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Abstract. We investigate distribution of eigenvalues of growing
size Toeplitz matrices [an+k−j ]1≤j,k≤n as n→∞, when the entries
{aj} are "smooth" in the sense, for example, that for some α > 0,

aj−1aj+1

a2j
= 1− 1

αj
(1 + o (1)) , j →∞.

Typically they are Maclaurin series coeffi cients of an entire func-
tion. We establish that when suitably scaled, the eigenvalue count-
ing measures have limiting support on [0, 1], and under mild ad-
ditional smoothness conditions, the universal scaled and weighted
limit distribution is |π log t|−1/2

dt on [0, 1].
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1. Introduction and Results

The distribution of eigenvalues of Toeplitz matrices is a much studied
topic. The archetypal result is Szegő’s theorem on the eigenvalues of

[ck−j]1≤j,k≤n ,

where

cj =
1

2π

∫ π

−π
e−ijxf (x) dx, j = 0,±1,±2, ...

are the trigonometric moments of some real valued function f [10,
Chapter 5]. There are numerous extensions and refinements, notably
the strong Szegő limit theorem, which continues to be investigated in
the context of Fisher-Hartwig symbols, while Toeplitz operators are a
vast subject on their own. See, for example, [2], [4], [5], [6], [12], [21],
[31]. Eigenvalues of random Hankel and Toeplitz matrices have been
studied in, for example, [7], [11], [15], [25], [26].

There is a classical connection to complex function theory: Polya
[22] proved that if f (z) =

∑∞
j=0 aj/z

j can be analytically continued to
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a function analytic in the complex plane outside a set of logarithmic
capacity τ ≥ 0, then

lim sup
n→∞

∣∣∣det [an−j+k]1≤j,k≤n

∣∣∣1/n2

≤ τ .

Wilson [29] and Edrei [9] obtained asymptotic upper bounds for entire
and meromorphic functions of finite order, and functions with finitely
many essential singularities. For example if f is entire of order at most
α with Maclaurin series coeffi cients {aj}, then

lim sup
n→∞

∣∣∣det [an−j+k]1≤j,k≤n

∣∣∣1/(n2 logn)
≤ e−1/α.

Pommerenke [23] investigated refinements of Polya’s result. Note that
these authors considered Hankel matrices, but their results immediately
apply to the corresponding Toeplitz matrices.

Toeplitz matrices also arise in studying Padé approximation and con-
tinued fraction expansions. Let

f (z) =
∞∑
j=0

ajz
j

be a formal power series, and m,n ≥ 0. The (m,n) Pade approximant
to f is a rational function [m/n] = P/Q where P has degree at most
m, Q has degree at most n and is not identically 0, and

(fQ− P ) (z) = O
(
zm+n+1

)
,

in the sense that the power series on the left-hand side has 0 as the
coeffi cient of zj, provided 0 ≤ j ≤ m + n. Q, suitably normalized,
admits the representation [1]

Q (z) = det


am−n+1 am−n+2 · · · am+1

am−n+2 am−n+3 · · · am+2
...

...
. . .

...
am am+1 · · · am+n

zn zn−1 · · · 1

 ,
where we set aj = 0 if j < 0, and we assume that the determinant
does not vanish identically. In particular, the constant coeffi cient is
the determinant of

(1.1) Amn = [am−j+k]1≤j,k≤n .

These determinants also play a role in understanding convergence of
continued fraction expansions, and sequences of Padé approximants.
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For classical special functions, detAmn can be evaluated explicitly, but
of course not in general.

Numerical computation of Padé approximants suggested that they
behave well when the coeffi cients are "smooth". When aj 6= 0 for large
enough j, the author attempted to quantify this using the double ratio

(1.2) qj =
aj−1aj+1

a2
j

.

In particular if n is fixed, and

(1.3) lim
j→∞

qj = q,

it was shown [16, p. 308] that

lim
m→∞

det (Amn) /anm =
n−1∏
j=1

(
1− qj

)n−j
.

This is useful only if q is not a root of unity, so additional assumptions
are required for that case: if there is a complete asymptotic expansion,
so that for each ` ≥ 1,

qj = q(1− c1

j
+
c2

j2
+ ...+

c`
j`

+O
(
j−`−1

)
),

where c1 6= 0, then [16, p. 309] for each fixed n ≥ 1,

lim
m→∞

det (Amn) /

{
anm

n−1∏
j=1

(
1− qjm

)n−j}
= 1.

The case where n grows withm is more delicate. Rusak and Starovoitov
[24] showed that one can handle the situation where n = o

(
m1/3

)
, and

that this last relation persists.
Undoubtedly the most interesting and challenging case is the "diag-

onal" one where m = n→∞. One situation where analysis is possible,
is where (1.3) holds with |q| < 1, which holds for example, for

f (z) =
∞∑
j=0

qj
2/2 (j!)β zj,

for any β ∈ C. The author proved [17, p. 324] that in this case,

lim
n→∞

∣∣∣∣∣det (Ann) /

{
ann

n−1∏
j=1

(
1− qjn

)n−j}∣∣∣∣∣
1/n

= 1.

This is suffi cent to analyze convergence of diagonal Pade sequences
and obtain asymptotics for errors of best rational approximation [14].
Unfortunately (1.3) holds with |q| < 1 only when f is a limited class



4 D. S. LUBINSKY

of entire functions of order 0. For further orientation on convergence
of Padé approximants, see for example [1], [8], [18], [20], [28].

Can one say anything about the Toeplitz matrices associated with
entire functions of finite positive order beyond the asymptotics of Edrei,
Polya, andWilson? In the spirit of Szegő’s early theorems on eigenvalue
distribution, the focus of this paper is to investigate the distribution
of eigenvalues of the matrices Amn, when we have a relation such as
(1.3). To this author’s knowledge, these are the first results for Toeplitz
matrices of these type and are new even for the exponential function
f (z) = ez.

Observe that if α > 0, and

(1.4) f (z) =
∞∑
j=0

zj/ (j!)1/α ,

an entire function of order α, then qj of (1.2) satisfies

qj = exp

(
− 1

αj
+O

(
1

j2

))
.

This is also true for the Mittag-Leffl er function

(1.5) f (z) =
∞∑
j=0

zj

Γ (j/α + β)
,

any β ∈ C\(−∞, 0]. For the hypergeometric function with parameters
{ci}ki=1 , {di}

`
i=1 in C\(−∞, 0],

(1.6) f (z) =
∞∑
j=0

(c1)j (c2)j ... (ck)j
(d1)j (d2)j ... (d`)j

zj,

where (c)j = c (c+ 1) ... (c+ j − 1) is the usual Pochhammer symbol,
and ` ≥ k + 1,

qj = exp

(
−(`− k)

j
+O

(
1

j2

))
.

It is interesting here that even though {cj} , {dj} may be complex num-
bers, this has little effect on qj.

In order to handle more general asymptotics, we need to replace mul-
tiples of j by more general sequences

{
ρj
}
j≥1

:

Definition 1.1
Let

{
ρj
}
j≥1

be an increasing sequence of positive numbers, with limit
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∞, with

(1.7) lim
j→∞

ρj/j
2 = 0;

(1.8) lim sup
j→∞

ρ2j/ρj <∞;

and such that for each D > 0,

(1.9) lim
k→∞

(
max

|j|≤
√
Dρk

∣∣∣∣1− ρk+j

ρk

∣∣∣∣
)

= 0.

Then we call
{
ρj
}
j≥1

an asymptotic comparison sequence.
It is clear that ρj = αj, for α > 0, satisfies the above hypotheses.

Given a square matrix B, Λ (B) denotes the collection of its eigenval-
ues, with repetition according to its multiplicity. In particular, if Amn
denotes the matrix in (1.1), Λ (Amn/am) denotes the set of eigenvalues
of Amn/am, with repetition according to multiplicity. Of course these
are the eigenvalues of Amn divided by am. Define for a given ρm > 0,
the scaled counting measure

(1.10) µmn =
1

n

∑
λ∈Λ(Amn/am)

δ
λ/
√

2πρm
,

and for ` = 1, 2, the weighted measures

(1.11) µ[1]
mn =

1

n

∑
λ∈Λ(Amn/am)

(Reλ) δ
λ/
√

2πρm
;

(1.12) µ[2]
mn =

1

n
√
πρm

∑
λ∈Λ(Amn/am)

λ2δ
λ/
√

2πρm
.

Observe that while µmn is a probability measure, µ[1]
mn is a possibly

signed measure, and µ[2]
mn may be complex.

Theorem 1.2
Assume that {aj}j≥0 is a sequence of non-zero complex numbers, such
that for some asymptotic comparison sequence

{
ρj
}
j≥1

,

(1.13) qj =
aj−1aj+1

a2
j

= exp

(
− 1

ρj

(
1 + ηj

))
,

where
{
ηj
}
are complex numbers satisfying

(1.14) lim
j→∞

ηj = 0.
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Fix R > 1, and for n ≥ 1, let m = m (n) be an integer such that

(1.15)
1

R
<
m

n
< R.

For n ≥ 1, let Amn = [am−j+k]1≤j,k≤n, with aj = 0 for j < 0.

(I) As n→∞,

(1.16) max
λ∈Λ(Amn/am)

|λ| =
√

2πρm (1 + o (1)) .

(II) The set of limit points of the sets {Λ (Amn/am) /
√

2πρm}n≥1 is
[0, 1] .
(III) As n→∞,

dµmn
∗→ dδ0

in the sense that for every real valued function f defined and continuous
in some open subset of the plane containing [0, 1] ,

(1.17) lim
n→∞

∫
f dµmn = f (0) .

(IV) As n→∞,

dµ[2]
mn

∗→ t

√
2

π |log t| dt

in the sense that for every real valued function f defined and continuous
in some open subset of the plane containing [0, 1] ,

(1.18) lim
n→∞

∫
f dµ[2]

mn =

∫ 1

0

f (t) t

√
2

π |log t|dt.

The above result shows that while the eigenvalue of Amn of maximal
modulus grows like |am|

√
2πρm (1 + o (1)), nevertheless, all but o (n)

eigenvalues have much smaller modulus, namely o (|am|
√

2πρm). Un-
der additional conditions, we can analyze the measures µ[1]

mn, but we
need more assumptions on the

{
ρj
}

:

Definition 1.3
Let

{
ρj
}
j≥1

be an asymptotic comparison sequence in the sense of De-
finition 1.1. Assume in addition, that

(1.19) lim
k→∞

(
max

1≤|j|≤
√
Dρk log ρk

∣∣∣∣1− ρk+j

ρk

∣∣∣∣ ρ3/4
k

j

)
= 0,
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and

(1.20) lim
k→∞

(
max

1≤|j|≤
√
Dρk log ρk

∣∣∣∣ 1

ρk+j

+
1

ρk−j
− 2

ρk

∣∣∣∣ ρ2
k

|j|

)
= 0.

Then we call
{
ρj
}
j≥1

a smooth asymptotic comparison sequence.

Theorem 1.4
Assume that for some smooth asymptotic comparison sequence

{
ρj
}
j≥1

,
(1.13) holds, with

(1.21) ηj = o
(
ρ
−1/2
j

)
.

Then
(I)

(1.22) lim inf
n→∞

(
inf

λ∈Λ(Amn/am)
Reλ

)
≥ 0.

(II)

(1.23) lim
n→∞

∫
d
∣∣µ[1]
mn

∣∣ = lim
n→∞

1

n

∑
λ∈Λ(Amn/am)

|Reλ| = 1.

(III) As n→∞,

(1.24) dµ[1]
mn

∗→ |π log t|−1/2 dt

in the sense that for each function f defined and continuous in an open
subset of the plane containing [0, 1],

(1.25) lim
n→∞

∫
f dµ[1]

mn =

∫ 1

0

f (t) |π log t|−1/2 dt.

Remarks and examples
(a) The hypotheses of Theorems 1.2, 1.4 are fulfilled for the examples
in (1.4) to (1.6), with ρj chosen to be a multiple of j.
(b) Another class of functions to which Theorems 1.2 and 1.4 may be
applied, is

(1.26) f (z) =

∞∑
j=0

e−φ(j)zj,

where φ is a function on [0,∞) such that φ(4) is continuous on [A,∞)
for some A > 0, and φ is strictly convex, so that φ′′ > 0. Then for
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large enough j,

(1.27) qj = exp

(
−φ′′ (j) +O

(∥∥∥φ(4)
∥∥∥
L∞[j−1,j+1]

))
so we can choose

(1.28) ρj =
1

φ′′ (j)

provided it satisfies the technical conditions above. As a particular
example, if α, β > 0 and for x ≥ 2,

(1.29) φ (x) = αx (log x)β ,

then f of (1.26) is of infinite order if β < 1, of order 1
α
if β = 1, and

of zero order if β > 1. One can check that ρj of (1.28) yields a smooth
asymptotic comparison sequence.
(c) Another example is

(1.30) φ (x) = x (log log x)γ

where γ > 0 and x is large enough. Here f is of infinite order. One can
again check that ρj of (1.28) yields a smooth asymptotic comparison
sequence.
(d) Series with finite radius of convergence also fit into this framework.
Let

(1.31) f (z) =
∞∑
j=0

eψ(j)zj,

where ψ is a function on [0,∞) such that ψ(4) is continuous on [A,∞)
for some A > 0, and ψ is strictly concave, so that ψ′′ < 0. Then for
large enough j,

(1.32) qj = exp

(
ψ′′ (j) +O

(∥∥∥ψ(4)
∥∥∥
L∞[j−1,j+1]

))
so we can choose

(1.33) ρj = − 1

ψ′′ (j)

provided it satisfies the technical conditions above. As examples, we
can choose

(1.34) ψ (x) = xβ, 0 < β < 1,

or

(1.35) ψ (x) = (log x)γ , γ > 1.
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For these examples, we can choose ρj by (1.33) and check that
{
ρj
}
j≥1

is an asymptotic comparison sequence. It is a smooth asymptotic com-
parison sequence for ψ of (1.34) when β > 2

3
, but not for ψ of (1.35)

for any γ.
(e) Under additional conditions, namely when

{
ρj
}
satisfies

(1.36) lim sup
k→∞

(
max

1≤|j|≤
√
Dρk log ρk

∣∣∣∣ 1

ρk+j

− 1

ρk−j

∣∣∣∣ ρ2
k

|j|

)
<∞,

the assertions (II), (III) of Theorem 1.4 hold with µ[1]
mn replaced by its

complex analogue,

(1.37)
1

n

∑
λ∈Λ(Amn/am)

λδ
λ/
√

2πρm
.

However, (1.36) is not satisfied by any of our examples where f is entire
of infinite order, or has finite radius of convergence.

This paper is organised as follows: in Section 2, we present the
similarity transformation that essentially reduces study of Amn/am to[
q

(j−k)2/2
m

]
1≤j,k≤n

as well as some technical estimates. In Section 3, we

establish asymptotics for Tr
(

[Amn/am]k
)
for each k ≥ 1. In Section

4, we estimate the location of eigenvalues using Gerschgorin’s theorem,
and classical inequalities of Schur and Bendixson-Hirsch. We prove
Theorem 1.2 in Section 5 and Theorem 1.4 in Section 6. Through-
out, C,C1, C2, ... denote constants independent of n, x, z, t and possi-
bly other specified parameters. The same symbol does not necessarily
denote the same constant in different occurrences.

2. Technical Preliminaries

For a given m, we let e0 = 1 and for non-zero integers t,

(2.1) et = q|t|/2m

|t|−1∏
`=1

q
|t|−`
m+`sign(t), when m+ t ≥ 0, t 6= 0

and

(2.2) et = 0, m+ t < 0.

Of course the {et} depend on m, but we do not explicitly indicate this
dependence. Also, let

(2.3) Emn = [ek−j]1≤j,k≤n .
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The basic idea is that the matrices Amn/am and Emn are related by a
similarity transformation:

Lemma 2.1
Let D be the n×n diagonal matrix whose (k, k) entry is qk/2m

(
am+1

am

)−k
,

1 ≤ k ≤ n.
(a) Then

(2.4) D−1AmnD/am = Emn.

(b) λ is an eigenvalue of Amn/am iff λ is an eigenvalue of Emn.
Proof
(a) We see that the (j, k) entry of D−1AmnD/am is

(2.5) gk−j = q(k−j)/2
m

(
am+1

am

)j−k
am−j+k
am

.

We claim that this last number equals ek−j. Assume first t = k−j > 0.
Then

am−j+k
am

=
am+t

am
=

t−1∏
`=0

am+`+1

am+`

.

Here using
aj+1

aj
= qj

aj
aj−1

,

we see that
am+`+1

am+`

= qm+`
am+`

am+`−1

= qm+`qm+`−1...qm+1
am+1

am
,

so

am−j+k
am

=

(
am+1

am

)t t−1∏
`=0

(qm+`qm+`−1...qm+1)

=

(
am+1

am

)t
qt−1
m+1q

t−2
m+2...q

1
m+t−1.

Then

gk−j = qt/2m qt−1
m+1q

t−2
m+2...q

1
m+t−1 = et = ek−j.

Next, if t = k − j < 0, we use

aj−1

aj
= qj

aj
aj+1

,
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so that

am−j+k
am

=
am−|t|
am

=

|t|∏
`=1

am−`
am−`+1

=

|t|∏
`=1

(
qm−`+1qm−`+2...qm

am
am+1

)

=

(
am
am+1

)|t|
q|t|mq

|t|−1
m−1 ...q

1
m−|t|+1.

Then from (2.5),

gk−j = qt/2m q|t|mq
|t|−1
m−1 ...q

1
m−|t|+1

= q|t|/2m

|t|−1∏
`=1

q
|t|−`
m+`sign(t) = et = ek−j.

(b) This is an immediate consequence of (a). �

In the sequel, we let

(2.6) χm = exp

(
− 1

ρm

)
, m ≥ 1.

It has the advantage over qm of being real and positive.

Lemma 2.2
Assume the hypotheses of Theorem 1.2.
(a) Let D > 0. Then

(2.7) sup
|t|≤
√
Dρm

∣∣∣et/χt2/2m − 1
∣∣∣→ 0 as m→∞.

(b)

(2.8) sup
|t|≤
√
Dρm

∣∣∣∣12 [et + e−t] /χ
t2/2
m − 1

∣∣∣∣→ 0 as m→∞

and

(2.9) sup
|t|≤
√
Dρm

∣∣∣∣12 [et − e−t]
∣∣∣∣ /χt2/2m → 0 as m→∞.

(c) There exists C1 > 0 such that for all m and all t ≥ −m+ 1,

(2.10) |et| ≤ C1 exp

(
− |t|2

4ρm+|t|−1

)
.
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Proof
(a) We see that there are |t|

2

2
factors in the product in (2.1) defining et.

Then (1.13) shows that

et/χ
t2/2
m =

(
qm
χm

)|t|/2 |t|−1∏
`=1

(
qm+`sign(t)

χm

)|t|−`

= exp

−|t| ηm
2ρm

−
|t|−1∑
`=1

(|t| − `)
[

1 + ηm+`sign(t)

ρm+`sign(t)

− 1

ρm

] .

(2.11)

Here

−
|t|−1∑
`=1

(|t| − `)
[

1 + ηm+`sign(t)

ρm+`sign(t)

− 1

ρm

]

= −
|t|−1∑
`=1

(|t| − `)
ρm − ρm+`sign(t)

ρmρm+`sign(t)

−
|t|−1∑
`=1

(|t| − `)
ηm+`sign(t)

ρm+`sign(t)

= O

(
|t|2

ρm−|t|+1

max
|j|≤|t|−1

∣∣∣∣1− ρm+j

ρm

∣∣∣∣
)

+O

(
|t|2

ρm−|t|+1

sup
j≥m−|t|+1

∣∣ηj∣∣
)

= o (1) ,

(2.12)

provided |t| ≤
√
Dρm, in view of (1.9) and (1.8). Note that that

relation also implies ρm−|t|+1/ρm = 1 + o (1). Then from (2.11),

(2.13) et/χ
t2/2
m = 1 + o (1) .

(b) These follow directly from (a).
(c) From (1.13-1.14), we see that there exists J such for j ≥ J,

|qj| ≤ exp

(
− 1

2ρj

)
.

Let

C = sup
j≥1
|qj| exp

(
1

2ρj

)
.

We can assume that C ≥ 1. Then for all j ≥ 1,

(2.14) |qj| ≤ exp

(
− 1

2ρj

)
×
{
C, 1 ≤ j < J,
1, j ≥ J.
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Observe that in the product (2.1) defining et, for m ≥ J , we can have
m + `sign(t) < J only when t < 0 and ` > m − J. Since |t| ≤ m, we
also have |t| − ` < m− (m− J) = J , so that

∏
1≤`≤|t|−1,m+`sign(t)<J

q
|t|−`
m+`sign(t) ≤ CJ2

∏
1≤`≤|t|−1,m+`sign(t)<J

exp

(
− 1

2ρm+`sign(t)

)|t|−`
.

Then for all t, m ≥ J , and with C1 = CJ2
, (2.1) and (2.14) show that

|et| ≤ C1 exp

−1

2

 |t|ρm +

|t|−1∑
`=1

|t| − `
ρm+`sign(t)




≤ C1 exp

(
−|t| (|t|+ 1)

4ρm+|t|−1

)
.

�
Using Lemma 2.2, we can estimate some sums:

Lemma 2.3
Assume the hypotheses of Theorem 1.2.
(a) Let B > 0. There exist C2, C3 such that for n ≥ L ≥ 1,
(2.15)

n∑
`=L

(
|e`|B + |e−`|B +

∣∣∣qB`2/2m

∣∣∣+ χB`
2/2

m

)
≤ C3

√
ρm exp

(
−C4

L2

ρm

)
.

(b) Let A ≥ 0, B > 0. There exist C2, C3 such that for n ≥ 1,

(2.16)
n∑
`=1

(
|e`|B + |e−`|B +

∣∣∣qB`2/2m

∣∣∣+ χB`
2/2

m

)
`A ≤ C3ρ

(A+1)/2
m .

(c)

(2.17)
n−1∑

`=−n+1

e` =
√

2πρm (1 + o (1)) .

The same asymptotic holds for
∑n−1

`=−n+1 |e`| .
Proof
(a) Using (2.6), (2.10), (2.14), (1.8), and the fact that (recall (1.15))
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m > n/R,

n∑
`=L

(
|e`|B + |e−`|B +

∣∣∣qB`2/2m

∣∣∣+ χB`
2/2

m

)
≤ C3

n∑
`=L

exp

(
−C2

`2

ρm

)
≤ C3

∫ ∞
L−1

exp

(
−C2

x2

ρm

)
dx

≤ C3
√
ρm

∫ ∞
L−1√
ρm

exp
(
−C2t

2
)
dt

≤ C3
√
ρm exp

(
−C2

L2

ρm

)
.

(To see this, consider separately the case (L− 1) /
√
ρm ≥ 1 or < 1).

So we have (2.15).
(b) Here we use the fact that the function x→ xA exp (−Cx2) increases
up to a certain point, after which it decreases:

n∑
`=1

(
|e`|B + |e−`|B +

∣∣∣qB`2/2m

∣∣∣+ χB`
2/2

m

)
`A

≤ C4

n∑
`=1

exp

(
−C2

`2

ρm

)
`A

≤ 2C4

∫ n+1

0

exp

(
−C2

x2

ρm

)
xAdx

≤ 2C4ρ
(A+1)/2
m

∫ ∞
0

exp
(
−C2t

2
)
tAdt.

(c) Fix D > 0. From (2.7),

∑
|`|≤
√
Dρm

e` =
∑

|`|≤
√
Dρm

χ`
2/2
m (1 + o (1)) .

Here, using the inequality

(2.18) |eu − ev| ≤ |eu| |u− v| e|u−v|, u, v ∈ C,
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we see that∣∣∣∣χ`2/2m −
∫ `+1

`

χx
2/2
m dx

∣∣∣∣
≤ χ`

2/2
m |logχm| sup

x∈[`,`+1]

∣∣`2/2− x2/2
∣∣ exp

(
|logχm|

∣∣`2/2− x2/2
∣∣)

≤ χ`
2/2
m

2`+ 1

2ρm
exp

(
2`+ 1

2ρm

)
≤ Cχ`

2/2
m /
√
ρm,

uniformly in ` ≤
√
Dρm. Thus using (b),

∑
|`|≤
√
Dρm

e` =

∫ √Dρm

−
√
Dρm

χx
2/2
m dx+O (1)

=
√

2ρm

∫ √D/2

−
√
D/2

e−t
2

dt+O (1) .

Moreover, by (a) of this lemma,∑
|`|>
√
Dρm

|e`| ≤ C3
√
ρm exp (−C4D) .

Thus as m→∞,

1√
2ρm

n−1∑
`=−n+1

e` =

∫ √D/2

−
√
D/2

e−t
2

dt+O

(
1

ρm

)
+O

(
e−C4D

)
.

Here the constant in the order term O
(
e−C4D

)
is independent of D. So

D may be chosen as large as we please and we deduce that

1√
2ρm

n−1∑
`=−n+1

e` =

∫ ∞
−∞

e−t
2

dt (1 + o (1)) =
√
π (1 + o (1)) .

The same proof works for
∑n−1

`=−n+1 |e`|. �

Our final lemma in this section involves the smoother hypotheses of
Theorem 1.4:

Lemma 2.4
Assume the hypotheses of Theorem 1.4. Let D > 0.
(a) For |t| ≤

√
Dρm log ρm,
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(2.19)
1

2
(et + e−t) /χ

t2/2
m = 1 + o

(
|t|3

ρ2
m

)
+ o

(
|t|2

ρ
3/2
m

)
+ o

(
|t6|
ρ

7/2
m

)
.

(b) If in addition (1.36) holds, then

(2.20)
1

2
(et − e−t) /χt

2/2
m = O

(
|t|3

ρ2
m

)
+ o

(
|t|2

ρ
3/2
m

)
+ o

(
|t6|
ρ

7/2
m

)
.

Proof
(a) From (2.11) and (1.21),
(2.21)

et/χ
t2/2
m = exp

o( |t|
ρ

3/2
m

)
−
|t|−1∑
`=1

(|t| − `)
[

1

ρm+`sign(t)

− 1

ρm

]
+ o

(
|t|2

ρ
3/2
m

) .

Here from (1.19),∣∣∣∣∣∣
|t|−1∑
`=1

(|t| − `)
[

1

ρm+`sign(t)

− 1

ρm

]∣∣∣∣∣∣
= o

 1

ρm

|t|−1∑
`=1

(|t| − `) `

ρ
3/4
m

 = o

(
|t3|
ρ

7/4
m

)
= o (1) ,

if |t| ≤
√
Dρm log ρm. Then

(2.22)

et/χ
t2/2
m = 1−exp

|t|−1∑
`=1

(|t| − `)
[

1

ρm+`sign(t)

− 1

ρm

]
+o

(
|t|2

ρ
3/2
m

)
+o

(
|t6|
ρ

7/2
m

)
.

Next from (1.20),

1

2
(et + e−t) /χ

t2/2
m = 1− 1

2

|t|−1∑
`=1

(|t| − `)
[

1

ρm+`

+
1

ρm−`
− 2

ρm

]
+ o

(
|t|2

ρ
3/2
m

)
+ o

(
|t6|
ρ

7/2
m

)

= 1− 1

2

|t|−1∑
`=1

(|t| − `) o
(
`

ρ2
m

)
+ o

(
|t|2

ρ
3/2
m

)
+ o

(
|t6|
ρ

7/2
m

)

= 1 + o

(
|t|3

ρ2
m

)
+ o

(
|t|2

ρ
3/2
m

)
+ o

(
|t6|
ρ

7/2
m

)
.
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(b) Similarly, using (1.36), we have for t ≥ 0,

1

2
(et − e−t) /χt

2/2
m = −1

2

|t|−1∑
`=1

(|t| − `)
[

1

ρm+`

− 1

ρm−`

]
+ o

(
|t|2

ρ
3/2
m

)
+ o

(
|t6|
ρ

7/2
m

)

= −1

2

|t|−1∑
`=1

(|t| − `) +O

(
`

ρ2
m

)
+ o

(
|t|2

ρ
3/2
m

)
+ o

(
|t6|
ρ

7/2
m

)

= O

(
|t|3

ρ2
m

)
+ o

(
|t|2

ρ
3/2
m

)
+ o

(
|t6|
ρ

7/2
m

)
.

�

3. Asymptotics of the Moments

The result of this section is:

Theorem 3.1
Assume the hypotheses of Theorem 1.2. Fix k ≥ 1. Then as n→∞,

(3.1) Tr

[(
Amn
am

)k]
= n (2πρm)(k−1)/2 1 + o (1)√

k
.

First we need:

Lemma 3.2
Fix k ≥ 1 and let

Ψ (s1, s2, ..., sk) =
1

2

[
(s2 − s1)2 + (s3 − s2)2 + ...+ (sk − sk−1)2 + (s1 − sk)2

]
.

(3.2)

Given 1 ≤ `1, `2, ..., `k ≤ n, let

I (`1, `2, ..., `k) = [`1, `1 + 1]× [`2, `2 + 1]× ...× [`k, `k + 1] .

(a) Then for q ∈ C,∣∣∣∣qΨ(`1,`2,...,`k) −
∫
I(`1,`2,...,`k)

qΨ(s1,s2,...,sk)ds1ds2...dsk

∣∣∣∣
≤ R |log q| eR|log q|

∣∣∣∣∫
I(`1,`2,...,`k)

|q|Ψ(s1,s2,...,sk) ds1ds2...dsk

∣∣∣∣ ,
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where

(3.3) R = 2
k∑
j=1

(|`j+1 − `j|+ 1)

and we set `k+1 = `1.
(b) Let D > 0 and χm be given by (2.6). If |`j+1 − `j| ≤

√
Dρm, for

1 ≤ j ≤ k − 1, then∣∣∣∣χΨ(`1,`2,...,`k)
m −

∫
I(`1,`2,...,`k)

e
− Ψ(s1,s2,...,sk)

ρm ds1ds2...dsk

∣∣∣∣
≤ C3

1
√
ρm

∫
I(`1,`2,...,`k)

e
− Ψ(s1,s2,...,sk)

ρm ds1ds2...dsk.

(3.4)

The constant C3 depends only on D and k, not on n,m, {`j} .
Proof
(a)We again use the inequality (2.18) to deduce that for (s1, s2, ..., sk) ∈
I (`1, `2, ..., `k) ,∣∣qΨ(`1,`2,...,`k) − qΨ(s1,s2,...,sk)

∣∣ ≤ |q|Ψ(s1,s2,...,sk) rer,

where

r = |log q| max
(s1,s2,...,sk)∈I(`1,`2,...,`k)

|Ψ (`1, `2, ..., `k)−Ψ (s1, s2, ..., sk)| .

Here as each |sj − `j| ≤ 1, so setting sk+1 = s1,

|Ψ (`1, `2, ..., `k)−Ψ (s1, s2, ..., sk)|

=
1

2

∣∣∣∣∣
k∑
j=1

(`j+1 − `j − sj+1 + sj) (`j+1 − `j + sj+1 − sj)
∣∣∣∣∣

≤
k∑
j=1

|2 (`j+1 − `j) + (sj+1 − `j+1) + (`j − sj)| ≤
k∑
j=1

(2 |`j+1 − `j|+ 2) = R.

Substituting this above, we obtain∣∣qΨ(`1,`2,...,`k) − qΨ(s1,s2,...,sk)
∣∣ ≤ |q|Ψ(s1,s2,...,sk) |log q|Re|log q|R.

Integrating over I (`1, `2, ..., `k) gives the desired result.
(b) Here we use (a) with q = χm. Our hypothesis gives |`k − `1| ≤
(k − 1)

√
Dρm so that R of (3.3) is O

(√
ρm
)
and we can apply (a). �
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Proof of Theorem 3.1
Because of Lemma 2.1,

Tr

[(
Amn
am

)k]
= Tr

[
Ek
mn

]
.

When k = 1, Tr [Emn] = n, so the result is immediate. So fix k ≥ 2.
We see that

Tr

[(
Amn
am

)k]

=
n∑

`1=1

n∑
`2=1

n∑
`3=1

...
n∑

`k=1

e`2−`1e`3−`2e`4−`3 ...e`k−`k−1
e`1−`k .

Let D > 0. We shall split this sum into a central term in which all
differences |`j − `j−1| , 2 ≤ j ≤ k, are ≤

√
Dρm, and a tail term in

which one of these is larger than
√
Dρm. We first handle the central

part of the sum. So let Σcentral denote that part of the sum with
|`j − `j−1| ≤

√
Dρm, 2 ≤ j ≤ k. Then |`1 − `k| ≤ (k − 1)

√
Dρm. The

only "free" index is `1, which may range from 1 to n. By (2.7) and
(3.4), and recalling (3.2), and that {ρm} increase to ∞,

Σcentral = (1 + o (1))
∑

χΨ(`1,`2,...,`k)
m

= (1 + o (1))

∫
...

∫
I

e
−Ψ(s1,s2,...,sk)

ρm ds1ds2...dsk,

where
I =

⋃
I (`1, `2, ..., `k)

is the union over all the indices (`1, `2, ..., `k) satisfying the inequalities
above. Then also

Σcentral = (1 + o (1))

∫ ∫
...

∫
S
e
−Ψ(s1,s2,...,sk)

ρm ds1ds2...dsk+O
((√

ρm
)k)

,

where S is the range (s1, s2, ..., sk) with |sj+1 − sj| ≤
√
Dρm for all 1 ≤

j ≤ k − 1, while s1 ∈ [0, n]. Note that then |sk − s1| ≤ (k − 1)
√
Dρm.

Here we are also using the fact that the integrand is bounded, so we may
allow s1 ∈ [0, n], and other sj to be possibly negative, while incurring

an error O
((√

ρm
)k)

. We now make the substitution

t1 =
s1√
ρm

;

tj =
sj − sj−1√

ρm
, 2 ≤ j ≤ k.
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A simple calculation shows that

∂ (t1, t2, ..., tk)

∂ (s1, s2, ..., sk)
=

(
1
√
ρm

)k
and hence also that

∂ (s1, s2, ..., sk)

∂ (t1, t2, ..., tk)
=
(√

ρm
)k
.

The region S corresponds to a region J×T in which t1 runs through an
interval J of length n√

ρm
(1 + o (1)), while T is the set of (t2, t3, ..., tk)

with |tj| ≤
√
D for all 2 ≤ j ≤ k. Moreover,

sk − s1 =
√
ρm (tk + tk−1 + ...+ t2) .

Thus from (3.2),

Ψ (s1, s2, ..., sk)

ρm
=

1

2

(
t22 + t23 + ...+ t2k + (tk + tk−1 + ...+ t2)2)

= Φ (t2, ..., tk) ,

say. Then

Σcentral = (1 + o (1))n
(√

ρm
)k−1

∫ √D
−
√
D

∫ √D
−
√
D

...

∫ √D
−
√
D

e−Φ(t2,...,tk)dt2...dtk+O
((√

ρm
)k)

.

(3.5)

For D large enough, this last integral is close to

(3.6) I∞ =

∫ ∞
−∞

∫ ∞
−∞

...

∫ ∞
−∞

e−Φ(t2,...,tk)dt2...dtk.

To evaluate this, we use a classical identity for integrals of exponential
of positive quadratic forms. We see that

Φ (t2, ..., tk) =
k∑
j=2

t2j +
1

2

∑
j 6=k

tjtk = T TBT,

where B is the positive definite (k − 1) × (k − 1) matrix with all di-
agonal entries equal 1 and all off diagonal entries equal 1

2
, while T =

[t2 t3 ... tk]
T . Thus

B =


1 1

2
1
2
· · · 1

2
1
2

1 1
2
· · · 1

2
...

...
...

. . .
...

1
2

1
2

1
2
· · · 1

 .
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Then [3, Thm. 3, p. 61]

(3.7) I∞ =
π(k−1)/2

|detB|1/2
.

To evaluate detB, we subtract the first row of B from the remaining
rows. This leaves a matrix with off diagonal entries 0 in the 2nd, 3rd,
..., (k − 1)th row, except in the first column where the entries are −1

2
.

In the diagonal, the entries are 1
2
except in the first row. So

detB =



1 1
2

1
2
· · · 1

2
1
2

−1
2

1
2

0 · · · 0 0
−1

2
0 1

2
· · · 0 0

...
...

...
. . .

...
...

−1
2

0 0 · · · 1
2

0
−1

2
0 0 · · · 0 1

2

 .

Next, we subtract the jth row from the first row, for j = k − 1, k −
2, ..., 2. We obtain

detB =



1 + k−2
2

0 0 · · · 0 0
−1

2
1
2

0 · · · 0 0
−1

2
0 1

2
· · · 0 0

...
...

...
. . .

...
...

−1
2

0 0 · · · 1
2

0
−1

2
0 0 · · · 0 1

2

 =
k

2k−1
.

Combining this and (3.5-3.7), we see that

(3.8) Σcentral = (1 + o (1))n

(
(2πρm)

k−1
2

1√
k

+O (εD)

)
,

where εD is a term independent of m,n, but depends on D and ap-
proaches 0 as D →∞.

Now we have to handle the "tail terms". Let I1 denote the set of
(`1, `2, ..., `k) such that all 1 ≤ `j ≤ n, and for at least one 2 ≤ j ≤ k,
|`j − `j−1| >

√
Dρm. From (2.10), (1.8), and (1.15),

|ΣTail| =

∣∣∣∣∣∣
∑

(`1,`2,...,`k)∈I1

e`2−`1e`3−`2e`4−`3 ...e`k−`k−1
e`1−`k

∣∣∣∣∣∣
≤ Ck

1

∑
(`1,`2,...,`k)∈I1

exp

(
−C4

ρm

[
k∑
j=2

|`j − `j−1|2 + |`1 − `k|2
])

.
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Here `1−`k is contained in the set {−n+ 1,−n+ 2, ..., n− 1}. Because
of symmetry, we may assume that |`k − `k−1| ≥

√
Dρm. Once `1 − `k

is determined, we may set

ij = `j − `j−1, 2 ≤ j ≤ k

and see that while |ik| >
√
Dρm, we can allow the remaining {ik} to

take any integer value. Thus

|ΣTail| ≤ Cn
∞∑

i2=−∞

∞∑
i3=−∞

...

∞∑
ik−1=−∞

∑
ik≥
√
Dρm

exp

(
−C4

ρm

k∑
j=2

i2j

)

= Cn

( ∞∑
i=−∞

exp

(
−C4

ρm
i2
))k−2

 ∑
i≥
√
Dρm

exp

(
−C4

ρm
i2
)

≤ Cn

(
2

∫ ∞
−∞

exp

(
−C4

ρm
x2

)
dx

)k−2
(

2

∫ ∞
√
Dρm

exp

(
−C4

ρm
x2

)
dx

)
≤ Cn

(√
ρm
)k−1

e−C4D.

The constants C and C4 do not depend on D. Thus given η > 0, we
can find D so large that

|ΣTail| ≤ ηn
(√

ρm
)k−1

.

This and (3.8) give the result. �
We note that we used ρm = o (m2) in the above proof to ensure that√
Dρm = o (n) for each D > 0, so that there are enough central terms

to give the exponential integral.

4. Location of the Eigenvalues

In this section, we use classical tools such as Gershgorin’s theorem,
Schur’s inequalities, and the Bendixson-Hirsch inequalities to estimate
the location of the eigenvalues. We begin with

Lemma 4.1
Assume the hypotheses of Theorem 1.2. Then

max
λ∈Λ(Amn/am)

|λ| ≤
√

2πρm (1 + o (1)) .

Proof
Now each such λ is an eigenvalue of Emn. By Gershgorin’s bounds [13,



EIGENVALUES OF TOEPLITZ MATRICES 23

p. 371, Theorem 1], [19, p. 146], they lie in disks centered on the
diagonal entries 1 of Emn, and with radius

max
1≤j≤n

n∑
k=1,k 6=j

|ej−k| ≤
n−1∑

j=−n+1,j 6=0

|ej| =
√

2πρm (1 + o (1)) ,

by Lemma 2.3(c). �

Next, we use Schur’s inequalities. For our matrix Emn, let

(4.1) Fmn =
1

2

(
Emn + EH

mn

)
and Gmn =

1

2i

(
Emn − EH

mn

)
.

Here the superscriptH refers to the conjugate transpose. Thus Fmn and
Gmn are Hermitian matrices, and in particular, have real eigenvalues.
Schur’s inequalities assert that [13, p. 385, Theorem 1],

(4.2)
∑

λ∈Λ(Emn)

(Reλ)2 ≤ ‖Fmn‖2 and
∑

λ∈Λ(Emn)

(Imλ)2 ≤ ‖Gmn‖2 .

Here the matrix norm is the Euclidean one, so that if B = [bjk]1≤j,k≤n,

‖B‖ =

√√√√ n∑
j,k=1

|bjk|2.

Using these, we can show that most eigenvalues approach the real axis:

Lemma 4.2
Assume the hypotheses of Theorem 1.2. Then
(a)

(4.3)
1

n
√
ρm

∑
λ∈Λ(Emn)

|Imλ|2 = o (1) .

(b)

(4.4)
1

n
√
ρm

∑
λ∈Λ(Emn)

|Reλ|2 = O (1) .

Proof
(a) In view of Schur’s inequalities (4.2), it suffi ces to show that

(4.5)
‖Gmn‖2

n
√
ρm

= o (1) .
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Now

‖Gmn‖2 =
1

4

n∑
j=1

n∑
k=1

|ek−j − ej−k|2

≤ n

2

n−1∑
`=1

|e` − e−`|2

≤ n

2

 ∑
|`|≤
√
Dρm

|e` − e−`|2 +
∑

|`|>
√
Dρm

|e` − e−`|2


≤ n

(
o
(√

ρm
)

+ C1
√
ρme

−C2D
)
,

by (2.9) and (2.15). Then

lim sup
n→∞

‖Gmn‖2

n
√
ρm
≤ C1e

−C2D

and since D may be arbitrarily large, (4.3) follows.
(c) By Schur’s inequalities,∑

λ∈Λ(Emn)

(Reλ)2 ≤ ‖Fmn‖2

=
1

4

n∑
j=1

n∑
k=1

(ek−j + ej−k)
2

≤ Cn
√
ρm,

by (2.16). �

Next, we use the Bendixson-Hirsch inequalities to bound the real and
imaginary parts of the eigenvalues. However, we first need

Lemma 4.3
Let 0 ≤ χ < 1, n ≥ 1, and let B =

[
χ(j−k)2/2

]
1≤j,k≤n

. Then B is

positive definite.
Proof
If X = [x1 x2...xn]T , then we see that

XTBX =

n∑
j,k=1

xjχ
((j−1)−(k−1))2/2xk

=

n∑
j,k=1

(
xjχ

(j−1)2/2
)
χ−(j−1)(k−1)

(
xkχ

(k−1)2/2
)
,
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so it suffi ces to prove that the matrix

Vn =
[
χ−(j−1)(k−1)

]
1≤j,k≤n =

[(
χ−(j−1)

)(k−1)
]

1≤j,k≤n

is positive definite. Now Vn is symmetric, real, and a Vandermonde
matrix, so

det (Vn) =
∏

1≤j<`≤n

[
χ−(`−1) − χ−(j−1)

]
> 0.

But then all the leading submatrices V1, V2, ..., Vn−1 also have positive
determinant, so Vn is positive definite. �

Lemma 4.4
Assume the hypotheses of Theorem 1.2. Then
(a)

(4.6) min
λ∈Λ(Emn)

Re (λ) ≥ −o
(√

ρm
)
.

(b)

(4.7) max
λ∈Λ(Emn)

|Im (λ)| = o
(√

ρm
)
.

(c) All limit points of {Λ (Emn) /
√

2πρm}n≥1 lie in [0, 1] .
Proof
Let Fmn and Gmn be given by (4.1). The Bendixson-Hirsch inequalities
[19, p. 195], [30, p. 490] assert that

(4.8) min
λ∈Λ(Emn)

Re (λ) ≥ λmin (Fmn)

where λmin (Fmn) is the smallest eigenvalue of Fmn above. Moreover,
for each λ ∈ Λ (Emn), we have

(4.9) λmin (Gmn) ≤ Imλ ≤ λmax (Gmn)

Here λmin (Gmn), λmax (Gmn) denote the smallest and largest eigenval-
ues of Gmn. The advantage of using Fmn and Gmn is that they are
Hermitian matrices, so we can use the variational formulation for their
smallest and largest eigenvalues.
(a) Now

λmin (Fmn) = inf

n∑
j,k=1

1

2
(ek−j + ej−k) xjxk

= inf
n−1∑

`=−n+1

1

2
(e` + e−`)S`,(4.10)



26 D. S. LUBINSKY

where

(4.11) S` =
∑

1≤j,j+`≤n

xjxj+`

and the inf is taken over all {xj}nj=1 with
∑n

j=1 x
2
j = 1, so that all

|S`| ≤ 1. Fix some large positive D. From (2.8),

λmin (Fmn)

≥ inf


∑

|`|≤
√
Dρm

χ`
2/2
m (1 + o (1))S` +

∑
|`|>
√
Dρm

1

2
(e` + e−`)Sj


≥

(
inf

n−1∑
`=−n+1

χ`
2/2
m S`

)
−

∑
|`|>
√
Dρm

χ`
2/2
m −

∑
|`|>
√
Dρm

1

2
|e` + e−`| − o (1)

∑
|`|≤
√
Dρm

χ`
2/2
m .

Here the first term in the last right-hand side is the smallest eigenvalue
of matrix

(
χ

(j−k)2/2
m

)
1≤j,k≤n

, which is positive definite by Lemma 4.3,

so its smallest eigenvalue is positive. Also, using the bounds of Lemma
2.3(a), ∑

|`|>
√
Dρm

|e` + e−`| ≤ C1
√
ρme

−C2D;

while a similar estimate holds for
∑
|`|>
√
Dρm

χ
`2/2
m , and trivially,

o (1)
∑

|`|≤
√
Dρm

χ`
2/2
m = o

(√
ρm
)
.

In summary,

λmin (Fmn) ≥ −C√ρme−CD − o
(√

ρm
)
.

Since D may be arbitrarily large, we obtain

λmin (Fmn) ≥ −o
(√

ρm
)
.
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(b) Here we can use that the maximum absolute value of eigenvalues
of Gmn is bounded by its largest row sum,

max
j

n∑
k=1

1

2
|ek−j − ej−k|

≤
n∑
`=0

|e` − e−`|

≤ o (1)
∑

1≤`≤
√
Dρm

χ`
2/2
m +

∑
`>
√
Dρm

|e` − e−`|

≤ o
(√

ρm
)

+ C1
√
ρme

−C2D,

by Lemma 2.2(b) and 2.3(a). Then as D is arbitrary, the maximum
absolute value of eigenvalues of Gmn is o

(√
ρm
)
, and then (4.9) gives

the result.
(c) This is an immediate consequence of (a), (b) and Lemma 4.1. �

5. Proof of Theorem 1.2

Let us review what we have proved so far: in Lemma 4.1, we proved
that all eigenvalues of Emn, and hence of Amn/am, have modulus ≤√

2πρm (1 + o (1)). Moreover, in Lemma 4.4, we proved that all limit
points of {Λ (Amn/am) /

√
2πρm} lie in [0, 1]. We still need to prove:

(I) That the eigenvalue of largest absolute value of Amn/am is≥
√

2πρm (1 + o (1))
and that the limit points of {Λ (Amn/am) /

√
2πρm}n≥1 fill out [0, 1].

(II) That the measures µmn and µ[2]
mn converge weakly in the sense de-

scribed in Theorem 1.2. We begin with

Lemma 5.1
The assertion (III) of Theorem 1.2 is true.
Proof
Now µmn is a probability measure with support contained in a ball
center 0 that is independent of n. Moreover, for k ≥ 1,∫

tkdµmn (t) =
1

n

∑
λ∈Λ(Amn/am)

(
λ/
√

2πρm

)k
→ 0 as n→∞,

by Theorem 3.1. Then for any polynomial P , we have

lim
n→∞

∫
P (t) dµmn (t) = P (0) .
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Next let f be continuous in an open subset of the complex plane con-
taining [0, 1]. Let ε > 0. For some small enough δ > 0, the restriction
of f to [−δ, 1 + δ] is continuous, so we can find a polynomial P such
that

|f (x)− P (x)| < ε

3
for x ∈ [−δ, 1 + δ] .

In as much as f and P are continuous, we can find η ∈ (0, δ) such that
if S = {z : dist (z, [0, 1]) < η}, then

|f (z)− f (Re z)| < ε

3
and |P (z)− P (Re z)| < ε

3

so that for all z ∈ S,

|f (z)− P (z)| < ε.

Then for n so large that the support of µmn is contained in S,∣∣∣∣∫ f (t) dµmn (t)− f (0)

∣∣∣∣
≤

∣∣∣∣∫ [f (t)− P (t)] dµmn (t)

∣∣∣∣+

∣∣∣∣∫ P (t) dµmn (t)− P (0)

∣∣∣∣+ |P (0)− f (0)|

≤ ε+

∣∣∣∣∫ P (t) dµmn (t)− P (0)

∣∣∣∣+ ε

→ 2ε,

as n→∞. Since ε > 0 is arbitrary, (1.17) follows. �

Lemma 5.2
The assertion (IV) of Theorem 1.2 is true.
Proof
First note that

∣∣µ[2]
mn

∣∣ (C) =
1

n
√
πρm

∑
λ∈Λ(Amn/am)

|λ|2

=
1

n
√
πρm

∑
λ∈Λ(Amn/am)

[
|Reλ|2 + |Imλ|2

]
≤ C,(5.1)
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independently of n, by Lemma 4.2(a), (b). Next, Theorem 3.1 shows
that for each fixed, j,

lim
n→∞

∫
tjdµ[2]

mn (t)

= lim
n→∞

1

n
√
πρm

∑
λ∈Λ(Amn/am)

λ2
(
λ/
√

2πρm

)j
= lim

n→∞

√
2

n (
√

2πρm)
j+1Tr

((
Amn
am

)j+2
)

=

√
2

j + 2
.

(5.2)

In view of Lemma 4.4, the limit points of the supports of µ[2]
mn lie in

[0, 1]. Because of (5.1), every subsequence of
{
µ

[2]
mn

}
contains another

subsequence converging weakly to some measure ω with support in
[0, 1] and finite total mass. As µ[2]

mn is complex, this requires some
clarification. Decompose, in Hahn-Jordan fashion,

µ[2]
mn =

(
Reµ[2]+

mn − Reµ[2]−
mn

)
+ i
(
Imµ[2]+

mn − Imµ[2]−
mn

)
where all four measures on the right-hand side are non-negative. By
Lemma 4.4 and (5.1), the sequence

{
Reµ

[2]+
mn

}
all have support con-

tained in a fixed neighborhood of [0, 1], and

sup
n≥1

Reµ[2]+
mn (C) <∞.

Hence we can choose a weakly convergent subsequence in the usual
sense: for f continuous in an open set containing [0, 1],

lim

∫
f dReµ[2]+

mn =

∫
f dσ+

where σ+ is a positive measure supported on [0, 1] and we take limits

through the subsequence. Similar assertions apply to
{

Reµ
[2]−
mn

}
and{

Imµ
[2]±
mn

}
. So let ω be a weak limit of a subsequence of

{
µ

[2]
mn

}
in this

sense. By (5.2), ∫ 1

0

tjdω (t) =

√
2

j + 2
for j ≥ 0.
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In particular then ω ([0, 1]) = 1. To identify ω, make, the substitution
t = e−s/(j+2) in√

2

π

∫ 1

0

tj+1 |log t|−1/2 dt =

√
2

π

1√
j + 2

∫ ∞
0

e−ss−1/2ds =

√
2

j + 2
.

So

(5.3)
∫ 1

0

tjdω (t) =

√
2

π

∫ 1

0

tj+1 |log t|−1/2 dt for j ≥ 0.

We next use the fact that the Hausdorffmoment problem has a unique
solution [27], but taking account of the fact that ω is a possibly complex
measure. Write

ω = (σ+ − σ−) + i (τ+ − τ−)

where all the measures on the right are finite nonnegative measures.
Taking imaginary parts in (5.3) and then rearranging gives∫ 1

0

tjdτ− (t) =

∫ 1

0

tjdτ+ (t) , j ≥ 0,

so as the Hausdorff moment problem has a unique solution [27], τ+ =
τ−. So ω is a purely real measure. We then obtain∫ 1

0

tjdσ+ (t) =

√
2

π

∫ 1

0

tj+1 |log t|−1/2 dt +

∫ 1

0

tjdσ− (t) , for j ≥ 0.

Again, this gives

dσ+ =

√
2

π
t |log t|−1/2 dt + dσ−

and hence

dω (t) =

√
2

π
t |log t|−1/2 dt.

Since this is independent of the subsequence,
{
µ

[2]
mn

}
converges weakly

to
√

2
π
|log t|−1/2 t dt. The proof can be completed as in Lemma 5.1,

using also (5.1). �.

Proof of Theorem 1.2
(I) The requisite asymptotic upper bound for the eigenvalue of largest
modulus follows from Lemma 4.1. The matching asymptotic lower

bound follows from the lemma above, which shows that as
√

2
π
|log t|−1/2 t

dt contains 1 in its support, so necessarily there are eigenvalues λ of
Amn/am with λ/

√
2πρm arbitrarily close to 1.

(II) In Lemma 4.4, we showed that all limit points of {Λ (Amn/am) /
√

2πρm}n≥1
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are contained in [0, 1]. That they fill out [0, 1] follows from Lemma 5.2.
(III), (IV) were proved in the two lemmas above. �

6. Proof of Theorem 1.4

We begin by obtaining finer estimates on the location of the eigen-
values:

Lemma 6.1
Assume the hypotheses of Theorem 1.4. Then
(a)

(6.1) min
λ∈Λ(Emn)

Re (λ) ≥ −o (1) .

(b) If in addition (1.36) holds, then

(6.2) max
λ∈Λ(Emn)

|Im (λ)| = O (1) .

Proof
We again use (4.10), (4.11). Fix some large positive D. From Lemma
2.4(a),

λmin (Fmn)

≥ inf


∑

|`|≤
√
Dρm log ρm

1

2
(e` + e−`)S` +

∑
|`|>
√
Dρm log ρm

1

2
(e` + e−`)S`


≥

(
inf

n−1∑
`=−n+1

χ`
2/2
m S`

)
−

∑
|`|>
√
Dρm log ρm

χ`
2/2
m −

∑
|`|>
√
Dρm log ρm

1

2
|e` + e−`|

−C
∑

|`|≤
√
Dρm log ρm

χ`
2/2
m

{
o

(
`3

ρ2
m

)
+ o

(
`2

ρ
3/2
m

)
+ o

(
`6

ρ
7/2
m

)}
.

Here as before, the first term is the smallest eigenvalue of a positive
definite matrix, so is nonnegative. Also if D is large enough, Lemma
2.3(a) shows that for some C1, C2 independent of D,∑

|`|>
√
Dρm log ρm

χ`
2/2
m +

∑
|`|>
√
Dρm log ρm

|e` + e−`|

≤ C3
√
ρm exp (−C4D log ρm)

= C3ρ
1/2−C4D
m = o (1) ,(6.3)
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if D is large enough. Next,

∑
|`|≤
√
Dρm log ρm

χ`
2/2
m

{
O

(
`3

ρ2
m

)
+ o

(
`2

ρ
3/2
m

)
+ o

(
`6

ρ
7/2
m

)}
= o (1) ,

by Lemma 2.3 (a), (b). So

λmin (Fmn) ≥ −o (1)

Then (4.8) gives the result.
(b) As in the proof of Lemma 4.4(b), we bound the largest absolute
value of any eigenvalue of Gmn by

n∑
`=1

|e` − e−`|

≤
∑

1≤`≤
√
Dρm log ρm

|e` − e−`|+ C1
√
ρme

−C4D log ρm ,

by Lemma 2.3(a). Here using Lemma 2.4(b),∑
1≤`≤
√
Dρm log ρm

|e` − e−`|

≤ C
∑

1≤`≤
√
Dρm log ρm

χ`
2/2
m

{
O

(
`3

ρ2
m

)
+ o

(
`2

ρ
3/2
m

)
+ o

(
`6

ρ
7/2
m

)}
≤ C.

by Lemma 2.3(b). So the eigenvalue of maximum modulus of Gmn is
O (1), and then (4.9) gives the result. �

We note that when (1.36) holds, Lemma 6.1(b) shows that the con-
clusions (II), (III) of Theorem 1.4 hold when we replace µ[1]

mn by the
measures in (1.37). Next, we need:

Lemma 6.2
The assertions (II) and (III) of Theorem 1.4 are true.
Proof
First note that µ[1]

mn is a (possibly signed) measure with

(6.4) µ[1]
mn (C) =

1

n

∑
λ∈Λ(Amn/am)

Reλ = Re
1

n
Tr (Amn/am) = 1.
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Moreover, the limit points of the supports of
{
µ

[1]
mn

}
lie in [0, 1], and

for each fixed j ≥ 0,

∫
tjdµ[1]

mn (t) =
1

n

∑
λ∈Λ(Amn/am)

Reλ
(
λ/
√

2πρm

)j
=

1

n

∑
λ∈Λ(Amn/am)

λ
(
λ/
√

2πρm

)j
− i

n

∑
λ∈Λ(Amn/am)

(Imλ)
(
λ/
√

2πρm

)j
.

(6.5)

Here

1

n

∑
λ∈Λ(Amn/am)

λ
(
λ/
√

2πρm

)j
=

1

n (
√

2πρm)
j Tr

(
[Amn/am]j+1

)
=

1 + o (1)√
j + 1

by Theorem 3.1. Moreover, if j = 0, the second sum in the right-hand
side of (6.5) is 0, while if j ≥ 1, Cauchy-Schwarz gives

∣∣∣∣∣∣ 1n
∑

λ∈Λ(Amn/am)

(Imλ)
(
λ/
√

2πρm

)j∣∣∣∣∣∣
≤

√
1

n

∑
λ∈Λ(Amn/am)

|Imλ|2
√

1

n

∑
λ∈Λ(Amn/am)

∣∣∣λ/√2πρm

∣∣∣2j
≤ C

√
1

n

∑
λ∈Λ(Amn/am)

|Imλ|2
√

1

n

∑
λ∈Λ(Amn/am)

∣∣∣λ/√2πρm

∣∣∣2
= C

√
1

n
√

2πρm

∑
λ∈Λ(Amn/am)

|Imλ|2
√

1

n
√

2πρm

∑
λ∈Λ(Amn/am)

|λ|2 = o (1) ,

by Lemma 4.2. Thus for j ≥ 0,

∫
tjdµ[1]

mn (t) =
1 + o (1)√
j + 1

.
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Next,∣∣µ[1]
mn

∣∣ (C) =
1

n

∑
λ∈Λ(Amn/am)

|Reλ|

=
1

n

∑
λ∈Λ(Amn/am),Reλ<0

|Reλ|+ 1

n

∑
λ∈Λ(Amn/am),Reλ≥0

Reλ

= o (1) +
1

n

∑
λ∈Λ(Amn/am),Reλ≥0

Reλ

=
1

n

∑
λ∈Λ(Amn/am)

Reλ+ o (1)

= 1 + o (1) .

Here we have used Lemma 6.1 and (6.4). Next the substitution t =
e−s/(j+1) shows that for each j ≥ 0,√

1

π

∫ 1

0

tj |log t|−1/2 dt =

√
1

j + 1
,

so for j ≥ 0,

lim
n→∞

∫
tjdµ[1]

mn (t) =

√
1

π

∫ 1

0

tj |log t|−1/2 dt.

We can now complete the proof as in Lemma 5.2. �

Proof of Theorem 1.4
We proved (I) in Lemma 6.1, and (II), (III) in Lemma 6.2. �
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