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Recognizing User Proficiency in Piloting
Small Unmanned Aerial Vehicles (sUAV)

Siya Kunde, Evan Palmer, and Brittany Duncan

Abstract—User proficiency in manual operation of autonomous
systems is crucial to the performance of these systems because
users are often the final barrier in detecting and correcting
abnormal behavior in autonomy. This paper presents a new
approach to identifying user proficiency in piloting small un-
manned aerial vehicles (sUAVs) by first extracting meaningful
features and then using a clustering method to generate ground
truth. Pilot performance has been broadly explored in the field of
aviation, but not for operation of sUAVs, and both are inherently
different due expectations for training, location of user, and
subsequent change in user’s point-of-view. We propose a novel,
hybrid approach to evaluate UAV pilot performance: combining
human-rater data and computational methods that incorporate
performance metrics to tune and homogenize the process (of
applying controls) and the product (UAV flight path) of piloting
sUAVs. The results reveal a spectrum of user skills that designers
of these systems need to account for and the ways that users at
different skill levels can be expected to respond, informing future
autonomy design. In a 20 participant study, users were asked
to fly a SUAV along 8 different flight paths of varying difficulty
while the flight trajectory and user control inputs were recorded.
We utilized unsupervised learning techniques to group pilots
into proficiency groups and analyzed the clusters with respect
to the features built. We also identified possible factors based
on groupings to target training of these users. We validated our
approach using new set of data from 12 participants.

Index Terms—Human Factors and Human-in-the-Loop; Aerial
Systems: Applications; Human-Robot Teaming

I. INTRODUCTION

MALL unmanned aerial vehicles (UAVs) are available in
all shapes and sizes to users from different backgrounds—
researchers, specialists, hobbyists and novices alike. The sys-
tems can be purchased and flown without any requirements
for formal manual flight training as they come equipped with
easy-to-use assistive modes like altitude hold, headless, one-
touch take-off-and-landing. Additionally, the Federal Aviation
Administration (FAA) only relies on a knowledge-based as-
sessment to issue certificates for commercial operation.
While this is a great opportunity for wider adoption of
UAVs, these systems can fail in many ways and under varying
contexts—some of which could be avoided with proper user
input and recovery. A study by [I] found that user response
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Fig. 1. Participant completing a task using the DJI Flamewheel sUAV and
Futaba remote controller.

times increased when the users were asked to correct the
failures occurring during flight by taking over manually. Ad-
ditionally, accidents and crashes can result from poor manual
operation skills itself.

The performance of human-robot teams could be improved
by building adaptable autonomous systems that delegate man-
ual operations responsibilities via calibration to user profi-
ciency levels [2]. Recognising user proficiency is a critical first
step in enabling adaptable autonomous systems. Traditionally,
in general aviation literature (elaborated in section II-B), work
related to user proficiency has been investigated from an
expert-novice binary classification perspective. However, [3]
suggests that expert classification be approached in a natural-
istic way by studying tasks and activities that are sufficiently
challenging—so that real expertise can be elicited—and that
can be performed on an ad hoc basis at the time of operation.

Our work seeks to address this problem by answering
four foundational questions: RI: Can we identify features
that can meaningfully quantify pilot flight performance?, R2:
Can we use these features to elicit natural proficiency groups
within data?, R3: Can we provide meaningful labels for each
group?, and R4: Can we utilize the produced labels to identify
proficiency levels of additional pilots?. Answering RI will give
us the features that can be used for clustering. Answering R2
will give insights into the proficiency groups resulting from
manual flight skills within the data and the features that are
important for each group to be successful in the task at hand.
Answering R3 is important as clustering labels do not typically
have a meaning associated with them and we would like to
understand the proficiency level of users in a group. Answering
R4 validates our method so that we can extend the findings in
this paper to future work.
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Leveraging methods from the aviation domain, we explore
the four foundational questions using a 20 participant dataset
where users were asked to complete 8 tasks of varying
difficulty levels (as shown in Fig. 1). Our approach to answer
R1 is through a literature review presented in the next section.
We utilize inputs from both human rater classification and
computational methods, which we believe go hand-in-hand in
exploratory pattern recognition work like this, to answer R2
and R3. Lastly, we validate our approach by classifying a new
set of user data from 12 participants (performing the same 8
tasks) to assess R4.

The study results produced 3 proficiency groups for the
data which were algorithmically assigned meaningful labels
with 2 indicating highest proficiency and O indicating lowest.
Features like simple error distances, more complex time-series
distance measures and summary statistics computed over UAV
flight trajectory, and frequency domain features computed over
user provided control inputs to affect the UAV flight, were
all found to be important for various tasks. Finally, we were
able to effectively validate our approach on new data using
models with non-linear decision boundaries like Naive Bayes
and Decision Trees.

II. RELATED WORK

Our research regarding user proficiency assessment for
human-UAV interaction is novel with prior work focusing on
UAV team assessment and evaluation of proficiency in a UAV
simulation environment. Individual performance assessment
using flight data has been well explored in the general aviation
domain and will be discussed in this section in addition to the
mentioned UAV-based research.

A. Performance Analysis with UAVs

User performance analysis with UAVs has been addressed
in literature from a couple of different perspectives: factors
contributing toward UAV team operation performance [4] and
analysis of planning and monitoring performance [5], [6], [7].
In a study, [4] identified and analyzed factors contributing
towards team performance like planning, decision making, and
situation assessment. In a simulation-based study, user profiles
[7], [6] and representative simulation profiles [5] were ex-
tracted by using clustering techniques with simulation metrics
like Score, Cooperation, and Aggressiveness to assess planning
and monitoring skills of users in a multi-UAV simulation
environment.

While the above research has been conducted for team
settings and in simulation, our research tests individual user
performance while manually operating a visual line of sight
(VLOS) UAV.

B. Overview of Performance Analysis in Aviation

User performance analysis can help compare how users
at different proficiency levels perform tasks and has been
traditionally explored from a expert-novice binary classifica-
tion perspective [8], [9], [10], [11]. Nittala [8] found speed
and heading to be the most important features in predicting

pilot skill level, but the ground truth in this study was based
upon pilot flight hours. When asked to perform tasks in a
flight simulator, expert pilots performed better than novices
on vertical and longitudinal control, but not lateral control
[9]. Xiong [10] found that experts performed better than
novices in landing task stability which was evaluated in terms
of roll, pitch, yaw, and glide rate. Apart from assessing
control performance, a study on pilot ability to anticipate
consequences of actions by Doan [I1] found experts to be
more accurate than novices, especially for trials that involved
multiple, meaningfully related control movements.

Performance analysis has also been conducted to determine
the impact of different factors on pilot proficiency when
operating an aircraft [12], [13], [14]. Environmental factors
like exposure to higher carbon dioxide levels [12] and hy-
poxic hypoxia [14], can negatively impact pilot performance.
Recency of flight practice has been found to be a significantly
stronger predictor of flight performance compared to time
since initial flight training [13].

The work discussed in this section has explored pilot
performance analysis in general aviation domain, and we seek
to elicit the proficiency groups for users flying sSUAVs.

C. Metrics for Flight Performance Analysis

In this section we highlight the various metrics that have
been used in literature to quantify operator performance.

1) Distance-Based Similarity Metrics for Flight Path Anal-
ysis: Objective measures for trajectory analysis have been
used in literature to determine the error in a pilot’s flight
path relative to some optimal flight path or optimal set of
parameters. This can be accomplished by computing arithmetic
mean error [15], [16], root mean square error [I7], and
standard deviation of error [15], [17]. While these metrics
are useful in quantifying pilot performance by assessing flight
paths [15], [16], [17] and controls [18], they do not account
for differences in lengths between the user and target time-
series data. Time-series similarity measures such as Dynamic
Time Warping (DTW) and Fréchet distance have been applied
in domains such as path planning for autonomous robots
[19], voice recognition [20], hand-writing processing [21], and
protein structure alignment [22] respectively. In this study
we used DTW and Fréchet distance as features to enable a
fair comparison between trajectories of unequal lengths and
computation of trajectory error after completion of a task.

2) Frequency-Domain Measures for Control Input Analysis:
Studies in aviation [23], [15], [24], [17] and automobile [25]
domains have used frequency-domain metrics to enable analy-
sis of an operator’s performance when interacting with manual
controls. Johnson [26] established the effectiveness of these
metrics by demonstrating that they were capable of distin-
guishing a high performing pilot from a low performing pilot.
We integrate these metrics in our evaluation to assess sUAV
pilot flight performance.

III. DATA COLLECTION

The dataset (user data and the autonomous data) (described
in Table I and Table II) was collected at the University of
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Nebraska-Lincoln’s (UNL) NIMBUS laboratory under an ex-
emption filed with UNL IRB since no identifiable information
was collected from the user. The DJI Flamewheel 450 sUAV
was used along with Futaba controller in Stabilize mode.
The user control inputs were captured as RC_IN data from
the mavros Robot Operating System (ROS) package. The
transmission frequency capabilities (10 Hz) of the telemetry
used on the UAV limited the recording of the RC data, but the
sUAV pose data was recorded using the Vicon motion capture
system at 200 Hz.

A. User Dataset

The size of the user dataset (with 20 participants) is
relatively small because we were limited by the available
participants who were trained in flying sUAVs. The amount
of prior flight experience varied across users with average
flight experience of 62.4 hours (std. dev. = 98.44), with
minimum reported as 1 hour and maximum of 400 hours.
Flight frequency differed as well where users reported to
practice yearly (2 users), monthly (7), weekly (8), daily (2)
and once (1) respectively.

In contrast, the average flight experience in 6 months prior
to the study was 6.27 hours (std. dev. = 7.74), with minimum
reported as 0 hours and maximum of 30 hours. Users reported
flight frequency in last 6 months to be monthly (7 users),
weekly (8), once (2) and never (3) respectively.

Takeoff, stabilized hover and landing are basic components
of any task a UAV pilot may perform. Additionally the
operators may have to fly the UAV where they are either
flying forward/backward by using the pitch control, left/right
by using the roll control, turning the UAV around by using
the yaw control, or use any combination of these to complete
their task. Since we are presenting an approach to assess user
proficiency in flying UAVs, we selected tasks like hover at
a location, precision landing, square (with a yaw component
in the middle of the task), figure 8 (to combine roll and
pitch controls), alpha (to combine roll, pitch and throttle
controls). Tasks also related to literature presented in section
II-B (individual flight controls, glide path, multiple control
movements).

The operator was positioned outside the netted flight cage
area (visualized in Fig. 2). Markers were placed on the floor
of the flight area (shown in Fig. 1) to indicate starting,
intermediate, and ending waypoints, and the flight path was
visually demonstrated to the operators by the experimenter
prior to flying.

Users were asked to complete 8§ tasks of varying difficulty
through tracing the requested flight path by visiting desig-
nated waypoints in succession. The tasks differed in difficulty
depending on the complexity of the trajectory the user was
asked to follow and by requesting the user to fly nose-in (NI)
(i.e. sUAV facing the user, reversed controls, anticipated to be
higher in difficulty) instead of nose-out (NO) (i.e. facing away,
traditional controls).

The flight tasks (visualized in Fig. 3) were:

1) Hover (NO): Take-off from (0, 0, 0) to (0, 0, 1), hover

for 30 seconds, and land at (0, 0, 0)
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2) Hover (NI): Take-off from (0, 0, 0) to (0, 0, 1), hover
for 30 seconds, and land at (0, 0, 0)

3) Land (NO, nearby): Take-off from (0, 0, 0) to (0, 0, 1),

come to a nearby X marker and land in center

4) Land (NO, far): Take-off from (0, 0, 0) to (0, 0, 1), go

to a far X marker and land in center

5) Square (NO, turn, NI): Take-off from (-0.9, -0.9, 0) to

(-0.9, -0.9, 1), complete a square with side length 1.5m
(NO), come back to (-0.9, -0.9, 1), turn 180 degrees
mid-air, complete a square with side length 1.5m (NI),
return to (-0.9, -0.9, 1), and land

6) Eight (NO): Take-off from (-2, 0, 0) to (-2, 0, 1),

complete a figure-8, return to (-2, 0, 1), and land

7) Eight (NI): Take-off from (-2, 0, 0), to (-2, 0, 1),

complete a figure 8, return to (-2, 0, 1), and land

8) Alpha (NO): Take-off from (-1.5, 0.9, 0) to (-1.5, 0.9,

0.5), go right-diagonally upwards to (1.5, -0.9, 1.5), go
left to (1.5, 0.9, 1.5) by maintaining the altitude at 1.5m,
go to right-diagonally downwards to (-1.5, -0.9, 0.5), and
land at (-1.5, -0.9, 0)

As an example, the best paths corresponding to some users
are presented in Fig. 2 (selected by rater). These bear a
resemblance to the paths the users were asked to follow and
can be contrasted with the autonomous flight paths described
in the next section and visualized in Fig. 3.

One participant’s flight data was corrupted for task 6 (Eight
NO) and hence we have 19 data points for that task. In total we
had 159 data points, each with sUAV trajectory information
provided by Vicon motion capture and control inputs provided
by the user.

B. Autonomous Dataset

This dataset was collected as a baseline representing how
the sUAV flies in autonomous mode without user assistance
for the same trajectories (using Freyja [27]). A sUAV was
autonomously flown in the flight paths that the users were
asked to follow to complete the tasks of the study (visualized
in Figure 3 with the same 8 unique flight paths).

IV. METHOD

The primary purpose of this work is to analyze user per-
formance in manually flying SUAVs. Here we define a way
to measure and detect performance of the sUAV pilots as a
first step in creating an adaptable system. In the future, this
can be integrated into a system used for adapting the robot
task to suit user proficiency level to improve performance of
the human-autonomy team. Below we outline the steps used
to elicit user flight proficiency with UAVs.

A. Ranking Trajectories

A rater ranked the visualizations of user flight trajectories,
taking into account the definition of the task assigned to the
participant and based on Shape criteria defined as “Shape:
The pilot has created a well-formed trajectory that matches
the path described in the task definition.”

This criteria was chosen since it can be inferred to some ex-
tent by looking at visualizations. The visualization of the UAV
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TABLE I
DESCRIPTION OF PARTICIPANT TASK PATTERNS
Designated Tasks Hover Land Square Eight Alpha
NO NI nearby far NO, turn, NI NO NI NO
No. of Trajectories 20 20 20 20 20 19 20 20
Avg. Length (coordinates) 9722 8457 3152 3242 7244 5362 4046 5264
48.892 | 4244 | 15754 | 16.228 36.59 26.829 | 20.464 | 26.41

Avg. Duration (seconds)

-
<
.
e 2
3 X-axis

(b) Task 2

(e) Task 5 (f) Task 6 (g) Task 7 (h) Task 8
Fig. 2. When considering the shape of the trajectory, the rater ranked the following trajectories highest for Hover(NO): 2(a), Hover(NI): 2(b), Land(nearby):

2(c), Land(far): 2(d), Square(NO,turn,NI): 2(e), Eight(NO): 2(f), Eight(NI): 2(g) and Alpha: 2(h).

TABLE 11
DESCRIPTION OF AUTONOMOUS TASK PATTERNS
Designated Tasks Hover Land Square Eight Alpha
NO NI nearby far NO, turn, NI NO NI NO
No. of Trajectories 1 1 1 1 1 1 1 1
Avg. Length (coordinates) 7641 7634 2842 2849 13576 5624 5612 6866
38.253 | 38.153 | 14.206 | 14.261 67.873 28.111 | 28.069 | 34.25

Avg. Duration (seconds)

(d) Task 4

X-axis

(h) Task 8

(f) Task 6 (g) Task 7
3(d), Square(NO,turn,NI): 3(e), Eight(NO): 3(f), Eight(NI): 3(g) and Alpha: 3(h)

(e) Task 5
Fig. 3. Hover(NO): 3(a), Hover(NI): 3(b), Land(nearby): 3(c), Land(far):
created by the SUAV autonomously.
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flight path created through autonomous flight was provided for
reference as the “best” trajectory in the rankings and the user
trajectories were presented in random order. The rater was first
provided training practice in ranking trajectories with circle
and a pattern and then asked to rank the users’ trajectories on
the 8 tasks of the study.

The ranking gave us a general idea of which trajectories
were the best or worst and, in further steps, this would allow
us to confirm the clustering outcomes for the data.

Additionally, the rater was asked to visually segment the
trajectories so that we could extract the hover parts for task 1
and 2 (remove takeoff and landing segments), and the landing
segments of the tasks 3 and 4. The subsequent analyses were
completed by considering the relevant hover parts of task 1 and
2, full trajectories for tasks 3 to 8, and computing additional
landing errors for tasks 3 and 4.

B. Feature Construction

We constructed a set of features from the flight data, which
consisted of pilot control inputs and flight trajectory data, by
which pilot performance would be evaluated. The features
were identified according to previous literature discussed in
section II-C. The reason for applying such features is because
of their demonstrated success in alternative domains of re-
search. The features were computed using (Crane [28], a high-
performance computational platform by Holland Computing
Center at UNL). We computed the following set of features
for each trajectory, for each task:

1) DTW distance similarity measures (using library by
[29]) of the flight paths in X (DTWx), Y (DTWy),
and Z (DTWy) axes considered individually; XY (2D
points) together (DT Wxy); and XYZ (3D points) to-
gether (DTWxy z).

2) Fréchet distance (F'R) measures (using library by [30])
of the flight paths.

3) Mean and standard deviation of the first derivative
of the flight paths in X (Vx), Y (Vy), and Z (V)
axes considered individually; XY (2D points) together
(Vxy); and XYZ (3D points) together (Vxy z).

4) Mean and standard deviation of the power spectral
density of the control inputs (roll (Pg), pitch (Pp), yaw
(Py), and throttle (Pr)).

5) For the landing tasks, we computed X (0x), Y (dy), and
XY (6xy) landing errors.

A total of 24 features were computed for tasks 1, 2, 5, 6,
7, and 8, (outlined in 1-4 above) and 27 features for the 2
landing tasks 3 and 4 (outlined in 1-5 above).

The chosen features are capable of representing user profi-
ciency. The distance-based measures compare the user trajec-
tory to a reference trajectory (in our case, the autonomously
flown “best” trajectory), where a lower distance value indicates
better performance by staying close to the expected path,
while a larger value indicates worse performance as the user
may have strayed from the expected path. When considering
UAS operation within the scope of the completed task and
the size of the flight area, a lower mean velocity and lower
mean control inputs are indicative of a better controlled
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flight. Furthermore, a lower standard deviation of velocity
measurements obtained from a particular task indicates that
the pilot applied a more consistent control strategy during the
respective task.

C. Detecting Natural Groups within the Data

In this step we tested several traditional clustering algo-
rithms: KMeans, Spectral, and Agglomerative [31]. We used
leave-one-out cross validation to conduct experiments across
methods to arrive at a final algorithm to be used and the
number of clusters detected in data.

We analyzed the generalizability of the models using two
different validation metrics: Dunn Index and validation accu-
racy for ground truth data available to us in terms of task
completion (1:yes, O0:no). Dunn Index provides a single score
which summarizes the information about the compactness
and the separation of clusters. Task completion classification
accuracy, is an appropriate validation ground truth because it
was not part of the features used to train the clustering model
to make a prediction. As a last step in model selection process,
both metrics were considered to choose the final model.

D. Assigning Meaningful Proficiency Labels to Clusters

For each task, data from all participants was clustered using
the selected algorithm and number of clusters, and cluster
labels were obtained. These labels are typically randomly
assigned, and do not carry any meaning. To assign meaningful
proficiency labels to the clusters, like 0 for lowest proficiency,
we used the following method. We took the rankings produced
by the rater (where 1 is best and N is worst ranked) for each
task, computed the reciprocal rank and the root mean square
(RMS) of the reciprocal rank over the clusters produced.
A sorted ascending order of the values provided us the
proficiency groups, such that the cluster with the higher RMS
reciprocal rank was considered to be the cluster of users with
highest proficiency, and the one with the lowest value was
considered to be the cluster of users with lowest proficiency.
This metric was used because it provided more weight for
being at the top or bottom of a ranking.

V. RESULTS AND DISCUSSION

In this section, we describe and discuss the results by
proficiency group and cluster label.

A. Detecting User Proficiency Groups

Table III shows the validation results for all the tested
models and validation metrics (described in Section IV-C)
averaged across all folds of the leave-one-out cross validation.
Agglomerative (k=2,3) method produced high Dunn Index
values, and we chose k=3 to optimize for task completion
accuracy.

Next, the selected model was used to detect the proficiency
groups and the methodology described in section IV-D was
followed to produce meaningful proficiency labels. Hence, we
had clusters corresponding to experts (label 2), intermediates
(label 1) and novices (label 0). The user data is visualized
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in Fig. 4 as proficiency label vs. ranks provided by the rater
(higher ranked user is represented by a lower number with best
rank as 1). A quick look confirms that experts with proficiency
label 2 are generally located higher in the ranking order,
followed by intermediates (label 1) and then novices (label
0). As a final step in this analysis, we used pair-wise ANOVA
between proficiency groups to get features that produced
significant results (p <= 0.016 with Bonferroni correction).
The results of this step provide a high level overview of the
clusters and is presented in Table IV.

Ranks

....... bt e

omi s
e e
(g) Ta;k' 7 o (h) Flidk‘skg

Fig. 4. Visualization of proficiency labels produced by our clustering method
(y axis) versus ranks provided by rater (x axis) for each data point for each
task. User assignment to rankings and clusters changed based on the task.
Proficiency was variable and not always in the order by the rater.

B. Assigning meaningful proficiency labels to clusters

The user proficiency labels (2 indicating highest proficiency
and O indicating lowest) assigned to each cluster (and hence
the user trajectories in that cluster) were averaged across all 8
tasks to understand the overall proficiency of the user (shown
in Figure 5). The figure shows how users with higher mean
proficiency have lower standard deviation values, indicating a
more consistent performance. This is supported in literature
where [32] found pilots with more training and practice (and
hence higher expected proficiency) exhibited less variance in
flight performance compared to pilots with less practice and
training.

VI. RECOMMENDATIONS

Based on our investigation and the findings presented,
we present recommendations for future work examining user
proficiency. These relate to tasks to further discriminate user
groups and user proficiency recommendations.

A. Task Discrimination

Overall, easier tasks that could be completed by all (except
one) users, like landing, were not very discriminative. Tasks

TABLE III
LEAVE-ONE-OUT CROSS-VALIDATION ACCURACY FOR TRADITIONAL
CLUSTERING METHODS FOR NUMBER OF CLUSTERS = 2,3,4,5.

Dunn Index [ Task Completion Acc.
No. of Clusters
Method 2 3 4 5 12 3 4 5
Agglomerative | 0.54 0.52 047 050 | 0.85 0.90 0.90 0.90
KMeans 045 051 046 046|084 091 0.90 0.89
Spectral 0.36 030 030 034|087 091 0.89 0.89

User Proficiency Summary Across All 8 Tasks
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Fig. 5. User Proficiency Summary Across All 8 Tasks

that could be completed by majority of the users like hover
(NO), eight (NO), and alpha (NO) seem to be able to detect
well who did or did not complete a task and discriminate
even further to some extent. The hover (NI) task was next
in the level of difficulty was ideal for discriminating user
profiles. Tasks square (NO, turn, NI) and eight (NI) proved
to be very difficult for users to complete at all but the model
was still able to discriminate user proficiency profiles. In future
work, we recommend creating more intermediate tasks that are
long enough to collect sufficient data and to refine the current
classifications.

B. User Proficiency

Users with higher proficiency were clearly able to complete
tasks that involved gradual altitude change, like task 8, by
better controlling the mean and standard deviation Z velocity.
Overall they had lower velocity metric values for easier tasks
like hover, and landing, but the higher values for more difficult
tasks like square and eight. A combination of strategies was
observed where only ST D(Vx) was lower during the eight
(NO) task and all metrics of Z velocity were lower during
the alpha task, while all others were higher values. The high
proficiency group had lower values for all metrics computed
for assessing landing precision in both landing tasks. They
also had lower values for other distance metrics for all tasks
except DT'W  for hover (NI) and eight (NO). For the hover
tasks and eight (NO) task, higher mean and standard deviation
values of control power spectral density were observed for the
high proficiency group, while for task land (nearby) lowest
proficiency group had the highest values, and intermediate
group for the square (NO, turn, NI). For other tasks, either
no trends were found to be significant or different groups had
higher values. Based on these observations, we recommend
working with users to improve their flight velocity, control
inputs, and trajectory following to minimize distance.

VII. INFERRING PROFICIENCY OF NEW PILOTS

In this step, we validate the output of our approach (pro-
ficiency labels produced for each flight path flown by users)
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TABLE IV
ORDERED USER PROFICIENCY LABELS (2 HIGHEST AND 0 LOWEST) TO SHOW RELATIONSHIP AMONG CLUSTERS FOR FEATURES (AS DEFINED IN
SECTION IV-B). STATISTICALLY SIGNIFICANT DIFFERENCES (SIGNIFICANCE LEVEL AT 0.016 WITH BONFERRONI CORRECTION) ARE INDICATED WITH A
FOR (0 AND 1), B FOR (0 AND 2), AND C FOR (1 AND 2). A BOLD PROFICIENCY LABEL INDICATES CLUSTER WITH SINGLE USER.

Task Proficiency | Features Exhibiting Trend
Ordering
Hover (NO) 2<1<0 FRbc, MEAN(Vx )b, STD(Vx )b, MEAN(Vy )ab, STD(Vy )b, MEAN(V)b, STD(Vz)b, MEAN(Vxy )b,
STD(ny)b, MEAN(nyz)b, STD(nyz)b
0<1<2 MEAN(Pp )bc, MEAN(Pg)b, MEAN(Pr)b, STD(Pp )b, STD(Pg)b, STD(Pr)b, STD(Py )b
2<0<1 DTWXBC, DTWXyaC, DTWXYZac
0<2<1 MEAN(Py )b
Hover (NI) 1<0<2 DTW zc, MEAN(Pp )b, MEAN(Pg)bc, MEAN(Pr)bc, MEAN(Py )be, STD(Pp )be, STD(Pg)be, STD(Pr)be,
STD(Py )bc
2<1<0 | MEAN(Vx)b, MEAN(Vy )ab, MEAN(V)ab, MEAN(Vxy )ab, MEAN(Vxy z)ab
1<2<0 STD(Vy )ab, STD(V)ab, STD(Vxy )ab, STD(Vxy z)ab
Land (Nearby) | 1 <2 <0 | MEAN(Pp)ac, MEAN(Pg)ac, MEAN(Py )ac, STD(Pp)ac, STD(Pg)ac, STD(Pr)ac, STD(Py )ac, DTWxDb,
DTWyb, DTWxyab, MEAN(Vy )b, STD(Vy )b, dy'b
2<1<0 FRb, DTWxy zb, MEAN(Vz)b, MEAN(nyz)b, dxb, dxyb
Land (Far) 2<0<1 MEAN(Vx)c, STD(Vx )c, MEAN(Vy )be, MEAN(Vz)c, MEAN(Vxy )be, STD(Vxy )c, MEAN(Vxy z)c
0<2<1 STD(Vy )c, STD(Vz)e, STD(Vxy z)c
2<1<0 | FRb, DTWxb, 5xb, §xyb
1<2<0 DTWyb, DTWxyb, DTWxy zb, dyb
Square 0<1<2 MEAN(Vx)be, STD(Vx)bc, STD(Vy )b, MEAN(Vz)bc, STD(Vz)b, MEAN(Vxy )b, STD(Vxy )b,
MEAN(Vxy z)b, STD(Vxy z)bc
(NO,turn,NI) 1<2<0 DTWy-ab
0<2<1 STD(Pp)a, STD(Pg)a, STD(Pr)a, STD(Py )a
Eight (NO) 2<1<0 FRbe, DTWxbc, DTW xybe, DTWxy zbc
2<0<1 DTWybc, STD(Vx )ac
1<0<2 | MEAN(Pp)bc, MEAN(Py )c, STD(Pp)be, STD(Pg)be, STD(Py )be
0<2<1 DTW za, MEAN(Vx )¢, STD(Vy )a, MEAN(Vz )¢, STD(Vz )¢, MEAN(Vxy )¢, STD(Vxy )ac, MEAN(Vxy z)c,
STD(nyz)aC
Eight (NI) 2<1<0 FRb, DTWxbc
2<0<1 DTWzc, DTWxybe, DT'Wxy zbc, MEAN(Py)C
0<2<1 MEAN(Vx)ac, STD(Vx)ac, MEAN(Vy)a, STD(Vy)ac, MEAN(Vz)ac, STD(Vz)a, MEAN(Vxy )ac,
STD(Vxy )ac, MEAN(Vxy z)ac, STD(Vxy z)ac, STD(Pp)b, STD(Pr)b, STD(Pr)b, STD(Py )b
Alpha (NO) 2<0<1 MEAN(V7)c, STD(VZ)ac, MEAN(Vxy z)c, STD(Vxy z)ac
0<2<1 STD(Vx )ac, MEAN(Vy )ac, STD(Vy-)ac, MEAN(Vxy )ac, STD(Vxy )ac
1<2<0 FRb, DTWxab, DTWxy ab
2<1<0 DTWyb, DTWzb, DTWxy zab
TABLE V
TASK COMPLETION (TC) AND CRASH DATA FOR DIFFERENT USER PROFICIENCY LABELS (2 HIGHEST AND 0 LOWEST)

[ Proficiency Label | T1 [ T2 [ T3 [ T4 [ T5 [ T6 [ T7 [ T8 |
[ [ TC[Crash[ TC] Crash[ TC [ Crash | TC ] Crash | TC[ Crash [ TC [ Crash [ TC | Crash [ TC [ Crash |
0 1/5 4/5 1/3 0/3 172 0/2 0/1 1/1 | 0/10 | 7/10 0/3 173 | 0/12 | 712 0/4 2/4
1 212 0/2 177 3/7 212 072 1/1 0/1 2/6 3/6 0/1 o/1 | 01 171 1/1 0/1
2 13/13 | 0/13 | 9/10 | 0/10 | 16/16 | 0/16 | 18/18 | 0/18 1/4 1/4 | 14/15 0/15 | 3/7 1/7 | 15/15 | 0/15

TABLE VI flight path, which were then used to assess the classification

F1 SCORES FOR USER PROFICIENCY CLASSIFICATION USING MODELS:
NAIVE BAYES (NB), DECISION TREE (DT), LOGISTIC REGRESSION (LR),
RANDOM FOREST (RF), AND K NEAREST NEIGHBORS (KNN)

[ [ T1T T2 T3 T4 T5 T6 T7 T8]
NB 1.00 1.00 1.00 0.05 1.00 0.28 0.67 043
DT 079 0.09 072 041 0.72 025 0.76 0.75
LR 036 0.00 050 0.05 058 028 0.70 0.44
RF 036 0.00 054 0.05 058 028 0.68 043
KNN | 036 0.00 0.57 0.05 0.66 0.28 0.70 0.44

by classifying data from new users into the proficiency groups
detected for the previous dataset. For this, data was collected
from 12 new participants for the same 8 tasks. A rater was
provided a interactive visualization of the user trajectories to
inspect and asked to assign either Expert, Intermediate, or
Novice labels (since previously 3 groups were detected) to each

accuracy. These values were assessed for agreement (based on
the agreement formula by Wobbrock [33]) with ratings from
two other raters collected in similar fashion. The agreement
scores for each task, averaged across all participants were 0.7
for Hover(NO), 0.92 for HOVER(NI), 0.92 for Land (nearby),
0.77 for Land (far), 0.81 for Square (NO, turn NI), 0.92 for
Eight(NO), 0.92 for Eight (NI), and 0.77 for Alpha(NO).

Table VI shows that out of all the classification methods,
NaiveBayes (NB) and DecisionTree (DT) classifiers performed
the best. NB was able to recover the proficiency labeling
generated by the clustering for tasks 1, 2, 3, 5 and 6, on the
unseen data, and with highest possible value of the F1 score for
four tasks. DT scored highest for the tasks 7 and 8 (difficult for
most users to perform), and task 4. No method performed well
for task 4 and we hypothesize that this is because majority of
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the users were assigned to the same cluster with single users
in the other two clusters.

Based on these outcomes, we observe that linear decision
boundaries are inadequate to classify proficiency.

VIII. CONCLUSION

Identifying user proficiency in manual handling of sUAVs
is an important aspect of the design of adaptable autonomous
system. It’s crucial to the performance of such systems to
be able to detect proficiency groups and assign new users to
them preferably in real time before or during flights. In this
work we focused on achieving this goal by identifying and
computing relevant features which were then used along with
clustering techniques to determine proficiency groups of users.
Additionally the groups were given meaningful proficiency
labels. The proficiency profiles identified in this work are
based solely on pilots’ flying capabilities and were validated
with data from new users. Future work will focus on extending
the analysis to understand a temporal evolution of proficiency
profiles, and users’ non-flight related skills.
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