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Abstract—There are growing concerns over the ability of
current electricity market designs to adequately model and
optimize against the stochastic nature of renewable resources
such as wind and solar. In this paper, we consider an economic
dispatch problem that explicitly accounts for said uncertainty and
enforces network and generation limits using conditional value at
risk. Our key contribution is the definition and analysis of risk-
sensitive locational marginal prices (risk-LMPs) derived from
such a market clearing problem. Risk-LMPs extend conventional
LMPs to the uncertain setting. Settlements defined via risk-LMPs
compensate resources for both energy and reserve schedules.
We study these prices via sample average approximation (SAA)
on example power networks to demonstrate their viability for
electricity pricing with large-scale integration of renewables.

I. INTRODUCTION

The need for innovative market design with uncertain re-
newable sources such as wind and solar have been widely rec-
ognized [1]–[8]. Ad hoc measures with point forecast and fixed
reserve margins cannot cope with said uncertainty. We take a
principled approach to process uncertainty in forward energy
procurement through a coherent risk measure–the conditional
value-at-risk (CVaR) measure [9]. Our key contribution is the
definition and analysis of locational marginal prices from a
CVaR-sensitive ED problem.

Why CVaR? While this risk measure has seen widespread
adoption in finance and gained traction in engineering appli-
cations, it has received limited attention in power systems.
Examples include [10]–[12]. CVaR benefits from being a
coherent risk measure, which ensures that the risk-sensitive
problem retains the convexity of the deterministic variant,
irrespective of the distribution of the underlying uncertainty.
Convexity is a useful property for two reasons: it permits the
design of efficient algorithms via sampling, and the mature
duality theory of convex programming allows the derivation
and analysis of meaningful prices for electricity.

In this paper, we begin by presenting the CVaR-based ED
problem which imposes risk-sensitive network and generation
limits in Section II. We adopt the perspective of a system
operator (SO) solving the ED problem to manage operational
and power delivery risks across the network. CVaR is equipped
with a tunable parameter, enabling the SO to tradeoff economic
efficiency and network security with varying levels of conser-
vativeness. In Section III, we apply duality theory to define
risk-sensitive locational marginal prices (risk-LMPs). These
prices endogenize stochasticity of renewable generation and

M. Ndrio, A. N. Madavan and S. Bose are with the Department of Electrical
and Computer Engineering, University of Illinois at Urbana-Champaign,
Urbana, IL 61801. Emails: {ndrio2,madavan2,boses}@illinois.edu. This work
was partially supported by the Power Systems Engineering Research Center
and by the National Science Foundation under grant no. CAREER-2048065

compensate dispatchable generators for nominal generation
and regulation commitments in response to forecast errors. Our
prices reduce to conventional LMPs as the forecast error goes
to zero. Section IV presents a sample average approximation
(SAA) approach to solving the CVaR-sensitive dispatch and
prices. We demonstrate key properties of the prices through
a numerical example on a five-bus power network. Finally,
Section V addresses revenue adequacy of our settlement
process. All proofs are left to the appendix.

II. THE CVAR-SENSITIVE ED PROBLEM

We consider a power network with n buses connected by `
lines. Each bus is equipped with some dispatchable generation,
non-dispatchable (renewable) infeeds, and inflexible demand,
the nodal values of which are collected in the vectors, g, ξ,
and d, respectively. Dispatchable generators are those whose
output can be altered on command, such as conventional
thermal and hydro-electric plants. The nodal renewable power
injection, ξ, is random and takes values over a compact set Ξ.
These samples, ξ, can be obtained, either from historical mea-
surements (e.g., the NREL wind database) or from generative
models (e.g., generative adversarial networks in [13]).

Accommodating uncertainty in renewable availablility, we
formulate an ED problem that schedules both nominal dispatch
and a power output adjustment (reserve policies) for dispatch-
able generators, allowing generators to respond to forecast
errors in renewable supply by making g depend on ξ. We
restrict attention to affine recourse policies, i.e.,

g(ξ) = g0 −G∆ξ, (1)

where g0 is the nominal generation, ξ0 the nominal or fore-
casted renewable infeeds and G encodes the adjustments to
forecast errors ∆ξ := (ξ − ξ0). Specifically, with n wind
resources in the system, G ∈ Rn×n and Gij denotes the
portion of deviation in renewable generation ∆ξj at node j
picked up by generator at node i. Here, R is the set of real
numbers. Assume that forecast errors are zero-mean, i.e.,

E[∆ξ] = 0. (2)

We enforce three types of constraints: network-wide power
balance, generation capacity limits, and transmission line flow
limits. We adopt a linear power flow model via the widely
used DC approximations that assume small voltage angle
differences between nodes, lossless lines and (per unit) voltage
magnitudes close to unity. Under these assumptions, reactive
power is neglected and line flows become linear maps of the
power injections across the network.

Power balance across the network for all ξ requires
1ᵀ (g(ξ) + ξ − d) = 0, where 1 is the vector of all ones of



appropriate size. Under an affine recourse policy and assuming
zero-mean forecast errors, this is equivalent to

1
ᵀ

(g0 + ξ0 − d) = 0, G
ᵀ
1 = 1. (3)

Dispatchable generators can only produce power within
their capacities, i.e., within [0, g]. Instead of requiring these
capacity limits be met for each ξ, we enforce them in a
risk-sensitive fashion using CVaR. To describe the model-
ing approach, consider a scalar random variable, Z, with a
continuous cumulative distribution, F . Then, CVaRδ[Z] is the
expectation over the (1− δ)-tail of the distribution,

CVaRδ[Z] := E[Z | Z ≥ F−1(δ)].

Here, E stands for the expectation operator and δ is a tunable
parameter that takes values in [0, 1). As δ ↓ 0, CVaRδ[Z]
becomes the average value of Z. Taking δ ↑ 1, it approaches
the highest value that Z can take. CVaR over arbitrary distri-
butions is defined via the following variational characterization
by Rockafellar and Uryasev in [14].

CVaRδ[Z] := minimum
u∈R

{
u+

1

1− δE[(Z − u)
+

]

}
, (4)

where [A]+ is the positive part of A. Equipped with this def-
inition, we impose risk-sensitive local generation constraints,

CVaRγ [g0 −G∆ξ] ≤ g, CVaRγ [−g0 +G∆ξ] ≤ 0 (5)

for a parameter γ ∈ [0, 1). The CVaR-based constraints in the
above relation are imposed element-wise. As γ ↑ 1, constraints
become tighter, requiring generation limits to be imposed for
almost every sample. However, when γ ↓ 0, constraints are
only enforced on average, allowing for the potential inability
to respond to uncertain wind across multiple scenarios.

To enforce risk-sensitive line flow constraints, let H ∈
R2`×n denote the (directed) injection shift factor matrix. Under
the linear power flow model, the directed flows across the
network are H(g(ξ) + ξ − d). Denoting the (directed) line
flow capacity limits by f ∈ R2`, we impose

CVaRβ [H (g0 −G∆ξ + ξ − d)] ≤ f (6)

for risk parameter β ∈ [0, 1). Altogether, the CVaR-sensitive
ED problem can be formulated as

minimum
g0,G

c
ᵀ
g0, subject to (3), (5), (6). (7)

Here, we seek to minimize a linear procurement cost, where
c is the vector of offer prices submitted by all generators.
We assume that renewable power suppliers are price-takers,
offering energy at zero marginal cost. It can be seen that

c
ᵀ
g0 = E[c

ᵀ
(g0 −G∆ξ)] = E[c

ᵀ
g(ξ)],

owing to the zero-mean forecast error assumption in (2).
Thus, (7) seeks to minimize expected generation costs, while
imposing risk-sensitive constraints. By virtue of coherence, the
CVaR-sensitive ED problem in (7) is a convex optimization
problem, regardless of the distribution of ξ.

Remark 1. CVaR-sensitive constraints are intimately related
to chance-constraints. Specifically, CVaR-sensitive constraints
are inner approximations of chance constraints, i.e.,

CVaRβ [Z] ≤ 0⇒ P{Z ≤ 0} ≥ β
for a scalar random variable Z. Chance-constrained formula-
tions typically require assumptions on the distribution to admit
convex reformulations, while those that are CVaR-sensitive do
not. By nature, chance constraints seek to control the frequency
of constraint violations, while CVaR-sensitive constraints con-
trol both the frequency and severity of violations.

III. RISK-SENSITIVE LOCATIONAL MARGINAL PRICES
(RISK-LMPS) AND THE SETTLEMENT PROCESS

We now proceed to define prices for electricity from the
CVaR-sensitive ED problem in (7). To that end, we first
reformulate (7) using the characterization of CVaR in (4).

J?(d) :=minimum
g0,G,u,v,v

c
ᵀ
g0, (8a)

subject to
1
ᵀ
(g0 + ξ0 − d) = 0, (8b)

G
ᵀ
1 = 1, (8c)

u+
1

1− βE
[
(H(g0 −G∆ξ + ξ − d)− u)

+
]

≤ f , (8d)

v +
1

1− γE
[
(−g0 +G∆ξ − v)

+
]
≤ 0, (8e)

v +
1

1− γE
[
(g0 −G∆ξ − g − v)

+
]
≤ 0. (8f)

Associate Lagrange multipliers λ,ν and µ with constraints
(8b),(8c) and (8d), respectively. Let z? denote the optimal
value of any (primal or dual) variable z in (8). We assume that
the set of primal-dual optimizers is nonempty and compact.

Definition III.1. The vector of risk-sensitive locational
marginal prices (risk-LMPs) is defined as

π := λ?1−Hᵀ
µ?. (9)

These prices are nodally uniform, i.e., the prices can vary
across buses, but the same price πi is observed by all par-
ticipants at bus i. Our definition of risk-LMPs mimics that
of LMPs derived from a deterministic ED problem (e.g., see
[15]). Risk-LMPs comprise of two terms–λ?1 and Hᵀµ?.
The first defines a common base price across the network that
emanates from the network-wide power balance constraint for
the nominal scenario. The second term arises due to congestion
and introduces locational dependency. Unlike the deterministic
case, the congestion component in the CVaR-sensitive problem
does not only depend on the nominal dispatch. That is, adverse
scenarios can result in a non-zero congestion component
despite an uncongested nominal dispatch.

Our first result relates risk-LMPs to the sensitivity of the
optimal cost of (8) to nodal demands–a result that holds for
LMPs derived from a deterministic ED problem.



Proposition 1. J? is convex in d. Suppose X? :=
(H −HG?) ∆ξ has a smooth cumulative distribution func-
tion and the optimal set of Lagrange multipliers of (8)
is bounded. Then, π ∈ ∂dJ

?(d), where ∂d computes the
subdifferential set of J?.

The pricing mechanism is incomplete without defining
a settlement process, i.e., how every market participant is
compensated under risk-LMPs. We adopt a similar model to
existing literature for consumers, wherein they are charged
πidi for consuming quantity di at bus i. Under the risk-
sensitive model, generators incur an additional cost of main-
taining reserve capacity in the form of G∆ξ and must be
compensated accordingly. We propose the dual multiplier ν?

to reflect the price of maintaining this reserve capacity. Thus,
each generator i is paid πi[g

?
0 ]i for the nominal cost of

generation and
∑n
j=1G

?
ijν

?
i for maintaining reserve capacity.

On the other hand, renewable supplier i is paid πi[ξ0]i − ν?i ,
corresponding to a payment for nominal supply and a penalty
levied for their induced uncertainty. The penalty reflects the
principle of cost allocation based on cost causation.

IV. SOLVING THE CVAR-SENSITIVE ED PROBLEM USING
SAMPLE AVERAGE APPROXIMATION

We compute the dispatch and prices from (8) using N inde-
pendent and identically distributed (iid) samples of renewable
generation ξ1, . . . , ξN as follows. We replace the expectations
with empirical means in each constraint, e.g., the empirical
mean variant of (8d) can be reformulated as

u+
1

N(1− β)

N∑
j=1

[(
H(g0 −G∆ξj + ξj − d)− u

)+] ≤ f
≡
{
u+ 1

N(1−β)
∑N
j=1 t

j ≤ 0,

tj ≥H(g0 −G∆ξj + ξj − d)− f − u, tj ≥ 0.

Proceeding similarly with (8e)–(8f), we arrive at the following
SAA-based CVaR-sensitive ED problem.

Ĵ?N (d) :=minimize c
ᵀ
g0, (10a)

subject to
1
ᵀ
(g0 + ξ0 − d) = 0, (10b)

G
ᵀ
1 = 1, (10c)

u+
1

(1− β)N

N∑
j=1

tj ≤ 0, (10d)

tj ≥H(g0 −G∆ξj + ξj − d)− f − u, (10e)

v +
1

(1− γ)N

N∑
j=1

sj ≤ 0, (10f)

sj ≥ −g0 +G∆ξj − v, (10g)

v +
1

(1− γ)N

N∑
j=1

sj ≤ 0, (10h)

sj ≥ g0 −G∆ξj − g − v, (10i)

tj , sj , sj ≥ 0, j = 1, . . . , N

over g0,G,u, tj ,v,v, sj , sj . In effect, (10) is an approxi-
mation to (8) for computing an optimal dispatch. This SAA-
based ED problem can be solved as a linear program. Linear
programming duality allows us to define electricity prices from
this approximate problem. Specifically, let λ̂N , µ̂N denote the
dual multipliers for constraints (10b) and (10d), respectively.

Definition IV.1. The vector of SAA-based risk-sensitive LMPs
is defined as π̂N = λ̂?N1−Hᵀµ̂?N .

One can show that π̂N ∈ ∂dĴ
?
N (d), i.e., the SAA prices

measure the sensitivity of the optimal cost of the SAA-
based ED problem to the vector of nodal demands. The
proof is similar to that of Proposition 1 and is omitted for
brevity. Notice that since the N samples ξ1, . . . , ξN are drawn
randomly, the output of the SAA problem is itself random.
Hence, the prices calculated from this sampled problem are
random as well. Next, we study properties of these prices
empirically.

A. Numerical Experiments On A Five-Bus Network Example

We consider the heavily-loaded PJM 5-bus network from
the IEEE PES Power Grid Library v17.08 [16]. The network,
depicted in Figure 1a, is augmented with renewable generation
at buses 1, 2, and 4, with 2.3, 1.5, and 0.9 per unit capacity,
respectively. Wind outputs from three wind power plants from
the New York area were used from NREL’s synthetic dataset
[17], treating the tuple of wind power outputs every 5 minutes
over 2008-2011 as a single sample, ξ.

The SAA approach is an effective mechanism for solving
CVaR-sensitive ED, as Figure 1b reveals. The variance of the
prices at each bus drops below 6 × 10−5 with just N = 100
samples, and below 3× 10−6 with N = 1000 samples. With
that in mind, all other simulations use 1000 samples.

The CVaR-sensitive dispatch presents a natural extension
to its commonly studied deterministic variant. As Figure 1d
shows, scaling the forecast error by η and taking η ↓ 0
recovers the deterministic ED solution and the risk-sensitive
LMPs reduce to conventional LMPs. Notice that nominal
dispatch costs increase as the SO becomes more risk-averse
in enforcing line limits (see Figure 1c). Regulation prices
exhibit similar behavior with increased risk aversion, per
Figure 1e. Hence, greater risk aversion to line limit violations
results in dispatchable generators collecting more payment for
reserve provision. Renewable suppliers, on the other hand,
incur higher penalties for their impending uncertainty.

V. REVENUE ADEQUACY

The SO should ideally never run cash negative after set-
tling all payments with market participants, i.e., the dispatch
and pricing mechanism should be revenue adequate. In this
section, we analyze when our risk-sensitive dispatch and
pricing mechanism is revenue adequate. To that end, define
the merchandising surplus (MS) as the aggregate payments
received from consumers less the aggregate payments made
to dispatchable and renewable suppliers:

MS = π
ᵀ

(d− g?0 − ξ0)− 1
ᵀ
G?ν? + 1

ᵀ
ν? = −πᵀ

p?0,
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Fig. 1. Evaluation of the prices for the 5-bus network in (a), depicting the (b) mean and range as a function of sample complexity with γ = β = 0.9, (c)
nominal cost of generation as a function of β with γ = 0.6, (d) effect of scaling forecast error by η for γ = β = 0.6, where the dashed line shows the LMP
of the nominal ED, and (e) reserve price, ν, as a function of β with γ = 0.6.

where p?0 = g?0 + ξ0− d. We analyze conditions under which
MS ≥ 0 from the CVaR-based ED problem.

Proposition 2. Suppose X? := (H −HG?) ∆ξ has a
smooth cumulative distribution function. Then, the merchan-
dising surplus is given by

MS = µ?,
ᵀ
Hp?0 = µ?,

ᵀ
(f − CVaRβ [X?]) . (11)

MS ≥ 0, if fi ≥ CVaRβ [X?
i ] for each i = 1, . . . , 2` or µ? = 0.

Proposition 2 reveals that MS from our CVaR-sensitive
ED problem arises due to congestion that results in price
separation across different buses in the network. Without
congestion in any scenario, µ? = 0, that implies MS = 0.
Such a property is shared by MS obtained with LMPs from
a deterministic ED problem. In fact, for a deterministic ED
problem, MS equals the congestion rent µ?,ᵀf . We recover
that result by driving ∆ξ to zero, that in turn makes X?

identically zero making MS equal to µ?,ᵀf as is the case
with conventional LMPs.

MS from our CVaR-sensitive ED problem can be viewed as
the congestion rent with a modified line flow, f−CVaRβ [X?].
To gain more insights into the modifier, notice that X?

i is
composed of two terms: Hi∆ξ and Hi(G

?∆ξ), where Hi

denotes the i-th row of H . The first term equals the induced
flows on the i-th line due to nodal forecast errors ∆ξ. The
second term equals the same from the dispatchable generator
responses G?∆ξ to said forecast errors. That is, X?

i captures
the net effect of forecast errors on the i-th line flow. The
modifier satisfies

0 = E[X?
i ] ≤ CVaRβ [X?

i ] ≤ maxXi.

Thus, CVaRβ [X?
i ] increases from zero to maxXi as β ranges

from zero to unity. While we cannot guarantee nonnegativity
of MS for all problem instances, this range provides valuable
insights into when we might expect it. Specifically, when β
is small (the SO is close to being risk neutral) or maxXi

is smaller than fi (when forecast errors are small or do not

induce large enough net flows on the i-th line), we expect
MS ≥ 0. It is encouraging that we obtained MS ≥ 1.14 for
all our experiments on the five-bus network.

VI. CONCLUSIONS

In this work, we derived and analyzed prices from a CVaR-
sensitive ED problem where transmission line flow constraints
and generation limits are imposed in a risk-sensitive fashion.
We showed that these prices have properties similar to LMPs
derived from a deterministic ED problem. Approximations to
these prices were derived using sample average approximation
(SAA) that were empirically shown to asymptotically con-
verge. Forward settlements and revenue adequacy issues were
also analyzed.

There are interesting future research directions that we aim
to pursue. First, we want to incorporate unit commitment
decisions and analyze CVaR-sensitive prices for day-ahead
market operations. Second, we hope to analytically establish
the asymptotic convergence of the SAA-based approximate
prices. Third, we want to empirically compare our prices to
current market practice.
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VII. APPENDIX (PROOFS)
We make use of the following result (stated without proof).

Lemma VII.1. d
dyEz

[
(z + y)

+
]

= Pr{z+y ≥ 0} for z with
a smooth cumulative distribution function and y ∈ R.

Proof of Proposition 1. Convexity of J? follows from [18,
Proposition 1]. Recall that p0 = g0 + ξ0 − d and X =
(H −HG)∆ξ. Then, we have

H(g0 −G∆ξ + ξ − d)− f = Hp0 +X − f .
In the sequel, we use the notation Ai to denote the i-th row
of a matrix or vector A. Assign Lagrange multipliers φ and
φ to (8e) and (8f), respectively. The Lagrangian of (8) is then

L
(
g0,G, λ,ν,µ,φ,φ

)
:= c

ᵀ
g0 + λ

(
1
ᵀ
p0
)
− νᵀ (

G
ᵀ
1− 1

)
+

2∑̀
i=1

µi

(
ui +

1

1− βE
[
(Hip0 +Xi − fi − ui)+

])
+

n∑
i=1

φ
i

(
vi +

1

1− γE
[
(−g0i + (G∆ξ)i − vi)

+
])

+
n∑
i=1

φi

(
vi +

1

1− γE
[
(g0i − (G∆ξ)i − gi − vi)

+
])

.

By hypothesis, Xi = (H−HG)i∆ξ has a smooth cumulative
distribution. Then, L at optimality of all primal and dual
variables except ui is a smooth function of ui. Setting its
derivative at u?i to zero using Karush-Kuhn-Tucker (KKT)
optimality conditions yields

µ?i

(
1− 1

1− β Pr{Hip
?
0 +X?

i − fi − u?i ≥ 0}
)

= 0, (12)

from Lemma VII.1. Denote by L?, the value of L at optimality.
Lemma VII.1 implies continuous differentiability of the con-
straint functions, while nonemptiness and compactness of the
primal-dual optimal set implies satisfaction of Mangasarian-
Fromovitz regularity [19]. Thus, we can apply [20, Theorem
5.3] to derive the following.

∂djJ
?(d) 3 ∂L?

∂dj

(a)
= λ? −

2∑̀
i=1

µ?iHij

1− β Pr{Hip
?
0 +X?

i − fi − u?i ≥ 0}

(b)
= λ? −

2∑̀
i=1

µ?iHij

= πj ,

where (a) follows from Lemma VII.1 and (b) from (12). This
completes the proof of Proposition 1.

Proof of Proposition 2. Since 1ᵀp?0 = 0, we have

MS = −πᵀ
p?0 = −

(
λ?1−Hᵀ

µ?
)ᵀ
p?0 = µ?,

ᵀ
Hp?0.

To simplify µ?,ᵀHp?0, consider i for which µ?i > 0. Then,

(12) =⇒ Pr{X?
i ≥ fi + u?i −Hip

?
0} = 1− β

=⇒ CVaRβ [X?
i ] = E[X?

i |X?
i ≥ fi + u?i −Hip

?
0].

(13)

The second line utilizes the smoothness of the distribution of
X?
i . Complementary slackness condition on the i-th line flow

constraint further gives

µ?i u
?
i +

µ?i
1− βE

[
(Hip

?
0 +X?

i − fi − u?i )+
]

= 0. (14)

Notice that E [Z+] = E [Z|Z ≥ 0] Pr{Z ≥ 0} for any random
variable Z. Using this together with (13), we simplify the
second term in the relation to
µ?i

1− βE
[
(Hip

?
0 +X?

i − fi − u?i )+
]

= µ?iE [Hip
?
0 +X?

i − fi − u?i |X?
i ≥ fi + u?i −Hip

?
0]

(a)
= µ?iHip

?
0 − µ?i fi − µ?i u?i + E [X?

i |X?
i ≥ fi + u?i −Hip

?
0]

(b)
= µ?iHip

?
0 − µ?i fi − µ?i u?i + CVaRβ [X?

i ] .

Here, (a) follows from linearity of expectation and (b) is a
consequence of (13). Using the above relation in (14) yields

µ?iHip
?
0 = µ∗i fi − CVaRβ [X?

i ].

The result follows from summing the above over i = 1, . . . , 2`.
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