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ABSTRACT - As the use of wireless communication
devices increases, so does the need for effective signal
generation techniques. We show how different methods of
waveform generation with the same signal-to-noise ratios
result in varied accuracy performance for modulation
recognition when using neural networks (NNs). Our
research indicates that two aspects of waveform generation
significantly change NN behavior with equivalent SNRs.
First, generating purely random IQ constellation points
adversely impacts classification accuracy, as real radios
do not have completely random constellation points. We
illustrate that NNs can use the intermediate IQ samples
to improve classification accuracy. Second, we exhibit
that adding pure additive white Gaussian noise (AWGN)
results in different accuracies compared to using channel
distortion models, which include fading, multipath, and
phase shifts. We show that relying on SNR alone to
characterize signals can result in misleading and incorrect
performance evaluations of NNs when applied to radio
performance. Our work also demonstrates that care must
be taken when applying channels models to simulate
noise, as NNs can use specific channel distortion features
to identify a modulation.

Index Terms: Neural Networks, Deep Learning, CNN, LSTM,
Fully Connected Neural Network MATLAB, GNU Radio,
Synthetic Data Generation, AWGN, Modulation Recognition,
Wireless Radio Signals

I. INTRODUCTION

Technology trends have been increasing transistor count
and decreasing cost per transistor, which in turn has enabled
wireless radio communications to be added to nearly every
digital device. The increase in the accessibility of radio com-
munications has led to a rapid development cycle. Recent years
have thus seen an explosion of interest in applying machine
learning techniques in radio designs

Evaluation of novel radio designs that use machine learning,
and in particular neural networks, requires methods for both
generating waveforms and creating a noise environment. On
one end of the spectrum, waveforms and environments can
be purely synthetic, where the waveforms are generated in

software and the designs are simulated in software. The other
end of the evaluation spectrum uses real devices in real
environments. One example of this is using WiFi devices in an
urban street intersection. There are many intermediate points
that use a mix of synthetic waves, emulated signals and real
devices. While using real devices and environments is optimal
from the perspective of representativeness, their drawbacks
are that they are not always reproducible or controllable. This
limits the ability to understand the impact of a single factor
[7].

Varying the Signal-to-Noise Ratio (SNR) is the classic
approach for evaluating radio system designs [5]. This metric
is commonly defined as the ratio of the signal power to ’all
other’ signals, where other signals can originate from a variety
of causes, such as multipath interference, other transmitters,
etc. We show that SNR alone is an incomplete characterization
when evaluating Neural Networks (NNs) used for signal recog-
nition. Because NNs are excellent at pattern recognition, they
recognize systemic distortions as signal features, impacting
recognition accuracy. Two signals can have equivalent SNRs
but vary widely in the predictability of the noise.

We demonstrate that two critical aspects of synthetic wave-
form generation must be considered when using NNs. The
first aspect pertains to signal generation. Digital signals use a
stream of symbols that correspond to points on the 1Q plane.
The resulting points can be chosen purely randomly or by
using constraints imposed by underlying analog waveforms.
We reveal that choosing IQ symbol positions purely randomly
introduces more randomness than real radio signals, as real
signals have intermediate 1Q points which can be recognized
by a NN to aid classification accuracy. The second aspect to
consider is noise generation. Noise can be added as a pure
additive white Gaussian noise (AWGN), or signal distortions
can be applied using a channel model. We show the choice of
noise generation greatly impacts NN behavior, even when the
AGWN and channel models SNRs are equivalent. Although
AWGN is not a realistic channel model, as it over-applies
randomness to a signal compared to a real radio, it prevents
an NN from using any distortions as recognizable features.

Our work is novel because it compares the synthetic wireless
generation and noise characteristics of two popular platforms,
MATLAB and GNU Radio. The remaining sections of this



paper are organized as follows: Section II reviews some related
work in the area. A description of the simulation techniques
is provided in section III. Details about the neural networks
can be found in section IV. Section V discusses our results.
The paper culminates with our conclusion and future work in
sections VII and VIIL.

II. BACKGROUND AND RELATED WORK

Recall a digital baseband signal is represented by a stream
of IQ samples as received from an analog to digital converter
(ADC). A transmitted symbol is represented by the position
of the sample on the IQ plane. Both the IQ symbol and
IQ streams can be synthetically generated using computer
simulations. Two common programs to do this are GNU Radio
and MATLAB. Often, researchers implicitly assume (1) that
the signals generated are representative of the 1Q patterns in
real radio systems and (2) that the AWGN added in these
simulation techniques are sufficient for characterizing the noise
of radio systems. However, our research indicates that these
implications may be flawed and that appropriate attention
should be allotted towards determining the best method for
both signal and noise generation.

GNU Radio is an open-source software containing several
tools to model radio communication signals. [10] Researchers
have used GNU Radio to model OFDM systems, test al-
gorithms for wireless smart grids, and generate signals for
software defined radios. [10, 4] The GNU Radio channel
models are extremely useful because they allow users to adjust
variables such as frequency offsets, multipath distortions, and
timing errors [4]. Additionally, the channel models enable
users to introduce and adjust aspects of additive white Gaus-
sian (AWGN) noise.

Tim O’Shea and Nathan West used the benefits of GNU
Radio’s AWGN features as they analyzed neural networks for
radio signal processing. Similar to our work, their research
involved using neural networks to classify synthetically gen-
erated signals. Unfortunately, they do not compare their results
to signals created in MATLAB. Additionally, their work does
not examine the impact of the different noise channels in
GNU Radio. [12] Our studies indicate that the AGWN of
some GNU Radio channel models do not provide adequate
variation and are detectable by neural networks thus reducing
its effectiveness as a source of random noise.

MATLAB/Simulink is another software tool with a variety
of radio signal generation features, including the ability to
simulate modulation schemes, add different noise character-
istics, and adjust signal features such as gain, frequency, and
bandwidth. These tools are advantageous and allow researchers
to simulate cognitive radio systems, build software defined
radios, evaluate spectrum sensing algorithms, and explore
spectrum management techniques. [6, 15]

A recent study by Yu Wang et. al. used both MATLAB
and GNU Radio to generate wireless signals for AMR classi-
fication. Similar to our research this work used IQ samples
to examine the performance of various DL networks. [16]
However, their work lacks a direct comparison of datasets

generated separately on each platform. Also, their work does
not discuss how GNU Radio and MATLAB differ in IQ pattern
placements.

Our research shows that some of the tools used in MATLAB
simulations may produce IQ patterns that are too randomized
and ignore some of the filtering techniques applied in real
radios. This in turn creates 1Q patterns that are harder to
classify for some prediction algorithms which may falsely
represent how neural networks respond to real radio signals.

III. METHODOLOGY

Our observations on the signal generation’s impact on NN
accuracy are motivated by our work testing different neural
networks for use in modulation recognition [3]. A goal of
that work was to develop neural networks that given an
unknown signal, could classify the signal’s modulation type,
for example, BPSK or 16QAM. This section describes how the
signals were generated, and how noise was applied to them
to emulate challenging radio environments. We then describe
which neural networks were used.

A. Signal Generation

We employed both MATLAB and GNU Radio for signal
generation, which we use for the training and testing sets to
our neural networks. We generated several sets of signals: (1)
the MATLAB set, (2) the GNU Radio sets, and (3) the GRID
set. The MATLAB dataset was formed by using MATLAB
as its signal generator; while the GNU Radio and GRID sets
used the GNU Radio for signal generation. Within the GNU
Radio sets, we used the same signal generator, but applied
noise using different approaches. These approaches lead to
separate sets, which we describe below.

We generated signals with BPSK, QPSK, 8PSK, and
16QAM modulations. IQ samples were output to binary files
in 32-bit floating-point format, with interleaved I and Q values.
The final output files of the GNU Radio and MATLAB dataset
were normalized to values between -1 and 1. The output files
of the Grid dataset were retrieved directly from the USRP
receiver and were not normalized.

MATLAB We select a symbol stream that corresponds to
IQ constellation points at random, where N is the number
of constellation points. The IQ value of the constellation
point is appended to the signal stream and then modified
by adding an AWGN to attain the appropriate SNR. Because
successive IQ points are randomized, the constellation points
are not necessarily adjacent to one another; moving to the
next IQ point often involves crossing the origin. To mitigate
the distance between successive 1Q samples, we implemented
gray-scale binary ordering for the mapping. It ensures that the
binary representation of the adjacent modulation symbols only
differ by one bit. Mathematically this is beneficial because it
minimizes the bit error rate [2]. However, even with grayscale
mapping, the constellation points show more variation in
movement from point to point than that of the GNU Radio
data. This is discussed more in section V.
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Fig. 1. Feature Detection at low SNR levels

GNU Radio GNU Radio allows users to adjust several
aspects in constellation generation including variables such
as the number of constellation points, types of encoding,
and samples per symbol (SPS). [1, 17] Setting a high SPS
results in oversampling, and the constellation plot shows in-
termediate transition points between the constellation symbols.
Additionally, GNU Radio may use low pass filtering on the
baseband signal which assists in smoother transition between
constellation points. [1]. The smoother transitions prevent the
temporally adjacent constellations from jumping across the
origin in the IQ plane.

GRID For this set, the GNU Radio Additive Noise signal
output files were transmitted over the air from a USRP
x310 transmitter to a USRP B210 receiver 3 feet apart. The
recorded signals from the receiver become the GRID set. This
set provides a test set that shows how the neural networks
respond to the impact of real radio hardware and a multipath
environment.

B. Noise Generation

For the MATLAB set, we applied AWGN to the IQ samples
directly. For the GNU Radio sets, we applied three noise
models, resulting in 3 signal sets: (1) Noise and Channel, (2)
Additive Noise, and (3) Noise Only.

Noise and Channel This signal set is built using three
GNU Radio building blocks: the Modulation Tx, Multiply
Const, and Channel Model blocks. The Modulation Tx block
generates the constellation type as specified by the user.
Multiply Const is the variable for adjusting the gain of the
constellation signal. The Channel Model block combines the
signal with random Gaussian noise. The inputs for the Channel
Model block includes the noise voltage, which adjusts the gain
of the noise. Additionally, this block contains a variable for
the SNR input which adjusts the noise voltages to achieve the
appropriate signal to interference ratio.

Additive Noise For the additive noise generation set, the
channel model block was removed and a separate GNU Radio
block for the noise was included. The GNU Radio blockchain
contains many of the same variable inputs from the Noise and
Channel.

If we consider s[n] as the noiseless signal, w[n] the AWGN
noise, and y[n] as the output signal, the profile can be
represented by equationl.

yln] = s[n] + w(n] ey

Noise Only The Noise Only GNU Radio signal set contains
a fast noise block without a modulation source block. For
each signal set, the files were arbitrarily labeled as different
modulation schemes.

IV. NEURAL NETWORK DESCRIPTION

For this project we explored 3 types of neural networks:
(1) Fully Connected Neural Network (FCNN), Convolutional
Neural Network (CNN), and the Long Short Term Memory
(LSTM) network.

Fully Connected Neural Network (FCNN) Fully con-
nected networks contain multi-layer perceptions (MLPS) in
which all nodes are connected to the nodes in the previ-
ous layers.[9] Our FCNN network is comprised of 4 fully
connected hidden layers which employ a softsign activation
function, one dropout layer, and one fully connected layer at
the output that uses a relu activation function.

Convolutional Neural Network (CNN) Convolution Neu-
ral Networks are extremely popular and have been imple-
mented in several areas including image classification, SAR
image segmentation, computer recognition, speech identifi-
cation, and automatic modulation recognition. [14, 11] The
CNN Network contains 6 convolutional layers, 3 hidden fully
connected layers, a fully connected output layer, and some
additional upsampling and max-pooling layers. The CNN uses
categorical classification.

Long Short Term Memory (LSTM) LSTM’s are time
recursive deep learning networks that have been used in a
variety of applications including speech synthesis, handwrit-
ing recognition, audio analysis, video analysis, and language
modeling and translation. [8] Our LSTM model contains 2
LSTM layers with 32 filters, one dropout layer, and one
fully connected output layer. This network employs a rsmprop
optimizer.
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V. EXPERIMENTS AND DISCUSSION

Our experiments can be divided into the following sections:
(1) noise analysis, (2) accuracy analysis, and (3) temporal
clustering. In noise analysis, we describe how adding noise
using channel models can influence neural networks. In ac-
curacy analysis we show how the MATLAB approach using
AWGN results in accuracies that are too low compared to the
GNU Radio signal sets. The temporal clustering illustrates how
smoothing the IQ samples results in better NN performance.
All experiments contained data with the following modulation
schemes BPSK, QPSK, 8PSK and 16QAM.

A. Noise Analysis

Since SNR significantly impacts radio performance, it is
essential to develop effective noise models when generating
wireless signals. One of the challenges experienced during
this project was developing signal sets with noise and dis-
tortion characteristics that could not be “learned” by the
neural networks. For the Noise and Channel set, the networks
recognized distortions in the GNU Radio channels as features.
This resulted in high modulation classification accuracy even
when the signal was highly attenuated and the gain of the
noise channel dominated. For example, the neural networks
were able to classify the correct modulation scheme of an
unknown signal with over 95% accuracy even when the signal
was attenuated. Part (a) of figure 1 demonstrates this high
classification accuracy in the confusion matrix.

Confusion matrices are powerful tools that allow researchers
to visualize the precision, accuracy, and recall of deep learning
networks in a graphical format[13]. For our confusion ma-
trices, the predicted and true modulation classes are on the
X-axis and Y-axis, respectively. The more densely populated
predictions are in yellow, while the less densely populated dis-
tributions are a magenta color. A descending yellow diagonal
line from the upper left to the lower right corner of the graph
indicates high accuracy. From part (a) of this graph, we see
that the DL network predicts with high accuracy even at an
SNR of -40 dB where noise dominates the channel.

Upon further investigation, we discovered that this was
caused by the neural networks recognizing the distortion
characteristics in the Channel Model block of Noise and

CNN LSTM
GNURadio | MATLAB | GRID
CNN 100% 67% 83%
FCNN 9% 2% 91%
LSTM 9% 54% 68%
TABLE I

ACCURACY COMPARISON AT AN SNR OF ODB

Channel GNU Radio Profile. So, as discussed in section III,
we removed the channel model and added the noise to the
signal externally in the Additive Noise profile. For this profile,
we attained approximately 25% classification accuracy at an
SNR of -40 dB. This low accuracy is also confirmed by the
distribution allocation represented in part (b) of figure 1.

B. Accuracy Analysis

For the accuracy analysis, we observe classification ac-
curacy from SNR levels of -30dB to 30dB in to get a
comprehensive view of how the NN performs over a broad
SNR range. Figure 2 shows the SNR vs. classification accuracy
of the FCNN, CNN, and LSTM networks for the MATLAB,
Additive Noise GNU Radio, and GRID signal sets. All three
DL neural networks perform much better using the GNU
Radio set than the MATLAB set. For instance, at an SNR
of 0 dB the accuracy of the FCNN network is 99% for GNU
Radio and only 42% with the MATLAB set. For the LSTM
network, the MATLAB set has a 40% lower accuracy rate than
the GNU Radio set at an SNR of 0 dB. This is summarized in
Table I The CNN shows a similar response with the MATLAB
signal set at 50% below the GNU Radio accuracy at an SNR
of -10 dB. The highest accuracy attained for the FCNN with
the MATLAB set is 78%. We hypothesize that the difference
in accuracy is caused by the effect of temporal clustering.
Overall, we found that the CNN network had the highest
accuracy while the FCNN network had the lowest. We also
observed that the LSTM network has the smallest gap in
accuracies between the three radio generation platforms.

Analysis of the GRID set shows that, as expected, the
networks’ classification accuracies are slightly lower when the
data is transmitted over the air with actual radios. At an SNR of
10 dB, the accuracy of the GRID data for the FCNN and CNN
networks are 40% the accuracy of the GNU Radio datasets.
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Fig. 3. 8PSK Constellation Plots for 100 1Q Pairs

This indicates that the noise and distortions of the environment
and of the radios themselves will impact the classification
accuracy, even if the systems are modeled well.

VI. TEMPORAL CLUSTERING

Upon examining the data we observed that although static
1Q constellation plots look very similar, the temporal progres-
sion of the IQ points are very different. For example, for an
8PSK modulation in GNU Radio, the points travel to adjacent
IQ locations. The impact of this motion is that the shift in
IQ points does not involve crossing the origin. Instead, the 1Q
constellation points remain in one half of the IQ plane for a
large chunk of points before moving to the next quadrant. In
the MATLAB data however, the points are more random and
do not move to the next adjacent point. This effect is observed
in figure 3 which displays the IQ constellation plots for 100
1Q pairs for the MATLAB and GNU Radio sets.

VII. CONCLUSIONS

Our research demonstrates that different signal generation
techniques have widely different impacts on the classification
accuracy of neural networks, even with equivalent SNRs.
The results from the noise generation analysis indicate that
some synthetic data generation methods may have very high
accuracy results if the neural networks can distinguish unique
channel characteristics that contribute to noise. Thus, it is
imperative that the noise added to the system be appropriately
randomized.

Our work also shows that it is also possible to over-
randomize the signal. For example, some signal generation
methods result in low accuracy because of differing ap-
proaches to mapping IQ constellation points. As shown from
the MATLAB SNR vs Accuracy results, if the output of the
IQ constellation is purely randomized, the constellation will
follow a more randomized temporal allocation pattern than
what happens in realistic radio signals. This in turn makes it
more difficult for the networks to characterize the modulation.

It is important to understand these biases when modeling ra-
dio communication signals and evaluating the neural networks’
performance. Understanding these bias will help designers
create synthetic data that is more characteristic of actual radio
signals. It will also ensure that neural networks have better
performance in real-world environments.

VIII. FUTURE WORK

Future work for this project should include testing the GNU
Radio data with channel models containing more randomized
distortions rather than adding AWGN from an external block.
Additionally, further work could include evaluating the MAT-
LAB data with additional functions, such as a root cosine
filter (RRC), that could smooth out the IQ transition points.
To add to this, testing could be performed on more realistic
training sets that include signals from live devices such as
WiFi and Bluetooth devices in harsh multipath environments.
This would allow us to assess how the networks perform on
classifying real-world signals.
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