DISTRIBUTION OF EIGENVALUES OF TOEPLITZ
MATRICES WITH SMOOTH ENTRIES
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ABSTRACT. We investigate distribution of eigenvalues of growing
size Toeplitz matrices [an+k—j]1<j.k<n asn — 00, when the entries
{a;} are "smooth" in the sense, for example, that for some o > 0,
4j-10j+1 L .
——=1-—(140(1)), j— oc.
a? aj ( (1), J
Typically they are Maclaurin series coefficients of an entire func-
tion. We establish that when suitably scaled, the eigenvalue count-
ing measures have limiting support on [0,1], and under mild ad-
ditional smoothness conditions, the universal scaled and weighted

limit distribution is |xlog¢|~*/% dt on [0, 1].
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1. INTRODUCTION AND RESULTS

The distribution of eigenvalues of Toeplitz matrices is a much studied

topic. The archetypal result is Szegd’s theorem on the eigenvalues of

[Ck*j]1§j7k§n )

where

1 s
2m J_,
are the trigonometric moments of some real valued function f [10,
Chapter 5|. There are numerous extensions and refinements, notably

¢ e T f (z)dw, j=0,+1,£2, ...

the strong Szegé limit theorem, which continues to be investigated in
the context of Fisher-Hartwig symbols, while Toeplitz operators are a

vast subject on their own. See, for example, [2], [4], [5], [6], [12], [21],
[31]. Eigenvalues of random Hankel and Toeplitz matrices have been
studied in, for example, [7], [11], [15], [25], [26].

There is a classical connection to complex function theory: Polya
[22] proved that if f (z) = 3772 a;/2’ can be analytically continued to
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a function analytic in the complex plane outside a set of logarithmic
capacity 7 > 0, then
1/n?

lim sup |det [a—jtk] 1<j,k<n =

n—oo

T.

Wilson [29] and Edrei [9] obtained asymptotic upper bounds for entire
and meromorphic functions of finite order, and functions with finitely
many essential singularities. For example if f is entire of order at most
a with Maclaurin series coefficients {a;}, then

1/ <n2 log n)

—1/c
1<j,k<n se

lim sup |det [an—j+]
Pommerenke [23] investigated refinements of Polya’s result. Note that
these authors considered Hankel matrices, but their results immediately
apply to the corresponding Toeplitz matrices.

Toeplitz matrices also arise in studying Padé approximation and con-
tinued fraction expansions. Let

f(z)= Z ajzj

Jj=0

be a formal power series, and m,n > 0. The (m,n) Pade approximant
to f is a rational function [m/n] = P/Q where P has degree at most
m, () has degree at most n and is not identically 0, and

(fQ—P)(x) =0 (=),

in the sense that the power series on the left-hand side has 0 as the
coefficient of 27, provided 0 < j < m + n. (@, suitably normalized,
admits the representation [1]

Am—n+1 Am—-n+2 Am+1
m—n42 Am-nt+3 -~ Qmi2
Q (2) = det : A
Um Ama1 e Amtn
n Zn—l .. 1

where we set a; = 0 if j < 0, and we assume that the determinant
does not vanish identically. In particular, the constant coefficient is
the determinant of

(11) Amn = [am—j-‘rk]lg]’,kgn ’

These determinants also play a role in understanding convergence of
continued fraction expansions, and sequences of Padé approximants.
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For classical special functions, det A,,,,, can be evaluated explicitly, but
of course not in general.

Numerical computation of Padé approximants suggested that they
behave well when the coefficients are "smooth". When a; # 0 for large
enough j, the author attempted to quantify this using the double ratio

Aj—105+1
(1.2 g = TP
;
In particular if n is fixed, and
(1.3) lim ¢; = g,
j—o0

it was shown [16, p. 308] that

n—1
lim det (An,) /an, = H (1—¢)"".
j=1

This is useful only if ¢ is not a root of unity, so additional assumptions
are required for that case: if there is a complete asymptotic expansion,
so that for each ¢ > 1,

where ¢; # 0, then [16, p. 309] for each fixed n > 1,

n—1
nlii?)odet (Amn) / {a”m H (1- qﬁ;@)”_]} = 1.
j=1

The case where n grows with m is more delicate. Rusak and Starovoitov
[24] showed that one can handle the situation where n = o (m'/?), and
that this last relation persists.

Undoubtedly the most interesting and challenging case is the "diag-
onal" one where m = n — o0o. One situation where analysis is possible,
is where (1.3) holds with |¢| < 1, which holds for example, for

FE=>¢70uN 4+,
=0

for any 5 € C. The author proved [17, p. 324] that in this case,

n—1 ) 1/n
det (An) / {ag [Ja- qg)”‘f}

lim =1.
j=1

n—oo

This is sufficent to analyze convergence of diagonal Pade sequences
and obtain asymptotics for errors of best rational approximation [14].
Unfortunately (1.3) holds with |¢| < 1 only when f is a limited class
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of entire functions of order 0. For further orientation on convergence
of Padé approximants, see for example [1], [8], [18], [20], [28].

Can one say anything about the Toeplitz matrices associated with
entire functions of finite positive order beyond the asymptotics of Edrei,
Polya, and Wilson? In the spirit of Szegd’s early theorems on eigenvalue
distribution, the focus of this paper is to investigate the distribution
of eigenvalues of the matrices A,,,, when we have a relation such as
(1.3). To this author’s knowledge, these are the first results for Toeplitz
matrices of these type and are new even for the exponential function
f(z)=e¢

Observe that if a > 0, and

(1.4 Fa) =32/ G,

an entire function of order «, then ¢; of (1.2) satisfies

1 1
aj J

(15) f() =

any 3 € C\(—o0,0]. For the hypergeometric function with parameters
{Ci}le ’ {di}le in (C\(—OO, 0]7
o (Cl) . (CQ) c
1.6 z) = I
(1.6) /) Z (d1), (da); .

=0 J

(Ck)j
(dﬁ)j

where (c); = c(c+1)...(c+j — 1) is the usual Pochhammer symbol,

and ¢ > k + 1,
{—k 1
qj—exp<—( , )+O(—2>)
J J

It is interesting here that even though {c¢;} , {d,} may be complex num-
bers, this has little effect on g;.

In order to handle more general asymptotics, we need to replace mul-
tiples of j by more general sequences { pj }j>1 :

B

Definition 1.1
Let { pj}j>1 be an increasing sequence of positive numbers, with limit
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00, with

(1.7 lim /2 = 0
J]—00

(1.8) lim sup py; /p; < 00;

J—00

and such that for each D > 0,

1 _ Pt
Pk

(1.9) lim ( max ) = 0.
k=00 \ ljl<\/Doy
Then we call { pj}j>1 an asymptotic comparison sequence.

It is clear that pj_ = aj, for « > 0, satisfies the above hypotheses.
Given a square matrix B, A (B) denotes the collection of its eigenval-
ues, with repetition according to its multiplicity. In particular, if A,,,
denotes the matrix in (1.1), A (A,../a.,) denotes the set of eigenvalues
of Ayn/am, with repetition according to multiplicity. Of course these
are the eigenvalues of A, divided by a,,. Define for a given p,, > 0,
the scaled counting measure

1

n
AeA(Amn/am)

and for ¢ = 1, 2, the weighted measures

1
(1.11) o == Y (Red)d, mo—

XeA(Amn/am)

1
2 2
(1.12) p2 = > N8y, famr

/T Pm AXeA(Amn/am)

Observe that while p,,,, is a probability measure, ,uLl@]n is a possibly

signed measure, and u%]n may be complex.

Theorem 1.2
Assume that {aj}jzo is a sequence of non-zero complexr numbers, such

that for some asymptotic comparison sequence {pj}j>1,

Ai1Q; 1
(1.13) 4 = =5 = exp (7 (”%))’

a; J

where {nj} are complex numbers satisfying

(1.14) lim n; = 0.

J]—00
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Fiz R > 1, and for n > 1, let m = m (n) be an integer such that

1 m
1.1 — < — < R.
(1.15) R<n<

For n>1, let A, = [am_j+k]1§j7kgn, with a; = 0 for j < 0.
(I) As n — oo,

(1.16) max |\l =+/27p,, (1+0(1)).

AeA(Amn/am)

(II) The set of limit points of the sets {A(Amn/am) /27 },>1 18
0,1]. -
(III) As n — oo,

du,,,, — dég

in the sense that for every real valued function f defined and continuous
in some open subset of the plane containing [0,1],

(1.17) lim /f Apty, = f(0).
(IV) As n — oo,
2
dpf) dt
Hamn 7 |log t|

in the sense that for every real valued function f defined and continuous
in some open subset of the plane containing [0, 1],

1.1 li dul? = )ty | ————
(1.18) e /i, 7T|logt

The above result shows that while the eigenvalue of A,,,, of maximal
modulus grows like |a,,| v/27p,, (1 +0(1)), nevertheless, all but o(n)
eigenvalues have much smaller modulus, namely o (|a,,| v/27p,,). Un-

der additional conditions, we can analyze the measures m}m, but we
need more assumptions on the { pj} :

Definition 1.3
Let {pj}j>1 be an asymptotic comparison sequence in the sense of De-
finition 1.1. Assume in addition, that
3/4
N
J

1 _ Prti

(1.19) lim max
Pk

k=00 \ 1<j|<\/Dpy log py,
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and
1 1 2 2
(1.20) lim max ST ) /3
k=00 \ 1<|j|<\/Dpilogpy, | Ptj  Pk—j Pk 1Jl

Then we call { pj}j> , @ smooth asymptotic comparison sequence.

Theorem 1.4
Assume that for some smooth asymptotic comparison sequence { pj}

(1.13) holds, with

=1’

_ ~1/2
(1.21) n;=o (pj ) .
Then
(1)
(1.22) lim inf ( inf Re )\) > 0.
n—00 AeA(Amn/am)

(1)
1
(1.23) lim [ d|phl]=1lm = ) |ReA =L

n—oo n—oo 1

AEA(Amn/am)
(III) As n — oo,

(1.24) dpl) 25 | logt| V2 dt

in the sense that for each function f defined and continuous in an open
subset of the plane containing [0, 1],

1
(1.25) lim fdu,[yn:/ F(t) |xlogt| ™2 dt.
0

n—oo

Remarks and examples

(a) The hypotheses of Theorems 1.2, 1.4 are fulfilled for the examples
in (1.4) to (1.6), with p, chosen to be a multiple of j.

(b) Another class of functions to which Theorems 1.2 and 1.4 may be
applied, is

(1.26) f(z)= Z e~0U) I,

Jj=0

where ¢ is a function on [0, 00) such that ¢® is continuous on [A4, c0)
for some A > 0, and ¢ is strictly convex, so that ¢" > 0. Then for
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large enough j,

(1.27) gj = exp (—cb” () + 0O (“¢(4)“Lw[j—l,j+1]))

so we can choose

1

¢" (j)
provided it satisfies the technical conditions above. As a particular
example, if o, 5 > 0 and for z > 2,

(1.29) ¢ () = ax (logz)”

then f of (1.26) is of infinite order if 8 < 1, of order é if 5 =1, and
of zero order if 5 > 1. One can check that p; of (1.28) yields a smooth
asymptotic comparison sequence.

(c) Another example is

(1.30) ¢ (x) = x (loglog x)”

where v > 0 and z is large enough. Here f is of infinite order. One can
again check that p; of (1.28) yields a smooth asymptotic comparison
sequence.

(d) Series with finite radius of convergence also fit into this framework.
Let

(1.31) f(z)= i ¥l 27,
=0

where 1 is a function on [0, co0) such that ¥ is continuous on [A, o)
for some A > 0, and 9 is strictly concave, so that /" < 0. Then for
large enough j,

(1.32) 9 = &P (W’ L) +0 (“w(4)“Lm[j—17j+1]>)

so we can choose

1

P ()
provided it satisfies the technical conditions above. As examples, we
can choose

(1.34) Y(r)=2"0<pB <1,
or

(1.35) ¥ (x) = (logz)”,v > 1.
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For these examples, we can choose p; by (1.33) and check that { Pj }jzl
is an asymptotic comparison sequence. It is a smooth asymptotic com-
parison sequence for ¢ of (1.34) when 3 > 2, but not for ¢ of (1.35)
for any ~.

(e) Under additional conditions, namely when {p;} satisfies

. 1 I
(1.36) lim sup max — | < oo,
k—oo  \1<|j|<+/Dpylogp, | Pk+i  Pk—j ||

the assertions (II), (III) of Theorem 1.4 hold with pihd, replaced by its
complex analogue,

1
(1.37) - > Ao, oo

n
AEA(Apn /am)

However, (1.36) is not satisfied by any of our examples where f is entire
of infinite order, or has finite radius of convergence.

This paper is organised as follows: in Section 2, we present the
similarity transformation that essentially reduces study of A,,,/a., to

. 2
[qﬁfl_k) / 2] as well as some technical estimates. In Section 3, we
1<j,k<n

establish asymptotics for T'r ([Amn / am]k> for each £ > 1. In Section

4, we estimate the location of eigenvalues using Gerschgorin’s theorem,
and classical inequalities of Schur and Bendixson-Hirsch. We prove
Theorem 1.2 in Section 5 and Theorem 1.4 in Section 6. Through-
out, C, (1, Cy, ... denote constants independent of n,x, z,t and possi-
bly other specified parameters. The same symbol does not necessarily
denote the same constant in different occurrences.

2. TECHNICAL PRELIMINARIES

For a given m, we let ¢y = 1 and for non-zero integers t,

[t|—1

(2.1) er = qlll/? H qlfll;fsign(t), when m+t>0,t#0
=1

and

(2.2) e, =0, m+t<0.

Of course the {e;} depend on m, but we do not explicitly indicate this
dependence. Also, let

(2.3) B = [ek—j]lgj,kgn'
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The basic idea is that the matrices A,,,/a,, and E,,, are related by a
similarity transformation:

Lemma 2.1 .
Let D be the nxn diagonal matriz whose (k, k) entry is i (%) ,
1<k <n.

(a) Then
(2.4) D 'ApnD/ay, = Ep,.

(b) X is an eigenvalue of Apn/am iff X is an eigenvalue of E,,,.
Proof
(a) We see that the (j, k) entry of D7'A,,,D/a,, is

j—k
(25) Jr_i = q(k—])/Q Qm+1 Qm—j+k ‘
J m an a,

We claim that this last number equals ej,_;. Assume first t = k—j > 0.
Then

t—1
Am—j+k  Qm+t H Am+0+1

A A 7—0 Am4-¢
Here using
4j+1 4y
I
Q; aj—1
we see that
Am40+1 Um+e Am+1
= gm+e = gm+L9m+L—1---Gm+1 )
Qom0 Qm40—1 Qm
SO
tt—1
Am—j+k am+1
= (Qm+EQm+€—1~~Qm+1)
am am
£=0
4 t
. m+1 t—1 t-2 1
- ( > qurIQerQ"'Qertfl'
am
Then

_t/2 t—1 -2 1 -
Jk—j = 4 Qn+19m+2--9mt—1 — €t = Ck—j-

Next, if t =k — j < 0, we use

aj—1 . a;

J )
a; @j+1
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so that
[¢]
Am—j+k  Om—|t| Am—¢
a a Aoy —
m m —1 4m /+1
[t]
Qm
= H <Qm—€+1Qm—€+2~~Qm )
=1 Am+1

[¢]
_ am 1t lt=1 1
- O m—1- qm—|t|+1‘
Am+1

Then from (2.5),

t|—1
Jk—j = Q%QQJQQM 1- q’rln—|t|+1

lt|—1
_ \t|/2 lt|—¢ — o — ,
_ qm—l—é@lgn(t €t = Ck—j-

(b) This is an immediate consequence of (a). B

In the sequel, we let

1
(2.6) Xom = €XD (——) , m>1.
%

m

It has the advantage over ¢, of being real and positive.

Lemma 2.2
Assume the hypotheses of Theorem 1.2.
(a) Let D > 0. Then

(2.7) sup
[t|I<+/Dpm,

et/xt/2—1’—>0asm—>oo.

(2.8) sup
[t|I<\/Dpy,

Zle ) /xE? - 1‘—>0a5m—>oo

and

1
(2.9) sup ‘—[et—e__t] /X520 as m — oo.

[t|<+/Dpy,

(¢) There exists Cy > 0 such that for all m and all t > —m + 1,

2
(2.10) le:] < Chexp (—L> .

4Pm+|t|—1
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Proof ,
(a) We see that there are % factors in the product in (2.1) defining e,.
Then (1.13) shows that

, g t]/2 1t]—1 Gt sin (1) |t|—¢
i = () (B

Xm

[t]-1
MIm 1+ Nm+tsign(t 1
= exp |2| _Z(w_g) A()__]
m /=1 pm—i—Zsign(t) Pm
(2.11)
Here
[t|]—1
_Z |t|—€ 1+77m+f51gn()_i
pm—i—éslgn(t) Pm
|t| 1 P [t]—1 n
 Pm+tsign(t) m~+{sign (¢
= —Zw—ﬁ PO S (Jt] - )

pmpm+ésign(t) =1 pm—l—ﬁsign(t)

1— pm+]
Pm

s
o sup gyl )=o),
Pm—|t|+1 j>m—|t|+1

provided [t| < +/Dp,,, in view of (1.9) and (1.8). Note that that
relation also implies p,,_;41/pm =1+ 0(1). Then from (2.11),

t
= 0 || max
Pra—|t|+1 1]t =1

(2.12)

(2.13) e /x5 =1+40(1).

(b) These follow directly from (a).
(c) From (1.13-1.14), we see that there exists J such for j > J,

1
| < )
’q]| S exp ( 2Pj)

1
C = sup|g;| exp (—) )
i>1 2p;

We can assume that C' > 1. Then for all j > 1,

1 C, 1<j<
(2.14) 4] < exp (—5) x{ -

j )

Let
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Observe that in the product (2.1) defining e;, for m > J, we can have
m + fsign(t) < J only when ¢ < 0 and ¢ > m — J. Since |t| < m, we
also have [t| — ¢ <m — (m — J) = J, so that

It|—¢
tl—¢ 7 1
H o 5ign(t) = C H exp (‘2—) :
(t)<J (®)

1<U<[t|-1,m+Lsign(t)<J 1<0<|t|—1,m+Lsign Pr+tsign

Then for all ¢, m > J, and with C; = C7°, (2.1) and (2.14) show that

lt| -1
1 t t|—+¢
2 Pm =1 pm-{—ésign(t)

(|t +1
BN IUESY
APt -1
|
Using Lemma 2.2, we can estimate some sums:
Lemma 2.3

Assume the hypotheses of Theorem 1.2.
(a) Let B > 0. There exist Cy,Cy such that for n > L > 1,

(2.15)
>~ (ledl” + le-d” + [af /2] + X272 < Co/pexp (—C4p—> .
{=L m

(b) Let A > 0,B > 0. There exist Cy, C3 such that for n > 1,

(2.16) Z <|€£|B +led® + ‘qﬁpm) i Xﬁﬂ/g) (A < CypAVr2,
=1

(c)

(2.17) i er = \/2mp,, (1 +0(1)).

{=—n+1

The same asymptotic holds for z;:inﬂ leg| -
Proof
(a) Using (2.6), (2.10), (2.14), (1.8), and the fact that (recall (1.15))
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m >n/R,

n
Be2/2

(leel” +leol” + |aB°72] + x2°72)

{=L

2
Cs Z exp ( Cg£—>

00 2
03/ exp (—02—) dx
L—-1 pm

Cg@/ exp (—Cth) dt
5%

IN

IN

IN

2
< C3y/p, €xp <—02£—) -

m

(To see this, consider separately the case (L —1)/\/p,, > 1 or < 1).
So we have (2.15).

(b) Here we use the fact that the function z — 24 exp (—Cx?) increases
up to a certain point, after which it decreases:

Z <|6£|B +le|? ‘qu2/2‘ 4B /2) /A

/=1

n 2
Cy Z exp (-Czpl;) A

=1 m

n+1 ZL’2
204/ exp (—C’Q—> zAdr
0 Pm

204p,(f“)/2/ exp (—Cat?) tAdt.
0

IN

IA

IA

(c) Fix D > 0. From (2.7),

d>ooa= Y xlP(lto().
e1<+/Dp, ltl<\/Dpn,

Here, using the inequality

(2.18) et — eV < "] |u —v| el u, v e C,
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we see that
2 £+1 2
X% — / X, 2dx
¢

Xo/ Nog x| sup |¢2/2 — 2% /2] exp ([log x,,| [€*/2 — 27 /2)
€[4, 0+1]

2,520 +1 20+ 1
< anﬂTeXp(z )

m Pm
< O
uniformly in ¢ < \/Dp,,. Thus using (b),

e
Iels%ez ) /\/m

IA

ijﬂd% +0 (1)

Moreover, by (a) of this lemma,

> led < Csy/ppexp (—CiD).
11>~/ Dpp,

Thus as m — oo,

1
1 Z” vbre 1
\2p ee:/w/D/zet dt+O<P ) +O(€7C4D).
mz — m

=—n+1

Here the constant in the order term O (e‘c“D ) is independent of D. So

D may be chosen as large as we please and we deduce that
1 n—1 00

mg_;ﬂ = e Pdt(1+0(1) = vr(1+0(1)).

-1
The same proof works for 3 /=" . |e,|. W

Our final lemma in this section involves the smoother hypotheses of
Theorem 1.4:

Lemma 2.4
Assume the hypotheses of Theorem 1.4. Let D > 0.

(a) For [t| < \/Dp,, 10g pp,,
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3 2
(6 +€—)/ t2/2_1+0 ﬂ +o ’t‘ +o ’t6’
t —t) [ Xm' = 2 p3/2 p7/2 .

(b) If in addition (1.36) holds, then

2 20 ]‘ t2/2 |t|3 | |2 | 6|
(2.20) g(et—ef)/x g +o p%Q +o [%2 :

Proof
. ( |t|2>
O —_—
A

(2.19)

N | —

(a) From (2.11) and (1.21),
(2.21)

[t|—1
e/ X1 = exp ( 'f/'2> Sl -0 [; - L

Pm =1 perEsign(t) Pm

Here from (1.19),

It —1
S (- 0) [;—i

pm+€sig11(t) Pm

1 4 |3
= 0 _Z(’t‘ f) 3/4 =0 m :0(1>7
if [t| < +/Dp,,log p,,. Then

(2.22)

It|—1

1
er/X5h/? = 1- eXpZ [t —€)

[pm—i—&lgn(t) Pm

. (W)+ <|t6|)
0] 0] .
ol o

Next from (1.20),

e +e ¢ X = - = — - — 0 o\ —==
2 = Pmie  Pm—t  Pm pg{Q p%Q
1 ¢ ¢ Iad
= 1—-=- (|t|—€)0<—>—|—0( +o| —=
2 =1 P 0%2 PZ{Z
¢ t]* Iad
=1 “+ o0 p_2 +o0 ﬁ +o0 W .

DN | —
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(b) Similarly, using (1.36), we have for ¢t > 0,

1( )/ t2/2 %:1 |t’ € { 1 } + | |2 + |t6|
—(e; —e_ Xom = —— — (0] (0]
2" Pm+e Pm_g pf’nﬂ er{Q
\tl 1 2
1 ¢ 2] Iad
- - |t|—€+0( >+0< >+o(
1 tf? |°]
= O <E + o p%2 +o0 p77742 .
|

3. ASYMPTOTICS OF THE MOMENTS

The result of this section is:

Theorem 3.1
Assume the hypotheses of Theorem 1.2. Fix k> 1. Then as n — oo,

A k
(%)

h—1y/2 L +0(1)

(3.1) Tr =n(27p,,) 7

First we need:

Lemma 3.2
Fix k>1 and let

[(s2 — $1)° + (s3 — 52)° 4 . 4 (85 — Sp_1)” + (51 — sk)’] -

N | —

U (81,82, ...y Sk) =

(3.2)
Given 1 < Uy, 0y, ....0, <mn, let

I (01, lg, .. b)) = [01, 00 + 1] X [ly, ba + 1] X .. X [lg, b + 1] .
(a) Then for q € C,

q\p(€17£2 ----- fk)_/ q\p(sl’sz """ Sk)dSldSQ...dsk;
(€1,02,...,L)

< Rl|logg|efiloed

Y

/ |q’\I/(S1,82 ----- Sk) dsidss...dsy,
I(£1,02,....4)
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where
2
(3. R=23" (101 — 4] +1)
j=1

and we set Uy = {1.

(b) Let D > 0 and x,, be given by (2.6). If |l;41 —{;| < +\/Dp,,, for
1<j<k—1, then

_\I/(sl 52..4.,3
X,\fl(gl b2 li) _ / e dsldsz .dsy,
(€1,02,....4)

_\I/(sl 32 ,,,,, Sk

dsidsy...dsy.

1
< Cs €
V Pm J 1 ,2,....01)

(3.4)

The constant Cs depends only on D and k, not on n,m,{{;}.
Proof
(a) We again use the inequality (2.18) to deduce that for (s1, sa, ..., s) €

I(ly, 0y, ..., 0),

‘q‘l’(f17£27...,ék) _ q‘I’(Sl,SQ ..... Sk)} S |q|\Il(31752 ~~~~~ Sk) ,r.er’

where

r = |logq| max | (01, loy ... b)) — W (51,82, ..., Sk)| -

(81,82 ..... sk)el(fl,éz ..... ék)
Here as each |s; — ¢;] < 1, so setting s;11 = s1,
|\I] (617 627 ) gk) -V (Sla 825 eny Sk:)|
L]k

= 3 Z (ljs1 —lj —sjs1+5;5) (U1 — 4+ 5j41 — 85)
j=1

(Cigr = 45) + (8501 — L) + (G —s)| < ) (200 — 4] +2)

||M?r
M?v

1

J

Substituting this above, we obtain
|q (b1,82,..0,) q\IJ(sl,sz ..... sk)‘ S |q|‘1/(51,52 ,,,,, 5k) |logq| Rellqu‘R.

Integrating over I (01,0, ..., ;) gives the desired result.
(b) Here we use (a) with ¢ = ¥x,,. Our hypothesis gives |[(; — {;| <
(k— 1) \/Dp,, so that R of (3.3) is O (,/p,,) and we can apply (a). B

= R.
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A k:
(&)

When k = 1, Tr[E,,,] = n, so the result is immediate. So fix k > 2.

We see that
A k
< am ) ]

n n n n
E E E E €ly—01€03—02€04—t5---Cl)—0),_1 €01 —0) -

G=10l=103=1 f}=1
Let D > 0. We shall split this sum into a central term in which all
differences |¢; —¢;_4|,2 < j < k, are < \/Dp,,, and a tail term in
which one of these is larger than /Dp,,. We first handle the central
part of the sum. So let ¥ c.re; denote that part of the sum with

\0; — ;1| < \/Dp,,,2 < j<k. Then |¢; — {;| < (k—1)+/Dp,,. The
only "free" index is ¢;, which may range from 1 to n. By (2.7) and
(3.4), and recalling (3.2), and that {p,,} increase to oo,

Yeentral = 1 + 0 Z X‘I’(fl L2, k)

\11(51 52 ,,,,, Sk
= (1+4of / / d51d32 .dsy,

I=JI(t, s, ... 00)

is the union over all the indices ({1, (s, ..., {x) satisfying the inequalities
above. Then also

\I/(.sl LI Sk
Ecemfral 1 + 0 // / Pm d51d52 d3k+0 <(me)k> s

where S is the range (s, s2, ..., ;) with |s;41 — s;] < y/Dp,, forall 1 <
Jj < k—1, while s; € [0,n]. Note that then |s; — s1| < (k —1)+/Dp,,-
Here we are also using the fact that the integrand is bounded, so we may
allow s; € [0,n], and other s; to be possibly negative, while incurring

an error O ((, /pm) k) We now make the substitution

Proof of Theorem 3.1
Because of Lemma 2.1,

Tr =Tr [Er,].

Tr

where

S1
;
Pm

VPm
o= e <k

t =
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A simple calculation shows that

(1, ta, ..., 1) _< 1 )’“

(9 (81, 59, .0uy Sk)

and hence also that
8 (81, 59, .00y Sk)

Oty ta, o tn) (Vo)

The region S corresponds to a region J x 7 in which ¢; runs through an

interval J of length \/% (14+0(1)), while 7 is the set of (ts, 13, ..., tx)

with |t;| < VD for all 2 < j < k. Moreover,

Sk — 81 = \VPm (tk + tk—l + ...+ tg) .
Thus from (3.2),

U (s1,589,..., 8 1
(1p2 K SEBHE+ G+ (a4 + 1))
— Dl ly),
say. Then

oy [VD VD VD .
Ecen ral — (1 +0(1))7’L v Pm - / / / e T\ k dtgdtk“‘O
' ( ) vbJ-vD J-vD

(3.5)

For D large enough, this last integral is close to

(3.6) [oo:/ / / e~ P2l gty | dty..

To evaluate this, we use a classical identity for integrals of exponential
of positive quadratic forms. We see that

k
1
2 T
D (ty, ... 1) = th +5 thtk =TT BT,
Jj=2 Jj#k
where B is the positive definite (kK — 1) x (k — 1) matrix with all di-
agonal entries equal 1 and all off diagonal entries equal %, while T =

2
[ty t5 ... t])". Thus

N =
[l
e NN
DO [0 | =

=
[

NI oo
NI oo
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Then [3, Thm. 3, p. 61]
(k—=1)/2
|det B|"

To evaluate det B, we subtract the first row of B from the remaining
rows. This leaves a matrix with off diagonal entries 0 in the 2nd, 3rd,
..., (k — 1)th row, except in the first column where the entries are —2

5.
In the diagonal, the entries are % except in the first row. So

(3.7)

-] L1 11
1%2 2 2
-3 10 0 0
1
detB:_é(.)? 00
100 ... Lo
% 2
L0 0 o 0 L]

Next, we subtract the jth row from the first row, for j = k — 1,k —
2,...,2. We obtain

o

—2

[1+%5= 0 0 - 0 07
—% 0 - 00
-3 0 % .- 00 2
_1 0 0 L
_1 0 0 (2) 1
L 2 2 4
Combining this and (3.5-3.7), we see that

k-1

(3.8) Yentrat = (L+0(1))n ((Zme)g % +0 (6D)) ,

where £p is a term independent of m,n, but depends on D and ap-
proaches 0 as D — oc.

Now we have to handle the "tail terms". Let Z; denote the set of
(€1, 0, ..., 0x) such that all 1 < ¢; < n, and for at least one 2 < j < F,
\0; —L;_1| > +/Dp,,. From (2.10), (1.8), and (1.15),

| Erau| = E Clo—ty Cly—0yCly—Lg---Cly—Ly 1 Cl —lx
(L1,02,...0,)ET,

C k
Cf Z exXp <_p_4 [Z |€j - £j71|2 + wl - £k|2]> .

(01 ,4a,...,0,)ETL molj=2

IA
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Here ¢ —{}, is contained in the set {—n + 1,—n +2,...,n — 1}. Because
of symmetry, we may assume that |¢, — l;_1| > +/Dp,,. Once ¢ — l}
is determined, we may set

1 =0 —0;_1,2<j<k

and see that while |ix| > /Dp,,, we can allow the remaining {i;} to
take any integer value. Thus

k
SRV S DI S exp( C4zzz>
19=—00 13=—00 Tg_ 1—7oolk>\/w p j=2

o k—2
= Cn ( Z exp (—%ﬁ)) Z exp (—%ﬁ)
i=—o0 fm i>y/Dp,, fm

0o k—2 0o

Cn (2/ exp (—Qx ) dx) 2/ exp (—%ﬁ) dx
—00 Pm \/m Pm

< Cn (4 /pm)kfl eGP,

The constants C' and Cy do not depend on D. Thus given > 0, we
can find D so large that

S raal < (Vo)

This and (3.8) give the result. W
We note that we used p,,, = o (m?) in the above proof to ensure that

\/Dp,, = o(n) for each D > 0, so that there are enough central terms
to give the exponential integral.

IN

4. LOCATION OF THE EIGENVALUES

In this section, we use classical tools such as Gershgorin’s theorem,
Schur’s inequalities, and the Bendixson-Hirsch inequalities to estimate
the location of the eigenvalues. We begin with

Lemma 4.1
Assume the hypotheses of Theorem 1.2. Then

max |\ < /27p,, (1+0(1)).

XeA(Amn/am)

Proof
Now each such \ is an eigenvalue of E,,,. By Gershgorin’s bounds [13,
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p. 371, Theorem 1], [19, p. 146], they lie in disks centered on the
diagonal entries 1 of E,,,, and with radius

n n—1
max ekl < D el = V2, (14 0(1)),
k=1,k#£j Jj=—n+1,j#0

by Lemma 2.3(c). B

Next, we use Schur’s inequalities. For our matrix F,,,, let
1 1

(4.1) Fon == (Epn + EX ) and G = —
2 21

Here the superscript H refers to the conjugate transpose. Thus F;,,,, and

G are Hermitian matrices, and in particular, have real eigenvalues.
Schur’s inequalities assert that [13, p. 385, Theorem 1],

(4.2) > (ReMN? < [[Fnl® and ) (ImA)? < |Gl

AGA(Emn) AEA(E'mn)

(En — EX) .

Here the matrix norm is the Euclidean one, so that if B = [bj;], <jk<n>

1Bl =

Using these, we can show that most eigenvalues approach the real axis:

Lemma 4.2
Assume the hypotheses of Theorem 1.2. Then

(a)

1 2
(4.3) > AP =0(1).
"/ Pm AEA(Emn)

(b)

(4.4)

1 2
g IRe A" =0 (1).
n v pm AEA(Emn)

Proof
(a) In view of Schur’s inequalities (4.2), it suffices to show that

|Gull® _

/P

(4.5) o(1).
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Now

1 n
1Gnll® = ZZ ek — &l

A
NI
L
|
@
&l

Z lee —e=el* + Z leo — e
1</ Dpr, |e1>+/Dp,,
< 1o (vFm) + Civ/Ame ).
by (2.9) and (2.15). Then

IA
|3

a2
lim sup |G < Che P

n—00 n m
and since D may be arbitrarily large, (4.3) follows.
(c¢) By Schur’s inequalities,

> (ReN)’ < Bl

XeA(Emn)
1 n n o
= 1 E E (ex—j +€—r)

j=1 k=1

Cna/pu,s

IN

by (2.16). B

Next, we use the Bendixson-Hirsch inequalities to bound the real and
imaginary parts of the eigenvalues. However, we first need

Lemma 4.3
Let 0 < x < 1,n > 1, and let B = [X(j_k)Qﬂ} . Then B is

1<j,k<n
positive definite.
Proof
IfX =[n Ig....rn]T, then we see that

XTBX = ijx((j—l)—(k—l))z/%k
G k=1

. 2 . 2
== (xjx(a—l) /2) D= (a;kXUf*l) /2)7

J,k=1
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so it suffices to prove that the matrix
Vo = [X_(j_l)(k_l)}1<‘k< = [(X_(j_l))(k_l)]
_]7 —n

is positive definite. Now V), is symmetric, real, and a Vandermonde
matrix, so

1<j,k<n

det (V,,) = H [ D — Y] > 0.

1<j<t<n

But then all the leading submatrices Vi, V5, ..., V,,_1 also have positive
determinant, so V,, is positive definite. l

Lemma 4.4
Assume the hypotheses of Theorem 1.2. Then

(a)

(4.6) \min Re(X) = —o(v/pn).
(b)

4. I = .

(4.7) \Jax I (A)] = o (vVPm)

(¢) All limit points of {A(Emn) /v27p,},51 lie in [0,1].

Proof -

Let F,,, and G,,, be given by (4.1). The Bendixson-Hirsch inequalities
[19, p. 195], [30, p. 490] assert that

. i > ;
(4.8) Aeﬁg}m) Re (A) > Amin (Ernn)

where A\pin (Finn) is the smallest eigenvalue of F,,,, above. Moreover,
for each A € A (E,,,,), we have

(4.9) Amin (Grn) < ImA < Ao (G

Here Amin (Gin)s Amax (Gmn) denote the smallest and largest eigenval-
ues of G,,,. The advantage of using F,, and G,,, is that they are
Hermitian matrices, so we can use the variational formulation for their
smallest and largest eigenvalues.

(a) Now
o 1 _
Amin (an) = inf Z 5 (ek_j + €j—k) Xy
7,k=1
n—1 1
(4.10) = inf ) 5 (ee+72) S,
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where

(411) Sg = Z )

1<j.j+4<n

and the inf is taken over all {z;}" , with >77_, x7
|S¢] < 1. Fix some large positive D From (2.8),

= 1, so that all

)\min (an)

infe Y LA+ oD) S+ Y
|e|<\/me \t1>+/Dp,

1
) (l“f > S) Yt Y glerm-om Y gk
f=—n+1 \e1>+/Dpy, |e1>+/Dpy, |€|s\/me

AV

(6@ + 6__3) Sj

N =

Here the first term in the last right-hand side is the smallest eigenvalue

of matrix (X& K/ 2) , which is positive definite by Lemma 4.3,
1<j,k<n

so its smallest eigenvalue is positive. Also, using the bounds of Lemma
2.3(a),

Y etz < Crype s
€[>/ Dps,

while a similar estimate holds for ZI€|> N Xfi/2’ and trivially,

o) Y Xur=0(/rm)-
1</ Dpr,

In summary,

Amin (Fnn) > —=C pme’CD —0 (\/@) )

Since D may be arbitrarily large, we obtain

Amin (an) > —o0 (\/ﬁ) .
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(b) Here we can use that the maximum absolute value of eigenvalues
of G, is bounded by its largest row sum,

"1
max g —lex—j — €k
J 2
k=1

n
< Z lee — &=
=0

< o) Y XL+ D e—=
1<0</Dprn, >/Dp
< 0(\/Pm) + Cin/Dme 7,

by Lemma 2.2(b) and 2.3(a). Then as D is arbitrary, the maximum
absolute value of eigenvalues of Gy, is 0 (,/p,,), and then (4.9) gives
the result.

(c) This is an immediate consequence of (a), (b) and Lemma 4.1. H

5. PROOF OF THEOREM 1.2

Let us review what we have proved so far: in Lemma 4.1, we proved
that all eigenvalues of E,,,, and hence of A,,,/a,,, have modulus <
\V27p,, (1+0(1)). Moreover, in Lemma 4.4, we proved that all limit
points of {A (An/am) /\/27p,,} lie in [0, 1]. We still need to prove:
(I) That the eigenvalue of largest absolute value of A,,,,/a, is > +/27p,, (1 + 0(1))
and that the limit points of {A (An/am) /v/27p,, },5, fill out [0, 1].

(IT) That the measures f,,, and 1, converge weakly in the sense de-

scribed in Theorem 1.2. We begin with

Lemma 5.1

The assertion (II11) of Theorem 1.2 is true.

Proof

Now ,,, is a probability measure with support contained in a ball
center 0 that is independent of n. Moreover, for k£ > 1,

1 k
0 = 2 S (oryEm)
[ty =+ 3 (Vv
AEA(Amn /am)
— 0asn — oo,

by Theorem 3.1. Then for any polynomial P, we have

lim [ P(t)dy,,, (t)=P(0).

n—oo
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Next let f be continuous in an open subset of the complex plane con-
taining [0, 1]. Let ¢ > 0. For some small enough § > 0, the restriction
of f to [-d,1+ 0] is continuous, so we can find a polynomial P such
that

yf(x)—P(x)|<§forxe[—5,1+5}.

In as much as f and P are continuous, we can find € (0,4) such that
if S ={z:dist(z,0,1]) <n}, then

If(2) = f(Rez)| < % and |P(z) — P(Rez)| < %

so that for all z € S,
1f(z) = P(z)| <e

Then for n so large that the support of f,,, is contained in .S,

[ 100 —f(O)’

IN

< 54—‘/ t) dpty,, (t —P(O)‘

as n — 00. Since ¢ > 0 is arbitrary, (1.17) follows. B

Lemma 5.2

The assertion (IV) of Theorem 1.2 is true.
Proof

First note that

1
Wl (© = - S

TPm AeA(Amn/am)

= - L Z [|Re/\|2—|—|1m)\|2}

TPm AeA(Amn/am)

(5.1)

VAN

C,

‘/ Ddu. (1 ’ ‘/ B, (£) = P(0)| + P (0)

f(0)]
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independently of n, by Lemma 4.2(a), (b). Next, Theorem 3.1 shows
that for each fixed, j,

lim [ tdul? ()

n—oo

— Iim ; 3 v(A/\/ﬁ)j

n—oo 1,
Pm AEA(Apmn/am)

. V2 A\ 2
= hm —HTT - - -
w2 (y/27p,,) am j+2

(5.2)

In view of Lemma 4.4, the limit points of the supports of /L?[fl]n lie in

0,1]. Because of (5.1), every subsequence of m]n contains another
[0, y q 1

subsequence converging weakly to some measure w with support in
[0,1] and finite total mass. As ,u%]n is complex, this requires some

clarification. Decompose, in Hahn-Jordan fashion,
p, = (Rep2F —ReplZ7) + i (Im plF — Tm pf2))

where all four measures on the right-hand side are non-negative. By

2]+

Lemma 4.4 and (5.1), the sequence {Reu } all have support con-

tained in a fixed neighborhood of [0, 1], and
sup Re u2* (C) < oo.

n>1

Hence we can choose a weakly convergent subsequence in the usual
sense: for f continuous in an open set containing [0, 1],

lim/f dReuE;:/f do,

where o is a positive measure supported on [0, 1] and we take limits

through the subsequence. Similar assertions apply to {Re ME{ } and

{Im /L[Q] . So let w be a weak limit of a subsequence of { /vcm}n} in this

sense. By (5.2),
1 5
tdw (t) = for j > 0.
| P = | or >
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In particular then w ([0,1]) = 1. To identify w, make, the substitution
t=e */U+Y in

\/2/1 t1+1 log t| /2 dt = \/2 ! /00 e *s s = ’/L
T Jo i +2 J, j+2
So

(5.3) t]dw f/ 1 logt|~/* dt for j > 0.

We next use the fact that the Hausdorff moment problem has a unique
solution [27], but taking account of the fact that w is a possibly complex
measure. Write

w=(or—0o_)+i(ry—71_)
where all the measures on the right are finite nonnegative measures.
Taking imaginary parts in (5.3) and then rearranging gives

1 1
| = [ i @i z0
0 0

so as the Hausdorff moment problem has a unique solution [27], 7, =
. So w is a purely real measure. We then obtain

t]d0+ \/>/ 7+ log t| /% dt +/ t'do_ (t), for j > 0.
0

Again, this gives
2 _
do, = \/jtllogt] Y2 dt +do_
T

2
dw (t) = \/it |10g7f]71/2 dt.
s

Since this is independent of the subsequence, {u,[%]n} converges weakly

and hence

0 \/g |logt|71/2t dt. The proof can be completed as in Lemma 5.1,

using also (5.1). W

Proof of Theorem 1.2
(I) The requisite asymptotic upper bound for the eigenvalue of largest

modulus follows from Lemma 4.1. The matching asymptotic lower

bound follows from the lemma above, which shows that as f log t| /% ¢

dt contains 1 in its support, so necessarily there are eigenvalues A of
Apn/am with \/\/27p,, arbitrarily close to 1.
(II) In Lemma 4.4, we showed that all limit points of {A (Ayn/am) /vV27 0y} o1
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are contained in [0, 1]. That they fill out [0, 1] follows from Lemma 5.2.
(III), (IV) were proved in the two lemmas above. H

6. Proof of Theorem 1.4

We begin by obtaining finer estimates on the location of the eigen-
values:

Lemma 6.1
Assume the hypotheses of Theorem 1.4. Then

(a)

. i > — .
(6.1) AE}\I&I}M)Re (A) > —o(1)

(b) If in addition (1.36) holds, then
(6.2) max |[Im(\)|=0(1).

AeA(Emn)

Proof
We again use (4.10), (4.11). Fix some large positive D. From Lemma
2.4(a),

)\min (an)

{=—n+1

1 1
> inf > 5 (e + ) Se+ > 5 (ee+770) S

[€|<y/Dpy, log py, [e|>+/Dpy, log pp,

n—1

1
. 2 2 —
> (mf 5 an/g&) S S A S
101>

/PP 108 pry, 01>/ D 108 P
3 2 6
/2 ¢ l i
—C Z Xon! {O(p_2)+0<3_/2>+0<7_/2>}'
t1<+\/Dp,, l0g p,y, m Pm P

Here as before, the first term is the smallest eigenvalue of a positive

definite matrix, so is nonnegative. Also if D is large enough, Lemma
2.3(a) shows that for some C7, Cy independent of D,

Z Xon!? + Z e + 24|
1>~/ Dpy 108 o,y 1> +/Dp, 108 o,y
< C3y/ppexp (—CyDlogp,,)
(6.3) = Copy P =0 (1),
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if D is large enough. Next,

2 03 02 /6
l
(t1<y/ Do 108 m pin Pt

by Lemma 2.3 (a), (b). So
)\min (an) 2 —0 (1)

Then (4.8) gives the result.
(b) As in the proof of Lemma 4.4(b), we bound the largest absolute
value of any eigenvalue of GG,,,, by

n
D lee — =]
(=1

_ —C4Dlo
< E leq — g + Cry/pe 17 108 Pm,

1<¢<+/Dp,, log p,,
by Lemma 2.3(a). Here using Lemma 2.4(b),

> lee—7d
1<¢<\/Dp,, logp,,

e | (8 & &

1<¢<+/Dp,, log p,y,

by Lemma 2.3(b). So the eigenvalue of maximum modulus of G, is
O (1), and then (4.9) gives the result. W

We note that when (1.36) holds, Lemma 6.1(b) shows that the con-

clusions (IT), (IIT) of Theorem 1.4 hold when we replace i, by the
measures in (1.37). Next, we need:

Lemma 6.2

The assertions (1) and (III) of Theorem 1.4 are true.
Proof

First note that p, is a (possibly signed) measure with

1 1
(1] - = — - =
(6.4) pia (C) = - g Re A =Re nTT (Amn/am) = 1.
AEA(Amn/am)
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Moreover, the limit points of the supports of { ,uwn} lie in [0, 1], and
for each fixed j > 0,

/tjdu,[i]n (t) = Z Re A ()\/\/27Tpm>j
AeA(Amn/am)
_ % 3 A(A/,/zwpm)j—% Y (Im)) (A/\/prm>

SHNS

AeA(Amn/am) AEA(Amn/am)
(6.5)
Here
1 ( 1 1 1+o0 (1)
il )\/\/27T,0m) —. Tr ([Amn/am]ﬂ ) =
n )\GA(AZmn/am) v 271’pm) g+

by Theorem 3.1. Moreover, if j = 0, the second sum in the right-hand
side of (6.5) is 0, while if j > 1, Cauchy-Schwarz gives

Ly my (A/\/m)

n
AeA(Amn/am)

1 Z Tm \|” % Z ’/\/\/27rpm‘2j

<
/\EA(Amn/am) AEA(Amn/am)
1 2
<= Y jmap > W)
)\EA mn/am) AGA mn/am)
— O Y maR e Y pE=o).
\/n 27 O AEA(Amn /am) 2T, XEA(Amn /am)

by Lemma 4.2. Thus for j > 0,

[ ot L+ol)
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Next,

(€)=

> [Re)

XeA(Amn/am)

Re A —l—l Re A
>, Rex+— >

AEA(Amn/am),Re A<0 AeA(Amn/am),Re A>0

= o(l)—i—l Z Re A

AEA(Amn/am),Re A>0

Sl 3|k

_ 1 > ReA+o())

n
>\€A(Amn/am)
= 1+o0(1).

Here we have used Lemma 6.1 and (6.4). Next the substitution ¢t =
e~—%/U+1) shows that for each j > 0,

[t - [ 1
\/i/ t logt| ™ dt = | —,
T Jo J+1

. 1 [t
lim [ #dull (1) = \/j/ t/ [logt|™V? dt.
n—o00 ™ Jo

We can now complete the proof as in Lemma 5.2. B

so for 7 >0,

Proof of Theorem 1.4
We proved (I) in Lemma 6.1, and (II), (III) in Lemma 6.2. W
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