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Abstract

Learning new languages is a complex cognitive task involving
both implicit and explicit processes. Batterink, Oudiette,
Reber, and Paller (2014) report that participants with vs.
without conscious awareness of a hidden semi-artificial
language regularity showed no significant differences in
behavioral measures of grammar learning, suggesting that
implicit/explicit routes may be functionally equivalent.
However, their operationalization of learning via median
reaction times might not capture underlying differences in
cognitive processes. In a conceptual replication, we compared
rule-aware (n=14) and rule-unaware (n=21) participants via
drift-diffusion modeling, which can quantify distinct
subcomponents of evidence-accumulation processes (Ratcliff
& Rouder, 1998). For both groups, grammar learning was
manifested in non-decision parameters, suggesting anticipation
of motor responses. For rule-aware participants only, learning
also affected bias in evidence accumulation during word
reading. These results suggest that implicit grammar learning
may be manifested through low-level mechanisms whereas
explicit grammar learning may involve more direct
engagement with encoded target meanings.

Keywords: artificial language; drift-diffusion; evidence
accumulation; second language; grammar; implicit; explicit

Background

Learning a new language is a complex cognitive task
involving both explicit and implicit processes (i.e., that do/do
not involve conscious awareness). Understanding how these
processes interact is essential to a full account of second
language (L2) learning (for a review, see Leow, 2015). One
way to study implicit and explicit language processing comes
from semi-artificial language paradigms involving covert
regularities in pseudoword articles encoding word meaning
(e.g., aword’s living/non-living status). Such studies indicate
that learning an untaught rule can proceed in the absence of
conscious awareness in rule-unaware participants, as indexed
by above-chance accuracy on forced choice tasks (e.g.,
Williams, 2005) and by reaction time slowdowns to rule-
violating exemplars (e.g., Batterink, Oudiette, Reber, &
Paller, 2014; Leung & Williams, 2011; but cf. Faretta-
Stutenberg & Morgan-Short, 2011), suggesting that explicit
knowledge is not strictly necessary for learning to occur. At
the same time, other studies with untaught rules demonstrate
that learners are likely to acquire both implicit and explicit
knowledge (e.g., Grey, Williams, & Rebuschat, 2014). A core
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question that underlies the interpretation of such studies is
whether rule-aware and rule-unaware participants in such
semi-artificial language paradigms take qualitatively
different routes to grammar processing, or if their
performance is underlyingly based on the same mechanisms.
One possibility is that participants with rule awareness
consciously and willfully apply strategies such as rule
searches, generation of explicit predictions, and systematic
hypothesis testing (Leow, 2015). Indirect evidence for such
an account comes from word sequence learning paradigms
that suggest that experiment-initial instruction can improve
performance on rule-adhering trials but worsen detection of
rule-violating trials, suggesting functional differences
between rule-aware/rule-unaware processing (Batterink,
Reber, & Paller, 2015). However, the presence of explicit
knowledge does not preclude the possibility that other, more
implicit kinds of learning can drive task performance
(Rebuschat et al., 2013). In support of such an interpretation,
Rose, Haider, and Biichel (2010) found that neural and
behavioral markers of learning can emerge at time points in
the experiment before participant reports of the emergence of
rule awareness, suggesting that conscious rule awareness
might emerge as a consequence of implicit learning.

The available evidence on grammar processing in semi-
artificial language experiments (e.g., Leung & Williams,
2011; Rebuschat, et al., 2013; Batterink et al., 2014) is not
sufficient to determine whether rule-aware and rule-unaware
participants use different grammar-processing mechanisms.
Such studies have typically used linear analyses of measures
of central tendency (e.g., means or medians) to compare
reaction times, such that grammar learning can be measured
as general slowdowns to rule-violating trials relative to rule-
adhering trials. However, a finding that rule-aware and rule-
unaware participants do not differ in these measures (as in
Batterink et al., 2014) does not allow one to infer that the
underlying processes were not different in subtler ways that
do not affect means or medians directly in ways that can be
detected through a traditional linear analysis (Balota &
Spieler, 1999; Whelan, 2008). Although
electroencephalography (EEG) data from one study using a
semi-artificial language paradigm showed different brain
responses for rule-aware vs. rule-unaware participants
(Batterink et al., 2014), as the authors note, interpretation of
these components is problematic because overlap in



component timing may cause EEG signals to essentially
cancel each other out. As such, in addition to the processing
signal that rule-aware participants evidenced (claimed to
reflect explicit processing), they may have also engaged the
same grammar processing activity as rule-unaware
participants. This processing signal (claimed to reflect
implicit processing) may have been obscured by overlap with
processing signal that was detected in these learners.! Due to
limitations of previous behavioral and EEG data analysis
approaches, it is not yet established whether grammar
processing in rule-aware/rule-unaware participants involves
distinct mechanisms.

This study aims to address this gap in the extant research
through drift-diffusion modeling (Ratcliff & Rouder, 1998),
which belongs to a family of evidence-accumulation models
that allow one to determine precisely how different
participant groups might vary in their response time
characteristics even when the central tendencies of their
reaction time distributions are the same. The drift-diffusion
model is based on the idea that each decision in a two-choice
context is made in a continuous fashion by sampling noisy
evidence that accumulates until a decision boundary
threshold has been crossed in favor of one response or the
other for each trial. Because such models simultaneously fit
response times and accuracy/choice direction, drift-diffusion
modeling can also account for speed-accuracy tradeoffs.

Drift-diffusion modeling allows us to determine whether
participants differ in terms of model parameter estimates that
capture certain constructs from cognitive psychology, i.e.:

e v:speed of evidence accumulation towards the response
in each experimental trial;

e z: bias in evidence accumulation towards one response
or another, at the start of each trial;

e  f0: time spent in non-decision-related processes, e.g.,
tied to factors like speed of motor responses or of low-
level perception;

e a: threshold of accumulated evidence before a response
is provided in each experimental trial

Trial-to-trial within-person variance in any of the parameters

listed above can be formally included in the model, e.g., as

sy, the standard deviation of v; as s, the standard deviation of

z, etc. Finally, testing for significant differences in these drift-

diffusion parameters allows one to determine how

experimental manipulations can affect manifestation of the
constructs from cognitive psychology mentioned above.
How can the drift-diffusion modeling approach be
leveraged to determine whether and how conscious rule
knowledge affects grammar learning? In the original
experiment design from Batterink et al. (2014; based on the
semi-artificial language from prior studies, e.g., Williams,

2005; Leung & Williams, 2011; Faretta-Stutenberg &

Morgan-Short, 2011), participants are shown four novel

articles (gi, ul, ro, and ne) and told that these encoded the

! In this same study, slow-wave and REM sleep showed similar benefits for rule-
aware and rule-unaware participants, suggesting a similar neural mechanism underlying
both kinds of processing (Batterink et al., 2014). However, this does not rule out the
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distance of a co-occurring English noun, such that two of the
articles are used with distant referents and two are used with
nearby referents. However, there was also an underlying,
untaught regularity in the semantic features encoded by these
articles: namely, two of the articles were usually used with
living things (e.g., horse,), and two articles usually used with
inanimate nouns (e.g., stereo,). As such, learning of the
underlying rule <can be captured via response
times/accuracies to a “living/non-living” response task across
trial conditions that adhere to vs. violate the underlying rule.
Critically, in the experiment presented in Batterink et al.
(2014), the trial design is such that the living/non-living-
encoding article is presented with an English noun together
on a screen simultaneously. However, if the pseudoword is
shown before the English noun, then it is possible to
disentangle different cognitive processes as described below.

How might the drift-diffusion model parameters align
conceptually with different hypothesized cognitive processes
of grammar learning in our experiment design? We argue that
the effects of reading the meaning-encoding article in
isolation can be manifested in at least two (non-mutually-
exclusive) ways: if the information provided by the
pseudoword article regarding the correct button selection for
the upcoming living/non-living response involves any degree
of motor response anticipation (i.e., if participants become
attuned to the button response assignments in the experiment
and thus learn to predict which button is usually associated
with the correct upcoming response, regardless of what the
button “means” in terms of grammatically-encoded
semantics), then differences between rule-adhering and rule-
violating trials would be manifested to some degree via the fy
parameter, which captures time spent in decision processes
that are not tied to evidence accumulation from presentation
of the stimulus that initiates the evidence accumulation
process, i.e., the English noun in the case of our experiment).
By contrast, if the information provided by the pseudoword
article involves any degree of higher-level processes (e.g.,
mentally activating the concept of “living-ness” from the
semantics grammatically encoded by the artificial language
article), then effects would be manifested through one of the
other drift-diffusion model parameters. More specifically, if
participants start each trial with pre-activation of the
semantics encoded by the pseudoword article such that
evidence towards the correct living/non-living response is
“pre-accumulated,” then differences between rule-adhering
and rule-adhering trials would be manifested via the z
parameter, which captures biases in evidence accumulation at
trial start. By contrast, if participants’ rule-learning entails
become faster at activating semantics when a noun appears in
a rule-adhering (vs. rule-violating) context, then differences
between these trials would be seen in the v parameter, which
captures speed of evidence accumulation towards the correct
response. Alternately, participants could react to rule-
violating combinations by changing the threshold of overall

possibility that sleep benefits were due to factors that were not strictly cognitive (e.g.,
effects on mood, physical comfort, etc.).



accumulated evidence that they require before providing a
living/nonliving response in each trial (parameter @). Finally,
it is possible that rule-adhering and rule-violating trials could
differ systematically in how much any of these parameters
vary on a trial-to-trial basis, in which case we would expect
significant differences (across rule-adhering/rule-violating
trials) in the parameters related to variance (i.e., the standard
deviations captured in parameters s,, sz, and sy for v, z, and 7y,
respectively). These interpretations of the drift diffusion
model parameters in the context of our experiment are
visualized in Figure 1 below.

Parameter v: mean speed of evidence
accumulation from semantics towards correct
living/oniiving response, within any given trial

Reaction time distribution for
correct living/nonliving responses

Parameter t,:
speed of
processes nof
tied to evidence

jon
from semantics,

1
1
1
e.g., mofor J_ —
1
1
1
1
1

1

1
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i 71" i —— — | accumulation
threshold before
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1 response is given
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perception, etc
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related to oms  500ms

Reaction time distribution for
incorract living/nonliving responses

semantics, at Pseudo- || English

time of English word noun

noun presentation shown || shown
" “horse”

Evidence accumulation towards correct
living/nonliving response in each trial

Time in each trial

Figure 1: Visualization of drift-diffusion model in the
context of our experiment paradigm. Not pictured:
parameters capturing standard deviation of v, #, and z
Visualization inspired by Fig. 1 in Vinding et al. (2018)

As discussed above, drift-diffusion modeling allows us to
determine whether rule-aware vs. rule-unaware participants’
response times differ in terms of model parameter estimates
that capture constructs from cognitive psychology such as the
speed of evidence accumulation; bias in evidence
accumulation; the criterion threshold of evidence before
response in each trial; and time spent in non-evidence-related
processes, e.g., tied to factors like speed of motor responses
or of low-level perception. Testing for significant differences
in these drift-diffusion parameters would allow us to infer
whether and how conscious rule knowledge affects grammar
learning. We ask:

Research Question 1: Do learners in a semi-artificial
language experiment show evidence of grammar learning
without conscious awareness (conceptually replicating
Batterink et al., 2014)?

Research Question 2: Do learners with vs. without
conscious awareness of a covert grammar rule differ in
grammar processing as revealed by drift-diffusion modeling,
and if so, how?

Methods

Our study comprises a conceptual replication of a prior semi-
artificial language learning experiment (Batterink et al.,
2014) following a popular paradigm in the field of second
language acquisition first introduced by Williams (2005).
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Participants

Participants for this study were right-handed native speakers
of English (N = 40, 27 female). All participants were
undergraduate students at a large urban university who
received psychology course credit for their participation.
Table 1 shows participant attributes collected via a shortened
version of the Language Experience And Proficiency
Questionnaire  (LEAP-Q; Marian, Blumenfeld, &
Kaushanskaya, 2007)

Table 1. Attributes of participants with reported
languages of all participants.

| Attribute | Mean (SD) |
Gender 27 female, 13 male
Age 18.73 (0.91)
English reading proficiency®  4.86 (0.34)
English writing proficiency 4.84 (0.44)
English-speaking proficiency  4.84 (0.44)
% reporting additional Ig. 90.45%
Add. Ig. reading proficiency 3.54 (1.36)
Add. Ig. writing proficiency 3.26 (1.45)
Add. lg. speaking proficiency  3.85 (1.14)

Note: *Self-report scale ranges from 1 to 5 with 1 labeled “low
proficiency” and 5 labeled “high proficiency.”

Procedure

Participants first provided informed consent and then
completed a short language background questionnaire to
confirm their native English proficiency. Then, they
performed a vocabulary pre-training to become familiar with
the four novel articles of the semi-artificial language (see
Table 2). Subsequently, two blocks of the experimental
reaction time task were performed. Finally, a debriefing was
conducted to gauge participants’ level of rule awareness.

Table 2: Living/non-living and distance assignment of the
four semi-artificial language articles.
Participants are not told...

Living Non-living
Participants are told...
Near gi ro
Far ul ne

Vocabulary Pretraining Participants were explicitly told
that gi and ro denote nearby referents (e.g., “gi bear,” “ro
typewriter”) whereas u/ and ne denote distant referents (e.g.,
“ul snake,” “ne teacher”). They then performed a written
forward translation task and an audio-based backward

translation task to criterion, just as in Batterink et al. (2014).

Reaction Time Task Each experimental trial (Figure 2)
began with the presentation of a fixation cross for 1000 ms,
followed by a pseudoword (ul, gi, o, or ne) for 500 ms, and
a noun (presented until a living/non-living response was
provided until a maximum of 500 ms, after which point a
blank screen replaced the noun on the display). After the
living/non-living response, participants saw the cue
“Near/Far?” until this second response was provided based



on the pseudoword for that trial. Following Batterink et al.
(2014), the four response options (living/nonliving/near/ far)
were assigned unique buttons on a standard keyboard.

ul

rabbit

speeded response
(living/nonliving)

time NearfFar? | prompt

speeded response
(near/far)

Figure 2: Trial structure for reaction time task.

Half of the presented nouns were living (e.g., horse) and the
other half were non-living (e.g., stereo). Six out of every
seven trials were rule-adhering in that they conformed to the
living/non-living assignment presented in Table 2, with gi
and ul preceding living nouns and ro and ne preceding non-
living nouns. One randomly selected (rule-violating) trial in
each set of seven consecutive did not follow this pattern. To
avoid confounds related to the specific nouns assigned to the
rule-adhering/rule-violating  conditions, stimuli  were
counterbalanced such that a given noun was presented in the
context of a rule-adhering trial for six out of seven
participants and in the context of a rule-violating trial for the
seventh participant. Additionally, for each participant’s
stimulus list, nouns assigned to rule-adhering vs. rule-
violating conditions did not differ on orthographic word
length, frequency, concreteness, positive/negative valence, or
arousal. Each noun’s order of presentation was randomized
within blocks, and assignment of nouns to either the first
block or second learning block was counterbalanced across
participants. Participants performed a short initial practice
block of six (rule-adhering) trials followed by two learning
blocks (each comprising 308 experimental trials) with a
timed five-minute break in between.

Rule Awareness Debriefing Following the main
experimental task, a systematic debriefing was administered
to assess the extent of participants' rule awareness.
Participants were first asked if they had noticed any pattern
about when the different articles were used, beyond the
overtly taught near/far rule. If at this point participants
spontaneously reported that certain articles co-occurred with
living/nonliving referents more often than others, participants
were asked at what point they had noticed this pattern (i.e.,
during the first block, the second block, or only when directly
asked during the debriefing). Following the procedure in
Batterink et al. (2014), participants who produced the correct
pattern and reported having noticed it during either the first
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or second experimental block were classified as rule-aware.
Otherwise, they were classified as rule-unaware.

Analysis

Linear Analysis. To replicate Batterink et al.’s (2014) linear
analysis procedure as closely as possible for Research
Question 1, our initial measure of rule learning was the Rule
Learning Index (RLI), which comprises response time
slowdowns for the living/non-living response in rule-
violating trials relative to rule-adhering trials. Data from each
of the two experimental blocks were divided into four epochs
of equal length, yielding eight total epochs. Participants’
median RLIs were compared using a Greenhouse-Geisser-
corrected mixed 2x2x8 ANOVA, with Awareness (rule-
aware vs. rule-unaware) as a between-participants factor and
Trial Condition (rule-adhering vs. rule-violating trial) and
Epoch (for each of eight experimental epochs) as within-
participant factors. Only trials with correct responses to the
living/non-living judgment were included in this analysis.

Drift-Diffusion Analysis. To test for differences between
rule-aware/rule-unaware participants as per Research
Question 2, drift-diffusion modeling was performed on the
living/non-living responses using the rtdists package
(Singmann, Brown, Gretton, & Heathcote, 2020) for the R
scripting language. Data were first cleaned by removing
reaction times faster than 200 ms and slower than 3000 ms,
and only correctly-responded trials were included. Only data
from the second block were used, to ensure that enough time
had elapsed for sufficient rule-learning to have occurred.
Separate models were fit for each participant’s rule-adhering
and rule-violating trials following the model-fitting
procedure used in Singmann (2020), with seven parameters:
v (rate of evidence accumulation for the living/non-living
response); z (bias in evidence accumulation at start of each
trial); 70 (non-decision-related times); their standard
deviations (s,, s:, and sq, respectively); and finally a
(threshold of accumulated evidence before the living/non-
living response was provided). For each model-fitting
iteration, starting values for each of the parameters were
drawn from a random distribution and fitting proceeded until
relative convergence was achieved as per the nlminb()
optimizing function. For each of the seven output parameters
in the model, separate 2x2 mixed effects Analyses of
Variance (ANOVA) were performed with the within-
participant factor Trial Condition (rule-adhering vs. rule-
violating trials) and the between-participant factor
Awareness (for rule-aware vs. rule-unaware participants).
Significant interactions were followed up via Bonferroni-



M edian Reaction Time (s)
W edian Reaction Time (s)

Epoch

All participants Rule-aware participants Rule-unaware participants

T 1 1 i 1 1 i 1 1 i 1 1 |
4 5 6 7 8 1 2 3 4 5 6 7 8

— Rule-adhering trials
— Rule~iolating trials

M edian Reaction Time (s)

Epoch Epoch

Figure 3: Epoch median response times to rule-adhering vs. rule-violating trials, calculated per
participant. This is shown both overall and separately for rule-aware vs. rule-unaware participants.

corrected f-tests with degrees-of-freedom correction for
unequal variances using the emmeans package for R (Lenth,
2020). Note that because these data comprise only one
observation per participant per parameter, running mixed
effects models to account for random effects is not possible.

Results

Of the 40 recruited participants, two were excluded due to
technical issues and three were excluded due to excessively
low accuracies that were not significantly different from
chance levels (50%) as per a one-sample #-test on binarily-
coded trial-level values (l1=correct, O=incorrect). Of the
remaining 35 participants, 14 were coded as aware and 21 as
unaware based on their debriefing questionnaire responses.

Linear Analysis Results. Figure 3 shows epoch median
response times to rule-adhering vs. rule-violating trials
overall as well as separately for rule-aware and rule-unaware
participants. For both participant groups, we found
decreasing reaction times over the course of the experiment
and slower responses to rule-violating trials relative to rule-
adhering trials, as confirmed by our three-way ANOVA
which yielded a significant main effect of Trial Condition,
F(1, 33) = 7.36, p = .011, n,>= .18, and of Epoch, F(3.63,

119.68) = 19.90, p < .001, n,> = .38. By contrast, there were
no significant main effects or interactions with Awareness
(all p > .05), reproducing Batterink et al. (2014) and
suggesting that the learning effect was not different between
rule-aware and rule-unaware participants, at least when
measured in terms of median reaction times.

Drift-Diffusion Results. Figure 4 shows boxplots with drift-
diffusion model parameters estimated separately for rule-
adhering vs. rule-violating trials and for rule-aware vs. rule-
unaware participants. Our mixed-effects ANOVAs showed
no significant effects from either Trial Condition, Awareness,
or their interaction on the parameters v, a, s,, Sz, or s.. For the
ty parameter, there was a main effect of Trial Condition, F(1,
33)=15.41, p <.001, ny> = .32 such that rule-violating trials
showed higher ¢ values (M = 0.46, SD = 0.19) relative to rule-
adhering trials (M = 0.39, SD = 0.16), #(33) = 3.93, p <.001.)
Neither Awareness nor the interaction of Trial Condition and
Awareness showed statistically significant effects on #y (ps >
.05). The z parameter showed a significant interaction of
Awareness by Trial Condition, F(1,36)=6.14, p =.018, such
that rule-aware participants showed higher bias towards the
correct response for rule-adhering (M = 0.54, SD = 0.11)
relative to rule-violating trials (M = 0.43, SD = 0.17), #(33) =
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Figure 4. Drift-diffusion model parameters for rule-adhering vs. rule-violating trials, shown
separately for rule-aware vs. rule-unaware participants.
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2.51, p = .017. By contrast, for rule-unaware participants,
bias at the start of the trial did not differ significantly between
rule-adhering (M = 0.46, SD = 0.08) and rule-violating (M =
0.51, SD = 0.15) trials, #(33) = 1.36, p = .183.

Discussion

We aimed to explore whether and how awareness of a covert
grammatical rule would affect reaction times in a semi-
artificial language learning task. For Research Question 1,
our linear analysis reproduced prior findings from Batterink
et al. (2014) in that both rule-aware and rule-unaware
participants showed slow-downs to rule-violating trials,
indicative of grammar learning. This aligns with other
findings using a similar experimental paradigm (e.g.,
Williams, 2005; Leung & Williams, 2011) and contradicts
the failure to replicate grammar learning effects in rule-
unaware participants from Faretta-Stutenberg et al. (2011).
More broadly, it suggests that overt instruction might not be
necessary for learners to acquire L2 grammar regularities.
However, as discussed above, such a linear analysis that is
based on measures of central tendency might not capture
subtleties in how rule-aware and rule-unaware participants
might perform differently in this task, even if the overall
slowdown effect is similar (e.g., Balota & Spieler, 1999;
Whelan, 2008). For this, we turn to our results from Research
Question 2. Our drift-diffusion models suggest that rule
learning (as captured by differences between rule-adhering
vs. rule-violating trials) affected (a) non-decision-related
response times (e.g., tied to factors like motor response speed
that lie outside of the process of evidence accumulation) in
all participants, and (b) bias in evidence accumulation (i.e.,
towards or against the correct response, at the beginning of
each trial) in rule-aware participants only. The fact that
significant differences were found between rule-aware vs.
rule-unaware participants in the first place suggests that rule
awareness is indeed tied to differences in task performance.
This answers in the affirmative the question of whether rule-
learning makes a difference for grammar learning. We turn
now to a discussion of sow rule-learning makes a difference.
We found that, for both rule-aware and rule-unaware
participants, the rule-learning effect was manifested in the #
parameter, such that rule-violating trials had longer non-
decision times than rule-adhering trials. Recall that the ¢
parameter captures processes that lie outside of evidence
accumulation from the presented stimulus (in this case, the
English noun). For instance, 7 could be affected if
participants anticipate the correct button press prior to the
presentation of the noun. This seems plausible in the case of
our experiment design, which (as mentioned above, and
following prior work with this semi-artificial language
paradigm, e.g., Leung & Williams, 2011; Batterink et al.,
2014) assigns a unique button for each of the possible
response options in the trial (“near,” “far,” “living,” and
“non-living”’), making it possible for participants to prepare a
living/non-living response immediately upon seeing the
ul/gi/ro/ne pseudoword. Although this approach would not
yield the correct response for the rule-violating trials, it
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would be sufficient for correctly responding to six-sevenths
of the trials (i.e., the rule-adhering trials) and achieving 86%
accuracy in the experiment overall. However—and most
critically for the purposes of investigating how people learn
grammatically-encoded meanings—this outcome would
merely reflect arbitrary motor preparation responses from our
specific idiosyncratic experiment context, devoid of the
semantic meaning that is purportedly the target of learning.

For rule-aware participants only, rule learning was also
manifested in the z parameter, such that rule-adhering trials
showed significantly more bias towards the correct answer
relative to rule-violating trials. Recall that the z parameter
reflects bias in evidence accumulation at the start of each
trial, i.e., if participants have acquired evidence for a
living/non-living response before the noun is presented. This
is distinct from other possible mechanisms of learning that
could be detected by the drift-diffusion model, e.g.,
accumulating evidence from the noun more slowly or
responding more cautiously to rule-violating trials relative to
rule-adhering trials. Importantly, the z parameter is distinct
from the #) parameter in that bias from the z parameter
interacts with other decision-related components like the
evidence accumulation rate (parameter v) and the response
boundary threshold (parameter a), in affecting the reaction
time that is ultimately measured for each trial. By contrast, #,
is “agnostic” to these other components and instead shifts the
entire evidence accumulation process to an earlier/later
ultimate response time, regardless of the relative timing of its
subcomponents. Seen in this way, our findings seem to
distinguish between learning that involves higher-order
cognitive processes (e.g., pre-activation of the semantics of a
noun based on grammatically-encoded meaning) vs. learning
that involves lower-level mechanisms (e.g., motor
anticipation based on recurring patterns particular to a task
context).

Our findings provide evidence that rule-aware and rule-
unaware grammar learners engage different mechanisms.
However, at this stage, our evidence cannot speak to the exact
relationship between implicit and explicit learning. In what
has been referred to as the “interface debate” (for a review
see Leow, 2015), prior competing models in the field of
second language acquisition have argued as to whether
explicit L2 learning helps, has no direct relationship with, or
(as in Ellis & Sagarra, 2010) can even hinder L2 implicit
learning. Hopefully future studies can leverage the power of
drift-diffusion modeling to expand on this line of inquiry,
e.g., by determining whether the higher-level learning
associated with conscious rule-awareness is predicated on
lower-level learning tied to motor response prediction in this
paradigm. As Rebuschat et al. (2013) write, “one needs to ask
what processes contributed to participants suddenly
becoming aware of a feature in the first place.”

We have identified several future directions for this line of
research. First, we have adapted this experiment so that motor
response preparation from the hidden semi-artificial language
grammar rule is not possible, e.g., by randomizing button
assignment on each trial so that the correct response cannot



be anticipated prior to noun presentation. This would allow
us to test whether implicit grammar learning can occur in
regard to word meaning, vs. in regard to lower-level
processes related to motor anticipation of idiosyncratic
button-pressing sequences in a particular task design. We are
currently undertaking data collection for precisely such a
study. Because this round of data collection also involves
counter-balancing this new, randomized-button trial design
with the non-randomized trial design presented in these data,
we aim for a controlled comparison across the two conditions
as well as a larger dataset to validate the findings presented
in the current study. This would also allow us to investigate
how differences in prior language experience across
experiment participants can affect grammar learning in our
experiment paradigm.

Beyond contributing to theoretical debates on
implicit/explicit language learning, our findings may be
relevant for teaching praxis in illustrating a crucial distinction
between L2 grammar learning that is based on understanding
of underlying encoded meanings vs. learning that is based on
exploiting aspects of the task design that allow learners to
produce correct answers without necessarily attending to the
target meanings directly (e.g., systematically choosing the
verb “are” instead of “is” because the preceding noun ends in
-s, without understanding that this suffix denotes plurality).
We are enthusiastic about the translational potential of drift-
diffusion modeling for language teaching praxis, e.g., by
suggesting how educators might (at different times and for
different short-term teaching purposes) intentionally exploit
vs. avoid features of classroom task design that invoke the
kind of low-level learning processes we describe here.
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