3D Modeling of Cities for Virtual Environments

Calvin Davis!, Jaired Collins?, Emily Lattanzio®, Joshua Fraser?!, Shizeng Yaol, Haoxiang Zhangl,

Bimal Balakrishnan?, Ye Duan', Prasad Calyam', Kannappan Palaniappan

1

!Dept. of Electrical Engineering and Computer Science, ?Architectural Studies, University of Missouri, Columbia, MO
3High Point University, High Point, NC

Abstract—Modeling and simulation of large urban regions
is beneficial for a range of applications including intelligent
transportation, smart cities, infrastructure planning, and training
artificial intelligence for autonomous navigation systems including
ground vehicles and aerial drones. Immersive environments
including virtual reality (VR), augmented reality (AR), mixed
reality (MR or XR) can be used to explore city scale regions for
planning, design, training and operations. Virtual environments
are in the midst of rapid change as innovations in display tech-
nologies, graphics processors and game engine software present
new opportunities for incorporating modeling and simulation into
engineering workflows. Game engine software like Unity with
photorealistic rendering and realistic physics have plug-in support
for a variety of virtual environments and typically model the scene
as meshes. In this paper, we develop an end-to-end workflow for
creating urban scale real world accurate synthetic environments
that can be visualized in virtual environments including the
Microsoft HoloLens head mounted display or the CAVE VR for
multi-user interaction. Four meshing algorithms are evaluated
for representation accuracy and city-scale meshes imported into
Unity for assessing the quality of the immersive experience.

Index Terms—3D Reconstruction, Mixed Reality, Synthetic
Environment, Pipeline, Meshes, Texture Mapping, Point Cloud

I. INTRODUCTION

Mixed reality (MR) has significantly influenced technology
by immersing users in synthetic virtual environments, provid-
ing capabilities such as communication [1] and autonomous
vehicle testing [2]. Our work focuses on utilizing the im-
mense capabilities of MR with 3D modeling to display cities
as meshes in MR devices. This paper explores an effective
pipeline for photo-realistic mesh reconstruction from a point
cloud, its challenges, and its use cases on a city scale.

Synthetic virtual environments can improve communication,
especially between professionals and team members, by show-
ing 3D information that would otherwise take more effort and
time to produce [1]. On a city scale, city planners and civil
engineers can produce solutions to their problems and com-
municate it to others through a city’s virtually reconstructed
environment.

Autonomous vehicles, whether on land, water, or air, have
had significant issues with testing. High costs in hardware and
man-hours means the testing environment must be safe. To
solve this issue, synthetic environments have been created to
allow testing that is mostly consistent with the real world [2],
[3]. Using virtual city-scale reconstructed environments with
these testing platforms can enable rapid and safe development
of autonomous drone algorithms.

The general workflow in Figure 1 was developed to view
3D point clouds in the Microsoft HoloLens 1, an augmented
reality device and the Cave Automatic Virtual Environment
(CAVE). The steps include converting dense point clouds
generated with the multi-view stereo algorithm VB3D [4] into
polygon meshes, applying photo-realistic texture mapping, and
transferring the meshes into Unity to create synthetic environ-
ments for visualization and drone flight planning experiments.
We experimentally compare four different free-to-use meshing
platforms to determine efficacy for 3D modeling city-scale
urban environments using a free and easy to recreate pipeline
for MR and flight planning.

II. MESH GENERATION FROM POINT CLOUDS

A. Four Common Meshing Algorithms

The ball-pivoting algorithm (BPA) uses a ball of fixed radius
to traverse a point cloud creating triangles when three distinct
points are in contact with the ball, as the ball pivots around
edges created during the previous step(s). Holes resulting from
irregularly sampled surfaces are filled by running BPA multiple
times with increasing radii [5].

Poisson surface reconstruction formulates mesh reconstruc-
tion as a Poisson problem resulting in a global solution produc-
ing smooth surfaces that are robust to noise [6]. The surface
is extracted from oriented point samples by first calculating
an inside-outside indicator function discretized to an octree
then extracted using the marching cubes algorithm. Once the
marching cube traverses to the desired octree depth, the trian-
gulated 3d mesh is created by interpolating the points between
the cube vertices. The Screened Poisson surface reconstruction
method adds point constraints to reduce the original method’s
tendency to over smooth [7].

Point Cloud Library (PCL) implements mesh reconstruction
with a greedy triangulation method [8] which incrementally
adds edges that never cross another, so edges are never deleted.
Each point p is assigned k& neighbors in a sphere, determined
by local density. A plane computed by a weighted least squares
from point p’s neighborhood is used to estimate the true surface
normal. Afterwards, points are pruned based on visibility,
connected to p, and consecutively connected to each other
to form triangles. A maximum and minimum angle criteria
are used to reduce the smoothing of corners. This method
focuses on fast triangulation so that it may be used in real-
time applications where speed and a robustness to noise are
important.

B. Similar Pipelines

Maiti and Chakravarty [9] study surface reconstruction using
point clouds resulting from feature-based photogrammetry.
They evaluate both Poisson surface reconstruction [6] and
the Ball-Pivoting Algorithm (BPA) [5] with a discussion on
tuning algorithm parameters and demonstrating the impact
these parameters have on the resulting water-tight mesh.

Bosch et al. created an open source ground truth and metric
evaluation pipeline for urban areas sourced from commercial
satellite imagery along with benchmark datasets [10]. They
establish evaluation metrics for photogrammetric point cloud
accuracy to LiDAR, horizontal accuracy to public mapping
vector products, semantic labeling, volumetric accuracy, cur-
vature and roughness, and triangle mesh model simplicity.

Poulis and You directly use LiDAR for city reconstruction
[11]. To simplify the computation, a nadir view of a LiDAR
point cloud is converted into a 2D XY Z map, where X =R,
Y = G, and Z = B. Gaussian distributions are then used
to segment similar regions that correspond to roofs. Then,
boundaries are extracted from the segmentation results. Planes
are fitted to the boundaries and then extruded downward,
producing a watertight mesh. For texture mapping, available
images are matched to scenes of the extruded 3D mesh and
bundle adjusted. Texture coordinates are found by projecting
the mesh’s triangles into all images and using the image with
the highest projected area.

Kuschk shows that city mesh reconstructions can be pro-
duced by connecting neighboring points of a created digital
surface model [12]. First, bundle adjusted camera poses and
corresponding images are used for dense stereo reconstruction
to obtain height information. Then, in the digital surface model,
pixels (z,9), (x + 1,y),(x + 1,y + 1), (z,y + 1) are naively
connected into two triangles. Since the resulting mesh has too
many polygons, two simplifications are performed: plane fitting
to remove redundant vertices and removal of nearly collinear
triangles. After simplification, the texturing method projects all
triangles to all the images, choosing the image with the highest
projected area.

III. METHODS

This section details our pipeline for modeling and visual-
ization of urban environments from 3D point clouds as shown
in Figure 1. First a triangle mesh is generated from a city-
scale point cloud using freely available software packages, then
our custom high-resolution texturing algorithm is applied, and
finally we import our results into Unity to create synthetic
environments for HoloLens and CAVE.

A. Creating a Mesh

We begin with dense 3D point clouds of two urban areas
Columbia, MO and Albuquerque, NM created using the VB3D
aerial multiview stereo algorithm [4]. The aerial imagery are
from a high resolution metric camera [13] with the onboard
exterior camera orientations refined using the fast BA4S bundle
adjustment algorithm [14] Additionally, LiDAR is available

for Columbia, MO as an additional source of point data for
algorithm comparison and evaluation.

We use the surface reconstruction algorithms from the
following freely available software packages: the Ball-Pivoting
Algorithm (BPA) [5] and Screened Poisson [7] available in
MeshLab [15], Poisson Surface Reconstruction [6] in Cloud-
Compare [16], Greedy Surface Triangulation [17] in Point
Cloud Library (PCL) [17], and Poisson Reconstruction with
Delaunay Triangulation [18] in the Computational Geometry
Algorithms Library (CGAL) [19].

Each surface reconstruction algorithm provides parameters
that tune its robustness to noise, holes, and non-uniform sam-
pling. Figures ?? and ?? show the effects of these parameters
on the resulting surface. Tuning these parameters not only
affects the quality of the resulting surface, but also significantly
affects the compute time and memory usage.

The Ball-Pivoting Algorithm (BPA) [5] is tuned by the ball
radius, clustering radius, and angle threshold parameters. The
ball radius parameter controls the size of the ball that traverses
the point cloud, where a small radius will be sensitive to noise
due to including most points in the mesh, and a large radius
pivoting over noisy points will result in a smoother surface at
the cost of finer details. Clustering radius filters out points that
lie too close together in a neighbor as a percentage of the ball
radius. Because clustering is defined as a percentage of the ball
radius, it is important to note that these are not independent
parameters. Angle threshold stops the ball traversal at an edge
that would require a pivot angle greater than the threshold.

Greedy Surface Triangulation [8] uses maximum number of
neighbors, farthest neighbor, maximum edge length, minimum
and maximum angles, and maximum surface angle. Defining
a maximum number of neighbors and the farthest possible
neighbor filters local influence since a plane is estimated
from the neighborhood. The maximum edge length, minimum
angle, and maximum angle limit resulting triangles, but the
minimum angle might not be honored. The maximum surface
angle determines the maximum angle between two triangle
normals, and an optional consistency check is available to
ensure adjacent normals lie on the same side of the surface.

The Poisson algorithm [6] controls the voxel resolution by
setting the maximum depth of the octree for surface reconstruc-
tion. Increasing this depth results in higher-resolution triangle
meshes. Samples per node is the minimum number of points
that should lie in a node during octree construction as it adapts
to sampling density. Five or fewer samples per node may
be suitable in the absence of noise, while twenty or more
may be required to smooth noisy data. The Screened Poisson
algorithm [7] reduces the tendency to over-smooth with an ad-
ditional interpolation weight parameter. A lower interpolation
weight puts more importance on fitting the gradients, while a
higher value constrains the mesh more to the points.

B. Selecting the Best Mesh

Meshes used for drone flight planning should not have any
holes, otherwise a flight path could be created to erroneously
fly into a surface that is thought to be open. The best meshing

Texture Mapping
Using View Selection
(Alg1&2)

Meshing Algorithms Registration Mixed Reality Devices

Poisson Reconstruction
(CC)

Ball Pivot Algorithm
(ML)

Greedy Surface
Point Cloud Triangulation (PCL)
Screened Poisson
Reconstruction (ML)

Import Mesh into Unity

Reality
Toolkit

VR

(a) Poisson reconstruction algo- (b) Ball-pivoting algorithm in (c) Greedy surface triangulation (d) Screened Poisson algorithm in
rithm in CloudCompare. ;1 = MeshLab. 4 = 0.04, 0 = 0.36, algorithm in PCL. x = 0.05, MeshLab. p = 1.15, ¢ = 2.6,
0.22, 0 = 0.53, #Faces = 2.9M #Faces = 1.7M o = 0.38, #Faces = 2.0M #Faces = 2.2M

Fig. 2: Comparison of LiDAR meshes to LiDAR,. point cloud. Albuquerque, NM meshes were reconstructed using four
different meshing algorithms. Mean and standard deviations are statistical measures of the distance between each point and
the respective mesh in meters.

TABLE I: Quantitative evaluation of VB3D meshes to VB3D,,. or LiDAR,,. point clouds. The four meshing algorithms are
evaluated across the full city scene by comparing the triangular meshes to the reconstructed VB3D point cloud of Albuquerque,
New Mexico and to the LiDAR point cloud for the same region. Units are in meters.

Poisson Ball-Pivoting Greedy Screened Poisson
Alg Parameters Octree=11, Samples=10, 1.5, 1.5 Ball Radius=2, Clustering=20 Mu=2.5, Max Neighbors=100 Octree=11, Samples=1
Mesh — PointCloud " o # Faces " o # Faces o o # Faces o o # Faces
VB3D — VB3Dy. 0.85 | 0.89 1.19M 045 | 0.70 2.38M 0.01 | 0.12 8.94M 1.73 | 1.98 | 0.19M
VB3D — LiDARpc 1.19 | 1.49 1.19M 0.81 | 1.01 2.38M 0.50 | 0.93 8.94M 1.70 | 1.93 | 0.I9M
LiDAR — LiDAR,. | 0.22 | 0.53 2.92M 0.04 | 0.36 2.23M 0.05 | 0.38 2.06M 1.15 | 2.60 1.74M

Fig. 3: Side-view of the point cloud rendered model of Albu-
querque, New Mexico; created with multi-view stereo approach
with 215 aerial images.

==

Fig. 4: Albuquerque, New Mexico. Matches Figure 5.

algorithm would also need to be robust to noise in the to produce the best mesh that fits the characteristics of the

underlying point cloud. Figures 5 and 6 show a few results data.

of our meshing. To find the best mesh with BPA and greedy BPA and greedy surface triangulation produce meshes that
triangulation, a grid search was performed with their many are too noisy. No smoothing is used due to the nature of the
parameters. Figure 7 shows a few BPA results. Care is taken algorithms. Additionally, holes are present in the generated

(a) Poisson (in CloudCompare).

p=0.85 0 =0.89 MeshLab). pn = 0.45, 0 = 0.70

(b) Ball-pivoting algorithm (in (c) Greedy surface triangulation (d) Screened Poisson (in Mesh-
(in PCL). 4 =0.01, 0 = 0.12

Lab). p=1.73, 0 = 1.98

(f) Ball-pivoting algorithm

(h) Screened Poisson

(e) Poisson reconstruction (g) Greedy surface triangulation

Fig. 5: Visual comparison of VB3D meshes with VB3D,. point cloud for ABQ dataset (see Figure 4 for an aerial image
from the same viewpoint). Top row shows rendered meshes with mean accuracy and standard deviation of the distance errors
between each point and the mesh surface given in meters. Second row shows meshing results for the full scene with errors
between 0 to 1 meter shown in gray, errors more than 1 meter colored using a jetmap: blue colors are lower errors, while red

colors are higher errors.

(a) Building from (b) Poisson reconstruction. (c) Ball-pivoting algorithm. (d) Greedy. p = 0.34, 0 = (e) Screened Poisson. p =
original image pw =174, ¢ = 179, # p = 0.76, 0 = 0.90, # 0.57, # Faces = 91.0K 2.45, 0 = 2.29, # Faces =
Faces = 15.6K Faces = 11.5K 1.1K

Fig. 6: Cropped building meshes of the Boone County courthouse in Columbia, MO. The LiDAR ground truth point was first
infilled using a point density of 4 pt/m?, then accurately aligned with the VB3D point cloud using the iterative closest point
algorithm with 50,000 3D points. The final RMSE between the LiDAR ground truth and the VB3D point cloud was 1.03.
Mean and standard deviation of the distance errors (in meters) between each LiDAR ground truth point and the mesh surface.

meshes. Post-processing could be done to remove holes in
the mesh, but not all could be easily filled. Both Poisson and
screened Poisson methods generate meshes that are watertight,
robust to noise, and smooth. Screened Poisson includes point
constraints to prevent losing detail and oversmoothing, which
we also evaluated.

CloudCompare’s default mesh distance function is used to
compute the distances between the point cloud and mesh.
Figure 6 visualizes a cropped building using the four meshing
algorithms. Table I and Figure 5 shows the mesh algorithms
compared to an aerial image.

C. Texture Mapping Using View Selection

The resulting polygon meshes contain only per-vertex color
retained from the source point clouds. Achieving photo-realism
requires applying high-resolution textures to our model. Rather

than create a single texture atlas and UV parameterization,
we divide the mesh into triangle sets texture mapped to one
of a small set of the original high-resolution aerial images
evenly spaced about a circular orbit of our scene. We use the
associated bundle adjusted camera poses for each image and
face normals to choose the view to use as a texture for each
triangle. One triangle set is created for each texture image
and triangles are assigned to a set based on the smallest angle
between the camera view vector and the face normal as shown
in Algorithm 1.

After assigning each triangle to an associated image set,
the face must be UV parameterized to the image for tex-
ture display. Generating UVs for each triangle only requires
projecting vertex coordinates to the image plane, normalizing
image plane coordinates, and vertically flipping to match

Fig. 7: Grid of ball-pivoting algorithm results. Angle threshold
set to 90. Clustering radius increases downward. Ball radius
increases to the right.

Algorithm 2 Generate Texture Map Coordinates for Triangles

1: Input

2: M mesh with faces removed

3 P camera matrix associated with desired image
4: w image width

5: h image height
6

7

8

9

: T textured mesh coordinates
. for all face f € M do
for all vertex v € f do

10: convert v to homogeneous

11: (u,v) + Pu, project vertex to image
12: u u/w, normalize

13: v+ v/ (1—(v/h)), normalize and flip
14: end for

15: end for

Algorithm 1 Match Faces to Views for Texture Mapping

1: Input
2: M mesh with faces in winding order

3 n number of image views to texture from

4 Z,, array of camera look-at directions, size n
5: Output

6 R,, list of meshes with removed faces

7. procedure REMOVEFACES(M, n, Z,)

8 initialize R, = M,Vn

9 for all face f € M do

10: Vg, U1, Vg < vertex 0, 1, 2 € f
11: U <— V1 — Vg

12: V<V — U1

13: P uxv/|luxuvl

14: i+ argmin{p-z,z € Z,}

15: delete f from R,, n #i

16: end for

17: end procedure

texture origin conventions as shown in Algorithm 2. The
triangles with UV texture coordinates are written to a mesh
file associated with the image used for texturing resulting in
a separate mesh for each of the images used in Algorithms 1
and 2. We use MeshLab to merge the separate point clouds
into a single Stanford polygon format (.ply) file with texture
references. Figure 8 shows the result of texture mapping using
eight images. Texture mapping could be improved with depth
testing to remedy incorrectly textured triangles resulting from
occlusions using a z-buffer algorithm [20].

D. Unity Game Engine and Mixed Reality Plugins

The next step in the pipeline is loading the meshes into the
Unity game engine. Unity is chosen since it supports twenty
eight platforms, including iOS, Oculus, and Windows Mixed
Reality, Unity can port a 3D project to a wide range of different
MR devices. In addition, the Unity Asset store has over thirty-
one thousand 3D assets, which would be useful in applying this
pipeline to different scenarios that require additional features.

Fig. 8: Albuquerque mesh with texture from Algorithm 2 using
eight views.

It is noteworthy to mention, however, that Unity is not an open
source platform. This is not a limiting factor in this pipeline
because it is not used for profit.

In order to load this project into Unity, each mesh and image
needs to be imported into the game engine as an asset. After
converting the images into Unity’s equivalent of a texture, a
material, they are each applied to the corresponding mesh. All
meshes are overlapped by assigning them the same position in
(z,y, z) coordinates. Figure 9 shows a generated mesh using
our pipeline inside of Unity.

There are many Unity plugins for VR environments. In
this study, we build projects for two platforms, Hololens 1
and CAVE. To use the Hololens 1, Microsoft’s Mixed Reality
toolkit is downloaded and ‘3D’ is selected as the Unity project.
This plugin can change the Unity settings to be ideal to
use with HoloLens 1. Although the plugin sets up the Unity
environment, there are many steps to deploy the application to
HoloLens. In the build settings, the Universal Windows Plat-
form is set to a D3D project with x86 architecture and default
compression. The platform is then to Universal Windows. To
interact with the mesh hologram we add interaction profiles
to the project, which include TaptoPlace and BoundsControl,
which allows clicking to move and scaling of the hologram,

respectively. A step-by-step guide on the rest of the process is
provided by Microsoft [21].

MiddleVR 2.0 and UniCAVE 2.0 are the plugins ran for
the CAVE experiments. These plugins make it convenient for
users to set up the VR environment, connect VR headset and
wands, and customize the scripts to control the wand event.

MiddleVR is a Windows-only plugin that supports an
Unity project running under multi-display, stereoscopy, and
VR system. It has already set up the connection between
VR equipment and VR system such as CAVE environment
and joystick. MiddleVR supports multi-PC and multi-GPUs
with multiple projectors, so it ensures that many types of
projects can be run with this plugin. MiddleVR has many
built-in scripts that save a user’s time to implement, such
as ’object grabbable’. Users just add the components to the
game object and customize parameters. Although MiddleVR
has many advantages for interfacing Unity with the CAVE VR
environment, its proprietary and expensive.

UniCAVE is an open source plugin for Unity made by
University of Wisconsin-Madison. UniCAVE does not have
many built-in functions, so users have to write their own code
to implement. Compared to MiddleVR, UniCAVE does not
automatically set up the connection between the VR equipment
and environment.

Fig. 9: Mesh inside of Unity

IV. RESULTS

Noisy data poses a significant problem. While trying to
quantify our results by calculating distances between LiDAR
points and mesh faces, we find the numerical accuracy of
each meshing algorithm is not a great metric. Poisson methods
in general are robust to noisy data [6], so aesthetically and
qualitatively, its mesh reconstructions are cleaner. Poisson re-
construction also produces smooth results, and when compared
to sharp LiDAR, its distance is high. BPA and greedy surface
triangulation perform well quantitatively when compared to
LiDAR, but do so by sacrificing visual coherency. If the input
data were not noisy and uniformly distributed, BPA is expected
to perform the best. Figure 6 shows the results on a close-up
of a selected building.

The texture mapping algorithm can produce a photo-realistic
model, but without depth testing, some ground textures are

incorrect. Additionally, the illumination on textures could be
different since they are pulled from different viewpoints and
time, so a way to correct the differences is needed as the
number of images used increases. Taller buildings that are not
occluded show the best results.

With the Hololens 1 we are able to stream the mesh from
Unity and grab, move, and rotate the hologram. This hologram
can be put anywhere in the world, i.e. on a table, floor, or
scaled 1:1 as if you were walking through the city. The results
show that with Unity one can view the meshes in most popular
VR environments. This is proven with the CAVE, shown in
Figure 10. Various use cases for our model in the CAVE
include a first-person view for planning drone flights, viewing
already planned flights, and pure visualization of a city.

Missouri

V. CONCLUSION

To make more effective use of drone flight air time, we
developed a pipeline to use aerial images of the area the
drone will fly through to create a representative synthetic
environment. This allows the optimal flight path to be found
before setting foot in the specific location. Factors such as
drone malfunctions, inclement weather, and high purchase
costs will still be limiting factors of drones’ usefulness, but
making the most effective use of the drone’s airtime minimizes
flight risks. While the method proposed in this paper are ideal
for drone flight planning experiments, it can have much wider
applications: training simulations in specific environments,
autonomous car navigation simulations, video games set in
real cities, and 3D blueprints to help plan where to build
roads and structures. The method is cost effective and simple.
However, with every new implementation of this pipeline the
final product will be limited by the quality of the original data,
the size of the files that can be loaded into MeshLab and Unity,
and the desired meshing algorithm to be used.

The pipeline for creating these representative virtual envi-
ronments is comprised of four components: convert the point

cloud to a mesh using MeshLab and simplify the number of
polygon faces, apply texture mapping using our method, import
mesh layers into Unity game engine, and finally, configure the
scene in Unity for the Hololens 1 and CAVE. Any mixed reality
device that Unity supports can view the meshes. In addition,
with a circular orbit aerial image data set, any specific location
can be turned into a synthetic environment.

ACKNOWLEDGMENTS

Emily Lattanzio (High Point University) and Calvin Davis
(Uiversity of Missouri) were supported by the NSF REU
program at the University of Missouri EECS Department.
The research was partially supported by the National Sci-
ence Foundation under awards CNS-1950873 (REU) and
CNS-2018850 (MRI) and U.S. Army Research Laboratory
WO11NF-1820285. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the U.S.
Government or agency thereof.

REFERENCES

[1] D. Marini, R. Folgieri, D. Gadia, and A. Rizzi, “Virtual reality as a
communication process,” Virtual Reality, vol. 16, no. 3, p. 233-241,
2011. 1

P. J. Durst, C. Goodin, C. Cummins, B. Gates, B. Mckinley, T. George,
M. M. Rohde, M. A. Toschlog, and J. Crawford, “A real-time, interactive
simulation environment for unmanned ground vehicles: The autonomous
navigation virtual environment laboratory (anvel),” 2012 Fifth Interna-
tional Conference on Information and Computing Science, 2012. 1

Y. Chen, S. Chen, T. Zhang, S. Zhang, and N. Zheng, “Autonomous
vehicle testing and validation platform: Integrated simulation system with
hardware in the loop*,” 2018 IEEE Intelligent Vehicles Symposium (IV),
2018. 1

S. Yao, H. AliAkbarpour, G. Seetharaman, and K. Palaniappan, “3D
patch-based multi-view stereo for high-resolution imagery,” in Geospa-
tial Informatics, Motion Imagery, and Network Analytics VIII, vol. 10645.
International Society for Optics and Photonics, Apr. 2018, p. 106450K.
1,2

F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, “The
ball-pivoting algorithm for surface reconstruction,” IEEE Transactions on
Visualization and Computer Graphics, vol. 5, no. 4, pp. 349-359, Oct.
1999. 1, 2

M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruc-
tion,” in Proceedings of the fourth Eurographics symposium on Geometry
processing, ser. SGP ’06. Cagliari, Sardinia, Italy: Eurographics
Association, Jun. 2006, pp. 61-70. 1, 2, 6

M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,”
ACM Transactions on Graphics, vol. 32, no. 3, pp. 29:1-29:13, Jul. 2013.
1,2

Z. C. Marton, R. B. Rusu, and M. Beetz, “On fast surface reconstruction
methods for large and noisy point clouds,” in 2009 IEEE International
Conference on Robotics and Automation. Kobe: IEEE, May 2009, pp.
3218-3223. 1,2

A. Maiti and D. Chakravarty, “Performance analysis of different surface
reconstruction algorithms for 3d reconstruction of outdoor objects from
their digital images,” SpringerPlus, vol. 5, no. 1, p. 932, 2016. [Online].
Available: https://doi.org/10.1186/s40064-016-2425-9 2

M. Bosch, A. Leichtman, D. Chilcott, H. Goldberg, and M. Brown,
“Metric Evaluation Pipeline for 3d Modeling of Urban Scenes,” ISPRS
- International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. 42W1, pp. 239-246, May 2017. 2
C. Poullis and S. You, “3d reconstruction of urban areas,” 2011 Interna-
tional Conference on 3D Imaging, Modeling, Processing, Visualization
and Transmission, 2011. 2

G. Kuschk, “Large scale urban reconstruction from remote sensing
imagery,” The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. XL-5/W1, p. 139-146,
2013. 2

[2]

[3]

[4]

[5

—

[6]

[7

—

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

T. Sky, “https://transparentsky.net/,” [Online; Accessed on July 22, 2021].
2

H. Aliakbarpour, K. Palaniappan, and G. Seetharaman, “Robust camera
pose refinement and rapid SfM for multiview aerial imagery — without
RANSAC,” IEEE Geoscience and Remote Sensing Letters, vol. 12,
no. 11, 2015. 2

P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia, “MeshLab: an Open-Source Mesh Processing Tool,”
Eurographics Italian Chapter Conference, pp. 129-136, 2008. 2
CloudCompare. (2021) GPL software. [Online]. Available:
/lwww.cloudcompare.org/ 2

R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
2011 IEEE International Conference on Robotics and Automation, May
2011, pp. 1-4. 2

M. Corsini, P. Cignoni, and R. Scopigno, “Efficient and Flexible
Sampling with Blue Noise Properties of Triangular Meshes,” IEEE
Transactions on Visualization and Computer Graphics, vol. 18, no. 6,
pp. 914-924, Jun. 2012. 2

P. Alliez, L. Saboret, and G. Guennebaud, “Poisson surface
reconstruction,” in CGAL User and Reference Manual, 5.3 ed.
CGAL Editorial Board, 2021. [Online]. Available: https://doc.cgal.org/
5.3/Manual/packages.html#PkgPoissonSurfaceReconstruction3 2

H. X. Han and M. Zeiger, “The Local Z-Buffering Rendering,” IAENG
International Journal of Computer Science, vol. 32, no. 4, pp. 424-429,
2006. 5

(2021, Feb.) Initializing your project and deploying your first
application. [Online]. Available: https://docs.microsoft.com/en-us/
windows/mixed-reality/develop/unity/tutorials/mr-learning-base-02 6

http:

