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Abstract. We survey some polynomials {Pn} arising from con-
vergence acceleration, and numerical integration, that satisfy "biorthog-
onality" conditions such as∫ b

a

Pn (x)φj (x)w (x) dx = 0,

for appropriate functions
{
φj
}

and weights w. One example is

φj (x) = (log x)
j
, 0 ≤ j ≤ n− 1 on [a, b] = [0, 1]. We discuss iden-

tities, asymptotics, positive quadratures, and zero distributions.
We also list some open questions.

Primary 42C05, 11C08; Secondary 30C10 biorthogonal polynomials,
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In Memory of Luc Wuytack

1. Introduction

In the traditional sense, biorthogonal polynomials involve two se-
quences of polynomials {pn} and {qn}, as well as a linear functional L
for which

L (pjqk) = δjk.

As C. Brezinski notes [7, p. 104], in some form the idea goes back
at least to Didon in 1869. However, in recent years, the notion of
biorthogonal polynomials has been used in a much more general sense.
Thus the term has been used [13] for polynomials that are orthogonal
to some measures

{
µj
}n
j=1

:

(1.1)
∫
pndµj = 0, 1 ≤ j ≤ n,

or more specially to some functions. In the theory of random matrices
[15], they have been defined by conditions such as∫ ∫

pj (x) qk (y)w (x, y) dx dy = 0, j 6= k,
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or by Cauchy (possibly singular) conditions such as [4], [11]∫ ∫
pj (x) qk (y)

x± y dσ1 (x) dσ2 (y) = 0, j 6= k,

where σ1 and σ2 are measures.
The most general form we shall discuss in this paper is that defined

by (1.1). However, much of our discussion focuses on more special
polynomials, that have their origin in the work of the second author on
convergence acceleration and numerical integration. Brezinski’s book is
an excellent source for applications of various forms of biorthogonality
in numerical analysis. A quite general setting for biorthogonal polyno-
mials has also been studied by Iserles, Norsett, and Saff in a series of
papers [12], [13], [14], with interesting applications to transformations
that preserve properties of zeros, such as all being real.

The link between polynomials with special properties and numerical
integration is best known in Gauss quadrature: if w is a positive weight
function on an interval [a, b], then the Gauss quadrature rule asserts
that

(1.2)
∫ b

a

Pw =
n∑
j=1

wjP (xj) ,

for all polynomials P of degree ≤ 2n − 1. Here all {wj} are positive,
while the quadrature points {xj} are distinct and lie in (a, b). Of
course, they are the zeros of the orthogonal polynomial pn of degree n,
satisfying

(1.3)
∫ b

a

pn (x) xjw (x) dx = 0, 0 ≤ j ≤ n− 1.

Quadrature formulae (1.2) that integrate polynomials P of degree ≤
n − 1, are called interpolatory, while precisions in between n − 1 and
2n − 1 have also been widely studied [26], [27], [28],[31]. In all cases,
the polynomial whose zeros are the quadrature points is a key tool.

The second author introduced quadrature formulae [32], [34] that
have their origins in convergence acceleration. The quadrature points
are zeros of polynomials satisfying, for example,∫ 1

0

pn (x) (log x)j dx = 0, j < n.

In Section 2 we shall survey some polynomials that are orthogonal
to powers of a fixed function, such as log x. In Section 3, we discuss
polynomials that are orthogonal to exponentials or measures. In Sec-
tion 4 we discuss positivity of the weights in interpolatory quadrature
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formulae generated by these polynomials. In Section 5, we discuss the
use of potential theory to study asymptotics and zero distributions.

2. Polynomials Orthogonal to Powers of a Fixed
Function

In investigating the T-transformation of Levin [18] (see also [32],
[34], [38, Chapter 19]) for accelerating convergence of sequences, and
for related rational interpolation and interpolatory quadrature rules,
the second author studied [33], [40] what are now called the Sidi poly-
nomials

(2.1) Dn (z) =

n∑
j=0

(
n

j

)
(j + 1)n (−z)j .

They are uniquely determined, up to a multiplicative constant, by the
orthogonality conditions

(2.2)
∫ 1

0

Dn (x) (log x)j dx = 0, 0 ≤ j ≤ n− 1.

Establishing the orthogonality relation from the definition (2.1) is straight-
forward. The orthogonality conditions imply that Dn has n distinct
zeros in (0, 1). Here are some further elementary properties, which can
be proved by integration by parts, and Cauchy’s integral formula:

Proposition 2.1
(a) There is a Rodrigues type formula

ezDn (ez) =

(
d

dz

)n
[ez (1− ez)n] .

(b) There is a contour integral representation

ezDn (ez) =
n!

2πi

∫
C

et

t− z

(
1− et
t− z

)n
dt

where C is a simple closed curve encircling z.
The asymptotic behavior of these polynomials was investigated in

[19], using the method of steepest descent. Let

A =

{
z = x+ iy : x ≥ 0, y ∈ (−π, π) and 0 < |z − 1|2 <

(
y

sin y

)2
}
.

It is an unbounded doubly connected region inside the strip |Im z| < π,
Re z > 0. Let

Ψ (z) =
1

ez (1− z)
, z ∈ A.
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It is shown in [19] that Ψ maps A conformally onto C\ [0, 1]. We let
Φ = Ψ[−1] denote the inverse conformal map of C\ [0, 1] onto A. We
also need the function

h (b) =
sin b

b
eb cot b−1, b ∈ [0, π] .

It was shown in [19] that h decreases from h (0) = 1 to h (π) = 0. Let
h[−1] : [0, 1]→ [0, π] denote the inverse function, and

g (x) = 1− h[−1] (x) cot
(
h[−1] (x)

)
.

The asymptotics established there were

Theorem 2.2
As n→∞,
(a) Uniformly for z in compact subsets of C\ [0, 1] ,

Dn (z) =
n!eΦ(z)√
2πnΦ (z)

(−zΦ (z))n (1 + o (1)) .

(b) Uniformly for x in compact subsets of (0, 1) ,

Dn (x)

= n!

(
2

nπ

)1/2

(−xeg(x))n

×
{

eg(x)

|g (x) + ih[−1] (x)|1/2
cos

[
(n+ 1)h[−1] (x)− 1

2
arctan

(
h[−1] (x)

g (x)

)]
+ o (1)

}
.

The zero distribution of Dn also involves the inverse function of h :
if

νn =
1

n

∑
x:Dn(x)=0

δx

is the zero counting measure of Dn, then it was proved that νn con-
verges weakly to an absolutely continuous measure with derivative
− 1

πh′(h[−1](x))
on [0, 1]. The asymptotics in [19] were subsequently gen-

eralized by Elbert [10] and Zhao [44]. Surprisingly, the precise asymp-
totics in [19] were not suffi cient to prove positivity of the weights in
the interpolatory quadrature generated by Dn. This was only resolved
in the affi rmative much later, see Section 4 below.

We note that the second author also considered more general poly-
nomials [21, pp. 845-6], [33], [40] given by

(2.3) D(α,β)
n (x) =

n∑
i=0

(−1)n−i
(
n

i

)
(β + i+ 1)α+n xi,



BIORTHOGONAL POLYNOMIALS 5

where α, β > −1. If α is a nonnegative integer, these admit the Ro-
drigues type representation

(2.4) D(α,β)
n (x) = (−1)n x−β−1

(
x
d

dx

)α+n [
xβ+1 (1− x)n

]
.

For general α, β > −1, these polynomials satisfy the biorthogonality
relation [40, p. 846], [21, p. 846]

(2.5)
∫ 1

0

D(α,β)
n (x)

(
log x−1

)j+α
xβdx = 0, 0 ≤ j ≤ n− 1.

A natural question is what happens if we replace log x in (2.2) by
other functions. Herbert Stahl and the first author [25] investigated
polynomials orthogonal to general powers of x. Closely related poly-
nomials arise in the Borodin-Muttalib ensemble [6], [8], [16], [43] but
with varying exponential weights. Stahl and the first author proved
[25, Theorem 1]

Theorem 2.3
Let α > 0 and

Sn (x) =
n∑
j=0

(
n

j

)[n−1∏
k=0

(
k +

j + 1

α

)]
(−x)j .

(a)

(2.6)
∫ 1

0

Sn (x) xαjdx = 0, 0 ≤ j ≤ n− 1.

(b) There is a Rodrigues type formula

(2.7) Sn
(
x1/α

)
= x1−1/α

(
d

dx

)n [
xn−1+1/α

(
1− x1/α

)]n
.

(c) There is a contour integral formula

Sn
(
z1/α

)
=
n!z1−1/α

2πi

∫
Γ

t−1+1/α

t− z

[
t
(
1− t1/α

)
t− z

]n
dt.

Here z ∈ C\(−∞, 0] while Γ is a simple closed contour in C\(−∞, 0]
enclosing z.
(d) There is confluence to the Sidi polynomials

lim
α→0+

αnSn (z) = Dn (z) .

The above properties follow in a fairly straightforward way. There
were also partial results about the zero distribution. The condition
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(2.6) ensures that the zeros of Sn are distinct and lie in (0, 1). We ap-
plied results of VanAssche, Fano and Ortolani [2] to obtain asymptotics
for ratios of coeffi cients in Sn, and hence to describe the limiting zero
distribution of the reflected zeros, assuming that it exists:

Let

νn =
1

n

∑
x:Sn(x)=0

δ−x.

so that νn is supported on [−1, 0]. Also let H denote the Hilbert
transform, so that for functions g ∈ L1 (R) ,

H [g] (x) =
1

π
PV

∫ ∞

−∞

g (t)

t− xdt,

where PV denotes Cauchy principal value. We proved [25, Theorem 2]:

Theorem 2.4
Let α > 0 and

f (x) = (1− x)1+1/α x−1 (α + 1− x)−1/α , x ∈ (0, 1) .

Then f is strictly decreasing with inverse f [−1]. Assume that the re-
flected zero counting measures {νn} converge weakly to some measure
ν on [−1, 0]. Assume also that ν is absolutely continuous. Then

ν ′ (x) = − 1

π2x
H
[
f [−1]

]
(x) , x ∈ (−1, 0) .

It would obviously be preferable to have a more explicit form for the
zero distribution, and a proof that the weak limit exists. In a subse-
quent paper, the first author and Soran [24] invesigated polynomials
satisfying a version of (2.6) with a weight. Recall that for ordinary
orthogonal polynomials, the classical weights (Jacobi, Laguerre, Her-
mite) are characterized by their orthogonal polynomials admitting a
Rodrigues formula. We characterized situations for these biorthogonal
polynomials, where there is a Rodrigues formula:

Theorem 2.5
Let α > 0. Let w : (0, 1) → (0,∞) be infinitely differentiable and
positive a.e. on (0, 1). Assume that Pn is a polynomial of degree n
satisfying

(2.8)
∫ 1

0

Pn (x) xαjw (x) dx = 0, 0 ≤ j ≤ n− 1.
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Then Pn admits a Rodrigues type formula

Pn
(
x1/α

)
=

x1−1/α

w (x1/α)

(
d

dx

)n {
x1/α−1w

(
x1/α

) (
x
(
1− x1/α

))n}
iff w is a Jacobi weight

w (x) = xa (1− x)b

for some a, b > −1.
There were also analogous results for the intervals (0,∞) and (−∞,∞),

as well as generating functions involving contour integrals. In a random
matrix setting, Claeys and Wang [9] considered the case ψ (x) = ex.
Thus one forms polynomials orthogonal to

{
ekx
}n−1

k=0
. Using a Riemann-

Hilbert formulation for the biorthogonal polynomials, and the Deift-
Zhou steepest descent method, they obtained precise asymptotics for
the polynomials.

3. Polynomials Orthogonal to Exponentials and
Measures

In [33] and [35] (see also [36]), the second author developed some
new quadrature rules, with origins in techniques for accelerating con-
vergence of sequences, for integrals of the form

I (f) =

∫ b

a

wf.

Here (a, b) can be a finite or infinite interval, and w is a suitable weight
function. In particular, the following three cases were considered:
(i) (a, b) = (0, 1) and w (x) = xα (1− x)β (log x−1)

γ, where α > −1 and
β + γ > −1.
(ii) (a, b) = (0,∞) and w (x) = xαe−x with α > −1 and w (x) =
xαEp (x), with p+α > 0, where Ep (x) =

∫∞
1
e−xtt−pdt is the exponen-

tial integral.
(iiii) (a, b) = (−∞,∞) and w (x) = |x|β e−x2 , β > −1.
The quadrature formulae take the form

In (f) =
n∑
j=1

wnjf (xnj)

and are chosen so that

Hn (z) =

n∑
j=1

wnj
z − xnj
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approximates the Cauchy transform

H (z) =

∫ b

a

w (x)

z − xdx,

for z outside (a, b). Starting with partial sums of the moment series

H (z) ∼
∞∑
j=1

µj−1

zj
, µj =

∫ b

a

w (x) xjdx

which may or may not converge, we apply a method of convergence
acceleration. In particular, the Levin L and Sidi S transformation (see
[18] and [38, Chapter 19]) yield good candidates.

This work was continued in [41] for the interval (a, b) = (0,∞) and
w (x) = xαe−x and w (x) = xαEp (x). Applying the Levin transforma-
tion to an asymptotic expansion for

∫∞
0

w(x)
z−x dx, leads to the polynomials

[35], [37], [41, p. 214]

(3.1) D[j]
n (z) = (−1)n

n!

Γ (α + j + n+ 1)

1

z

(
z
d

dz

)n [
zj+1L(α+j)

n (z)
]
,

where L(β)
n (z) is the classical Laguerre polynomial. The following was

established in these works:

Proposition 3.1
(a) D[j]

n satisfies the biorthogonality relations

(3.2)
∫ ∞

0

D[j]
n (x) e−σn,kxxαdx = 0, 1 ≤ k ≤ n,

where {σn,k} are distinct and positive, and σ−1
n,k are positive roots of

the polynomial

ψn (z) = (−1)n z−j−1

(
z
d

dz

)n [
zj+1 (1− z)n

]
.

(b) Dn has n simple positive roots {xnj} and a root at 0 of multiplicity
j. This yields a quadrature rule

(3.3) I [j]
n [f ] =

j−1∑
k=0

w̄kf
(k) (0) +

n∑
j=1

wjf (xnj) ,

that is exact, that is satisfies

(3.4) I [j]
n [f ] =

∫ ∞

0

f (x) xαe−xdx
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for functions of the form

(3.5) f (x) = P (x) +D[j]
n (x)

n∑
k=1

cke
xe−σn,kx,

where P is any polynomial of degree at most j + n − 1, while the
coeffi cients {ck} in the exponential part are arbitrary. In particular,
for j = 0, we obtain an interpolatory quadrature.

From the Sidi transformation, the authors obtained instead [41, p.
215] the polynomials

(3.6) D̂[j]
n (z) = (−1)n

n!

Γ (α + j + n+ 1)

(
d

dz

)n [
zj+nL(α+j)

n (z)
]

and established the following:

Proposition 3.2
(a) D̂[j]

n satisfies the biorthogonality relations (3.2), where {σn,k} are
distinct and positive, and σ−1

n,k are positive roots of the polynomial

ψ̂n (z) = (−1)n z−j
(
d

dz

)n [
zj+n (1− z)n

]
.

(b) D̂[j]
n has n simple positive roots {xnj} and a root at 0 of multiplicity

j. This yields a quadrature rule of the form

(3.7) I [j]
n [f ] =

j−1∑
k=0

w̄kf
(k) (0) +

n∑
j=1

wjf (xnj) ,

that is exact, that is, satisfies (3.4) for functions of the form (3.5).

Related results for symmetric weights, such as (1− x2)
α
(

log (1− x2)
−1
)β

on (−1, 1), were considered by the second author in [39].
In a 2008 paper [20], the authors considered polynomials Pn of degree

n determined by biorthogonality conditions like (3.2), but in a more
general setting:

Proposition 3.3
Fix n distinct exponents {σn,j}nj=1 in (0,∞) and α > −1. Determine
Pn of degree n by the conditions

(3.8)
∫ ∞

0

Pn (x) e−σn,jxxαdx = 0, 1 ≤ j ≤ n.
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Define the associated exponential polynomial

(3.9) Qn (x) =

n∏
j=1

(
x+ σ−1

n,j

)
=

n∑
j=0

qn,jx
j.

Then
(a)

Pn (x) =
n∑
j=0

(−1)n−j qn,j
Γ (α + n+ 1)

Γ (α + j + 1)
xj.

(b)

Qn (y) =
(−1)n

Γ (α + n+ 1)

∫ ∞

0

e−ttαPn (−yt) dt.

(c)

xαPn (x) =
(−1)n Γ (α + n+ 1)

2πi

∫ γ+i∞

γ−i∞
esxs−α−1Qn

(
−s−1

)
ds,

where γ > 0 and the contour of integration is the line Re s = γ.
Let

νn =
1

n

n∑
j=1

δ−1/σn,j

denote the zero counting measure for Qn, and if {xn,j} are the zeros of
Pn,

µn =
1

n

n∑
j=1

δ−xn,j/(4n)

so that µn is a contracted zero counting measure for Pn. The following
result was proved there [20, p. 347, Thm. 1.2]:

Theorem 3.4
Let B > 0. Assume that for n ≥ 1, we are given distinct {σn,j}nj=1 in
[B,∞). The following are equivalent:
(a) There exists a measure ν such that νn → ν weakly as n→∞.
(b) There exists a measure µ such that µn → µ weakly as n→∞.
Moreover, assuming the weak convergence, both µ and ν have support
in
[
− 1
B
, 0
]
, and µ will have a point mass at 0 of size λ iff ν does.

Moreover, uniformly for z ∈ C\
[
− 1
B
, 0
]
,

lim
n→∞

|Pn (−4nz)|1/n / (4n) = exp

(∫ 0

−1/B

log |z − t| dµ (t)

)
.

The measures ν and µ were also related to functions defined by
the asymptotic behavior of ratios or nth roots of the coeffi cients of
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Pn and Qn, while various examples were presented there. As noted
above, Claeys and Wang [9] investigated a class of polynomials that
are biorthogonal to exponentials, with the added complication of an
external field. These arise in a random matrix context, namely random
matrices with equispaced external source. They obtained precise as-
ymptotics using deep Riemann-Hilbert methods. Related themes have
been considered, for example, in [3], [43].

In a 2013 paper [22], the authors considered a more general orthog-
onality, to dilations of measures µ, supported on the real line, with all
moments

(3.10) µj =

∫ ∞

0

xj dµ (x) , j = 0, 1, 2, ...,

finite. We assume that for n ≥ 1, we are given distinct positive numbers
{σn,j}nj=1, and determine a monic polynomial Pn of degree n by the
conditions

(3.11)
∫ ∞

0

Pn (x) dµ (σn,jx) = 0, 1 ≤ j ≤ n.

Equivalently,

(3.12)
∫ ∞

0

Pn

(
t

σn,j

)
dµ (t) = 0, 1 ≤ j ≤ n.

As in [20], Pn is closely related to the polynomial,

(3.13) Rn (y) =
n∏
j=1

(
y + σ−1

n,j

)
=

n∑
j=0

rn,jy
j.

which we called the dilation polynomial associated with Pn. The fol-
lowing simple proposition established the relationship between Pn and
Rn:

Theorem 3.5
Let µ be a positive measure on (0,∞) with infinitely many points in its
support, and finite moments

{
µj
}
. Let {σn,j}nj=1 be distinct positive

numbers. Let Pn be a monic polynomial of degree n, determined by the
orthogonality relations (3.11), and let Rn be given by (3.13). Then Pn
exists, is unique, and
(I)

(3.14) Pn (x) = (−1)n
n∑
j=0

rn,j
µn
µj

(−x)j ,
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while

(3.15) (−1)nRn (−y) =
1

µn

∫ ∞

0

Pn (ty) dµ (t) .

(II) There exists r > 0 such that

(3.16) Pn (x) = µn
(−1)n

2πi

∫
|t|=r

Rn

(
−x
t

)
G (t)

dt

t

where

(3.17) G (t) =

∞∑
j=0

tj

µj
.

(III) Write σj = σn,j, 1 ≤ j ≤ n. Then

(3.18)
Pn (x)

µn
=

det


1 σ−1

1 σ−2
1 · · · σ−n

1

1 σ−1
2 σ−2

2 · · · σ−n
2

...
...

...
. . .

...
1 σ−1

n σ−2
n · · · σ−n

n
1
µ0

x
µ1

x2

µ2
· · · xn

µn



det


1 σ−1

1 σ−2
1 · · · σ−n+1

1

1 σ−1
2 σ−2

2 · · · σ−n+1
2

...
...

...
. . .

...
1 σ−1

n σ−2
n · · · σ−n+1

n


.

(IV) If µ has form

dµ (t) = tαe−t
β

dt, t ∈ (0,∞) ,

where α > −1, β > 0, then Pn has n simple zeros in (0,∞).
Parts of Theorem 3.4 overlap with results of Brezinski [7], Iserles,

Norsett and Saff [12], [14] on biorthogonal polynomials in a more gen-
eral setting. In a special case, we gave a simple new contour integral
representation of Pn :

Theorem 3.6
Let β ≥ 1, α > −1, and dµ (t) = tαe−t

β
dt, t ∈ (0,∞) . Let {σn,j}nj=1 be

distinct positive numbers. Let Pn be a monic polynomial of degree n,
determined by the orthogonality relations (3.11), and Rn be given by
(3.13). Let

(3.19)
π

2β
< η <

π

β
,
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s > 0, and let Γ be the contour consisting of the rays Γ+ = {reiη : r ≥ s},
Γ− = {re−iη : r ≥ s} , and the circular arc Γs =

{
seiθ : |θ| ≤ η

}
. As-

sume that Γ is traversed in such a way that Γs is traversed anticlock-
wise. Then for all complex z,

(3.20) Pn (z) =
β2 (−1)n µn

2πi

∫
Γ

et
β

tβ−α−2Rn

(
−z
t

)
dt.

Using this and standard techniques for asymptotics of contour inte-
grals, we showed in [22] that "strong" asymptotics for Rn lead to strong
asymptotics for Pn.

4. Positive Quadrature Rules Generated by
Biorthogonal Polynomials

One of the most important questions about any quadrature formula
is the positivity of its weights. For interpolatory formulae that are not
Gauss quadratures, this is often diffi cult to establish. The setting is
as follows: given an interval [a, b] and a ≤ x1 < x2 < ... < xn ≤ b, a
weight function w, we determine {λj}nj=1 so that

n∑
j=1

λjP (xj) =

∫ n

a

Pw.

Are the {λj} positive?
For the quadrature determined by the Sidi polynomials, this ques-

tion had been open since 1980. It was resolved affi rmatively by the
authors in a 2010 paper [21]. We considered a continuously differen-
tiable, strictly increasing, function ϕ : (a, b) → R, a positive weight
function w, and the monic polynomial pn of degree n determined by
the conditions

(4.1)
∫ b

a

pnϕ
jw = 0, 0 ≤ j ≤ n− 1.

Let {xj}nj=1 denote the zeros of pn in (a, b). The corresponding inter-
polatory quadrature is exact for polynomials P of degree < n :

(4.2)
n∑
j=1

λjP (xj) =

∫ b

a

Pw.

Recall that a function g is said to be m absolutely monotone in an
interval J if g(m) exists there and

g(j) > 0 in J for 0 ≤ j ≤ m.

If
(−1)j g(j) > 0 in J for 0 ≤ j ≤ m,
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g is said to be m completely monotone in J . Our main result was:

Theorem 4.1
Let n ≥ 1 and ϕ : (a, b) → R be a strictly increasing function with
n − 1 continuous derivatives, and let ψ denote its inverse function,
with domain of definition I = {ϕ (x) : x ∈ (a, b)}. Assume that for
each β ∈ I, the function

(4.3) g (t) =
1

ψ (β)− ψ (t)
, t ∈ I\ {β} ,

is n − 1 absolutely monotone in I ∩ (−∞, β) and −g is n − 1 com-
pletely monotone in I ∩ (β,∞). Let w : (a, b) → (0,∞) be such
that

∫ b
a
xjϕ (x)k w (x) dx is defined and finite for 0 ≤ j ≤ n and

0 ≤ k ≤ n− 1. Let pn be the monic polynomial of degree n determined
by the biorthogonality conditions (4.1). Then the weights {λj}nj=1 in
the interpolatory rule In generated by pn and w are all positive.

We also proved positivity of the quadrature weights when the weight
w is replaced by w |ϕ| :

Theorem 4.2
Assume the hypotheses of Theorem 4.1, and in addition, that ϕ is of
one sign in (a, b). Then the weights {λj}nj=1 in the interpolatory rule
In generated by pn and ŵ = w |ϕ| are all positive.

Corollary 4.3
Let α, β > −1 and n ≥ 1. Let w (x) = (log x−1)

α
xβ or w (x) =

(log x−1)
α+1

xβ, x ∈ (0, 1). Then the weights {λj}nj=1 in the interpola-

tory rule generated by the Sidi polynomials D(α,β)
n defined by (2.3) and

the weight w are positive.

We also considered the case where the quadrature points come from
a different weight. The proofs of these results are non-trivial. They
involve careful zero counting arguments.

Here is an interesting unsolved problem:

Problem 4.4
Investigate the positivity of interpolatory quadrature generated by the
polynomials defined by (3.2) and (3.6), that are biorthogonal to expo-
nentials.
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The authors spent much effort trying to use the techniques of [21]
for this problem, but failed.

5. Potential Theory

Potential theory is a powerful tool in so many problems involving
polynomials [1], [29], [30], [42]. In this section, we discuss its appli-
cation to biorthogonal polynomials. Let P (K) denote the set of all
probability measures with compact support contained in the set K.
For any positive Borel measure µ, we define its energy integral

(5.1) I (µ) =

∫ ∫
log

1

|x− t|dµ (x) dµ (t) .

For K ⊂C, its (inner) logarithmic capacity is

cap (K) = sup
{
e−I(µ) : µ ∈ P (K)

}
.

We say that a property holds q.e. (quasi-everywhere) if it holds outside
a set of capacity 0. We use meas to denote linear Lebesgue measure 0.
For further orientation, see for example [17], [29], [30].

Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing continuous
function, with inverse ψ[−1], and determine a monic polynomial Pn of
degree n by the biorthogonality conditions

(5.2)
∫ 1

0

Pn (x)ψ (x)j dx =

{
0, j = 0, 1, 2, ..., n− 1,
In 6= 0, j = n

.

Pn will have n simple zeros in (0, 1), so we may write

(5.3) Pn (x) =

n∏
j=1

(x− xjn) .

Define the zero counting measures

(5.4) µn =
1

n

n∑
j=1

δxjn .

We need a new energy integral

(5.5) J (µ) =

∫ ∫
K (x, t) dµ (x) dµ (t) ,

and a new kernel

(5.6) K (x, t) = log
1

|x− t| + log
1

|ψ (x)− ψ (t)| .
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The minimal energy corresponding to ψ is

(5.7) J ∗ (ψ) = inf {J (µ) : µ ∈ P ([0, 1])} .
For probability measures µ, ν, we define the classical potential

(5.8) Uµ (x) =

∫
log

1

|x− t|dµ (t) ,

the mixed potential

W µ,ν (x) =

∫
log

1

|x− t|dµ (t) +

∫
log

1

|ψ (x)− ψ (t)|dν (t)(5.9)

= Uµ (x) + U ν◦ψ[−1] ◦ ψ (x) ,(5.10)

and the ψ potential

(5.11) W µ (x) = W µ,µ (x) =

∫
K (x, t) dµ (t) .

We needed ψ to map small sets to small sets:

Definition 5.1
Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing continuous func-
tion, with inverse ψ[−1]. Assume that ψ satisfies the following two
conditions:
(I)

(5.12) cap (E) = 0⇒ cap
(
ψ[−1] (E)

)
= 0.

(II) For each ε > 0, there exists δ > 0 such that

(5.13) meas (E) ≤ δ ⇒ meas
(
ψ[−1] (E)

)
≤ ε.

Then we say that ψ preserves smallness of sets.

The conditions (I), (II) are satisfied if ψ satisfies a local lower Lip-
schitz condition. Using classical methods, we proved in [23, p. 29,
Thm. 1.2]:

Theorem 5.2
Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing continuous func-
tion that preserves smallness of sets. Define the minimal energy J ∗ =
J ∗ (ψ) by (5.7). Then
(a) J ∗ is finite and there exists a unique probability measure νψ on
[0, 1] such that

(5.14) J (νψ) = J ∗.
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(b)

(5.15) W νψ ≥ J ∗ q.e. in [0, 1] .

In particular, this is true at each point of continuity of W νψ .
(c)

(5.16) W νψ ≤ J ∗ in supp [νψ] .

and

(5.17) W νψ = J ∗ q.e. in supp [νψ] .

(d) νψ is absolutely continuous with respect to linear Lebesgue measure
on [0, 1]. Moreover, there are constants C1 and C2 depending only on
ψ, such that for all compact K ⊂ [0, 1] ,

(5.18) νψ (K) ≤ C1

|log capK| ≤
C2

|logmeas (K)| .

(e) There exists ε > 0 such that

(5.19) [0, ε] ∪ [1− ε, 1] ⊂ supp [νψ] .

Let

(5.20) In =

∫ 1

0

Pn (t)ψ (t)n dt, n ≥ 1.

Theorem 5.3
Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing continuous func-
tion that preserves smallness of sets. Let {Pn} be the corresponding
biorthogonal polynomials, with zero counting measures {µn}. If
(5.21) supp [νψ] = [0, 1] ,

then the zero counting measures {µn} of (Pn) satisfy

(5.22) µn
∗→ νψ, n→∞

and

(5.23) lim
n→∞

I1/n
n = exp (−J ∗) .

Moreover, uniformly for z in compact subsets of C\ [0, 1]

(5.24) lim
n→∞

|Pn (z)|1/n = exp (−Uµ (z)) .

We also proved that we can replace (5.21) by the more implicit, but
more general, assumption that supp[νψ] contains the support of every
weak limit of every subsequence of {µn}. We proved (5.21) when the
kernel K, and hence the potential W νψ , satisfies a convexity condition:
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Theorem 5.4
Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing continuous func-
tion that preserves smallness of sets. In addition assume that ψ is
twice continuously differentiable in (0, 1) and either
(a) for x, t ∈ (0, 1) with x 6= t,

(5.25)
∂2

∂x2
K (x, t) > 0,

or
(b) for x, t ∈ (ψ (0) , ψ (1)) with x 6= t,

(5.26)
∂2

∂x2

[
K
(
ψ[−1] (x) , ψ[−1] (t)

)]
> 0.

Then

(5.27) supp [νψ] = [0, 1] .

We showed in [23] that for

ψ (x) = xα, x ∈ [0, 1] .

either (5.25) or (5.26) holds and hence (5.21) holds. We showed this
separately for α ≥ 1 and for α < 1. As noted before, such a ψ arises
in the Borodin-Muttalib ensemble in random matrices [16]. Properties
of the equilibrium measure were also investigated there.

Claeys and Wang [9] provided a detailed study for the case where
ψ (t) = et, with the added complication of an external field. They
established an explicit formula for the density of the equilibrium density
νψ in terms of the second derivative of the external field.

We believe the following problem is interesting:

Problem 5.5
Find general hypotheses for supp[νψ] = [0, 1] .

Problem 5.6
Find classes of ψ for which we can explicitly solve the integral equation
(5.17).

Bloom, Levenberg, Totik, and Wielonsky [5] considered a much more
general setting where there is an external field, while ψ need not be
strictly increasing. Let K ⊂ C be closed and have positive capacity.
Let Q : K → R be lower semicontinuous on K, with

lim
|z|→∞,z∈K

[Q (z)− log |z|] =∞.
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Of course if K is compact, this last assumption is vacuous. For a given
continuous function ψ : K → C, we say Q is ψ−admissible if

lim
|z|→∞,z∈K

[Q (z)− log |z| − log (1 + |ψ (z)|)] =∞.

For probability measures µ on K, define the energy integral with ex-
ternal field Q,

E (µ) =

∫ ∫
K (x, y) dµ (x) dµ (y) + 2

∫
Q dµ.

Here the kernelK is as in (5.6). We also need a "push forward" measure
ψ∗µ defined by ∫

h ◦ ψ dµ =

∫
h dψ∗µ,

so that in particular,∫ ∫
log

1

|ψ (x)− ψ (t)|dµ (x) dµ (t) =

∫ ∫
log

1

|x− t|dψ∗µ (x) dψ∗µ (t) .

Let
V = inf {E (µ) : µ is a probability measure on K} .

Bloom, Levenberg, Totik, and Wielonsky proved that there is a unique
minimizing measure:

Proposition 5.8
Let K ⊂ C be closed, and Q be ψ−admissible for K. Suppose there
exists a probability measure µ on K with E (µ) <∞. Then
(a) There is a unique probability measure µQ on K with

E
(
µQ
)

= V.

(b) µQ has compact support and I
(
µQ
)
and I

(
ψ∗µQ

)
are finite.

(c) The following Frostman type inequalities hold:

UµQ (z) + Uψ∗µQ (ψ (z)) +Q (z) ≥ F q.e. on K;

UµQ (z) + Uψ∗µQ (ψ (z)) +Q (z) ≤ F on supp
[
µQ
]
.

Here

F = V −
∫
Q dµQ.

(d) If a probability measure µ on K has finite energy E (µ) and satisfies

Uµ (z) + Uψ∗µ (ψ (z)) +Q (z) ≥ C q.e. on K;

Uµ (z) + Uψ∗µ (ψ (z)) +Q (z) ≤ C on supp
[
µQ
]
.

for some constant C then µ = µQ.
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Bloom et al also studied weighted Fekete points and convergence of
their counting measures to the equilibrium measure. They establish
inequalities that estimate the growth of P (z)Q (ψ (z)), where P and
Q are polynomials. These are impressive extensions of the classical
Bernstein-Walsh inequalities for growth of polynomials.

One questions that stands out both in this more general situation and
the more restrictive situation in [23] is that not much is known about
the support of the equilibrium measure µQ as well as the behavior of
µQ. It certainly merits further investigation.
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