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ABSTRACT
Novice programming learners encounter programming errors on a
regular basis. Resolving programming errors, which is also known
as debugging, is not easy yet important to programming learn-
ing. Students with poor debugging ability hardly perform well on
programming courses. A debugging learning trajectory which iden-
tifies learning goals, learning pathways, and instructional activities
will benefit debugging learning activities development. This study
aims to develop a debugging learning trajectory for text-based pro-
gramming learners. This is accomplished through (1) analyzing
programming errors in a logic programming learning environment
and (2) examining existing literature on debugging analysis.
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1 INTRODUCTION
Debugging is inevitable and important in programming learning.
One way to improve students’ debugging skills is through thought-
fully developed learning activities. Learning trajectories (LTs), which
are defined as the projection of how learning proceeds over time
through learning activities, are essential to curriculum development
[2, 3]. Although a number of studies have focused on error analysis,
there is a lack of work on debugging LT development for text-based
programming languages.

Rich et al. [2] developed a debugging LT for computational think-
ing learning in elementary schools through a systematic exami-
nation of existing literature. They extracted learning goals from
scholarly research work and synthesized consensus goals. Con-
sensus goals were categorized as three dimensions of debugging
learning (strategies for finding and fixing errors, types of errors,
the role of errors in problem solving) and three levels of debug-
ging skills (beginning, intermediate, advanced). This study aimed
to adapt their work to text-based programming languages.
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2 OVERVIEW
As innovative as Rich et al.’s [2] debugging LT is, several aspects
worth further investigation. First, the starting point of the LT. As
mentioned in their work, their debugging LT best suits graphic pro-
gramming. Graphic programming environment does not report an
error in the way which text-based programming languages do. Most
of the time, to know if there is an error is effortless using text-based
programming languages as the compiler or the environment will
tell programmers so. However, this task is the foundation skill in [2].
Second, their error categorization compromises on the complexity
of errors and the difficulty in resolving different types of errors. Rich
et al.’s [2] three levels of debugging skills (beginning, intermediate,
and advanced) is based on students’ age in the studies, rather than
the complexity of errors. They also assume all errors (small errors
and errors of omission) belong to the same debugging skill level,
which is not the case in text-based programming languages. Third,
the misuse of iterative refinement and iterative debugging process.
In its original context, iterative debugging process describes a stu-
dent resolving an error with multiple attempts, comparing with
those in one attempt [1]. From programming practice perspective,
iterative refinement describes a developing process which starts
from a simple version and enriching it bit by bit. Last, a definition
of debugging, which is missing in their work, is necessary as it
specifics what is and what is not debugging.

This work defines debugging as the activities to locate the error,
come up with a solution and resolve the error. We propose that to
exclude knowing if there is an error as a foundation skill, and levels
of debugging skills shall be based on error complexity, instead of
learners’ age.
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