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ABSTRACT - As the use of wireless communication
expands demand for radio spectrum, so does the need
for effective automatic modulation recognition (AMR).
Current methods of AMR include feature extractions,
maximum likelihood algorithms, and deep learning (DL)
networks primarily based on CNN structures. Many
methods are limited by the slow training and testing
time, the need for massive amounts of training data, and
low probability of correct classification in the presence
of noise. Our research proposes using a fully connected
dense network instead of a convolutional one to mitigate
some of these challenges. To test modulation classification
accuracy, we used in-phase and quadrature samples from
data sets at various signal-to-noise levels to evaluate 5 DL
networks and a matched filter approach. Our experiments
show that compared to traditional convolutional networks,
our fully connected network improves training and testing
times by order of magnitude, has an accuracy within 5%
of the most accurate convolutional network, and uses a
factor of 32 fewer parameters. We also demonstrate that
using a bank of matched filters remains challenging, as
correctly discriminating amongst several positive matches
is not straightforward.

Index Terms: Deep Learning, Modulation Recognition, Neural
Networks, Data Generation, Matched Filter, CNN, LSTM,
Autoencoder, Fully Connected Network

I. INTRODUCTION

The decreasing size of electronics on a chip has resulted
in rapid reductions in the size, cost, and power needed to
realize sophisticated RF devices as well as the proliferation
of communication system standards. The resulting increase in
the number of wireless transmitters demands new spectrum
management methods in a diverse set of areas including
bandwidth allocation, privacy, and security. One way to op-
timize usage of the radio spectrum is by employing spectrum
sensing techniques to identify underutilized bandwidth which
can be dynamically allocated. [21] Fortunately, technology
developments have provided unique opportunities for spectrum
sensing. Advancements in communications have enabled new
classes of RF devices to emerge, driven both by new standards

and software-only RF designs. Software radios also hold the
promise of customized, application-specific protocols. Since
transmitter detection is an essential component of spectrum
sensing [21], transmitter identification is a vital part of spec-
trum management in this emerging ecosystem of RF devices.

Signal or transmitter identification has gained popularity
because of its widespread applications in military defense,
spectrum recognition, cognitive radio, and other areas. [24] In
hostile environments, it can help detect unwanted communica-
tion activity. In the commercial arena, signal identification aids
bandwidth management and allocation [2]. Automatic modu-
lation recognition (AMR) is an important part of this process
since it can serve as the intermediary between demodulation
and signal identification [1] [24, 20]. Too add to this, AMR
is advantageous in blind signal identification which involves
being able to effectively classify a signal with a minimal
amount of information.

Matched filters are the traditional method to identify trans-
mitters and signals [6]. They are frequently used in various
communication applications including radar detection, sonar,
blood vessel detection, and fingerprint enhancements.[4, 9, 22]
One approach to modulation recognition is to use a bank of
matching filters, one for each modulation. However, we show
in Section V that selecting the true positive amongst many
positive matches remains challenging.

In this work, we present an approach to modulation recog-
nition using neural networks. Our approach is analogous to
how speech recognition transitioned from template matching
to neural networks [17]. Rather than attempting to scale
templates, our approach uses supervised machine learning. We
collect scaled raw IQ samples from a number of transmitters
using known modulations as input to a variety of neural
networks.

Our work has two main contributions. First, we evaluate a
variety of NNs and compare them for identification accuracy
as the signal is subjected to increasing noise. We also compare
NNs on the level of resource use, in terms of the number of pa-
rameters and training time, as a function of accuracy. Second,
we examine the impact of training data types on accuracy.
This includes two methods of synthetic data generation and
real radios in both a noiseless and uncontrolled environments.
We observed that the convolutional neural network (CNN) had



the highest accuracy, but also had a very high resource use.
We discovered that a simpler fully connected network uses less
resources in terms of the number of parameters and training
time, and was within 5% of the accuracy of the CNN. We also
found that the training data type used has a wide impact on
accuracy.

The remaining sections of this paper are organized as
follows: Section II reviews the previous work of AMR and
classification schemes. A description of the data collection and
simulation techniques is provided in Section III. In Section
IV we discuss the design and implementation of our neu-
ral networks and matched filter classification network. Next,
evaluation results are included in Section V. We provide our
conclusion in Section VI. Then future work is discussed in
Section VII. The paper ends with the acknowledgements in
Section VIII.

II. BACKGROUND AND RELATED WORK

Currently, DL in AMR is an extremely popular area of
research. Most of this research focuses on using Convolutional
Neural Networks (CNNs), since they have proven to be very
reliable in image recognition and feature extraction. In recent
work, Shi et. al. used CNNs to evaluate AMR over various
SNR ratios. They compared the results with Deep Neural
Networks, Random Tree Algorithms, and Random Forests.
[20] They discovered that the CNN with IQ dataset without
the phase offset provided the best accuracy. [20] Hau Gu et. al.
used deep learning algorithms composed of two distinct CNN
networks in their research of AMR. [7] Additionally, Fuxin
Zhang et. al. created AMR DL learning networks with a CNN
and grate recurrent unit (GRU) that achieved 90% accuracy.
[3]

Another form of DL used for AMR are autoencoders (AE).
These networks have recently gained interest because of their
ability to benefit from non-supervised learning [13]. Work
by Bouchou et al. showed that a stacked sparse autoencoder
provided 100% accurate classification of modulation schemes
at an SNR of 5dB. Their results also indicate that the AE had
better performance than a Support Vector Machine approach.
A concurrent study by Ali et. al used a Sparse Autoencoder
(SAE) and AE with non-negative constraints (ANC) in their
approach to AMR. Their work showed promising classification
accuracy results with PCCs above 95% when SNR levels were
0 dB. [23] Unfortunately, these AE studies did not contain a
comparison to CNNs and other network structures.

Some researchers have also used matched filters for modula-
tion detection. Aafreen Shaikh et. al attained a 99% probability
of detection accuracy with their matched filters when testing
BPSK and AM signals [18]. Matched filters are advantageous
because they work well under conditions with AWGN noise.
Unfortunately, they require a prior knowledge in order to effec-
tively classify signals. Additionally, as we demonstrate, they
are not an optimal solution to distinguish between multiple
modulation schemes.

Overall, the studies discussed here provide useful insight
into AMR techniques. Unfortunately, the works exclude ex-

aminations of a fully connected neural network (FCNN),
which is not traditionally studied in AMR. Most of the works
mentioned focus on using CNNs and do not compare the
CNN performance to all of the networks evaluated here. Our
research investigates FCNNs, our novel binary (BIN) network,
an LSTM, an Autoencoder Network, a CNN network and
matched filter classifier (MFC). Overall, this work provides a
more robust view of the CNN performance against other classi-
fication approaches. Moreover, previous works mentioned here
do not analyze the networks’ resources and training times.
Such a comparison is vital in real-world applications which
must run in energy and space-constrained environments. We
also investigate how the networks respond given different
dataset sizes, as often large datasets may not be readily
available, so developers need to consider the best DL under a
data constraint.

III. TRAINING SET GENERATION

We generated three training sets: (1) The MATLAB set, (2)
the GNURadio[5] set, and (3) the Grid set. We begin with
two transmit generators: the first based in MATLAB, and the
second based on GNURadio. Both generate IQ samples, but in
a much different fashion from each other, which we describe
below. We added increasing amounts of AWGN to the transmit
IQ values. The first two training sets, from MATLAB and
GNURadio, use these IQ samples with added AWGN directly.
The third training set, Grid, uses the GNURadio IQ values as
input to a software radio, which transmits a real signal over the
air in the Orbit testbed[16]. To minimize, but not eliminate,
the impacts of multipath and noise, the Grid transmitter and
receiver were 1 meter apart. We then use the received IQ
values from a software radio receiver to form the Grid training
set. The GRID data thus is the most representative training
set of real data, as it was IQ samples sent over real radios
in a challenging multipath environment. The MATLAB and
GNURadio sets are useful for understanding how performance
degrades as AWGN is added in a controlled fashion.

MATLAB set. The MATLAB dataset generated random
numbers between 0 and N-1, where N is the number of
constellation points. These are mapped onto the constellation
map at their appropriate constellation point locations. AWGN
is added to the modulation constellation to achieve the desired
SNR. The idea is to select constellation points at random, and
then add random noise to each constellation point.

GNURadio set. The GNURadio signal generation can be
represented by the following equation 1:

y[n] = s[n] + w[n] (1)

where w(n) represents the AWGN noise, s[n] is the noiseless
signal, and y(n) is the signal combined with the noise. The
script outputs binary files containing 32 bits IQ pairs with a
16 bit I value and a 16 bit Q value for BPSK, QPSK, 8PSK,
and 16QAM modulation schemes. The SNR was adjusted in 1
dB increments ranging from -30 dB to 30 dB. This technique
is qualitatively different from the MATLAB approach because



the IQ samples in the GNURadio case include intermediate
points between the modulation’s constellation points.

The key difference between the MATLAB and GNURadio
data sets are the IQ values temporal changes. While both
choose random points in the plane, the GNURadio set is more
realistic because the IQ pairs are constrained to follow an
analog baseband, while the MATLAB IQ points make discrete
jumps. This shows up in the intermediate IQ sample points in
the plane. The GNURadio IQ samples are more constrained,
and thus more likely to remain in between constellation points,
where the MATLAB ones are not. Section V shows how
the DL networks can use this property of realistic IQ point
generation to improve classification accuracy.

Grid set. The generated IQ samples data was collected
using National Instrument USRP software defined radios. The
GNURadio datasets were fed into the USRP transmitters and
the data was collected at the receiver in 32 bit IQ pairs and
sent over the air in the Orbit Grid. The Grid data is transmitted
over the air from a USRP x310 to a USRP B210 receiver.
The Grid data was also collected using receivers located at
various distances from the transmitter ranging from 3ft to 70ft.
We found that accuracy was not very sensitive to distance;
we describe the impact of distance on accuracy further in
Section V.

IV. CLASSIFICATION APPROACHES

In this section, we describe the architectures of our six
classification approaches: the convolutional neural network
(CNN), the fully connected neural network (FCNN), the binary
network (BIN), the long short-term memory (LSTM) neural
network, the autoencoder (AE), and the matched filter classi-
fier (MFC). We optimized each neural network by experimen-
tally testing different combinations of layers, filters/nodes, and
activation functions. The final network configurations had the
best accuracy results with the lowest computation resources.
Space limitation prevents full descriptions, see the references
for more details.

Convolution Neural Network (CNN): Convolutional Neu-
ral Networks (CNNs) are one of the most well-known deep
learning networks. CNNs have been used in several appli-
cations including computer and speech recognition, image
classification, SAR image segmentation, image classification,
and AMR.[19, 11]. The CNN network of this project contains
six convolutional layers, three upsampling layers, three max
pooling layers, a dropout layer, a flatten layer, three fully
connected dense layers, and one fully connected dense output
layer. For more details on this network, refer to the diagram
in figure 1. This network uses categorical classification to
determine which of the four categories the modulation scheme
falls into.

Fully Connected Neural Network (FCNN): Fully con-
nected multi-layer perceptions (MLPS) or fully connected lay-
ers are very common in neural networks.[8] In fully connected
dense layers, each node is linked to all the nodes in the
previous and next layer. FCNNs were traditionally thought to
have longer training time than other networks. Our research

Fig. 1. Layers of the CNN Network

will show that FCNNs can still be effective in AMR. The
FCNN here contains: four fully connected hidden layers using
a softsign activation function, one dropout layer, and the final
fully connected layer with a relu activation function.

Binary Network (BIN): The BIN network is a binary
classifier that is one of the non-conventional networks of this
project. The hidden layers of this structure are identical to that
of the FCNN. However, the data separated into two categories
using cross entropy, represented as 1 for the modulation of
interest and 0 otherwise. The network is trained and tested
independently for each modulation scheme.

Long Short Term Memory (LSTM) Network LSTM’s
are a time recursive class of machine learning.[12]. The
LSTM Network of this project uses a sequential keras model
containing two LSTM layers, a dropout layer, and one fully
connected dense layer. The network applies a categorical cross
entropy loss function and an rmsprop optimizer. As we will
discuss in section V-A the LSTM network has very long
training and testing times. The shallow design of the network
in intended to minimize computational resources and running
times.

Autoencoder (AE) The two main components of an AE
are the encoder and decoder. Encoders compress the input into
fewer bits. The encoder portion of our network consists of a
flatten layer and four fully connected dense layers with nodes
in descending order in the following pattern 256, 128, 64, and
32. The decoder section has four fully connected dense layers
with the following number of nodes 32, 64, 128, and 256.
The decoder is followed by a dropout layer and the final fully
connected layer. Similar to the FCNN and CNN, the data is
set into 4 categories of binary vectors using one-hot encoding.

Matched Filter Classifier In order to compare our DL
classification to existing approaches, we also used matched
filters. Matched filters convolve a known signal (ideally the
shifted and reversed version of the desired signal) with an
unknown signal. [15] The filters declare a signal detected
if the match function exceeds a certain threshold. They are
designed to maximize the signal to noise ratio of a specific
signal.[14] Our MFC algorithm uses several matched filters in
combination with a classification algorithm. After normalizing
the signals’ power, the matched filter cross correlates a set of
training data from all four modulation schemes against the
test signal. The maximum value of each cross-correlation is
fed into the classification algorithm.

The classification algorithm operates by using a two-tier
approach with Bayesian inference. In the first tier, the most
probable modulation scheme is selected based on the correla-



ti o n o ut p ut wit h t h e hi g h est v al u e. T his is s u p p ort e d b y t h e
c orr el ati o n cl assi fi c ati o n e q u ati o n s h o w n 2 w hi c h is a c o m m o n
f or m of filt er m at c hi n g [ 1 0].

∞

− ∞

x (t)s ∗
k (t)dt ( 2)

I n t h e s e c o n d ti er of t h e al g orit h m, e a c h m o d ul ati o n o ut p ut
is e v al u at e d s e p ar at el y. If filt er o ut p ut is a b o v e a c ert ai n
t hr es h ol d, it is d e cl ar e d as a p art of t h e m o d ul ati o n cl ass. T h e
t hr es h ol d f or e a c h m o d ul ati o n is d et er mi n e d e x p eri m e nt all y
a n d is d esi g n e d t o pr o vi d e a n o pti m al b al a n c e b et w e e n tr u e
p ositi v e a n d f als e n e g ati v e v al u es. T h e pr e di cti o n arr a y is t h e n
u p d at e d t o r e fl e ct t h e p ositi v e cl assi fi c ati o n of t hr es h ol di n g.

As a n ot e, o ur i m pl e m e nt ati o n is q u alit ati v el y diff er e nt
t h a n ot h er m at c h e d filt ers si n c e it d o es n ot i n cl u d e ti mi n g
r e c o v er y. T his is d o n e f or si m pli cit y i n or d er t o pr o vi d e a
cl os er c o m p aris o n t o t h e pr o c ess of D L n et w or ks.

V. E X P E R I M E N T R E S U L T S A N D D I S C U S S I O N

O ur r es ults c a n b e di vi d e d i nt o t hr e e c at e g ori es: ( 1) a c c ur a c y
a n al ysis, ( 2) t e m p or al cl ust eri n g, a n d ( 3) n et w or k r es o ur c es.
T h e Te m p or al Cl ust eri n g s e cti o n dis c uss es a p h e n o m e n o n
t h at w e dis c o v er e d w hil e o bs er vi n g diff er e nt d at a g e n er ati o n
m et h o ds. L astl y, w e r e vi e w t h e D L tr ai ni n g ti m e a n d p ar a m et er
n u m b ers.

A. A c c ur a c y A n al ysis

M at c h e d Filt e r Cl assi fi c ati o n T h e cl assi fi c ati o n r es ults of
t h e M at c h e d Filt er Cl assi fi er ( M F C) ar e s h o w n i n fi g ur e 2. T h e
S N R vs a c c ur a c y gr a p h s h o ws t h at t h e M F C w or ks w ell f or t h e
B P S K a n d 1 6 Q A M m o d ul ati o n s c h e m es a n d att ai n v al u es o v er
a 9 5 % tr u e p ositi v e r at e. B ot h t h e Q P S K a n d 8 P S K m o d ul ati o n
h a v e s u b- o pti m al r es ults. T his is a r es ult of mis cl assi fi c ati o n
b as e d o n hi g h o ut p ut v al u es fr o m t h e filt er. I d e all y, w h e n a
si g n al is m at c h e d p erf e ctl y a g ai nst its elf, it s h o ul d pr o d u c e t h e
hi g h est c orr el ati o n r es ult. H o w e v er, if t his s a m e filt er is us e d
f or a m o d ul ati o n s c h e m e wit h m or e d e ns el y p o p ul at e d v al u es,
it m a y c a us e hi g h c orr el ati o n m at c h es i n t h e o ut p ut.

W hil e e a c h i n di vi d u al m at c h e d filt er m a y h a v e a hi g h-
tr u e p ositi v e r at e, r es ol vi n g f als e p ositi v es fr o m a b a n k of
m at c h e d filt ers r e m ai ns a c h all e n g e, as t his is n ot w h at t h e y
w er e d esi g n e d f or. As m or e m o d ul ati o n s c h e m es ar e a d d e d
t o t h e t est, it b e c o m es m or e dif fi c ult t o disti n g uis h t h e b est
m at c h fr o m t h e f als e p ositi v es. T his p h e n o m e n o n is o bs er v e d
i n ” Filt er O ut p ut ” r es ults i n fi g ur e 2 w hi c h s h o ws t h at w h e n
a Q P S K si g n al is m at c h e d a g ai nst a n 8 P S K filt er, it yi el ds
a hi g h er o ut p ut t h a n w h e n m at c h e d wit h a Q P S K filt er.
A d diti o n all y, t h e C o nf usi o n M atri x of t h e M F C at a n S N R
of 1 0 d B d e m o nstr at es t h at t h e Q P S K a n d 8 P S K si g n als oft e n
pr o d u c e f als e p ositi v es f or ot h er m o d ul ati o n s c h e m es.

As a n ot e, d u e t o ti m e c o nstr ai nts a n d c o m p ut ati o n al li m-
it ati o ns, t h e M F C w as o nl y t est e d at 2 4, 4 4 0 s a m pl es. T his
s a m pl e si z e is us e d f or all M F C r es ults i n fi g ur es 2 a n d 3.

M A T L A B D at as et T h e Pr o b a bilit y of C orr e ct Cl assi fi c a-
ti o n, or a c c ur a c y, of t h e n e ur al n et w or ks of t h e M A T L A B
g e n er at e d d at a f or 2 4 4, 0 0 0 s a m pl es is s h o w n i n fi g ur e 3. T h e

pl ot s h o ws t h at o nl y t h e C N N n et w or k w as a bl e t o a c hi e v e a n
a c c ur a c y l e v el of 1 0 0 %. T h e L S T M h a d t h e s e c o n d hi g h est
a c c ur a c y of 7 5 %. T h e F C N N h as hi g h er l e v els of a c c ur a c y
t h a n t h e A E a n d BI N n et w or ks at s o m e S N R l e v els b ut o nl y
r e a c h e d a p e a k P C C of 7 0 %. T h e M F C is n ot a bl e t o cl assif y
c orr e ctl y a n d r e m ai ns at a n a c c ur a c y l e v el cl os e t o 2 5 %.

W h e n t h e tr ai ni n g s a m pl es w er e i n cr e as e d t o 2. 4 4 milli o n
s a m pl es, t h e L S T M n et w or k v astl y i m pr o v es a n d f oll o ws t h e
C N N n et w or k, w hi c h c o n v er g es t o 1 0 0 % a c c ur a c y at a n S N R
of 7 d B. T h e BI N, A E, a n d F C n et w or ks i m pr o v e sli g htl y d o
n ot e x c e e d a n a c c ur a c y of 7 5 %.

We h y p ot h esi z e t h at p art of t h e r e as o n f or t h e n et w or ks
p o or p erf or m a n c e w as t e m p or al cl ust eri n g of t h e c o nst ell ati o n
p oi nts. S e e s e cti o n V- B f or m or e d et ails.

G N U R a di o D at as et Fi g ur e 3 d e m o nstr at es t h e a c c ur a c y
r es ults of t h e n et w or k wit h 2 4 4, 0 0 0 s a m pl es. T h e C N N n et-
w or k h as t h e b est a c c ur a c y p erf or m a n c e. T h e F C N N, A E, BI N
n et w or ks h a v e v er y si mil ar a c c ur a c y a n d f all sli g htl y s h ort of
t h e C N N a c c ur a c y. T h e L S T M n et w or k l a gs b e hi n d t h e ot h ers.
T h e M F C h as t h e w orst p erf or m a n c e a n d a c hi e v es a m a xi m u m
a c c ur a c y of 8 0 %. T h e i n di c at es t h at C N N n et w or k p erf or ms
b ett er t h a n t h e ot h er n et w or k i n c o n diti o ns wit h A W G N n ois e.

Fi g ur e 3 d e m o nstr at es t h at, as e x p e ct e d, wit h t h e l ar g er
tr ai ni n g si z e ( 2. 4 4 milli o n s a m pl es) all n et w or ks i m pr o v e d
t h eir a c c ur a c y. H o w e v er, t h e L S T M n et w or k still h as t h e w orst
p erf or m a n c e a n d l a gs b e hi n d t h e ot h er n et w or ks. T h e C N N
p erf or ms sli g htl y b ett er t h a n t h e F C, A E, a n d BI N n et w or ks
a n d h as a s m all g a p a b o v e t h eir a c c ur a c y. T h e r es ults i n di c at e
t h at t h e F C N N, A E, a n d BI N n et w or ks pr o vi d e c o m p ar a bl e
p erf or m a n c e t o t h at of t h e C N N n et w or k f or t his p arti c ul ar
d at as et.

G RI D D at as et Fi g ur e 3 s h o ws t h e p erf or m a n c e of t h e
n e ur al n et w or ks w h e n t h e G N U R a di o d at a is tr a ns mitt e d
wir el essl y o n t h e s oft w ar e d e fi n e d r a di os of t h e Or bit Gri d.
O n c e a g ai n, t h e C N N pr o v es t h e b est r es p o ns e a n d is t h e
o nl y n et w or k t h at a c hi e v es cl os e t o 1 0 0 % a c c ur a c y. T h e
F C, A E, a n d BI N all h a v e si mil ar r es p o ns es a n d a c hi e v e a
m a xi m u m a c c ur a c y cl os e t o 9 0 %. T h e F C n et w or k pr o vi d es a
sli g ht a d v a nt a g e o v er t h e ot h er n et w or ks i n t h at it h as hi g h er
a c c ur a c y b et w e e n S N R l e v els of 0 a n d 1 0 d B. T h e L S T M
n et w or k p erf or ms p o orl y h er e a n d o nl y att ai ns a n a c c ur a c y of
5 8 %. T h e M F C h as a sli g htl y hi g h er a c c ur a c y t h a n t h e L S T M
b ut o nl y r e a c h es a m a xi m u m of 7 0 %.

W h e n w e c o m p ar e t his t o t h e r es ults of t h e s y nt h eti c
G N U R a di o, w e s e e t h at tr a ns mitti n g t h e s a m e I Q v al u es
wit h t h e s oft w ar e r a di os o v er t h e air i m p a cts t h e a c c ur a c y
of t h e n et w or ks i n s e v er al w a ys. All t h e n et w or ks r e a c h t h eir
m a xi m u m a c c ur a c y at hi g h er S N R l e v els ( ar o u n d 8 d B or
hi g h er) f or t h e wir el essl y tr a ns mitt e d d at a. T h e L S T M s e e ms
t o b e v er y s e nsiti v e t o t h e i m p a ct of r a di o tr a ns missi o n as
its a c c ur a c y dr o p p e d b y al m ost 4 0 %. T h e F C, A E, a n d BI N
n et w or ks ar e als o aff e ct e d a n d h a v e l o w er a c c ur a c y c ur v es
o v er all.

We als o us e d t h e G RI D t o e v al u at e t h e i m p a ct of att e n u ati o n
a n d m ulti p at h f a di n g o n t h e a c c ur a c y r es ults b y c oll e cti n g
t h e d at a fr o m r e c ei v ers at v ari o us dist a n c es. Si n c e f art h er
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SNR vs PCC Filter Output of QPSK signal Confusion Matrix at 10 dB SNR

Fig. 2. MATCHED FILTER Results

MATLAB(244k samples) GNURADIO (244k samples) GRID (244k samples)

MATLAB(2.4 Million samples) GNURADIO (2.4 Million samples) GRID (2.4 Million samples)
Fig. 3. SNR vs Accuracy for Various Datasets

(FCNN) (CNN) (LSTM)
Fig. 4. SNR vs Accuracy for receivers at various distances

distances result in lower power levels at the receiver, increased
distance represents greater levels of attenuation. In addition,
the Orbit Grid is a high multipath environment, and the
distortions caused by multipath components become stronger
with distance.

Figures 4 shows the response of the FCNN, CNN, and

LSTM neural networks with receivers at various distances
from the transmitter. We observed that distance is not the
dominating factor in the network’s accuracy. In fact, 3 ft and 70
ft are very close for the CNN and FCNN networks. However,
the receivers at distances of 42 ft and 45 ft had the worst
performance. This is most likely because the specific location



of these receivers has more multipath components than at
other locations. The CNN network is the only network that
reaches 100% accuracy. The FCNN shows comparable results
with a maximum accuracy of 94%. Additionally, the FCNN
network also has a higher accuracy level at lower SNR levels.
This indicates that the FCNN is slightly more robust than the
CNN network under noisy conditions when multipath fading
is present. The LSTM network only reaches 58% accuracy at
3ft, but collapses at all other distances.

B. Temporal Clustering

While evaluating the simulation results of the emulated data
we noticed that there is a slight bias in the temporal allocation
of constellation symbols. For example, when plotting 100
IQ constellation points for 8PSK-modulated random data in
GNURadio, all the points remained in quadrants I and IV.
As the number of samples increases, the constellation points
are also distributed to all 4 quadrants. The data generated in
MATLAB does not show the same clustering but distributes
IQ constellation points to all 4 quadrants even with small
sample sizes. The constellation plots of 100 IQ pairs for the
GNURadio and MATLAB data are shown in figures 5 and
6. This observation was further quantified by calculating the
average Euclidean distance between adjacent IQ points, 100
sampling periods (samples), where each sampling is 500 IQ
pairs for each modulation scheme. The results are exhibited in
table I. The data shows that on average, the distance between
adjacent IQ pairs of the MATLAB data is at three times the
distance of GNURadio adjacent temporal points. The shorter
distance between the adjacent points of the GNURadio data
creates a temporal pattern that is less randomized than that
of the MATLAB data. We hypothesize that the DL uses this
pattern as a feature, making it easier to classify the GNURadio
dataset, which results in higher classification accuracy.

Fig. 5. 8PSK Constellation Plot of GNURadio Data for 100 IQ Pairs

C. Training Times and Resource Load

Timing We evaluated the total training time of each network
with 244,000 data samples per file. The following parameters
were included in the time assessment: base training time,
testing time, and overhead time. Operations such as data
collection and labeling are included in the overhead timing.
LSTM is the slowest network the FCNN network is the fastest.

Fig. 6. 8PSK Constellation Plot of MATLAB Data for 100 IQ Pairs

Constellation GNURADIO MATLAB
BPSK 0.40 1.31
QPSK 0.21 1.18
8PSK 0.17 1.21

16QAM 0.20 0.95
TABLE I

AVERAGE POINT CONSTELLATION DISTANCE FOR DATA IN GNURADIO
AND MATLAB

The CNN is also time-intensive. The results are displayed in
figure 7.

Fig. 7. Network Timing

Resource Analysis One of the important factors in creating
the networks is the amount of computational resources that the
network requires, as many radios must operate in space and
energy constrained environments. The resource allocations,
in terms of the number of parameters needed to realize a
network, are displayed in table II. The CNN network is the
most resource-intensive network and contains 16,529,364 pa-
rameters and 17 layers. The FCNN delivers high accuracy with
505,694 parameters, which is a factor of 32 fewer parameters
than the CNN.

VI. CONCLUSION

This research bridges the gap between the most common
neural networks studied for AMR (LSTM and CNNs) and
those that are less observed (FCNN and AE). Another im-
portant aspect of this research was comparing the networks
performance with simulated data and data transmitted over the



Network Layers Parameters
FCN 5 505694
CNN 17 16529364
AE 8 690056
BIN 5 202276

LSTM 4 12804
TABLE II

RESOURCE ALLOCATION FOR EACH NETWORK

air from SDRs. This comparison is essential because it shows
the response of the networks with the real world effects multi-
path fading and signal attenuation are present. Of the networks
that were evaluated the CNN provides the best accuracy perfor-
mance. The FCNN provides comparable accuracy performance
for some datasets and is the least resource-intensive. The
BIN and AE networks provide comparable accuracy results
but have longer training and or overhead times. The LSTM
has the worst performance with the longest training time
and poor accuracy at lower SNR levels. Although expanding
the number of layers in the network would likely enhance
it’s accuracy, it would also increase the training and testing
time. These results indicate that the FCNN network presented
here achieves good recognition accuracy with significantly
reduced complexity, and should be a serious candidate for
AMR recognition implementation.

VII. FUTURE WORK

Due to time and resource constraints, some of the ex-
periments and evaluations of this research were limited. As
such, some examinations should be completed in future work.
For example, the performance of the networks could be
evaluated with signal representations other than IQ samples.
The networks should also be tested with more robust datasets
containing additional modulations. Moreover, in order to meet
page limit requirements for this submission, we excluded
components from this submission including some details about
related work and results from related works. Future work could
include this information.
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