
A Debugging Learning Trajectory for Text-Based Programming
Learners

Hanxiang Du
University of Florida
Gainesville, FL, USA

h.du@ufl.edu

Wanli Xing
University of Florida
Gainesville, FL, USA

wanli.xing@coe.ufl.edu

Yuanlin Zhang
Texas Tech University
Lubbock, TX, USA
y.zhang@ttu.edu

ABSTRACT
Novice programming learners encounter programming errors on a
regular basis. Resolving programming errors, which is also known
as debugging, is not easy yet important to programming learn-
ing. Students with poor debugging ability hardly perform well on
programming courses. A debugging learning trajectory which iden-
tifies learning goals, learning pathways, and instructional activities
will benefit debugging learning activities development. This study
aims to develop a debugging learning trajectory for text-based pro-
gramming learners. This is accomplished through (1) analyzing
programming errors in a logic programming learning environment
and (2) examining existing literature on debugging analysis.

CCS CONCEPTS
• Social and professional topics→ Computing education.
ACM Reference Format:
Hanxiang Du, Wanli Xing, and Yuanlin Zhang. 2021. A Debugging Learning
Trajectory for Text-Based Programming Learners. In 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 2 (ITiCSE
2021), June 26-July 1, 2021, Virtual Event, Germany. ACM, New York, NY,
USA, 1 page. https://doi.org/10.1145/3456565.3460049

1 INTRODUCTION
Debugging is inevitable and important in programming learning.
One way to improve students’ debugging skills is through thought-
fully developed learning activities. Learning trajectories (LTs), which
are defined as the projection of how learning proceeds over time
through learning activities, are essential to curriculum development
[2, 3]. Although a number of studies have focused on error analysis,
there is a lack of work on debugging LT development for text-based
programming languages.

Rich et al. [2] developed a debugging LT for computational think-
ing learning in elementary schools through a systematic exami-
nation of existing literature. They extracted learning goals from
scholarly research work and synthesized consensus goals. Con-
sensus goals were categorized as three dimensions of debugging
learning (strategies for finding and fixing errors, types of errors,
the role of errors in problem solving) and three levels of debug-
ging skills (beginning, intermediate, advanced). This study aimed
to adapt their work to text-based programming languages.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8397-4/21/06.
https://doi.org/10.1145/3456565.3460049

2 OVERVIEW
As innovative as Rich et al.’s [2] debugging LT is, several aspects
worth further investigation. First, the starting point of the LT. As
mentioned in their work, their debugging LT best suits graphic pro-
gramming. Graphic programming environment does not report an
error in the way which text-based programming languages do. Most
of the time, to know if there is an error is effortless using text-based
programming languages as the compiler or the environment will
tell programmers so. However, this task is the foundation skill in [2].
Second, their error categorization compromises on the complexity
of errors and the difficulty in resolving different types of errors. Rich
et al.’s [2] three levels of debugging skills (beginning, intermediate,
and advanced) is based on students’ age in the studies, rather than
the complexity of errors. They also assume all errors (small errors
and errors of omission) belong to the same debugging skill level,
which is not the case in text-based programming languages. Third,
the misuse of iterative refinement and iterative debugging process.
In its original context, iterative debugging process describes a stu-
dent resolving an error with multiple attempts, comparing with
those in one attempt [1]. From programming practice perspective,
iterative refinement describes a developing process which starts
from a simple version and enriching it bit by bit. Last, a definition
of debugging, which is missing in their work, is necessary as it
specifics what is and what is not debugging.

This work defines debugging as the activities to locate the error,
come up with a solution and resolve the error. We propose that to
exclude knowing if there is an error as a foundation skill, and levels
of debugging skills shall be based on error complexity, instead of
learners’ age.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation (NSF)
of the United States under grant number 1901704. Any opinions,
findings, and conclusions or recommendations expressed in this
paper, however, are those of the authors and do not necessarily
reflect the views of the NSF.

REFERENCES
[1] Louise P Flannery and Marina Umaschi Bers. 2013. Let’s dance the “robot hokey-

pokey!” children’s programming approaches and achievement throughout early
cognitive development. Journal of research on technology in education 46, 1 (2013),
81–101.

[2] Kathryn M Rich, Carla Strickland, T Andrew Binkowski, and Diana Franklin.
2019. A k-8 debugging learning trajectory derived from research literature. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education.
745–751.

[3] Martin A Simon. 1995. Reconstructingmathematics pedagogy from a constructivist
perspective. Journal for research in mathematics education 26, 2 (1995), 114–145.

https://doi.org/10.1145/3456565.3460049
https://doi.org/10.1145/3456565.3460049

	Abstract
	1 Introduction
	2 Overview
	Acknowledgments
	References

