mm (f ;BR)

Enn (f ;BR)
1− 2

φ(n)

> Enn (f ;BR)
(1+ 1

φ(m))(1− 4
φ(n))−(1− 2

φ(n))

= Enn (f ;BR)
− 1
φ(n)

(1+o(1)) →∞(5.8)
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as n→∞. Next,

(n−m) ε−2Mn
n Emm (f ;BR)

2− 2
φ(n)

E
1+ 1

φ(m)
mm (f ;BR)

≤ neMn log(n+1)Emm (f ;BR)
1− 3

φ(n)

≤ n exp

(
Mn log (n+ 1)− ξmmφ (m)

(
1− 3

φ (n)

))
,

where {ξm} has limit ∞ by our hypothesis that

lim
n→∞

E1/nφ(n)
nn = 0.

Here as m/n→ 1 and φ (m) /φ (n)→ 1 as n→∞,

Mn log (n+ 1)− ξmmφ (m)

(
1− 3

φ (n)

)
= nφ (n)

{
5
log n

φ (n)2 (1 + o (1))− ξn (1 + o (1))

}
→ −∞.

Since
log n

φ (n)2 = O (1) .

Thus
(n−m) ε−2Mn

n Emm (f ;BR)
2− 2

φ(n)

E
1+ 1

φ(m)
mm (f ;BR)

→ 0

as m → ∞. This and (5.7) show that (? ) is impossible for large
enough n, and we have a contradiction. Thus if Case I holds, our
original hypothesis that (5.4) is true fails.
Case II: Rk has ≥ Mn poles in B2R for at least one k with n ≥
k ≥ n−Mn

In this case, we choose ` to be the largest such k, so that Rk has < Mn

poles for n ≥ k > ` but R` has ≥ Mn poles in B2R. Recall that Rn

cannot have that many poles so necessarily ` < n. We then proceed
much as above, but using

(5.9) PnQ` − P`Qn = QnQm

n−1∑
j=`

Ajω2j+1

QjQj+1

.

For j > `, we let Ej be as above. For j = `, we instead let E` be the
set on which

1

|Q` (z)|
≤
(
1

2

)`
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so that m2 (E`) ≤ π
(

1
2

)2
. We now define

E`,n =

n⋃
j=`

Ej,

so that

m2 (E`,n) ≤ π

(
1

2

)2

+ π.

This is still much smaller than m2 (BR), so proceeding as above, we
obtain

min
t∈Γn
|Qn| (t) ‖∆`‖L∞(BR) ≤ ‖∆n‖L∞(B2R) (6R)

m+Cn
2

{
2nε−Mn

n ‖∆`∆`+1‖L∞(BR)

+
∑n−1

j=`+1 ε
−2Mn
n ‖∆j∆j+1‖L∞(BR)

}
and hence as above,

E
1+ 1

φ(`)

`` (f ;BR) ≤ Enn (f ;BR)
1− 2

φ(n) + (n− `) ε−2Mn
n E`` (f ;BR)

2− 2
φ(`)

Exactly as before, for large enough n,

E
1+ 1

φ(`)

`` (f ;BR) >> (n− `) ε−2Mn
n E`` (f ;BR)

2− 2
φ(`) .

To deal with the first term, we now use our assumption in Case II that
R` has ≥Mn poles. Using Lemma 4.2, and Lemmas 4.1, 4.3, we obtain

E`−Mn,`−Mn (f ;BR) ≤ E`` (f ;BR)
1− 1

φ(`) ,

so

Enn (f ;BR)
1− 2

φ(n) /E
1+ 1

φ(`)

`` (f ;BR)

≤ Enn (f ;BR)
1− 2

φ(n) /E
1+ 1

φ(`)

`−Mn,`−Mn
(f ;BR)

≤ Enn (f ;BR)
1− 2

φ(n) /E
1+ 1

φ(`)

n−Mn,n−Mn
(f ;BR)→ 0 as n→∞.

Again we have a contradiction. Theorem 2 is proven. �
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