ON BAKER’S PATCHWORK CONJECTURE FOR
DIAGONAL PADE APPROXIMANTS

D. S. LUBINSKY

ABSTRACT. We prove that for entire functions f of finite order,
there is a sequence of integers S such that as n — oo through 5,

min {[f —[n/n]| (2),[f = [n —1/n =1]| (2)} = 0
uniformly for z in compact subsets of the plane. More generally this
holds for sequences of Newton-Padé approximants and for func-
tions whose errors of approximation by rational functions of type
(n,n) decays faster than exp (—n\/ log n) This establishes George
Baker’s Patchwork Conjecture for large classes of entire functions.

Padé approximation, Multipoint Padé approximants, spurious poles,
Baker Patchwork Conjecture. 41A21, 41A20, 30E10.

1. INTRODUCTION®

Let .
Fz)=> a7
=0

be a formal power series. Given a non-negative integer n, the (n,n)

Padé approximant is a rational function [n/n] = P,/Q,, where P,, Q,

are polynomials of degree < n with ), not identically 0 and
(fQn—Pn) (2) = O (z*").

The convergence of Padé approximants is a much studied subject.
One of the pitfalls of the method is the phenomenon of spurious poles,
namely poles that do not reflect the analytic properties of the func-
tion f. For this reason, the most general results, such as the Nuttall-
Pommerenke theorem, involve convergence in capacity, rather than uni-
form convergence. In 1961, Baker, Gammel, and Wills nevertheless
conjectured that at least a subsequence of the diagonal Padé sequence
converges locally uniformly.

Baker-Gammel-Wills Conjecture (1961)
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Let f be meromorphic in By = {z : |z| < 1} and analytic at 0. Then
there is a subsequence {[n/n]}, s of {[n/n]},s, that converges uni-
formly to f in compact subsets of By omitting poles of f.

The author showed in 2001 [26] that the conjecture is false, by con-
sidering the Rogers-Ramanujan function with a value of ¢ on the unit
circle. A.P. Buslaev quickly followed [6] with an analytic counterex-
ample, formed from an algebraic function, and then showed that even
the Rogers-Ramanujan function provides an analytic counterexample
[7]. Ome of the unresolved issues is whether the Baker-Gammel-Wills
conjecture is valid for entire functions, or perhaps even functions mero-
morphic in the whole plane. To date, there is still no counterexample.
The author proved [21] that the Baker-Gammel-Wills conjecture is true
for most entire functions in the sense of category, and subsequently that
a more general form involving multipoint Padé approximants [ | also
holds in the sense of category.

After his original conjecture was disproved, George Baker [3] noted
that in the counterexamples, just two subsequences together provide
locally uniform convergence in the unit ball. He went on to conjecture
that a patchwork of finitely many subsequences can provide locally
uniform convergence for functions meromorphic in the ball [4].

Here is a precise statement:

George Baker’s Patchwork Conjecture (2005)

Let the function f be analytic in By = {z : |z| < 1} except for a finite
number of poles in the interior. There there exists a finite number of
infinite subsequences {Sk}gzl of positive integers such that these subse-

quences can be patched together in such a manner that for any z € By,
for some 1 <k < L,

lim _[n/n](z) = f(2)

n—00,n€S
on the sphere.

Here on the sphere means in the chordal metric - so that at poles
of f, the approximants diverge to oo in absolute value. In this paper,
we shall show Baker’s patchwork conjecture is true for entire functions
whose errors of rational approximation decay sufficently rapidly, and in
particular for all entire functions of finite order. Moreover, we obtain a
sequence of integers S such that either [n/n] or [n — 1/n — 1] converges
for n € S, so just two subsequences are enough.



DIAGONAL MULTIPOINT PADE APPROXIMATION 3

We note that one consequence of the Nuttall-Pommerenke theorem,
is that for functions f meromorphic in the plane (and more generally
with singularities of capacity 0), there is a subsequence S of integers
and a set & of capacity 0, such that

liminf |f — [n/n]] (2)"™ =0,z € C\E.

n—o0,neS

Baker’s Patchwork Conjecture tries to avoid that unknown set £.

For any compact set K C C and a function f continuous on C', we
define

Enn(f;K):inf{Hf—g

:deg (P),deg (Q) < n} .

Loo (K)

A special case of our results is:

Theorem 1
Assume that f is entire and that

(1.1) lim B, (f; By)"Y (") = .
Then there is an infinite sequence of positive integers S such that uni-
formly in compact subsets of the plane
Cdim min {|f — [n/n] (2).1f — o~ 1/n 1] ()} = 0.
Remarks
(a) The condition (1.1) is satisfied by all entire functions of finite order:
indeed for those functions
lim E,, (f; Bl)l/("log") =0.
We believe the result above holds for all entire functions.
(b) Note that this does not imply locally uniform convergence of either
[n/n] or [n—1/n—1].
(c) We discuss the density of the the "good" subsequence in Section ?
(d) Given p € (0,1), we can also ensure that

N S L i VR

so that the convergence rate is close to optimal.
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Our method also allows us to treat Newton-Padé approximation. Let
{# };’;1 be a sequence of not necessarily distinct points in the plane and

wa(2) =]z~ =)

We say R, = P,/Q, where P,,Q, have degree at most n and @, is
not identically 0, is a Newton-Pade approximant to f if

an - Pn
Wan+1

is analytic at the zeros of ws, 1. Note that as n increases, we keep
earlier interpolation points. Theorem 1 is a special case of :

Theorem 2

Let {Zj};il be a sequence of not necessarily distinct points lying in a
compact set in the plane. Let {R,} be the corresponding Newton-Padé
approximants to an entire function satisfying (1.1). Then there is an
infinite sequence of positive integers S such that uniformly in compact
subsets of the plane

lim _(min{|f — Ra| (), |f = Ru1] (2)}) = 0.

n—oo,nES

We can also handle functions that are only analytic in an open set
containging the interpolation points, but withe errors of approximation
satisfying something like ().

Theorem 3

The paper is organized as follows:
In the sequel,

Br ={z:|z| < R}.

cap denotes logarithmic capacity, while my denotes planar measure.

2. IDEAS OF PROOF
Write R,, = P,/Q,, with some normalization of P, (), and
(2.1) A, = fQ, — P,.
Then
(2.2) Fri1Qn — PaQni1 = 83Qny1 — D1 @y
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vanishes at the zeros of ws,.;. But then as the left-hand side is a
polynomial of degree at most 2n + 1, so for some constant A,,,

(23) PTL+1Q7I - PnQn+1 - Anw2n+1-
Hence also
(24) ATLQTH-l - ATH—IQn - Anw2n+1‘

Now comes the key observation. Suppose that for some (,, that is not
an interpolation point, and m = n,n + 1, we have, say,

|f - Rm| (Cn) > 1.

(If this inequality was initially only known at an interpolation point,
then by lower semi-continuity, it would also hold in a neighborhood, so
would hold at some (,, that is not an interpolation point). Then for
m=n,n+1,

[Am] (C) > [@m ()]

Substituing these inequalities into (2.4) gives
| Anl lwant1 (Co)] < 2[AnAw11] (C) -

If T is a simple closed curve enclosing (,,,, the maximum modulus prin-
ciple gives
AnAn—&—l

Wan+1

|A,| < 2‘

Loo(T')
Here ws, 1 may be controlled. So we have a bound on |A,| decaying
roughly like the square of ||A,]||, whereas it really ought to decay like
IIA,]|. It is this simple fact that makes our proofs work.

Next, we choose m < n and write, using (2.3),

n—1
Ajwaji1

R, — R, = )
= Qi@

or equivalently

PaQu ~ Pu@n = QuQum Z Ay

~ QjQj+
and
(2.5) AnQum — MA@ = QuQum Z Ajajar

< Q;Qj+
Then also

gw23+1

Q]Jrl
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We can use Polya’s estimate on the size of a set where monic polyno-
n—1
Jj=m

Ajwaj1
Q;Qj+1
measure. (Cartan’s lemma could also be used for this). This leads to
estimates for P,,Q), — P,Q,, on a set of fixed positive area. Poten-
tial theory (Bernstein-Walsh’s inequality) then provides estimates for
P,Q, — P,Q,, on any disk. This in turn allows us to show that

mials are small, to bound )

’ outside a set of not too large

|f — Ru| <|f — Rm| + asmall term.

If n is large enough compared to m, and lies in a suitable subsequence
if integers, then this contradicts the rate of approximation provided
by Newton-Padé approximants. It follows that the (, above does not
exist, at least for a subsequence. Of course the rigorous details involve
work.

3. PRELIMINARY LEMMAS

We start with a simple growth lemma. We use area measure rather
than one dimensional Hausdorff measure and Cartan’s lemma, and in-
stead of capacity as it leads to smaller estimates for the size of an
exceptional set. In the sequel, msy denotes planar Lebesgue measure.

Lemma 3.1
Let K be a compact set in |z| < R of positive capacity.
(a) Then for n > 1 and polynomials P of degree < n,

2R "
1Pl < (o) 1Pl

(b) Assume now that K is a compact set in |z| < R of positive area.
Then for n > 1 and polynomials P of degree < n,

TR? \?
P <3| — P .
A A L

Proof

(a) Let us assume, as we may, that P is monic of degree n. Let p be
the equilibrium measure for K in the sense of potential theory, and g
be the Green function for K. Thus

g(2) = / log |2 — | du (t) — log cap ()

We have for z in the unbounded component of C\ K, [Ransford]
1P ()] < Py €
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Here for |z| < R, we see that
g(z) <log(|z| + R) — logcap (K) < log (2R) — log cap (K) .
Then for |z| = R,

P(:)| < (%) 1Pl e

The maximum modulus principle also shows that this holds for all
|z| < R.
(b) Normalize P as follows:

We may assume that ¢ # 0. Assume there are k terms in the first
product and ¢ in the second. Choose ¢ such that

P _ 8deg(P) _ gk-l-é'
Loo(K)

Then in K,

el | I (z =) (%)g

lv|<2R

SO
[T o) <l 2%
[v|]<2R

By Polya’s lemma, for any 6 > 0

[v|<2R
SO
my (K) < [|c| * 2teh+) "

So

[SE

ol < 9fch+t (L)
| ’ — Mo (K)
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From our normalization, and choice of ¢,

3 l
Pl < IR (3)

IN
[\
~
Q)
>
+
~
N
3
N
=7
ol <_/
NES
—~
w
=
SN—r
B
N\
N o
N——
~

IN

2
e (TR
3 () 1Pl
bl

gn ( 7 R?
ma

IN

as my (K) < 7R*H

Next, a well known consequence of Polya’s Lemma on the area of lem-
niscates:

Lemma 3.2
Let R >1>¢ > 0. Let QQ be a polynomial of degree < n, admitting

representation
Q)= II - II (1-3)

[v]<2R [v|>2R
We then say @ is normalized w.r.t. the ball Bap.
(a) Then for |z| < R,
Q(2)] < (3R)"
while if k is the number of zeros of @) in Bsg,
1 2"

Q)] — &
for |z| <R, 2 ¢ &, where cap(€) < & and my (€) < we?.
(b) If S >1,

1R (5gy = 27"

Proof

(a) Suppose n; is the degree of Q). Let k be the number of zeros in
|z| < 2R and ¢ be the number of zeros outside this disk. We see that
for |z] < R,

Q@)= T ’R+2m) ] <1+%) < BR)".

[v|<2R [v|>2R
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Next for |z| < R,

1 1
@ (2)]
II c-of II (-2)
lv|<2R |v|>2R
< (=)

outside a set £ of planar measure at most 7me2. Also this is outside a
set of cap < e.
(b) By standard estimates for monic polynomials,

H (z —v) > Sk,

Also, by the maximum-modulus principle,

I1 (1 _ 3) > 1.
v
[v|>2R Loo(Bs)

Then by the inequality of Kroo-Pritsker,

Qs = 2| T -0 I1(-;)

[v|<2R Loo(Bs) |[v|>2R

Lo (Bg)

[ |

We shall make substantial use of a result of Goncar and Grigorjan.
If f is meromorphic inside a simply connected domain D, then we can
form the sum Ry of the principal parts of f in D, so that

Ri(2) =) cinl(z—b)"
j o k>1
where {b;} are the poles of f in D. The analytic part of f in D is then
Af = f—Ry.

The following remarkable result is a weaker form of the results of
Goncar and Grigorjan, see [13], [15]:

Lemma 3.3
Let D be a bounded simply connected domain with boundary I". Let f
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be meromorphic in D with poles of total multiplicity at most n, and
analytic on I'. Then

”AfHLOO(F) < 7n’ ”f”LOO(F) :
Proof

This follows directly from Theorem 1 in [13, p. 571]. B
4. COMPARING A,, AND FE,,, ON DIFFERENT SETS

In this section, we compare sup norms of A,, and E,,,, also on dif-
ferent sets. Throughout we assume that

(4.1) lim B, (f; B1)"""""™ =0,
where ¢ : [1,00) — (0, 00) is an increasing function such that
2
lim 222

A typical example will be ¢ (z) = y/log (1 + ).

We first compare errors of approximation on different sets:

Lemma 4.1
Let T and S be compact sets of positive logarithmic capacity. Let n > 0.
Then for large enough n,

Eon (f; T) < Epn (f;8) 770 .

Remark

In the sequel, we often apply this lemma with ¢ replaced by ¢/2 or
some other multiple of ¢.

Proof

Choose R} = P*/Q? such that

Now choose R > 1 so large that Bg i contains both S and T. We
initially assume that more generally than (4.1),

(4.2) lim E,, (f; Br)""""" =0,

Choose the smallest integer k& > n such that
(4.3) Ewi (f; Br) < Eun (/;T).
Then either £k = n or

(44) Ek—l,k—l (faB_R) > Enn (f7 T) .
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Choose R} = P/ /Q7 such that
45 H —R#H — Eu (f:Br) .
(4.5) [ —Rj LB we (f3 Br)
Then from (4.3),

< 2B, (£;T).
Loo(T) (i T)

We may normalize the numerators and denominators in R and R} as
we please. It is convenient to normalize them as in Lemma 3.2 so that

||Q:L||LOO(BR) < (3R)n ;
#H < (3R)*.
e oy S GR)

|rE - R

Then
|pea - piat],_, <26R " B, (157

By Lemma 3.1, there exists a constant A > 0 depending only on 7" and
R such that
|Pés-pot|  <26AR) B, (5T).
Leo(BR)
Also by Lemma 3.2,
1

@f| )

(4.6) < 4tk

outside a set & of capacity < 3. The radial projection {|z|: z € £}

of this set onto the positive real axis will also have capacity < % It
then follows that we can choose r € (R — 1, R) such that the circle
[, = {z:|z| =r} does not intersect F, and hence the estimate (4.6)
holds on I',. Then also

|RE - R < 2(124R)*" B, (£ 7).

Lo (Ty)

Hence using (4.5), (4.3),
1f = Rillqe,) < Bun (F) {142 (124R) "}

From the Gonchar-Grigorjan Lemma, if A(f — R:) = f — AR? is the
analytic part of f — R inside I',, we have

If = AR,y < (T0%) Bun (f:T) {1 +2 (12AR)’“+"} .
As AR is also a rational function of type (n,n), we obtain

B (£:B,) < (T02) B (£;7) {1 ) (12AR)’“+"}
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and since B, contains Bgr_; and hence S, so
(A7) Bun(f38) < (0%) B (£:7) {1+ 2(124R)" )

Now if 7 > 0,
1/n

lim (Enn ( f;T)l/W) — 0,

n—oo

soif k =n,
(7n2) {1 42 (12AR)’“+"} < By (f; 7)1

If on the other hand k > n, then given any constant C, for large
enough £,

C* < By (f;T)7"0W
< B (/1) < By (7)1

It follows from (4.7) that
By (£5.8) < Bun (7)1 500

We still need to deal with the assumption (4.2), which is more general
than our original (4.1) involving only R = 1. To do this, we proceed
as follows: first note that for any R > 0, we have as f is entire,

lim E% (f; Br) = 0.

Then choosing ¢ () = 2, z € [1,00), we have

tim £3"*") (1, B5) = 0.

n—oo

Our proof above applied to S = Bg, T = B; and gAb rather than ¢ shows
that for large enough n,

Then the more general (4.2) follows from (4.1), so our extra hypothesis
is satisfied. W

1/2

Lemma 4.2

Assume that f is analytic in an open connected set U that contains 0.
Let K be a compact subset of U and assume that in K, the Newton-
Padé approximant R, has at least N, poles counting multiplicity. As-
sume also that K° is simply connected. Let T" be a simple closed contour
that contains K in its interior and that lies in U. Assume also that T’
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contains all the zeros of wa,y1 at a distance > 9§ from I
(a) Then

Eann,ann (f7 K) S C?Enn (fa F) )

where C7 depends only on I',0 and K but not on f,n.
(b) We can find for large enough n a contour T, enclosing K in its
intertor but lying inside T, such that

1 = Ball ooy < C2 Enn (F;1),

where Cy depends only on ', and K but not on f,I',,n.

Proof

(a) Let R} = Pr/Q% be a best approximant to f on I'. Write R,, =
P,/Q,. Then we have for z inside T,

/ Qn (&) (fQ5 — P7) (8) wonr1 (2) ,
~ omi t— =z wons1 (£)
Recall this follows from the fact that (Q} P, — PQ,) (t) / ((t — 2) wan41 () =

O (t72) at oo. From this we obtain for z inside I'

1 - (f:T)su |QnQ*\ (t) maxyer |wany1 (1)
~ 2ndist (T, z) tel |QnQ | (2) minger |won1 ()] '

Here as all zeros of ws,.1 lie inside I' at a distance > § from I', so for
some constant ¢ > 0 depending on I', §, but not on n,

|f = Bal (2) <

maxeer |waont1 (£)| < 2ntl
minger [want1 (t)] ~

We assume that Q@) is normalized w.r.t. Bp for R such that the circle
center 0 radius R encloses I', as in Lemma 3.2. Then

|Qn Q5| (1) (ﬁ)Z
Qe =

outside a union B¥ = U;B, ; of at most 2n open balls whose sum of
diameters is at most 4ec by Cartan. We now choose ¢ to be the distance
from I' to K divided by 100. Notice that ¢ depends only on K, I' and
not on n. Moreover the sum of the diameters of the balls in B¥ is at
most i of the distance from I' to K. Then we can choose a contour
I',, between I' and K that is simple and closed and does not intersect
B# and is at least e distance from T'. To see this, let A be the annular
region between K and I'. If we can’t find such a I',, in A, then some of
the balls in B¥ from a continuum that starts at some point in K and
ends at some point in I', which is impossible as the sum of diameters
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of all the balls in B# is much smaller than the distance from I" to K.
Then

1 3R\
4.8 - R, < —FEun (i) — 2l
48) s lf - Rl () < g (60 () o
Next we use the lemma of Gonchar-Grigorjan. Let AR, denote the
analytic part of [n/n] inside I',,, that is [n/n] minus the sume of its
principal parts inside I';,. Also then as f is analytic inside I', we have

A(f—R,) =f—AR,.
By Gonchar-Grigorjan as f — R,, has at most n poles inside I',,, we
have

sup [f — ARy[(2) = sup [A(f — Rn)|(2)

zel'y zel'y,

< 7n?sup |f — Ryl (2).

ZEFn

By the maximum-modulus principle,

sup|f — ARy| (2) < Tn sup | — Ra| (2).
zeK Zern
Here since R,, has > N,, poles inside K, which lies inside I',,, AR, is a
rational function of type (n — N,,n — N,;) so we have
zel'y

< CPEw (fi1)

where C depends only on I, and K, by (4.8).
(b) This was established at (4.8). W

Lemma 4.3

Assume that f s analytic in an open connected set U that contains
0. Let K, L and T be compact subsets of U such that K, L have non-
empty interior while T has positive capacity. Let R, = P,/Q, de-
note the Newton-Padé approximant R, to f at the zeros of wa,y1 and
A, = fQ,, — P,, where for some R > 0, ), is normalized as in Lemma
3.2.

(a) For n large enough,

(4.9 Ew(f;1)750 <Ay i) < Bun (F;T) 7.
(b) For n large enough,

450 =5y
(4.10) 1Al ) < 1AnllL iy < 1Al Ly -
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Proof
(a) First assume that K is as in the previous lemma. Then for some
contour I',, enclosing K but lying inside I', we have from Lemma 4.2(b),

||ATLHLOO(Fn) < HQHHLOO(FH) Cy Enn (f;T) < C3Epn (f31)

in view of our normalization of (),,. Then using the fact that for large
enough n,

(4.11) Cy < By (f;T) %00
we obtain from the maximum modulus principle
1
||An||Loo(K) < Enn (f?r)l 2eln)

In view of Lemma 4.1, we then obtain for large enough n,

1 )2 1
18, ey < B (f; ) 560) < B (377709

Next, if K does not satisfy the requirement of Lemma 4.2 that its in-
terior is simply connected, we may simply increase it in size and apply
the maximum-modulus principle. So we have the upper bound in (4.9).

For the lower bound, since K has non-empty interior, we may sim-
ply assume that K is a ball of radius » > 0. By Lemma 3.2, we can
choose a circle I',,, concentric with the ball K, and of radius between
r/2 and r such that

1

|Qn (2)]
with ¢ depending only on r. Then

||f - RnHLw(Fn) < ||An||Loo(K) c".

By the Gonchar-Grigorjan Lemma, irrespective of if there are poles of
R, inside K or not,

B (f;T0) < n? If - ARnHLoo(Fn) < TnPc" ||AnHLoo(K) :

<conl,

If K is the ball concentric with K but of radius /2, also then
B (f; K1) < 2 1AL o)
< Eun (f5 K1) %0 [ Anll )

for n large enough. Here we are using that K; does not depend on n.
So we have the lower bound in (4.9) when T is replaced by K;. We can
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replace it by T using Lemma 4.1, again using ¢/2 instead of ¢.
(b) From (a), applied twice,
1——L_
HANHLOO(K) < Enn (f5 L) 50

1
o)

f—
< Al g -

Again applying this with ¢ replaced by ¢/2 leads to the right inequality
in (4.10) and the left-hand one is similar. W
5. PROOF OF THEOREMS 1 AND 2
In this section for a given n, we let
n
=[]
{ ¢ (n)

where A is a large enough positive number and [z]| denotes the largest
integer < x. We also let

-\ 1/ (ng(n))
and choose an infinite sequence of integers S such that for n € S,
(5.1) Ny < Mgy 1 < k < n.

Of course as {n,,} has limit 0, such an infinite sequence exists. We also
assume that

lim ¢ (x) = oo;
while
lim M =0.

r—o00 I

We first make a simple observation:

Lemma 5.1
(a) Let p > 0. If A> p+ 2, then for all large enough n € S, we have
for any compact set T of positive capacity,

(5.2) Enstymst, (F;T) > By (f; T) 0 |

(b) If A > 4, given any ball By, for large enough n € S, R, has <
M,, poles in Bpg, counting multiplicity.

Proof

(a) From (5.1),

ne¢(n)

Enn (ny) S En—M,L,n—Mn (faE) (n=Mn)#(n=Mn)



DIAGONAL MULTIPOINT PADE APPROXIMATION 17

Using Lemma 4.1, we obtain

1

o >17@
Enn (f7 T) S En—Mn,n—Mn (f7 T) ! e . 1+W
If (5.2) is false, we then obtain
. (“ﬁ)(ﬁfﬁ)
(63)  Ew(fiT) < En (f;1)" 70 e
Here the exponent is, using that ¢ is increasing, and that % = ﬁ +

0G)

o (1) (1~ )

(n—M,)o(n— M,) 1+ﬁ

Vv

1 p+2 1
1-(%%}(5))(1_ ¢ (n) +O<W>)

- 1+%+0<%)+0<¢(2)2)

As A > p+ 2, and () holds, we obtain the the exponent in the right
-hand side of (5.3) exceeds 1 for large enough n, leading to a contra-
diction. So we must have (5.2).

(b) Suppose R, has at least M,, poles in Bgr. We may assume R is so
large that By contains all the interpolation points. By Lemma 4.2,

Enan,nan (f7 BR) S CfEnn (f? F) )

where I' is a suitable contour enclosing Bg, that is independent of n.
For n large enough and corresponding k (note that k/n — 1),

__2
Eystyn—, (f; Br) < By (f; Br)' 70,
contradicting (a). B

Remark
This shows that R,, has O (ﬁ) poles in any compact set when n € S,

which is of independent interest.

Proof of Theorem 2
Suppose that the conclusion of Theorem 2 fails. Then there exists
R >0 and A > 0 such that

lim inf <sup (min{|f — R, (2)|, |f — Rn-1] (Z)})) > A>0.

n—o0 ZGBR
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Then for large enough n, there exists ¢,, € Bgr such that for m =
n,n+1,

(5.4) |f = Bl (C) > A

By lower semi-continuity, this also holds in a neighborhood of (,, so
we may assume that ¢, is not an interpolation point. Assume that
R, = P,,/Q where @, is normalized as in Lemma 3.2 We then have
forn=m,m+ 1,

1
Then with the notation of Section 2,
‘ATL‘ = ’w2n+1 (Cn)’il |AnQn+1 - ATL+1QH‘ (Cn)
(5.5) < 2|AnAn+1| (Cn) < z' AnAn—i—l ’
A wangr ()l Al wani Loo(Br)

by the maximum-modulus principle. We may assume that R is large
enough so that all interpolation points are contained in the disk Br_1 so
that |wa,i1| > 1 on the circle |z| = R. We now consider two subcases.

Let
n
M, = |5———
55t
and
m=mn— M,.
Let n € S.

Case I: R, has < M,, poles in Byyr forn >k >n— M,
We already know that this is true for £ = n by Lemma 5.1. (Recall
there R was arbitrary). We let m = n — M,, and use that as in Section

n—1
Ajwoj
>0 ; QiQj+
Let
en = (n+1)""2.
Now by Lemma 3.2,
1 2J

Q)] = e

in BR\&; where my (&;) < me2. Let
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so that
My (Emn) < (n—m+1)7e2 <.
It follows that in Bg\&Emn,

n—1

2 [wajall (Br)
PnQn — PuQu| < = (BR)"™ —2Mn =l D AGA; .
| Q Q | = A( ) Zgn min|t\:R |W2j+1 (t)| || J ]+1||LOO(BR)

j=m
Here as all zeros of wy;4 lie in Bp_1, so for some C; depending only
on R,
Hw2j+lHLoo(BR) < v
miny|—p [wy; 1 ()] =
As BR\&n.n has area at least mR? — 7, so by Lemma 3.1, and this last
inequality,

n—1
1Pn@n = PaQuillye iy < 8 S ™ 18,8511,
j=m
where (5 depends only on R and not on m,n. The same estimate then
holds for A,,Q, — A,Q,, and hence if I, is any simple closed curve
inside Bpg,

n—1
. m n —2My
{211{1 |Qn (1)] ”AmHLm(Fn) < HAnHLOO(BQR) (6R)"+C5 an ”AjAjJrlHLOO(BR)-
j=m

Here by Lemma 3.1, we may choose a curve I';, lying in the annulus
inside Bogr and outisde the ball Bg such that |@,| > 1 on I',,. Thus
the maximum modulus principle gives

n—1

HAmHLOO(BR) < HAn“LOO(BQR) (6R)m + Czn Z 5;2Mn HAJ'AJ'HHLOO(BR) :

j=m
Using Lemmas 4.1 and 4.3, we then have for large enough n, and cor-
responding m, as well as using the monotonicity of errors of best ap-
proximation,

1
E;:f(m) (f; Br) < Enn (f; BR)I_%—I—(H —m) e, M B (f; BR)2_% '
(5.7)

Recall that m =n — [6%] By Lemma 5.1,

1+ 5
Evia™ (f; Br)
Enn (fv BR)liﬁ
(5.8) = B (f; Br) a0+,

> By (f; B) (70w (1=3t)~(15t)



20 D. S. LUBINSKY
as n — o0o. Next,
(n = m) e, "M By (f Br)* 70
E}T;m (f; Br)
3

neMn log(nJrl)Emm (f, BR)l—W

< mexp <Mn log (n+1) —&,,m¢ (m) (1 — —)) ;

where {¢,.} has limit oo by our hypothesis that
lim EM/meM) —

n—oo

IA

Here as m/n — 1 and ¢ (m) /¢ (n) — 1 as n — oo,

Mylog (1-+ 1) — € (m) (1- -2

¢ (n)
= n¢(n){5%(1+0(1))—§n<1+0<1>>}
Since 1
ogn
O
Thus

(n — m) &M By (f; Bp)? 500

Joi (f; Br)
as m — oo. This and (5.7) show that (? ) is impossible for large
enough n, and we have a contradiction. Thus if Case I holds, our
original hypothesis that (5.4) is true fails.
Case 1II: R, has > M, poles in Byp for at least one k£ with n >
k>n—M,
In this case, we choose ¢ to be the largest such k, so that R, has < M,
poles for n > k > ¢ but R, has > M, poles in Byr. Recall that R,
cannot have that many poles so necessarily ¢ < n. We then proceed
much as above, but using

— 0

n—1
Ajwojt
5.9 P,Q, — P,(Q),, = nmEA
(5.9) Qe = 1iQn = Qu0 = QiQjn

For j > (¢, we let £; be as above. For j = ¢, we instead let & be the
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so that mg (&) < ( ) We now define

n
=Us
Jj=t

1\ 2
mo (Erp) < (5) + .

This is still much smaller than my (Bg), so proceeding as above, we
obtain

so that

2 A Dl
+Z e M 1A, A

j€+1 €n

oo(BR

j+1 ”LOO(BR)

min [ Q| () |8/l o5y < B0l (8,) (6B)"+C5

tel,
and hence as above,

By ™ (£ Ba) € Bun (f; Br) 55 + (n = 0) 5,2V By (f; B0
Exactly as before, for large enough n,

B\ 70 (f: By) >> (n— £) e,V By (f; Bp)* 7

To deal with the first term, we now use our assumption in Case II that
Ry has > M, poles. Using Lemma 4.2, and Lemmas 4.1, 4.3, we obtain

Erntyo-nr, (f; Br) < Eu (f; Br)' ™70,

SO
1
By (f; Bp)' ™0 /EQZW’ (f: Br)
Enn (f BR) _W /Ee 1\4/51(,?4 M, (f7 BR)

S nn (f BR) _W / +7\)/;i)’n M, (f, BR) — 0 asn — oo.

Again we have a contradiction. Theorem 2 is proven.

IN
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