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Previous literature shows that deep learning is an effective tool to decode the motor
intent from neural signals obtained from different parts of the nervous system. However,
deep neural networks are often computationally complex and not feasible to work in
real-time. Here we investigate different approaches’ advantages and disadvantages to
enhance the deep learning-based motor decoding paradigm’s efficiency and inform its
future implementation in real-time. Our data are recorded from the amputee’s residual
peripheral nerves. While the primary analysis is offline, the nerve data is cut using a
sliding window to create a “pseudo-online” dataset that resembles the conditions in a
real-time paradigm. First, a comprehensive collection of feature extraction techniques is
applied to reduce the input data dimensionality, which later helps substantially lower the
motor decoder’s complexity, making it feasible for translation to a real-time paradigm.
Next, we investigate two different strategies for deploying deep learning models: a
one-step (1S) approach when big input data are available and a two-step (2S) when
input data are limited. This research predicts five individual finger movements and four
combinations of the fingers. The 1S approach using a recurrent neural network (RNN) to
concurrently predict all fingers’ trajectories generally gives better prediction results than
all the machine learning algorithms that do the same task. This result reaffirms that deep
learning is more advantageous than classic machine learning methods for handling a
large dataset. However, when training on a smaller input data set in the 2S approach,
which includes a classification stage to identify active fingers before predicting their
trajectories, machine learning techniques offer a simpler implementation while ensuring
comparably good decoding outcomes to the deep learning ones. In the classification
step, either machine learning or deep learning models achieve the accuracy and F1
score of 0.99. Thanks to the classification step, in the regression step, both types of
models result in a comparable mean squared error (MSE) and variance accounted for
(VAF) scores as those of the 1S approach. Our study outlines the trade-offs to inform the
future implementation of real-time, low-latency, and high accuracy deep learning-based
motor decoder for clinical applications.

Keywords: convolutional neural network, deep learning, feature extraction, motor decoding, neuroprosthesis,
neural decoder, peripheral nerve interface, recurrent neural network
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1. INTRODUCTION

Upper-limb amputation affects the quality of life and well-
being of millions of people in the United States, with
hundreds of thousand new cases annually (Ziegler-Graham,
2008). Neuroprosthetic systems promise the ultimate solution
by developing human-machine interfaces (HMI) that could
allow amputees to control robotic limbs using their thoughts
(Harris, 2011; Johannes, 2011; Schultz, 2011; Cordella, 2016).
It is achieved by decoding the subjects motor intent with
neural data acquired from different parts of the nervous system.
Proven approaches include surface electromyogram (EMG)
(Sebelius, 2005; Fougner, 2012; Jiang, 2012; Amsuss, 2013; Zuleta,
2019; George, 2020a,b), electroencephalogram (EEG) (Hu, 2015;
Zeng, 2015; Sakhavi, 2018; Kwon, 2019), cortical recordings
(Mollazadeh, 2011; Hochberg, 2012; Irwin, 2017), and peripheral
nerve recordings (Micera, 2011; Davis, 2016; Vu, 2017, 2020;
Wendelken, 2017; Zhang, 2017; Nguyen and Xu, 2020).

However, implementing an effective HMI for neuroprostheses
remains a challenging task. The decoder should be able to predict
the subject’s motor intents accurately and satisfy certain criteria
to make it practical and useful in daily lives (Vujaklija, 2017;
Krasoulis, 2019). Some criteria include dexterity, i.e., controlling
multiple degrees-of-freedom (DOF) such as individual fingers;
intuitiveness, i.e., reflecting the true motor intent in mind,
and real-time, i.e., having minimal latency from thoughts
to movements.

In recent years, deep learning techniques have emerged as
strong candidates to overcome this challenge thanks to their
ability to process and analyze biological big data (Mahmud,
2018). Our previous work (Nguyen and Xu, 2020) shows that
neural decoders based on the convolutional neural network
(CNN) and recurrent neural network (RNN) architecture
outperform other “classic” machine learning counterparts in
decoding motor intents from peripheral nerve data obtained
with an implantable bioelectric neural interface. The deep
learning-based motor decoders can regress the intended motion
of 15 degrees-of-freedom (DOF) simultaneously, including
flexion/extension and abduction/adduction of individual fingers
state-of-the-art performance metrics, thus complying with the
dexterity and intuitiveness criteria.

Here we build upon the foundation of Nguyen and Xu
(2020) by exploring different strategies to optimize the motor
decoding paradigm’s efficiency. The aim is to lower the
neural decoder’s computational complexity while retaining high
accuracy predictions to make it feasible to translate the motor
decoding paradigm to real-time operation suitable for clinical
applications, especially when deploying in a portable platform.
This paper does not aim to solve the real-time problem but to
study different approaches, highlighting their advantages and
disadvantages, which will inform future implementation of the
motor decoding paradigm in real-time.

First, we utilize feature extraction to reduce data
dimensionality. By examining the data spectrogram, we learn
that most of the signals’ power concentrates in the frequency
band 25-600 Hz (Nguyen and Xu, 2020). Many feature extraction
techniques (Zardoshti-Kermani, 1995; Phinyomark, 2009, 2012;

Rafiee, 2011) have been developed to handle signals with
similar characteristics. Feature extraction aims not only to
amplify the crucial information, lessen the noise but also to
substantially reduce the data dimensionality before feeding them
to deep learning models. This could simultaneously enhance
the prediction accuracy and lower the deep learning models’
complexity. Here we focus on a comprehensive list of 14 features
that consistently appear in the field of neuroprosthesis.

Second, we explore two different strategies for deploying
deep learning models: the two-step (2S) and the one-step (1S)
approaches. The 2S approach consists of a classification stage
to identify the active fingers and a regression stage to predict
the trajectories of digits in motion. The 1S approach only has
one regression stage to predict the trajectories of all fingers
concurrently. In practice, the 2S approach should be marginally
more efficient because not all models are inferred at a given
moment. The models in the 2S approach are only trained on
the subset where a particular finger is active, while all models in
the 1S approach are trained on the full dataset. Here we focus
on exploring the trade-offs between two approaches to inform
future decisions of implementing the deep learning-based motor
decoder in real-world applications.

The rest of this paper is organized as follows: Section “Data
Description” introduces the human participant of this research,
the process of collecting input neural signals from the residual
peripheral nerves of the participant, and establishing the ground-
truth for the motor decoding paradigm using deep learning
models. Section “Data Preprocessing” elaborates on how to
cut raw input neural data into trials and extract their main
features in the temporal domain before feeding to deep learning
decoding models. Section “Proposed Deep Learning Models and
Decoding Strategies” discusses the two approaches to efficiently
translate motor intent from the residual peripheral nerves of
the participant into motor control of the prosthesis as well as
the architecture and the hyper-parameters of the deep learning
models used in each approach. Section “Experimental Setup” is
about the three machine learning models used as the baseline
and how input neural data are allocated to the training and
validation set. Section “Metrics and Results” presents the metrics
to measure the performance of all models used in the motor
intent decoding process and discusses the main results of both
proposed approaches. Section “Discussion” discusses the role of
feature extraction in reducing the deep learning motor decoders’
complexity for real-time applications, how to further apply it
in future works, and the advantages of machine learning and
deep learning motor decoders in different scenarios where input
dataset’s size varies. Finally, section “Conclusion” summarizes the
main contributions of this paper.

2. DATA DESCRIPTION

2.1. Human Participant

The human experiment is a part of the clinical trial DExterous
Hand Control Through Fascicular Targeting (DEFT), which is
sponsored by the DARPA Biological Technologies Office as part
of the Hand Proprioception and Touch Interfaces (HAPTIX)
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FIGURE 1 | Photo of the (A) amputee and (B) the data collection software during a training session. The patient performs various hand movements repeatedly during
the training session. Nerve data and ground-truth movements are collected by a computer and displayed in real-time on the monitor for comparison.

program, identifier No. NCT02994160'. The human experiment
protocols are reviewed and approved by the Institutional Review
Board (IRB) at the University of Minnesota (UMN) and the
University of Texas Southwestern Medical Center (UTSW). The
amputee voluntarily participates in our study and is informed
of the methods, aims, benefits, and potential risks of the
experiments prior to signing the Informed Consent. Patient
safety and data privacy are overseen by the Data and Safety
Monitoring Committee (DSMC) at UTSW. The implantation,
initial testing, and post-operative care are performed at UTSW
by Dr. Cheng and Dr. Keefer, while motor decoding experiments
are performed at UMN by Dr. Yangs lab. The clinical team
travels with the patient in each experiment session. The patient
also completes the Publicity Agreements where he agrees to be
publicly identified, including showing his face.

The participant is a transradial male amputee who has lost his
hand for over 5 years (Figure 1). Among seven levels of upper-
limb amputation, transradial is the most common type that
accounts for about 57% of upper-limb loss in the U.S. (Schultz,
2011; Cordella, 2016). Like most amputees, the subject still has
phantom limb movements; however, such phantom feelings fade
away over time. By successfully decoding neural signals from the
residual nerves of an amputee who has lost his limb for a long
time, we would offer a chance to regain upper-limb motor control
for those who are sharing the same conditions.

The patient undergoes an implant surgery where four
longitudinal intrafascicular electrode (LIFE) arrays are inserted
into the residual median and ulnar nerves using the microsurgical
fascicular targeting (FAST) technique (Figure 2). The electrode
array’ design, characteristics, and surgical procedures are
reported in Cheng (2017) and Overstreet (2019). The patient has
the electrode arrays implanted for 12 months, during which the
conditions of the implantation site is regularly monitored for
signs of degradation.

The patient participates in several neural stimulations, neural
recording, and motor decoding experiment sessions. He initially
has weak phantom limb movements due to reduced motor

Thttps://clinicaltrials.gov/ct2/show/NCT02994160

control signals in the residual nerves throughout the years.
However, the patient reports that the more experiment sessions
he takes part in, the stronger his phantom control and sensation
of the lost hand become. This suggests that training may help
re-establish the connection between the motor cortex and the
residual nerves, resulting in better motor control signals.

2.2. Nerve Data Acquisition

Nerve signals are acquired using the Scorpius neural interface
(Figure 2)-a miniaturized, high-performance neural recording
system developed by Yangs lab at UMN. The system employs
the Neuronix chip family, which consists of fully-integrated
neural recorders designed based on the frequency shaping (FS)
architecture (Xu, 2014, 2020; Yang, 2016, 2018, 2020). The
specifications of the Scorpius system are reported in Nguyen and
Xu (2020). The system allows acquiring nerve signals with high-
fidelity while suppressing artifacts and interference. Here two
Scorpius devices are used to acquire signals from 16 channels
across four microelectrode arrays at a sampling rate of 40
kHz (7.68 Mbps, 480 kbps per channel). The data are further
downsampled to 5 kHz before applying a bandpass filter in 25—
600 Hz bandwidth to capture most of the signals’ power. This
results in a pre-processed data stream of 1.28 Mbps (80 kbps
per channel).

2.3. Ground-Truth Collection

The mirrored bilateral training paradigm (Sebelius, 2005; Jiang,
2012) is used to establish the ground-truth labels needed for
supervised learning (Figure 2). The patient performs various
hand gestures with the able hand while simultaneously imagining
doing the same movement with the phantom/injured hand.
During the ground-truth collection, the virtual hand and/or
motorized prosthesis hand can follow the glove’s movement to
provide additional visual cues for the amputee. The ground
truth is recorded while the patient poses his arms in different
positions, including holding arms overhead, spreading to two
sides, reaching the front, and resting along the body. The gestures
include bending the thumb, index, middle, ring, little finger,
index pinch, tripod pinch, grasp/fist, and resting. We record
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FIGURE 2 | Overview of the human experiment setup and data acquisition using

2020). The ground-truth movements are obtained with a data glove.

implanted in the residual ulnar and median nerve (Overstreet, 2019). Peripheral nerve signals are acquired by two Scorpius neural interface devices (Nguyen and Xu,

Data glove

the mirrored bilateral training. The patient has four FAST-LIFE microelectrode arrays

the training data in multiple sessions. During each session, the
amputee performs one hand gesture 100 times, each time 4 s
altering between resting and flexing. Peripheral nerve signals are
acquired from the injured hand with the Scorpius system, while
ground-truth movements are captured with a data glove (VMG,
30, Virtual Motion Labs, TX) from the able hand. The glove can
acquire up to 15 DOF; however, we only focus on the main 10
DOF (MCP and PIP) corresponding to the flexion/extension of
five fingers.

3. DATA PREPROCESSING
3.1. Cutting Raw Neural Data

Raw neural data are cut using a sliding window to resemble
online motor decoding (Figure 3A). Here the window’s length
is set to 4 s with an incremental step of 100 ms. At any instant
of time, the decoder can only observe the past neural data. The
pseudo-online dataset contains overlapping windows from a total
of 50.7 min worth of neural recordings. Each of these 4 s neural
data segments serves as an input trial of the motor decoding
process later.

3.2. Feature Extraction

Previous studies have shown that feature extraction is an effective
gateway to achieve optimal classification performance with
signals in the low-frequency band by highlighting critical hidden
information while rejecting unwanted noise and interference.
Here we select 14 of the most simple and robust features that are

frequently used in previous motor decoding studies (Zardoshti-
Kermani, 1995; Phinyomark, 2009, 2012; Rafiee, 2011). They are
chosen such that there is no linear relationship between any pair
of features. All features can be computed in the temporal domain
with relatively simple arithmetic, thus aiding the implementation
in future portable systems.

Table 1 summaries the descriptions and formula of the
features. Figure 3B illustrates the process to compute feature
data. x; is the 4 s neural data segments, which are further divided
into windows of 100 ms with N is the window length. Two
consecutive windows are 80% overlapped, which is equivalent to
a 20 ms time step. This results in a data stream of 224 features
over 16 channels with a data rate of 179.2 kbps (11.2 kbps per
channel), which is more than 40 times lower than the raw data
rate. Figure 4 presents an example of the feature data in one
trial that shows a clear correlation between the changes of the 14
extracted features and the finger’s movement. The amplitude of
each feature is normalized by a fixed value before feeding to the
deep learning models.

4. PROPOSED DEEP LEARNING MODELS
AND DECODING STRATEGIES

4.1. Two-Step (2S) Strategy

Each finger exists in a binary state: active or inactive, depending
on the patient’s intent to move it or not. There are 32 different
combinations of five fingers corresponding to 32 hand gestures.
Only a few gestures are frequently used in daily living activities,
such as bending a finger (“10000”, “01000”, ..., “00001”), index
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FIGURE 3 | (A) lllustration of the sliding windows to cut neural data to create a pseudo-online dataset that resembles conditions in online decoding. (B) lllustration of
the process to compute the feature data.

Feature data (14 fea. per channel)

TABLE 1 | List of features, descriptions, and formula.

Feature Description Formula
F1 Zero crossing (ZC) The number of times the demeaned data change sign. ):,N: 2SgN(=Xi—1X;)
F2 Slope sign changes (SSC) The number of times the differential data change sign. Z,stsgn[—(x, — Xi—1)Xi—1 — Xi—2)]
F3 Waveform length (WL) The summation of the absolute values of the differential data. ):/i 21X — Xi—1]
F4 Wilson amplitude (WA) The number of times the change in the signal amplitudes of ):,’\Z’ngn(|x,- — Xi—1| — Xstd)
two consecutive samples exceeds the standard deviation.
F5 Mean absolute (MAB) The average of the absolute values of the data. %E,’i 41Xl
F6 Mean square (MSQ) The average of the square values of the data. % E,’i 1X,2
F7 Root mean square (RMS) The root of MSQ or v-order 2. VSN x?
F8 V-order 3 (V3) The cubic root of the average of the cube of the data. JLmN X8
F9 Log detector (LD) The exponential of the average of the log data. exp (‘N ):,’1 ;log |X/‘|)
F10 Difference absolute standard Standard deviation of the absolute of the differential data. N‘j E{i S0 — Xi_1)?
deviation (DABS)
F11 Maximum fractal length (MFL) Equivalent to the log of DABS minus an offset that is equal to log |: =06 — Xi—1 )2]
1/2log(N — 1)
F12 Myopulse percentage rate (MPR) The number of times the absolute of the data exceeds the ):,’i 18gN(1Xi| — Xsta)
standard deviation.
N/2) 5N
F13 Mean absolute value slope A modified version of MAV that is the difference between the == ‘X"LNZ/’ZW/ cBLL
(MAVS) MAV of the first half of a signal window and the second half.
F14 Weighted mean absolute (WMA) A modified version of the MAB where the first and last 25% of %Zl’l JWilxi| where w; = 1 if

a signal window is given less weight than the middle 50%. i € [0.25N, 0.75N], and w; = 0.5 otherwise

pinching (“00011”), or grasp/fist (“11111”). Therefore, classifying
the hand gesture before regressing the fingers’ trajectories would
significantly reduce the possible outcome and lead to more

accurate predictions. The movement of inactive fingers could also
be set to zero, which lessens the false positives when a finger
“wiggles” while it is not supposed to.
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FIGURE 4 | An example of feature data in one trial which shows clear correlation with the finger's movement. A trial includes the finger's movement from resting to
fully flexing and back to resting. Each color represents one of the 16 recording channels. The amplitude of each feature is normalized by a fixed value.
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FIGURE 5 | lllustration of the (A) two-step (2S) and (B) one-step (1S) strategy for deploying deep learning models.
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FIGURE 6 | Architecture of the deep learning models: (A) CNN for classification, (B) RNN for classification, (C) CNN for regression, (D) RNN for regression.

Figure 5A shows an illustration of the 2S strategy. In the
first step, the classification output is a [1x5] vector encoding
the state of five fingers. While the dataset used in this study
only includes nine possible outcomes, the system can be easily
expanded in the future to cover more hand gestures by appending
the dataset and fine-tuning the models. In contrast, many past
studies focus on classifying a specific motion, which requires
modifying the architecture and re-training the models to account
for additional gestures.

In the second step, the trajectory of each DOF is regressed by
a deep learning model. Ten separate models regress the trajectory
of 10 DOF (two per finger). The models associated with inactive
fingers are disabled, and the prediction outputs are set to zero.
As a result, the dataset used to train each model is only a subset
of the full dataset where the corresponding DOF is active. While
all models use the same architecture, they are independently
optimized using different sets of training parameters such as
learning rate, minibatch size, number of epochs, etc., to achieve
the best performance. An advantage of this approach is that if
one DOF fails or has poor performance, it would not affect the
performance of others.

4.2. One-Step (1S) Strategy

Figure 5B shows an illustration of the 1S strategy. It is the most
straightforward approach where the trajectories of each DOF are
directly regressed regardless of the fingers’ state. As a result, the
full dataset, which includes data when the DOF is active (positive
samples) and idle (negative samples), must be used to train each
DOF. Because the number of negative samples often exceeds the
number of positive samples from 5:1 to 10:1, additional steps such
as data augmentation and/or weight balancing need to be done
during training. This also leads to more false-positives where
an idle DOF still has small movements that could affect the
overall accuracy.

Although the 1S procedure is more straightforward than the
28, its time-latency and efficiency are not necessarily better
than the 2S. While our hands are at rest most of the time, the
1S approach has to continuously predict all fingers’ trajectories
regardless of their activeness status. The 2S approach goes
through a classification step to identify the active DOF before
predicting the trajectories of those DOE, which helps disable
several deep learning models depending on the hand gestures,
direct resources to the active DOF, and results in lower overall
latency and computation in most implementations where there
is only one processing unit (GPU or CPU) in the second step. It
is shown in Table 3 that a simple RF can help achieve comparable
classification outcomes of accuracy above 0.99 to those from
the two deep learning techniques. The regression steps of both
approaches utilize the same deep learning model.

4.3. Deep Learning Models

Figure 6 shows the architecture of the deep learning classification
and regression models. They include standard building blocks
such as convolutional, long-short term memory (LSTM), fully-
connected, and dropout layers of different combinations, order,
and set of parameter values. The architecture is optimized
by gradually adding layers and tuning their parameters while
tracking the decoder’s efficacy using 5-fold cross-validation. As
the performance converges, additional layers would tend to result
in over-fitting.

There are 10 copies of the regression model for 10 DOEF, each
of which is trained separately. We use Adam optimizer with the
default parameters f; = 0.99, 2 = 0.999, and a weight decay
regularization L, = 107°. The mini-batch size is set to 38, with
each training epoch consists of 10 mini-batches. The learning rate
is initialized to 0.005 and reduced by a factor of 10 when the
training loss stopped improving for two consecutive epochs.
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TABLE 2 | Comparison between this work and Nguyen and Xu (2020).

No. of layers No. of
parameters
Conv. LSTM Fully conn.
Nguyen and Xu (2020) 21 2 3 25,927,050
This work (classification) 1 0 3 1,465,749
This work (regression) 3 767,200

As shown in Figure 6, the input of both 1S and 2S networks
is a matrix [224 x 200] where 224 is the total number of features,
and 200 is the time vector. During the data preprocessing step,
raw neural data are cut into several 4 s segments. Each of these 4 s
segments goes through the feature extraction step, during which
it is further cut into 100 ms segments with an incremental step
of 20 ms as illustrated in Figure 3B. There are 14 features to be
extracted from each channel as mentioned in Table 1. Hence, a 4
s segment of raw neural data from 16 channels results in a matrix
[224 x 200] where 224 is the total number of extracted features
from 16 channels [16 x 14 = 224] and 200 is the total number of
time steps cut from 4 s segments [4 s/20 ms = 200].

Table 2 shows a rough comparison between the deep learning
models used in this and our previous work. Note that for
regression, the number of learnable parameters is a total of 10
models for 10 different DOF. The addition of feature extraction,
thus dimensional reduction, allows significantly lowing the deep
learning models’ size and complexity. This is essential for
translating the proposed decoding paradigm into a real-time
implementation for portable systems.

5. EXPERIMENTAL SETUP

In this research, we investigate the performance of two main deep
learning architectures: the CNN and RNN for both classification
and regression tasks. Besides, the deep learning models are
benchmarked against “classic” supervised machine learning
techniques as the baseline. They include support vector machine
(SVM), random forest (RF), and multi-layer perceptron (MLP).

For baseline techniques, the input of the classification task
is the average of 224 features across 200 time-steps, while the
input of the regression task is the 30 most important PCA
components. The SVM models use the radial basis function
(RBF) for classification and polynomial kernel of degree three
for regression, with parameter C = 1. The RF models use 5 and
10 trees for classification and regression, respectively, with a max
depth of three. The MLP model for classification is created by
replacing the convolutional layer of the CNN model with a fully-
connected layer of 200 units. The MLP model for regression has
four layers with 300, 300, 300, and 50 units, respectively.

The 5-fold cross-validation is used to compare the
performance of the classification task. For the regression
task, the dataset is randomly split with 80% for training and
20% for validation. The split is done such that no data windows
from the training set overlap with any data windows from the
validation set.

The data processing is done in MATLAB (MathWorks, MA,
USA). The deep learning networks are implemented in Python
using the PyTorch 2 library. The deep learning models are trained
and evaluated on a desktop computer with an Intel Core i7-
8086K CPU and an NVIDIA TITAN Xp GPU.

6. METRICS AND RESULTS
6.1. Metrics

This subsection introduces the metrics to measure the
performance of five models, including the two discussed
deep learning models and three other supervised machine
learning techniques as benchmarks in both classification and
regression tasks.

The performance of the classification task is evaluated using
standard metrics including accuracy and F1 score derived from
true-positive (TP), true-negative (TN), false-positive (FP), and
false-negative (FN) as follows:

Sensitivity = TP /(TP + FN) (1)
Specificity = TN/(TN + FP) 2)
Precision = TP/(TP + FP) (3)
Accuracy = (Sensitivity + Specificity)/2 (4)

2 - Sensitivity - Precision
F1 Score =

(5)

Sensitivity + Precision

We use the definition of accuracy with an equal weight of
sensitivity and specificity because the occurrence of class-1
(active finger) is largely outnumbered by the occurrence of class-0
(inactive finger).

The performance of the regression task is quantified by two
metrics: mean squared error (MSE) and variance accounted for
(VAF). MSE measures the absolute deviation of an estimated
from the actual value of a DOF, while VAF reflects the relative
deviation from the actual values of several DOF. They are defined
as follows:

N 1 . .
MSE(y,y) = N)]fil(yz — yz)2 (6)

Zilil(j/i _}’i)z
X (i — yi)?

where N is the number of samples, y is the ground-truth
trajectory, y is the average of y, and y is the estimated trajectory.
The value of y and y are normalized in a range [0, 1] in which 0
represents the resting position.

Although the MSE is the most common metric and effectively
measures absolute prediction errors, it cannot reflect the relative
importance of each DOF to the general movements. For example,
if the average magnitude of DOF A is hundreds of times smaller
than that of DOF B, a bad estimation of A still can yield lower
MSE than a reasonable estimation of B. The VAF score is more
robust in such scenarios; thus, it could be used to compare the
performance between DOF of different magnitude. The value of

VAF(y,) =1 — (7)

Zhttps://pytorch.org/
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TABLE 3 | Classification performance.

Accuracy F1 score
Thumb Index Middle Ring Little Thumb Index Middle Ring Little
SVM 0.999 0.767 0.916 0.895 0.932 0.999 0.808 0.911 0.771 0.677
RF 0.999 0.975 0.996 0.992 0.988 0.999 0.976 0.996 0.980 0.981
MLP 0.999 0.965 0.973 0.966 0.970 0.999 0.965 0.972 0.954 0.945
CNN 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
RNN 0.999 0.948 0.988 0.970 0.994 0.999 0.957 0.987 0.950 0.994

the VAF score ranges from (-oo, 1], the higher, the better. This
research presents the MSE and VAF scores of different neural
decoding models from different approaches to choose the best
one for future clinical applications in real-time. A neural decoder
that results in negative VAF scores is definitely not the best one.
In fact, SVM is the only decoding architecture that occasionally
shows negative VAF scores. Therefore, ignoring its negative VAF
scores would neither affect the comparison nor change the final
decision of the best model. For practicality, negative VAF values
are ignored when presenting the data.

6.2. Classification Results

Table 3 shows the average 5-fold cross-validation classification
results of all the techniques. The predictability of each finger is
largely different from one another. The thumb, which produces
strong signals only on the median nerve (first eight channels),
is easily recognized by all techniques. Overall, CNN offers the
best performance with accuracy and an F1 score for all fingers
exceeding 99%. RF closely follows with performance ranging
from 98 to 99%. While deep learning still outperforms classic
techniques, it is worth noting that RF could also be a prominent
candidate for real-world implementation because RF can be more
efficiently deployed in low-power, portable systems.

6.3. Regression Results

Figure 7 presents the MSE and VAF scores for both strategies.
In the 1S approach, the deep learning models, especially RNN,
significantly outperform the other methods in both MSE and
VAE, as shown in Figures 7A,C. To verify the significance of
differences between RNN and the other decoders, we conduct
paired t-tests with a Bonferroni correction. The results indicate
that the performance differences in MSE and VAF are all
statistically significant with p < 0.001. In the 2S approach, the
performance is more consistent across all methods, where classic
methods even outperform deep learning counterparts in certain
DOF as shown in Figures 7B,D. Between the two strategies, the
1S approach generally gives better results; however, the high
performance can only be achieved with RNN.

7. DISCUSSION

7.1. Feature Extraction Reduces Decoders’
Complexity

Both deep learning architectures investigated in this study,
namely CNN and RNN, deliver comparable motor decoding

performance to our previous work (Nguyen and Xu, 2020) while
require much lower computational resources to implement. The
average VAF score for most DOF is 0.7, with some exceeding
0.9. Such results are achieved with relatively shallow deep
learning models with 4-5 layers, a significant reduction from the
previous implementation with 26 layers. While an extra step of
feature extraction is required, all feature extraction techniques are
specifically designed to be efficiently computed with conventional
arithmetic processors (e.g., CPU) and/or hardware accelerators
(e.g., FPGA, ASIC).

Another direction for future works would be including
additional features. Here we apply the most common features
in the temporal domain for their simplicity and well-established
standing for neuroprosthesis applications. There are other
features, such as mean power, median frequency, peak frequency,
etc., in the frequency domain that have been explored in previous
literature. The purpose of this study is not to exhaustively
investigate the effect of all existing features in motor decoding
but to prove the effectiveness of the feature extraction method in
achieving decent decoding outcomes. The success of this method
will open up to future research on simultaneously applying more
features in multiple domains for better outcomes.

Furthermore, it is worth noting that the use of feature
extraction excludes most of the high-frequency band 600-
3,000 Hz, which is shown in our previous work that could
contain additional nerve information associated with neural
spikes. A future direction would be extracting that information
using spike detection and sorting techniques and combine them
with the information of the low-frequency band to boost the
prediction accuracy. However, the computational complexity
must be carefully catered to not hinder the real-time aspect of
the overall system.

7.2. Classic Machine Learning v.s. Deep

Learning

The classification task can be accomplished with high accuracy
using most classic machine learning techniques (e.g., RF) and
near-perfect with deep learning approaches (e.g., CNN). Along
with other evidence in Nguyen and Xu (2020), this suggests
that nerve data captured by our neural interface contain
apparent neural patterns that can be clearly recognized to control
neuroprostheses. While the current dataset only covers 9/32
different hand gestures, these are still promising results that
would support future developments, including expanding the
dataset to cover additional gestures.
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The regression results are consistent with the conclusion
of many past studies that deep learning techniques only show
clear advantages over classic machine learning methods when
handling a large dataset. This is evident in the 1S strategy, where
each DOF is trained with the full dataset consisting of all possible
hand gestures. In contrast, in the 28 strategy, where the dataset is
divided into smaller subsets, deep learning techniques lose their
leverage. However, as the dataset is expanded in the future, we
generally believe that deep learning techniques should emerge as
the dominant approach.

7.3. Improving Motor Decoder

Effectiveness
This paper focuses on exploring different approaches to build
a new decoding paradigm that is simpler and requires less

computational power than that of the previous research for
applying in real-time applications. However, for such real-time
applications, we also need to test the deep learning decoders’
stability in the long run. Future research would apply the
same deep learning architectures but train and validate on
data recorded on different days. The time gap between the
training and validation data may also be varied to investigate
the trade-off between the re-training frequency and the decoding
outcomes’ accuracy.

8. CONCLUSION

This work presents several approaches to optimize the motor
decoding paradigm that interprets the motor intent embedded
in the peripheral nerve signals for controlling the prosthetic
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hand. The use of feature extraction largely reduces the data
dimensionality while retaining essential neural information in
the low-frequency band. This allows achieving similar decoding
performance with deep learning architectures of much lower
computational complexity. Two different strategies for deploying
deep learning models, namely 2S and 1S, with a classification
and a regression stage, are also investigated. The results indicate
that CNN and RF can deliver high accuracy classification
performance, while RNN gives better regression performance
when trained on the full dataset with the 1S approach.
The findings layout an important foundation for the next
development, which is translating the proposed motor decoding
paradigm to real-time applications, which requires not only
accuracy but also efficiency.
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