Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SIAM J. COMPUT. © 2021 Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. FOCS19-39-FOCS19-80

THE AVERAGE-CASE COMPLEXITY OF COUNTING CLIQUES IN
ERDOS-RENYI HYPERGRAPHS*

ENRIC BOIX-ADSERAT, MATTHEW BRENNAN! AND GUY BRESLER'

Dedicated to the memory of our dear colleague and friend, Matthew Brennan

Abstract. We consider the problem of counting k-cliques in s-uniform Erdés—Rényi hypergraphs
G(n,c, s) with edge density ¢ and show that its fine-grained average-case complexity can be based on
its worst-case complexity. We prove the following: (1) Dense Erdés—Rényi graphs and hypergraphs:
Counting k-cliques on G(n, ¢, s) with k and ¢ constant matches its worst-case complexity up to a
polylog(n) factor. Assuming randomized ETH, it takes n®*(¥) time to count k-cliques in G(n,c, s) if
k and c are constant. (2) Sparse Erdés—Rényi graphs and hypergraphs: When ¢ = ©(n™¢), we give
several algorithms exploiting the sparsity of G(n,c, s) that are faster than the best known worst-
case algorithms. Complementing this, based on a fine-grained worst-case assumption, our reduction
implies a different average-case phase diagram for each fixed a depicting a tradeoff between a runtime
lower bound and k. Surprisingly, in the hypergraph case (s > 3), these lower bounds are tight
against our algorithms exactly when c is above the Erdés—Rényi k-clique percolation threshold. Our
reduction yields the first known average-case hardness result on Erd6s—Rényi hypergraphs based on
worst-case hardness conjectures. We also give a variant of our worst-case to average-case reduction for
computing the parity of the k-clique count that requires a milder assumption on the error probability
of the blackbox solving the problem on G(n,c, s).

Key words. average-case complexity, fine-grained complexity, worst-case-to-average-case re-
ductions, graph algorithms, random graphs

AMS subject classifications. 68Q17, 68Q87, 60C05

DOI. 10.1137/20M1316044

1. Introduction. We consider the average-case complexity of counting k-cliques
in s-uniform Erdés—Rényi hypergraphs G(n, ¢, s), where every s-subset of the n ver-
tices is a hyperedge independently with probability ¢. Our main result is a reduction
for counting k-cliques on worst-case hypergraphs given a blackbox algorithm solv-
ing the problem on G(n,c,s) with low error probability. Our approach is closely
related to the recent work [43], which showed a worst-case to average-case reduction
for counting cliques for a particular efficiently samplable distribution on graphs. Our
reduction yields two different sets of average-case lower bounds for counting k-cliques
in graphs sampled from the natural distribution G(n,c,s) in the dense and sparse
cases of ¢ = O(1) and ¢ = O(n~%), with tradeoffs between runtime and ¢. We also
show that these average-case lower bounds often match algorithmic upper bounds.

The complexity of clique problems on Erdés—Rényi random graphs has become
a central topic in average-case complexity, discrete probability, and high-dimensional
statistics. A body of work has analyzed algorithms for finding large cliques in Erdés—
Rényi graphs! [56, 3, 32, 60, 34, 5, 24, 27, 21], and hardness results have been shown for
greedy algorithms [54, 45, 51, 59, 64], local algorithms [38, 22, 65], query models [31],

*Received by the editors January 30, 2020; accepted for publication (in revised form) June 7,

2021; published electronically September 14, 2021.

https://doi.org/10.1137/20M 1316044

TDepartment of EECS, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(eboix@mit.edu, guy@mit.edu).

fThe author is deceased. Former address: Department of EECS, Massachusetts Institute of
Technology, Cambridge, MA 02139 USA.

lin both ordinary Erdés-Rényi graphs and the planted clique model.

FOCS19-39

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/20M1316044
mailto:eboix@mit.edu
mailto:guy@mit.edu

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-40 BOIX-ADSERA, BRENNAN, AND BRESLER

bounded-depth circuits [69], monotone circuits [70], low-degree sum of squares (SOS)
relaxations [9], statistical query algorithms [36], and resolution [6]. The hardness of
clique problems on Erdés—Rényi graphs has been used as an average-case assump-
tion in cryptography [52] and to show information-computation gaps in a variety of
statistical problems [10, 55, 20, 46, 58, 15, 16, 14].

All of the above lower bounds for clique problems on Erdés—Rényi random graphs
are against restricted classes of algorithms. One reason for this is that there are general
obstacles to basing average-case complexity on worst-case complexity. For example,
natural approaches to polynomial-time worst-case to average-case reductions for NP-
complete problems fail unless coNP C NP /poly [35, 12, 11]. The objective of this work
is to show that this worst-case characterization of average-case complexity is possible
in a fine-grained sense for the natural problem of counting k-cliques in s-uniform
Erdés—Rényi hypergraphs G(n, ¢, s) with edge density c.

A motivating recent work by Goldreich and Rothblum [43] also considered worst-
case to average-case reductions for k-clique counting. They provided such a reduction
mapping to an efficiently samplable distribution on graphs with a high min-entropy
of Q(n?). In contrast to [43], our objectives are to (1) map precisely to the natural
distribution G(n, ¢, s) for different edge densities ¢, including ¢ = ©(1) and the sparse
case ¢ = ©(n~%); and (2) to characterize the tradeoff between the time-complexity of
counting k-cliques in G(n, ¢, s) and the sparsity parameter «. Achieving this requires
new ingredients for the self-reducibility of counting k-cliques as a low-degree poly-
nomial and a tight analysis of random biased binary expansions over F, with finite
Fourier analysis.

However, our techniques also come at the cost of requiring a low error probability
(1/polylog(n) in the dense case and 1/ poly(n) in the sparse case) for the average-case
blackbox solving k-clique counting on G(n,c,s). This is in contrast to [43], where a
very high error probability of 1 — 1/polylog(n) is tolerated. It remains an interesting
open problem to extend our results for G(n, ¢, s) to tolerate higher error blackboxes.
This error tolerance and open problem are discussed further in sections 2.2 and 6, and
how our techniques relate to those in [43] is discussed in sections 1.2 and 3. As a step
towards increasing the allowed blackbox error, we also give a variant of our reduction
for computing the parity of the k-clique count that only requires a constant bound on
the error probability (for each fixed k) of the blackbox algorithm solving the problem
on G(n,c,s) when ¢ = 1/2. We now give an overview of our contributions.

1.1. Overview of main results. We provide two complementary main results
on the fine-grained average-case complexity of counting k-cliques in G(n, ¢, s). The
precise formulations of the problems we consider are in section 2.1.

Worst-case to average-case reduction. We give a worst-case to average-case re-
duction from counting k-cliques in worst-case s-uniform hypergraphs to counting k-
cliques in hypergraphs drawn from G(n,c,s). The key guarantees of this reduction
are summarized in the following simplified version of our main theorem.

THEOREM 1.1 (simplified main result). If 2 < s < k are constant integers and

k
¢ = c(n) satisfies 0 < ¢ <1 —Q(1), then there is a parameter Y4 = cf(s)(log n)OM
such that the following holds. If there is a randomized algorithm counting k-cliques in
time O(n') with error probability less than 1/ 4 on hypergraphs drawn from G(n,c, s),
then there is a randomized algorithm counting k-cliques on worst-case s-uniform hy-

pergraphs with error probability less than 1/3 running in time O (T# . nma"{t’s}).

We discuss the necessity of the error tolerance and the multiplicative slowdown in
our worst-case to average-case reduction in section 2.2. This result has a number of

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-41

consequences for basing the average-case fine-grained complexity of k-clique counting

over Erd6s—-Rényi hypergraphs on its worst-case complexity, which we now overview.

Counting k-cliques in worst-case hypergraphs is known to take n%*) time for ran-

domized algorithms assuming the randomized Exponential Time Hypothesis (rETH)?

if k does not grow with n [19, 18]. The best known worst-case algorithms up to sub-

polynomial factors are the O (n*[*/31) time algorithm of [62] in the graph case of

s = 2 and exhaustive O(n*) time search on worst-case hypergraphs with s > 3. Here,

w < 2.373 denotes the matrix multiplication constant. Our reduction is the first

worst-case to average-case reduction to Erdés—Rényi hypergraphs. It has different

implications for the cases of dense and sparse hypergraphs, because of the factor T,

as described next:

1. Dense Erdés—Rényi graphs and hypergraphs. When k and c are constant, our

reduction constructs an efficient k-clique counting algorithm that succeeds on

a worst-case input hypergraph with high probability, using polylog(n) queries

to an average-case oracle that correctly counts k-cliques on a 1—1/ polylog(n)

fraction of Erdés-Rényi hypergraphs drawn from G(n, ¢, s). This essentially

shows that k-clique counting in the worst case matches that on dense Erdés—

Rényi hypergraphs. More precisely, k-clique counting on G(n, ¢, s) with k, ¢,

and s constant must take € (n@lk/31) time when s = 2 and Q(n*) time

when s > 3, unless there are faster worst-case algorithms. Furthermore, our

reduction shows that it is rETH-hard to count k-cliques in n°®*) time on
G(n,c,s) with k, ¢, and s constant.

2. Sparse Erdés—Rényi graphs and hypergraphs. Our reduction also applies with

a different multiplicative slowdown and error tolerance to the sparse case

of ¢ = ©(n™%), where the fine-grained complexity of k-clique counting on

G(n,c, s) is very different than on worst-case inputs. Our reduction implies
k

fine-grained lower bounds of Q(n“’w/gwf‘)‘(ﬁ) when s = 2 and Q(nkfo‘(i))
when s > 3 for inputs drawn from G(n,c,s), unless there are faster worst-
case algorithms. We remark that in the hypergraph case of s > 3, this lower
bound matches the expectation of the quantity being counted, the number of
k-cliques in G(n, ¢, s), up to polylog(n) factors.?
Precise statements of our results can be found in section 2.2. For simplicity, our
results should be interpreted as applying to algorithms that succeed with probability
1 — (logn)~“™ in the dense case and 1 —n~“(1) in the sparse case.

We also give a second worst-case to average-case reduction for computing the
parity of the number of k-cliques which has a weaker requirement of 1 — Oy, 4(1) on
the error probability for the blackbox solving the problem on G(n,c,s) in the dense
case of ¢ = 1/2. We provide an overview of our multistep worst-case to average-case
reduction in section 1.2. The steps are described in detail in section 3.

Algorithms for k-cliqgue counting on G(n,c,s). We also analyze several natural
algorithms for counting k-cliques in sparse Erdos—Rényi hypergraphs. These include
an extension of the natural greedy algorithm mentioned previously from k-CLIQUE to
counting k-cliques, a modification to this algorithm using the matrix multiplication
step of [62] and an iterative algorithm achieving nearly identical guarantees. These
algorithms count k-cliques in G(n,c, s) when ¢ = O(n~%) with several different run-

2yETH asserts that any randomized algorithm takes at least 2°™ time to solve 3-SAT in the worst
case for some constant ¢ > 0.

3For the subclass of algorithms that enumerate k-cliques one by one, the k-clique count is a
trivial lower bound on the runtime. Our general lower bound matches this heuristic lower bound.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-42 BOIX-ADSERA, BRENNAN, AND BRESLER

times, the best of which are as follows:
~ k

. O(nk"’l_“(s)) ifs>3and k<7+1;
~ 741

° O(nT"'Q_O‘(s)) ifs>3and 7+ 1<k<k+1;and

o O(nwk/ﬂ*w*“’o‘(wgﬂ)) ifs=2and k< k+1.

Here, 7 and k are the largest positive integers satisfying that a(szl) < 1 and a(sfl) <
s. The thresholds x and 7 have natural interpretations as roughly the clique number
and most frequent clique size in the graph G(n, ¢, s), respectively. Throughout, we
restrict our attention to k with k < x + 1 since the probability that the largest clique
in G has size w(G) > k + 1 is 1/poly(n).

The threshold 7 + 1 also has a natural interpretation as the k-clique percolation
threshold [26, 63, 28], defined below. Given a hypergraph G, define two k-cliques of
G to be adjacent if they share (k — 1) of their k vertices. This induces a hypergraph
Gy on the set of k-cliques. For graphs G drawn from G(n,c), the authors of [26]
introduced the k-clique percolation threshold of ¢ = ﬁ -n_ﬁ, above which a giant
component emerges in G. This threshold and extensions were rigorously established
in [13]. In the graph case of s = 2, this threshold matches 7 + 1, which is the largest
integer k such that a < ﬁ Following the same heuristic as in [26], our threshold
7 4 1 is a natural extension of the k-clique percolation threshold to the hypergraph
case of s > 3. In other words, 7 + 1 roughly corresponds to the largest value of k at
which a local search algorithm can explore all the cliques in the hypergraph starting
from any given clique.

Comparing our upper and lower bounds. A comparison of our algorithmic guar-
antees and average-case lower bounds based on the best known worst-case algorithms
for counting k-cliques is shown in Figure 1.

1. Graph case (s = 2). In the graph case, our lower and upper bounds have
the same form and show that the exponent in the optimal running time is
%k — Coz(g) 4 Ok,a(1), where ¢ < C <laslongask <rk+1=2a"1+1.
As shown in Figure 1, our upper and lower bounds approach each other for
k small relative to x + 1.

2. Hypergraph case (s > 3). In the hypergraph case of s > 3, the exponents in
our lower and upper bounds are nearly identical at k& — oz(]:) + Op.o(1) up
to the k-clique percolation threshold. After this threshold, our lower bounds
slowly deteriorate relative to our algorithms until they become trivial at the
clique number of G by k = k + 1.

Because we consider sparse Erd6s—Rényi hypergraphs, for each n, k, and s we actually
have an entire family of problems parametrized by the edge probability ¢ and the be-
havior changes as a function of c; this is the first worst-to-average-case hardness result
we are aware of for which the complexity of the same problem over worst-case versus
average-case inputs is completely different and can be sharply characterized over the
whole range of ¢ starting from the same assumption. It is surprising that our worst-
case to average-case reduction techniques—which range from the self-reducibility of
polynomials to random binary expansions—together yield tight lower bounds match-
ing our algorithms in the hypergraph case.

Two interesting problems left open by our work are to show average-case lower
bounds with an improved constant C' in the graph case and to show tight average-case
lower bounds beyond the k-clique percolation threshold in the case s > 3. These other
open problems and some extensions of our methods are discussed in section 6.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-43

log,, T
Graphs (s = 2)
9
feasible e \2 open
XSS
3
k k
% - O‘(Q
infeasible
k
w(@)
log,, T

Hypergraphs (s > 3)

T+1— a(’tl)

feasible

infeasible

k-clique percolation w(G)

Fic. 1. Comparison of our algorithms and average-case lower bounds for counting k-cliques
in sparse Erd8s—Rényi hypergraphs G(n,c,s) with ¢ = ©(n~%). Green denotes runtimes T feasible
for each k, blue denotes T infeasible given that the best known worst-case algorithms are optimal,
and gray denotes T for which the complexity of counting k-cliques is open after this work. The top
plot shows the graph case of s = 2, and the bottom plot shows the hypergraph case of s > 3. For
simplicity, all quantities shown are up to constant Oy, o(1) additive error. (Color is available online

only.)

1.2. Overview of reduction techniques. For clarity of exposition, in this
section we will restrict our discussion to the graph case s = 2, as well as the case of
constant k. A key step of our worst-case to average-case reduction uses the random
self-reducibility of multivariate low-degree polynomials—i.e., evaluating a polynomial
on any worst-case input can be efficiently reduced to evaluating it on several random
inputs. This result follows from a line of work [57, 35, 40, 41] that provides a method
to efficiently compute a polynomial P : FY — F of degree d < |F|/20 on any worst-
case input x € FV, given an oracle P :FN — F that agrees with P on a % + m
fraction of inputs. Thus, for any low-degree polynomial over a large enough finite
field, evaluating the polynomial on a random element in the finite field is roughly as
hard as evaluating the polynomial on any adversarially chosen input.

Random self-reducibility for counting k-cliques. With the random self-reducibility
of polynomials in mind, a natural approach is to express the number of k-cliques in a
graph as a low-degree polynomial of the n x n adjacency matrix A

rA)y=>" | [] 44

ScCn] \i<jes
|S|=k

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-44 BOIX-ADSERA, BRENNAN, AND BRESLER

This polynomial has been used in a number of papers, including by Goldreich and
Rothblum [43] to construct a distribution on dense graphs for which counting k-
cliques is provably hard on average. However, their techniques are primarily focused
on the error probability requirement for the average-case blackbox. As a result, the
distribution they obtain is far from Erdés—Rényi and their approach does not yield
tight bounds for sparse graphs.

The significant obstacle that arises in applying the random self-reducibility of
P is that one needs to work over a large enough finite field F,, so evaluating P on

worst-case graph inputs in {0, 1}(3) only reduces to evaluating P on uniformly random

(3)

inputs in Fp*/. In order to further reduce to evaluating P on graphs, given a random
input A € IE}()Z), Goldreich and Rothblum [43] use several gadgets (including replacing
vertices by independent sets and taking disjoint unions of graphs) in order to create a
larger unweighted random graph A" whose k-clique count is equal to k!- P(A) (mod p)
for appropriate p. However, any nontrivial gadget-based reduction seems to have little
hope of arriving at something close to the Erd6s—Rényi distribution, because gadgets
inherently create nonuniform structure.

Reducing to k-partite graphs. We instead consider a different polynomial for
graphs on nk vertices with nk x nk adjacency matrix A,

ZUED VD RIS SN (8 | e |

vi€ln] va€l2nl\[n] ve€lbn]\[(k—1)n] \ 1<i<j<k

The polynomial P’ correctly counts the number of k-cliques if A is k-partite with
vertex k-partition [n] U ([2n] \ [n]) U --- U ([kn] \ [(k — 1)n]). We first reduce clique
counting in the worst case to computing P’ in the worst case; this is a simple step,
because it is a purely worst-case reduction. Next, we construct a recursive counting
procedure that reduces evaluating P’ on Erdés—Rényi graphs to counting k-cliques in
Erdds—Rényi graphs. Therefore, it suffices to prove that if evaluating P’ is hard in
the worst case, then evaluating P’ on Erdés-Rényi graphs is also hard.

Applying the Chinese remainder theorem as well as the random self-reducibility
of polynomials, computing P’ on worst-case inputs in {0, 1}(?) reduces to computing

nk
P’ on several uniformly random inputs in IFZ(, =) for several different primes p each
on the order of O(logn). The main question is the following: How can one evaluate
nk
P’ on inputs X ~ Unif[]F;(,2)] using an algorithm that evaluates P’ on G(n,c,2)
Erdds—Rényi graphs (i.e., inputs Z ~ Ber(c)®(n2k))?

Eliminating weights with random sparse binary ixpansions. We solve this by de-
composing the random weighted graph X ~ Unif [IE‘,() 2)] into a weighted sum of graphs
zO .z ¢ {0,1}(n2k) such that each Z() is close to Erdés-Rényi G(n,c,2).
Specifically, this additive decomposition satisfies X = >/_,2!Z®) (mod p), i.e., that
we can write X as a binary expansion modulo p of Erd6s—Rényi graphs. Importantly,
in section 4 we derive near-optimal bounds on ¢ and prove that we can take ¢ to be
quite small, growing only as poly(c¢~!(1 —¢)~!log(p)). This technique seems likely to
have applications elsewhere. For the unbiased case of ¢ = 1/2, a version of this binary
expansion technique appeared previously in [44].

Now, using the binary expansion decomposition of X, we algebraically manipulate

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-45

P’ as follows:

P'(X)

Yoy ooy x s

v1€[n] v2€[2n]\[n] v €[kn)\[(k—1)n] 1<i<j<k \1€{0,...,t}

> (o)

fefo,.n(s) NIsisisk

(¥ o 5)

v1 €[n] va€[2n]\[n] v Elkn]\[(k—1)n] 1<i<j<k

-y)(I1 2m>P(%ﬁ)

Ky \1<i<j<k
fe(0,...y(2) NISIEIS

Here, Z) is the nk-vertex graph with entries given by Z(%ag) for 1 <a < b<nk,
where @ = [a/n| and b = [b/n]. We thus reduce the computation of P’/(X) to the

computation of a weighted sum of poly(c™1(1 —¢)~! log(n))(g) different evaluations
of P at graphs close in total variation to G(n, c¢,2). This concludes our reduction.*

We remark that an important difference between our reduction and the reduction
in [43] is the number of and structure of the calls to the average-case blackbox. Our
reduction requires many successful calls to the blackbox in order to obtain a single
correct evaluation of the polynomial P’(A), which is where our low error probability
requirement comes from. The gadgets in [43] are specifically designed to only require
a single successful call to obtain a single correct evaluation of P(A). Thus, even given
a blackbox with a constant error probability, the Berkelamp—Welch algorithm can
recover P(A) in the case of [43].

We also give a different worst-case to average-case reduction for determining the
parity of the number of k-cliques in Erd6s—Rényi hypergraphs, as discussed in sections
2.2 and 3.

1.3. Related work on worst-case to average-case reductions. The random
self-reducibility of low-degree polynomials serves as the basis for several worst-case to
average-case reductions found in the literature. One of the first applications of this
method was to prove that the permanent is hard to evaluate on random inputs, even
with polynomially small probability of success, unless P#P = BPP [73, 17]. (Under
the slightly stronger assumption that P#P % AM, and with different techniques, the
authors of [33] proved that computing the permanent on large finite fields is hard
even with exponentially small success probability.) Recently, the authors of [8] used
the polynomial random self-reducibility result in the fine-grained setting in order to
construct polynomials that are hard to evaluate on most inputs, assuming fine-grained
hardness conjectures for problems such as 3-SUM, ORTHOGONAL-VECTORS, and/or
ALL-PAIRS-SHORTEST-PATHS. The random self-reducibility of polynomials was also

4If we had instead worked with P, then this argument would fail. The argument uses the k-

k
partiteness structure of P’ as follows: for every pair of vertices a,b € [nk] and f € {0, ... ,t}(Q) , the
term Zijl:”) appearing in the sum is uniquely determined by a € [ik]\[(i—1)k] and b € [E]\[(j —1)k].
So given f we can define a graph Z(f) uniquely. On the other hand, running the same argument
with the polynomial P, the term Zéiij) for many different i, j would appear in the sum, and there
is no way to uniquely define a graph Z().

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-46 BOIX-ADSERA, BRENNAN, AND BRESLER

used by Gamarnik and Kizildag [37] in order to prove that exactly computing the
partition function of the Sherrington—Kirkpatrick model in statistical physics is hard
on average.

If a problem is random self-reducible, then random instances of the problem are
essentially as hard as worst-case instances, and therefore one may generate a hard
instance of the problem by simply generating a random instance. Because of this,
random self-reducibility plays an important role in cryptography: it allows one to
base cryptographic security on random instances of a problem, which can generally
be generated efficiently. A prominent example of a random self-reducible problem
with applications to cryptography is the problem of finding a short vector in a lattice.
In a seminal paper, Ajtai [1] gave a worst-case to average-case reduction for this
short-vector problem. His ideas were subsequently applied to prove the average-
case hardness of the learning with errors (LWE) problem, which underlies lattice
cryptography [1, 67]. A good survey covering worst-case to average-case reductions
in lattice cryptography is [68].

There are known restrictions on problems that are self-reducible. For example,
nonadaptive worst-case to average-case reductions for NP-complete problems fail un-
less coNP C NP/poly [35, 12, 11].

Subsequent work. Several new results have been proved subsequent to the first
appearance of our work. Goldreich [42] provided a simpler reduction for counting
the parity of the number of cliques in the uniform G(n,1/2) Erdés—Rényi graph case.
Goldreich obtained error tolerance exp(—k&?) in this case, which is an improvement
over the error tolerance exp(—O(k?)) in our Theorem 2.9. Hirahara and Shimizu [47]
studied the average-case complexity of counting bicliques in uniformly random bipar-
tite graphs, obtaining near-optimal runtime bounds assuming the Strong Exponential
Time Hypothesis (SETH). And Dalirrooyfard, Lincoln, and Vassilevska Williams [23]
extended our techniques to obtain average-case hardness for counting the number of
copies of any graph H as an induced subgraph of an Erdés—Rényi graph G(n,1/2);
they also used these techniques to show that simple variations of the orthogonal
vectors, 3-sum and zero-weight k-clique problems, are hard to count on average for
uniform inputs.

1.4. Notation and preliminaries. An s-uniform hypergraph G = (V(G), E(G))
consists of a vertex set V(G) and a hyperedge set E(G) C (V(SG)). A k-clique C'in G is
a subset of vertices C C V(G) of size |C| = k such that all of the possible hyperedges
between the vertices are present in the hypergraph: ((j) C E(G). We write clg(G) to
denote the set of k-cliques of the hypergraph G. One samples from the Erdés—Rényi
distribution G(n,c,s) by independently including each of the (7) hyperedges with
probability c.

We denote the law of a random variable X by £(X). We use T'(A4,n) to denote
the worst-case runtime of an algorithm A on inputs of size parametrized by n; for
simplicity, we assume throughout that T(A,n) is nondecreasing in n. All algorithms
in this paper are randomized, and each (possibly biased) coin flip incurs constant
computational cost.

2. Problem formulations and average-case lower bounds.

2.1. Clique problems and worst-case fine-grained conjectures. In this
section, we formally define the problems we consider and the worst-case fine-grained
complexity conjectures off of which our average-case lower bounds are based. We
focus on the following computational problems.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-47

DEFINITION 2.1. #(k, s)-CLIQUE denotes the problem of counting the number of
k-cliques in an s-uniform hypergraph G.

DEFINITION 2.2. PARITY-(k, s)-CLIQUE denotes the problem of counting the num-
ber of k-cliques up to parity in an s-uniform hypergraph G.

DEFINITION 2.3. DECIDE-(k, $)-CLIQUE denotes the problem of deciding whether
or not an s-uniform hypergraph G contains a k-clique.

Both #(k, s)-CLIQUE and DECIDE-(k, s)-CLIQUE are fundamental problems that
have long been studied in computational complexity theory and are conjectured to be
computationally hard in the worst-case setting. When k is allowed to be an unbounded
input to the problem, DECIDE-(k, $)-CLIQUE is known to be NP-complete [53] and
#(k, s)-CLIQUE is known to be #P-complete [74]. In this work, we consider the fine-
grained complexity of these problems, where k either can be viewed as a constant or a
very slow-growing parameter compared to the number n of vertices of the hypergraph.
In this context, PARITY-(k, s)-CLIQUE can be interpreted as an intermediate problem
between the other two clique problems that we consider. The worst-case reduction
from PARITY-(k, s)-CLIQUE to #(k, s)-CLIQUE is immediate. As we show in Appendix
A, in the worst-case setting, DECIDE-(k, s)-CLIQUE also reduces to PARITY-(k, s)-
CLIQUE with a multiplicative overhead of O(k2*) time.

When £ is a constant, the trivial brute-force search algorithms for these problems
are efficient in the sense that they take polynomial time. However, these algorithms do
not remain efficient under the lens of fine-grained complexity since brute-force search
requires ©(n*) time, which can grow significantly as k grows. In the hypergraph
case of s > 3, no algorithm taking time O(n*~¢) on any of these problems is known,
including for DECIDE-(k, s)-CLIQUE [76]. In the graph case of s = 2, the fastest known
algorithms for all of these problems take ©(nT*/31) time, where 2 < w < 2.4 is the
fast matrix multiplication constant [48, 62]. Since this is the state of the art, one
may conjecture that DECIDE-(k, s)-CLIQUE and #(k, s)-CLIQUE take n*(®) time in
the worst case.

Supporting this conjecture, Razborov [66] proves that monotone circuits require
Q(n*) operations to solve DECIDE-(k, 2)-CLIQUE in the case of constant k. Monotone
circuit lower bounds are also known in the case when k = k(n) grows with n [2, 4].
In [29], DECIDE-(k, 2)-CLIQUE is shown to be W[1]-hard. In other words, this shows
that if DECIDE-(k, 2)-CLIQUE is fixed-parameter tractable—admits an algorithm tak-
ing time f(k) - poly(n)—then any algorithm in the parametrized complexity class
WI(1] is also fixed-parameter-tractable. This provides further evidence that DECIDE-
(k,2)-CLIQUE is intractable for large k. Finally, the authors of [19] show that solving
DECIDE-(k, 2)-CLIQUE in n°®*) time is ETH-hard for constant k.> We therefore con-
jecture that the k-clique problems take n2(*) time on worst-case inputs when k is
constant, as formalized below.

CONJECTURE 2.4 (worst-case hardness of #(k,s)-CLIQUE). Let k be constant.
Any randomized algorithm A for #(k,s)-CLIQUE with error probability less than 1/3
takes time at least n%) in the worst case for hypergraphs on n vertices.

CONJECTURE 2.5 (worst-case hardness of PARITY-(k, s)-CLIQUE). Let k be con-

5These hardness results also apply to DECIDE-(k, s)-CLIQUE for s > 3 since there is a reduction
from DECIDE-(k, 2)-CLIQUE to DECIDE-(k, s)-CLIQUE in n® time. The reduction proceeds by starting
with a graph G and constructing an s-uniform hypergraph G’ that contains an s-hyperedge for
every s-clique in G. The k-cliques of G and G’ are in bijection. This construction also reduces
#(k, 2)-CLIQUE to #(k, s)-CLIQUE.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-48 BOIX-ADSERA, BRENNAN, AND BRESLER

stant. Any randomized algorithm A for PARITY-(k, s)-CLIQUE with error probability
less than 1/3 takes time at least n2() in the worst case for hypergraphs on n vertices.

CONJECTURE 2.6 (worst-case hardness of DECIDE-(k, s)-CLIQUE). Let k be con-
stant. Any randomized algorithm A for DECIDE-(k, s)-CLIQUE with error probability
less than 1/3 takes time at least n2(*) in the worst case for hypergraphs on n vertices.

The conjectures are listed in order of increasing strength. Since Conjecture 2.6
is implied by rETH, they all follow from rETH. We also formulate a stronger version
of the clique-counting hardness conjecture, which asserts that the current best known
algorithms for k-clique counting are optimal.

CONJECTURE 2.7 (strong worst-case hardness of #(k, s)-CLIQUE). Let k be con-
stant. Any randomized algorithm A for ##(k,s)-CLIQUE with error probability less
than 1/3 takes time Q(n“T%/31) in the worst case if s = 2 and Q(n*) in the worst case
if s > 3.

2.2. Average-case lower bounds for counting k-cliques in G(n,c,s).
Our first main result is a worst-case to average-case reduction solving either #(k, s)-
CLIQUE or PARITY-(k, s)-CLIQUE on worst-case hypergraphs given a blackbox solving
the problem on most Erd6s—Rényi hypergraphs drawn from G(n, ¢, s). We discuss this
error tolerance over sampling Erdés—Rényi hypergraphs as well as the multiplicative
overhead in our reduction below. These results show that solving the k-clique prob-
lems on Erdés—Rényi hypergraphs G(n, ¢, s) is as hard as solving them on worst-case
hypergraphs for certain choices of k, ¢, and s. Therefore, the worst-case hardness as-
sumptions, Conjectures 2.4, 2.5, and 2.7, imply average-case hardness on Erdés—Rényi
hypergraphs for #/(k, s)-CLIQUE and PARITY-(k, s)-CLIQUE.

THEOREM 2.8 (worst-case to average-case reduction for #(k, s)-CLIQUE). There
is an absolute constant C > 0 such that if we define

Ty(n,c.s,k) 2 (Cle™ (1 - o)) (slog + sloglogn)(logm))).

then the following statement holds. Let A be a randomized algorithm for #(k,s)-
CLIQUE with error probability less than 1/Yy on hypergraphs drawn from G(n,c,s).
Then there exists an algorithm B for #(k, s)-CLIQUE that has error probability less
than 1/3 on any hypergraph, such that

T(B,n) < (logn) - Ty - (T(A,nk) + (nk)*),

where T'(A, £) denotes the runtime of algorithm A on £-vertex hypergraphs.

For PARITY-(k, s)-CLIQUE, we also give an alternative reduction with an improved
reduction time and error tolerance in the dense case when ¢ = 1/2.

THEOREM 2.9 (worst-case to average-case reduction for PARITY-(k, s)-CLIQUE).
We have the following:
1. There is an absolute constant C > 0 such that if we define

Tpr(n,c,s,k) 2 <C(c—1(1 oY (slog k) (s log n + (’;) log log (’:)))U ,

then the following statement holds. Let A be a randomized algorithm for
PARITY-(k, s)-CLIQUE with error probability less than 1/Y p1 on hypergraphs

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-49

drawn from G(n,c,s). Then there exists an algorithm B for PARITY-(k, s)-
CLIQUE that has error probability less than 1/3 on any hypergraph, such that

T(B,n) < Tpy - (T(A,nk) + (nk)*).

2. There is an absolute constant C > 0 such that if we define

k
s

Tpa(s, k) £ (Cslogh) (),

then the following statement holds. Let A be a randomized algorithm for
PARITY-(k, s)-CLIQUE with error probability less than 1/Y pa on hypergraphs
drawn from G(n,1/2,s). Then there exists an algorithm B for PARITY-(k, s)-
CLIQUE that has error probability less than 1/3 on any hypergraph, such that

T(B,n) < Tpa - (T(A,nk) + (nk)*).

Our worst-case to average-case reductions yield the following fine-grained average-
case lower bounds for k-clique counting and parity on Erdés—Rényi hypergraphs based
on Conjectures 2.4 and 2.7. We separate these lower bounds into the two cases of dense
and sparse Erd6s—Rényi hypergraphs. We remark that, for all constants k, an error
probability of less than (logn)~“() suffices in the dense case and error probability
less than n~«(®) suffices in the sparse case.

COROLLARY 2.10 (average-case hardness of #(k, s)-CLIQUE on dense G(n,c, s)).
If k,c,e > 0 are constant, then we have the following:
1. Assuming Conjecture 2.4, then any algorithm A for #(k, s)-CLIQUE that has
error probability less than (log n)_({z)_6 on Erdds—Rényi hypergraphs drawn
from G(n, c,s) must have runtime at least T(A,n) > n2*),
2. Assuming Conjecture 2.7, then any algorithm A for #(k,s)-CLIQUE that has
error probability less than (log 71)_(];)_6 on Erdds—Rényi hypergraphs drawn
from G(n,c, s) must have runtime at least T(A,n) > Q (n*T*/31) if s = 2 and
T(A,n) > Q(n*) if s > 3.

COROLLARY 2.11 (average-case hardness of #(k, s)-CLIQUE on sparse G(n, ¢, s)).
Let k,a,e > 0 be constants, and let ¢ = ©(n~%). Assuming Conjecture 2.7, then

any algorithm A for #(k, s)-CLIQUE that has error probability less than n=o(2)=¢ o
Erd8s—Rényi hypergraphs drawn from G(n, ¢, s) must have runtime at least T(A,n) >

Q(nwk/ska(lz)) if s=2and T(A,n) > Q(nkfa(k)) if s> 3.

We remark that Conjecture 2.4 implies there is a constant C' > 0 such that a
version of Corollary 2.11 holds with the weaker conclusion that T(A,n) > n®*) for
any o < C’k/(’z) For PARITY-(k, s)-CLIQUE, we consider here the implications of
Theorem 2.9 only for ¢ = 1/2 since this is the setting in which we obtain substantially
different lower bounds than for #(k, s)-CLIQUE. As shown, an error probability of
o(1) on G(n,1/2,s) hypergraphs suffices for our reduction to succeed.

COROLLARY 2.12 (average-case hardness of PARITY-(k, s)-CLIQUE on G(n, 1/2, s)).

Let k be constant. Assuming Conjecture 2.5, there is a small enough constant

€ 2 e(k, s) such that if any algorithm A for PARITY-(k,s)-CLIQUE has error less than
€ on G(n,1/2,s), then A must have runtime at least T(A,n) > n?*),

We remark on one subtlety of our setup in the sparse case. Especially in our
algorithms section, we generally restrict our attention to ¢ = O(n~%) satisfying

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-50 BOIX-ADSERA, BRENNAN, AND BRESLER

a < k(lz)_l = s(sfl)_l, which is necessary for the expected number of k-cliques
in G(n,c,s) to not tend to zero. However, even when this expectation is decaying,
the problem #/(k,s)-CLIQUE as we formulate it is still nontrivial. The simple algo-
rithm that always outputs zero fails with a polynomially small probability that does
not appear to meet the 1/ T4 requirement in our worst-case to average-case reduc-
tion. A simple analysis of this error probability can be found in Lemma 5.1. Note

k1 . . .
that even when o > s(,",) ~, GREEDY-RANDOM-SAMPLING and its derivative algo-

rithms in section 5 still have guarantees and succeed with probability 1 — n=«(1),
We now discuss the multiplicative overhead and error tolerance in our worst-case to
average-case reduction for #(k, s)-CLIQUE.

Discussion of the multiplicative slowdown Y. In the sparse case of ¢ = O(n™%),
our algorithmic upper bounds in section 5 imply lower bounds on the multiplicative
overhead factor Yy in Theorem 2.8. In the hypergraph case of s > 3 and below
the k-clique percolation threshold, it must follow that the overhead is at least T =

Q(na(k)) = Q(cf(k)) Otherwise, our algorithms combined with our worst-case to
average-case reduction would contradict Conjecture 2.7. Up to polylog(n) factors,

this exactly matches the Y4 from our reduction. In the graph case of s = 2, it
k k

similarly must follow that the overhead is at least T, = Q(n%(s)) = Q(c_%(s))
to not contradict Conjecture 2.7. This matches the T4 from our reduction up to a
constant factor in the exponent.

Discussion of the error tolerance 1/Y 4. Notice that our worst-case to average-
case reductions in Theorems 2.8 and 2.9 require that the error of the average-case
blackbox on Erdés—Rényi hypergraphs go to zero as k goes to infinity. This error
tolerance requirement is unavoidable. When k = w(logn) in the dense Erdés—Rényi
graph case of G(n, 1/2), there is a k-clique with at most (2)27(5) = o(1) probability by
a union bound on k-subsets of vertices. So in this regime clique counting on G(n,1/2)
with constant error probability is not hard: the algorithm that always outputs zero
achieves o(1) average-case error.

If &k = 3logyn, then the probability of a k-clique on G(n,1/2) is less than
(Z) 9-(2) < 2-k*/6. Qo average-case k-clique counting is not hard with error more than
2-k*/6. On the other hand, our #(k,2)-CLIQUE reduction works with average-case
error less than 1/YT 4 = 2~k loglogn) - Apd our PARITY-(k, 2)-CLIQUE reduction is

more lenient, requiring error only less than 9—$(k” logloglog n) Thus, the error bounds
required by our reductions are quite close to the 2=#*/6 error bound that is absolutely
necessary for any reduction in this regime.

In the regime where k = O(1) is constant and on G(n,1/2), our PARITY-(k,2)-
CLIQUE reduction only requires a small constant probability of error and our #(k, 2)-
CLIQUE reduction requires less than a 1/ polylog(n) probability of error. We leave it
as an intriguing open problem whether the error tolerance of our reductions can be
improved in this regime.

Finally, we remark that the error tolerance of the reduction must depend on c.
The probability that a G(n, ¢) graph contains a k-clique is less than (nc*~1/2)k For
example, if ¢ = 1/n, then the probability that there exists a k-clique is less than
n=2*) . Ag a result, no worst-case to average-case reduction can tolerate average-
case error more than n~°*") on G(n,1/n) graphs. And therefore our reductions for
#(k,2)-cLIQUE and for PARITY-(k,2)-CLIQUE are close to optimal when ¢ = 1/n,

2 .
because our error tolerance scales as n~C (k" loglogn)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-51

3. Worst-case to average-case reduction for G(n, ¢, s). In this section, we
give our main worst-case to average-case reduction that transforms a blackbox solving
#(k, s)-CLIQUE on G(n,c,s) into a blackbox solving #(k, s)-CLIQUE on a worst-case
input hypergraph. This also yields a worst-case to average-case reduction for PARITY-
(k, s)-CLIQUE and proves Theorems 2.8 and 2.9. The reduction involves the following
five main steps, the details of which are in sections 3.1 to 3.5.

1. Reduce #(k, s)-CLIQUE and PARITY-(k, s)-CLIQUE on general worst-case hy-
pergraphs to the worst-case problems with inputs that are k-partite hyper-
graphs with k parts of equal size.

2. Reduce the worst-case problem on k-partite hypergraphs to the problem of
computing a low-degree polynomial P, s on N £ N(n, k, s) variables over a
small finite field F.

3. Reduce the problem of computing P, ;s on worst-case inputs to computing
P, ks on random inputs in FN.

4. Reduce the problem of computing P, ;s on random inputs in FY to comput-
ing P, 1. on random inputs in {0,1}". This corresponds to #(k, s)-CLIQUE
and PARITY-(k, s)-CLIQUE on k-partite Erd6s—Rényi hypergraphs.

5. Reduce the resulting average-case variants of #(k, s)-CLIQUE and PARITY-
(k, s)-CLIQUE on k-partite Erd6s—Rényi hypergraphs to non-k-partite Erdés—
Rényi hypergraphs.

These steps are combined in section 3.6 to complete the proofs of Theorems 2.8 and
2.9. Before proceeding to our worst-case to average-case reduction, we establish some
definitions and notation and also give pseudocode for the counting reduction in Figure
2—the parity reduction is similar.

The intermediate steps of our reduction crucially make use of k-partite hyper-
graphs with k parts of equal size, defined below.

DEFINITION 3.1 (k-partite hypergraphs). Given an s-uniform hypergraph G on
nk vertices with vertex set V(G) = [n] x [k], define the vertex labelling

L:(i,5) € [n] x [k] — j € [K].

If for alle = {u1, ..., us} € E(G) the labels L(u1), L(uz), ..., L(us) are distinct, then
we say that G is k-partite with k parts of equal size n.

In our reduction, it suffices to consider only k-partite hypergraphs with k parts
of equal size. For ease of notation, our k-partite hypergraphs will always have nk
vertices and vertex set [n] x [k]. In particular, the edge set of a k-partite s-uniform
hypergraph is an arbitrary subset of

E(G) C {{u1,...,us} CV(G) : L(u1), ..., L(us) are distinct} .

Taking edge indicators yields that the k-partite hypergraphs on nk vertices we consider
are in bijection with {0,1}", where N £ N(n,k,s) = (’j)ns is the size of this set of
permitted hyperedges. Thus, we will refer to elements x € {0,1}" and k-partite s-
uniform hypergraphs on nk vertices interchangeably. This definition also extends to
Erd6s—Rényi hypergraphs.

DEFINITION 3.2 (k-partite Erd6s—Rényi hypergraphs). The k-partite s-uniform
Erdés—Rényi hypergraph G(nk,c,s, k) is a distribution over hypergraphs on nk ver-
tices with vertex set V(G) = [n] x [k]. A sample from G(nk,c,s,k) is obtained by
independently including each hyperedge e = {uy, ..., us} € E(G) with probability ¢ for
all e with L(uy), L(uz), ..., L(us) distinct.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-52 BOIX-ADSERA, BRENNAN, AND BRESLER

Algorithm To-ER-#(G, k, A, c)

Inputs: s-uniform hypergraph G with vertex set [n], parameters k, ¢, algorithm
A for #(k, s)-CLIQUE on Erdds—Rényi hypergraphs with density c.
1. Construct an s-uniform hypergraph G’ on vertex set [n] x [k] by defining

B(G') = {{(vl,tl), (v2,t2), .., (vs,15)}

{vr, ..., v} € B(G) and 1§”1<v2<~--<vsgn}'

1<t1<ta<---<ts<k

Since G’ is k-partite, view it as an indicator vector of edges G’ € {0,1}V
for N £ N(n,k,s) = (")n®.

2. Find the first T primes 12(’;) < p1 < --- < pr such that HiT:1 p; > nk.
3. Define L : (a,b) € [n] x [k] — b € [K], and let

Pois(z) = > 1T zus-
]

{u1,...,up }eV(G’) SC[k
L(u;)=1 Vi |S|=s

For each 1 <t < T, compute P, 1 s(G') (mod p;), as follows:

(1) Use the procedure of [41] in order to reduce the computation of
P, k.s(G') (mod p;) to the computation of P, s on M = 12(’;)
distinct inputs xy,..., 2 ~ Unif[IFg].

(2) For each 1 <m < M, compute P, 1 s(zm) (mod p;) as follows:

(i) Use the rejection sampling procedure of Lemma 3.8 in order to
sample (Z©), ... Z(B)) close to (Ber(c)®N)®5 in total varia-
tion distance, such that z,, = ZbB:O 2b . Z® (mod p;). Tt
suffices to take B = ©(c~ (1 — ¢)"ts(logn)(log pt)).

(ii) For each function a : ([i]) — {0,..., B}, define ZéGOL) =
ZL9) for all S € [N] C ([TS‘]). Note that for each a, the cor-
responding Z(@°L) is approximately distributed as Ber(c)®N.

Use algorithm A and the recursive counting procedure of
Lemma 3.10 in order to compute Pnykys(Z(“"L)) for each a.

(i) Set P ks(G') & X) 0.8 2" Prks (2°F)).

4. Since 0 < P, 1, 4(G') < n¥, use Chinese remaindering and the computa-
tions of P, s(G’) (mod p;) in order to calculate and output P, 1 s(G’).

Fia. 2. Reduction To-ER-# for showing computational lower bounds for average-case #(k,s)-
CLIQUE on Erdds-Rényi G(n,c, s) hypergraphs based on the worst-case hardness of #(k,s)-CLIQUE.

Viewing the hypergraphs as elements of G(nk, c, s, k) as a distribution on {0, 1}V,
it follows that G(nk,c, s, k) corresponds to the product distribution Ber(c)®™.

3.1. Worst-case reduction to k-partite hypergraphs. In the next lemma,
we prove that the worst-case complexity of #(k, s)-CLIQUE and PARITY-(k, s)-CLIQUE
is nearly unaffected when we restrict the inputs to be worst-case k-partite hyper-
graphs. This step is important, because the special structure of k-partite hypergraphs

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-53

will simplify future steps in our reduction.

LEMMA 3.3. Let A be an algorithm for #(k,s)-CLIQUE, such that A has error
probability less than 1/3 for any k-partite hypergraph G on nk wvertices. Then there
exists an algorithm B for #(k,s)-CLIQUE with error probability less than 1/3 on
any hypergraph G satisfying a runtime upper bound T(B,n) < T(A,n) + O(k°n®).
Furthermore, the same result holds for PARITY-(k,s)-CLIQUE in place of #(k,s)-
CLIQUE.

Proof. Let G be an s-uniform hypergraph on n vertices. Construct the s-uniform
hypergraph G’ on the vertex set V(G’') = [n] x [k] with edge set

E(G) = {{(vl,tl), (v9,t2)s .., (vs, 1)} < {1, ..., 05} € B(G) and 13“1<”2<“‘<”53”}.

1<t <to<-<ts<k

The hypergraph G’ can be constructed in O(k*n®) time. Note that G’ is k-partite
with the vertex partition L : (4,7) € [n] x [k] — j € [k]. There is also a bijective
correspondence between k-cliques in G’ and k-cliques in G given by

{vi,v9,...,vp} = {(v1,1),(v2,2), ..., (vk, k) },

where v; < vy < -+ < vg. Thus, the k-partite s-uniform hypergraph G’ on nk vertices
has exactly the same number of k-cliques as G. It suffices to run A on G’ and to return
its output. 0

A corollary to Lemma 3.3 is that any worst-case hardness for #(k, s)-CLIQUE and
PARITY-(k, $)-CLIQUE on general s-uniform hypergraphs immediately transfers to the
k-partite case. For instance, the lower bounds of Conjectures 2.4, 2.5, and 2.7 imply
corresponding lower bounds in the k-partite case. Going forward in our worst-case
to average-case reduction, we may restrict our attention to k-partite hypergraphs
without loss of generality.

3.2. Counting k-cliques as a low-degree polynomial. A key step in our
worst-case to average-case reduction is to express the number of k-cliques as a low-
degree polynomial in the adjacency matrix. As mentioned in the introduction, a
similar step—but without the k-partiteness constraint—appears in the worst-case to
average-case reduction of Goldreich and Rothblum [43].

Let £ C (V(SG)) be the set of possible hyperedges that respect the k-partition:
e, & ={A e (V) |L(A)| = s}. Let N 2 N(n,k,s) = |&], and identify € with
[N] through a bijection 7 : [N] — £. To simplify the notation, we will omit the map
7 in the proof and simply treat [N] and £ as the same set. Thus, each x € {0,1}¥
corresponds to a k-partite hypergraph where x4 is the indicator that A € £ is an edge
in the hypergraph. The number of k-cliques of a k-partite hypergraph = € {0, 1}V is
a degree-D polynomial P, ;. s : {0,1} — Z, where D £ D(k,s) = (’;)

(31) Pn,/as(m) = Z H LTyg-
]

{ul,m,uk}CV(G) SCUC
Vi L(u;)=1 |S|=s

For any finite field IF, this equation defines P, j s as a polynomial over that finite field.
For clarity, we write this polynomial over I as P, j s : FN — F. Observe that for
any hypergraph z € {0,1}"V, we have that

P, sw(x) = Pprs(xz) (mod char(F)),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-54 BOIX-ADSERA, BRENNAN, AND BRESLER

where char(F) is the characteristic of the finite field. We now reduce computing
#(k, s)-cLIQUE and PARITY-(k, s)-CLIQUE on a k-partite hypergraph = € {0,1}" to
computing P, i s 7(z) for appropriate finite fields F. This is formalized in the following
two propositions.

PROPOSITION 3.4. Let x € {0,1}" denote an s-uniform hypergraph that is k-
partite with vertex labelling L. Let p1,pa, ... ,p; bet distinct primes, such that [[, p; €
(n¥,n2%). First, solving #(k, s)-CLIQUE reduces to computing P ks, (x) for alli €
[t], plus O((klogn)?) additive computational overhead. Second, computing Pr ks F,, (T)
for all i € [t] reduces to computing #(k, s)-CLIQUE, plus O(tklogn) computational
overhead.

Proof. For any i € [t], it holds that P,k sw, (¥) = Pyi,s(z) (mod p;), which
proves the second item of the proposition. The first item follows since P, j s(x) < nk,
because there are at most n* cliques in the hypergraph. Thus, P, s(x) can be
reconstructed from P,k s(z) (mod p;) for all i € [t] in time O((klogn)?) by the
computational version of the Chinese remainder theorem (Theorem 4.6 of [72]). O

PROPOSITION 3.5. Let F be a finite field of characteristic 2. Let v € {0,1}V
be an s-uniform hypergraph that is k-partite with vertex labelling L. Then solving
PARITY-(k, s)-CLIQUE for x is equivalent to computing P, s ().

Proof. This is immediate from P, j s 5(2) = Pk s(x) (mod char(F)). 0

3.3. Random self-reducibility: Reducing to random inputs in FV. Ex-
pressing the number and parity of cliques as low-degree polynomials allows us to per-
form a key step in the reduction: because polynomials over finite fields are random
self-reducible, we can reduce computing P, 1 s on worst-case inputs to computing
P, k.5, on several uniformly random inputs in FV.

The following well-known lemma states the random self-reducibility of low-degree
polynomials. The lemma first appeared in [41]. We follow the proof of [8] in order to
present the lemma with explicit guarantees on the running time of the reduction.

LEMMA 3.6 (Theorem 4 of [41]). Let F be a finite field with |F| = ¢ elements.
Let N >0 and 1 < D < q/12. Let f : FN — F be a polynomial of degree at most D.
If there is an algorithm A running in time T(A, N) such that

PzNUnif[]FN][A(:E) = f(x)] > 2/37

then there is an algorithm B running in time O((N + D?)Dlog® g+ T(A, N)- D) such
that for any x € FV, it holds that P[B(z) = f(z)] > 2/3.

For completeness, we provide a proof of this lemma in Appendix B. Lemma 3.6
implies that if we can efficiently compute P, i s 7 on at least a 2/3 fraction of randomly
chosen inputs in FV, then we can efficiently compute the polynomial P, s s over a
worst-case input in FV.

3.4. Reduction to evaluating the polynomial on G(nk,c, s, k). So far, we
have reduced worst-case clique counting over unweighted hypergraphs to the average-
case problem of computing P, s sr over k-partite hypergraphs with random edge
weights in F. It remains to reduce from computing P, ;s on inputs ~ Unif [FN]
to random hypergraphs, which correspond to @ ~ Unif [{0,1}"]. Since {0,1}" is an
exponentially small subset of FV if [F| > 2, the random weighted and unweighted
hypergraph problems are very different. In this section, we carry out this reduction

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-55

using two different arguments for PARITY-(k, s)-CLIQUE and #/(k, s)-CLIQUE. The lat-
ter reduction is based on the total variation convergence of random binary expansions
modulo p to Unif[F,| and related algorithmic corollaries from section 4.

We first present the reduction that will be applied in the case of PARITY-(k, s)-
CLIQUE. Recall D = (’;) is the degree of P, s. The following lemma will be used
only for the PARITY-(k, s)-CLIQUE case.

LEMMA 3.7. Let p be prime, and let t > 1. Suppose A is an algorithm that
computes Py ks ¥, (y) with error probability less than ¢ 2 §(n) for y ~ Unif [FI])V} mn
time T(A,n). Then there exists an algorithm B that computes PrksF (x) with error
probability less than tP - § for x ~ Unif[]F}Jj\i] in time T(B,n) = O(Nt*(logp)® + " -
T(A,n)).

Proof. We give a reduction computing Pk (z) where z ~ Unif [Fix] given

blackbox access to A. Let 8 be such that £, ,BP,BPQ, e ,,Bptfl € F,¢ forms a normal
basis for ¢ over F,,. Now, for each ¢ € [N], compute the basis expansion

1

v =a"B+ VB4 al T

One is able to locate a generator for a normal basis 3 € F,¢ in time O((t? +
log p)(tlogp)?) by Bach, Driscoll, and Shallit [7]. Computing 2(?),..., 2= then
takes time O(Nt3(logp)?), because N applications of Gaussian elimination each take
at most O(t?) operations over F,.5 Note that since z is uniformly distributed and
B,PP, ... ,Bpt_l form a basis, it follows that z(®,zM ... 2¢=Y are ii.d. according
to Unif [Fi)v]

Given a coloring of the hyperedges b : [N] — {0,1,...,t — 1}, define (%) € IFZ])V as
xgb) = xz(-b(i)) for all © € [N]. Observe that for any fixed coloring b, the vector z®) is
uniform in IF}],V .

In our proof, for every map a : ([i]) —{0,1,...,¢t — 1}, we construct a coloring
aolL : [N] = {0,...,t — 1} of the hyperedges [N] using the k-partiteness of the
hypergraph. Given a hyperedge W = {wy,...,ws} € &€ = [N], we have that L(W) €
(Uj) by the k-partiteness of the hypergraph, and hence the color (aoL)(W) £ a(L(W))
is well-defined. As above, for any fixed a, the vector z(?°L) is uniform in Fé,v .

We now manipulate Pn,k,s,]}«‘pt. First we write each entry z,4 in the normal basis,
and then we redistribute terms to write Pn,k,S’Fpt as a weighted sum of clique counts
modulo p:

Pn,k,s,]pr, (x) = Z H Lug

{1, ur}CV(G) gg (1)
Vi L(uj)=j ’

t—1 ‘)

DV |
{1,k }CV(G) e (1M) \i=0
Vi L(uj)=j s

> > I (se)

a:(F] 4 Uty up fCV (G [k]
(") —1o0,...,t—13 \ { u; L(’i):i() se()

SFor a good survey on normal bases, we recommend [39)].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-56 BOIX-ADSERA, BRENNAN, AND BRESLER

- Z H ﬁp“(s) Z H xELaS(S))

a:(*N={o,....t—13 \ se(!) {ulx%'f(’fu}fri(c;)se([:])

_ Z H ﬂpa(S) Pn7k7s7]Fp (I(GOL)))

a:(#)5{0,...,.—1} \ s€(™)

s

Since z(®°L) ~ Unif [IF]]DV] for each fixed map a, computing Pn,k,S’Fpt (x) reduces to
evaluating P, 1 s r, on tP uniformly random inputs in IF}],V and outputting a weighted
sum of the evaluations. The error probability is bounded by a union bound. O

We now give the reduction to evaluating P, s on random hypergraphs drawn
from G(nk,c,s, k) in the case of #(k,s)-CLIQUE. One of the main lemmas driving
the reduction is the following.

LEMMA 3.8. There exists an absolute constant K > 0 such that the following
holds. Let p > 2 be prime, let € > 0, let ¢ € (0,1), and let t > K -c (1 —
c)"llog(p/e)logp. Then there exists an O(ptlog(1/e)log(p))-time algorithm that,

given x € F,, samples a random variable Z, = (23(00)7...,2?_1)) e {0,1}" sat-
isfying Z:;é 2. 70 = 4 (mod p) almost surely. Moreover, if x ~ Unif[F,], then
drv(L(Zy), Ber(c)®t) < e.

The proof of Lemma 3.8 is deferred to section 4. It is a central ingredient in the
#(k, s)-CLIQUE reduction and will be used through the following lemma.

LEMMA 3.9. Let p be prime, and let ¢ = ¢(n),y = v(n) € (0,1). Suppose that
A is an algorithm that computes Py 1 s, (y) with error probability less than ¢ =
§(n) when y € {0,1}" is drawn from G(nk,c,s, k). Then, for some t = O(c™ (1 —
¢)"'log(Np/v)logp), there is an algorithm B that evaluates Py s, (x) with error
probability at most y+tP - § when x ~ Unif [IF]JDV] in time upper bounded by T(B,n) =
O (Nptlog(Np/v)log(p) + tP - T(A,n)).

Proof. We give a reduction computing P, ks r,(x) where z ~ Unif [Fé,v } given
blackbox access to A. We first handle the case in which p > 2. For each j € [N],
apply the algorithm from Lemma 3.8 to sample Zj = (ZJ(-O)7 Z;l), cey Z;t_l)) € {0,1}¢
satisfying

t—1
ZZi . Z~j(2) =z; (modp) and drv (E(Zj),Ber(c)®t) <e=/N.
=0

By Lemma 3.8, we may choose t = O(c™!(1—c¢)~!log(Np/~)logp), and this sampling
can be carried out in O(Npt log(Np/~)log(p)) time. Now expand P, ks, (z) in terms

of Z, similarly to the calculations in Lemma 3.7. We are working in F,,, so the following
equalities hold modulo p:

Pn,k,s,]Fp (I) = Z H Lug

{u1,...,ur }yCV(G) Se(“"])
Vj L(uj)=j ?

t—1) o

- Y I (zzz-z;g)
{u1,..., Uk}CV(G)Se([’;]) i=0
vy L(uj)=j

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-57

-z > I (e ze)
a:(™M)={0,....e—1} \ {1, 5 g(ku}jvl(c’) se()
= > [T > > II z&
a:(M)={0,...t—1} \ se(™) “w;ﬂ’;t}l)cvz(c;)se(9
= Z H QG(S) Pn,k,s,]Fp(Z(GOL))v
a:(")—{0,...,t—1} \ se(t¥])
where, as in the proof of Lemma 3.7, given any coloring b : [N] — {0,...,t — 1}, we

define Z® € {0,1}N by 2" = Z{"U) for all j € [N]. Computing P, s, (z) thus
reduces to computing a weighted sum over the t” evaluations of Py ks F, (Z (“"L)) for

all maps a : (Uj) — {0,...,t —1}. Our algorithm uses the blackbox A to compute
each term and outputs the weighted sum. In other words, our algorithm returns

Z H 2a(S) A(Z(aoL)))

a:([g])a{o,n.,t*l} Se([k])

Let E be the event that the calls to the blackbox are all correct; i.e., A(Z(*°1)) =
Popsw,(Z2°0) foralla : (*)) — {0,...,t — 1}. If E holds, then our algorithm
correctly computes P, s r, (). It suffices to prove that

P[E]>1—~+t-6

For the analysis, note that for each j € [N], the random vector (ZJ(O), ce Z;t_l)) may
be coupled with (Zj(-o)7 e Z](-tfl)) ~ Ber(c)®!, such that

P2 = 2 Wi, j] > 1.

Moreover, since ZJ@ is independent of Zl(k)

whenever j # [, in the coupling we may
choose Z such that ZJ@ is independent of Z, *) whenever j # 1. Thus, for any fixed

coloring b : [N] = {0,...,¢t — 1}, the entries Z(b) ...,ZJ(\Z,J) are independent and dis-
tributed as Ber(c). In other words, Z®) ~ G(nk ¢, s, k). We use these facts to lower
bound the probability of E as follows:

P[E] > P[E and Z" = 2" Vi, j]

P[A(Z*D)) = Py o5, (29°1)) Ya, and Z\" = Z\V vi, j)

P[A(Z(*h)) = Pn7k75,Fp(Z(a°L) Va, and ZJ(- D= jl) i, 5]

L= =Pz =2z Vi) - > PAZYP) # Pujsr, (2990
a:(*)—o,...,t—1}

IV

>1—~y—tP.4,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-58 BOIX-ADSERA, BRENNAN, AND BRESLER
where the second-to-last line is a union bound, and the last line uses that Z(@°L) ~
G(nk,c,s, k) for any fixed a, and applies the error guarantee of A. This proves
correctness of the algorithm for the case p > 2.

If p = 2, then the proof is almost identical, except that since 2 = 0 (mod 2), we
may no longer use the result on random binary expansions of Lemma 3.8. In this

case, for each j € [N] we sample Z; = (Zj(-o), ce Zj(t_l)) € {0,1}" such that

t

|
—

~J(i) =z; (modp) and dpv(L(Z;),Ber(c)®) <e2/N.

I
=)

By Lemma 4.4 (deferred but analogous to Lemma 3.8), we may choose t = O(c™1(1 —

¢)"llog(N/7)), and we may sample in time O(Ntlog(N/v)). By a similar, and sim-
pler, calculation to the one for the case p > 2, we have that

Pn,k:,s,]Fg (LC) = Z Pn,k,s,IFg (Z(GOL))~
a:([:])ﬁ{o,...,tfl}

Our algorithm returns

> Az,

a:(*1)={o,...,t—1}

which is correct with probability at least 1 — v —t” -4 similarly to the p > 2 case. The
proof is again to couple Z with a random variable Z such that]P’[ZJ@ = ZJ@ Vi, j] >
1 — v, and, for each a, Z(®°F) is distributed as G(nk, c, s, k). d

3.5. Reduction to counting k-cliques in G(n,c,s). So far, we have re-
duced PARITY-(k, s)-CLIQUE and #(k, s)-CLIQUE for worst-case input hypergraphs to
average-case inputs drawn from the k-partite Erdés-Rényi distribution G(nk, ¢, s, k).
We now carry out the final step of the reduction, showing that PARITY-(k, s)-CLIQUE
and #(k, s)-CLIQUE on inputs drawn from G(nk, ¢, s, k) reduce to inputs drawn from
the non-k-partite Erdés—Rényi distribution G(n,c,s). Recall that a hypergraph G
drawn from G(nk,c, s, k) has vertex set V(G) = [n] x [k] and vertex partition given
by the labels L : (i,7) € [n] x [k] — j € [k].

LEMMA 3.10. Let § = 6(n) € (0,1) be a nonincreasing function of n, and let
¢ = c(n) € (0,1). Suppose that A is a randomized algorithm for #(k,s)-CLIQUE
such that for any n, A has error probability less than d(n) on hypergraphs drawn from
G(n,c,s) in T(A,n) time. Then there exists an algorithm B solving #/(k, s)-CLIQUE
that has error probability less than 2% - 5(n) on hypergraphs drawn from G(nk,c,s,k)
and that runs in T(B,n) = O (28 - T(A,nk) + k*n® + s?k>28 log® (nk)) time.

Proof. Tt suffices to count the number of k-cliques in G ~ G(nk,c,s, k) given
blackbox access to A. Construct the hypergraph H over the same vertex set V(H) =
[n] x [k] by starting with G and adding every edge e = {v1,va,...,vs} € (["]:[k])
satisfying the condition |{L(v1),...,L(vs)}| < s independently with probability c. In
other words, independently add each edge to G containing two vertices from the same
part of G. It follows that H is distributed according to G(nk,c,s). More generally,
for every S C [k], Hg is distributed according to G(|L™1(S)], ¢, s), where Hg is the
restriction of H to the vertices L=1(S) C V(H) with labels in S. Note that H can be
constructed in O(k°n®) time.

Now observe that for each S # (), it holds that n < |[L71(S)| < nk and the
algorithm A succeeds on each Hg with probability at least 1 — d(n). By a union

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-59

bound, we may compute the number of k-cliques |cli(Hg)| in Hg for all S C [k] with
error probability less than 2% - 6(n). Note that this can be done in O (2¥ - T'(A, nk))
time. From these counts |cli(Hg)|, we now inductively compute

ta 2 |{S € cy(H) : |L(S)] = d}]

for each d € [k]. Note that ¢ty = 0 in the base case d = 0. Given tg,t1,...,tq, the next
count t441 can be expressed by inclusion-exclusion as

tagi= >, {Sedi(H):L(S) =T}
TC[k],|T|=d+1

d
= Z |C1k(HT)|*Z Z [{S € cle(H) : L(S) = U}

TC[k],|T|=d+1 =0 UCT,|U|=i
dr k-
S B ST S ol R [(EEE R RO
TCIk],|T|=d+1 i=0
ki
= 1 — ;.
)DINCHESTES D P
TCk],|T|=d+1 i=0

After O(k2*) operations, this recursion yields the number of k-cliques t;, = [{S €
cly(H) : |L(S)| = k}| = |clp(G)| in the original k-partite hypergraph G. The sizes
of the integers manipulated are always at most 2% (”Sk), so each arithmetic operation
takes O((kslog(nk))?) time. O

Repeating the same proof over Fs yields an analogue of Lemma 3.10 for PARITY-
(k, s)-CLIQUE, as stated below.

LEMMA 3.11. Lemma 3.10 holds when #/(k,s)-CLIQUE is replaced by PARITY-
(k, s)-CLIQUE.

3.6. Proofs of Theorems 2.8 and 2.9. We now combine steps 1-5 formally
in order to prove Theorems 2.8 and 2.9.

Proof of Theorem 2.8. Our goal is to construct an algorithm B solving #(k, s)-
CLIQUE with error probability < 1/3 on any s-uniform hypergraph z. We are given
an algorithm A that solves #(k, s)-CLIQUE with probability of error < 1/YTx on
hypergraphs drawn from G(n,c,s). We will construct the following intermediate
algorithms in our reduction:

e Algorithm Aj that solves #(k, s)-CLIQUE with error probability < 1/3 for
any worst-case k-partite hypergraph.

e Algorithm A;(z,p) that computes P,k s, (z) for any = €]Fé,v and for any
prime p such that 12(’;) < p < 10logn* with worst-case error probability
<1/3.

e Algorithm As(y,p) for primes 12(?) < p < 10logn* computing Poksr,(y)
on inputs y ~ Unif [IF;V] with error probability < 1/3.

o Algorithm A3z(z) that computes P, s(z) on inputs z ~ G(nk,c,s, k) with
error probability < J; the required value of § will be determined later on.

We construct algorithm B from Ag, Ag from Ay, Ay from Az, and Az from A:

1. Reduce to computing #(k, s)-CLIQUE for k-partite hypergraphs. We use Lemma
3.3 to construct B from Ay, such that B runs in time

T(B,n) = T(4o,n) + O((nk)").

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-60 BOIX-ADSERA, BRENNAN, AND BRESLER

2. Reduce to computing Py i s 7, on worst-case inputs. We use Proposition 3.4 to
construct Ag from A; such that Ag runs in time

T(Ag,n) < O(T(A1,n) -logn® + (logn*)?).

The algorithm Ay starts by using a sieve to find the first 7' primes 12(*) < p; <
-++ < pr such that HZT:1 p; > n*. Notice that pr < 10logn*, so this step takes time
O((logn*)?). Then, given a k-partite hypergraph = € {0,1}¥, algorithm Ay computes
P, k.s(x) by first computing Pok,s,F, () for all p; with algorithm A;, boosting the
error of A; by repetition and majority vote. Since T' = O((logn*)/(loglogn*)), we
only need to repeat O(loglogn¥) times per prime; this yields a total slowdown factor
of O(logn*). Finally, P,k s(z), the number of k-cliques in x, is computed from the
values of P, 1 s, (¢) in O((klogn)?) time by the computational Chinese remainder
theorem stated in Proposition 3.4.

3. Reduce to computing Py i s, on random inputs in IE‘ZJDV. We use Lemma 3.6 to
construct A; from A such that A; runs in time

T(A1,n) = O((N + D*)Dlog® p+ D - T(Az,n))
= <n <i>3log2 logn® + (i) -T(Ag,n)).

4. Reduce to computing P, ks on random inputs in {0,1}". We use Lemma 3.9
to construct A, from As such that Ao runs in time

T(Az,n) = O(Npt,log(Np)log(p) + t,(jk) -T(Asz,n))

for some t, = O(c™*(1 — ¢)~ts(logn)(logp)). For this step, we require the error
probability & of algorithm As(z) on inputs z ~ G(nk, ¢, s, k) to be at most 1/(4t2) =
k
1/(4t1(,5)). Recall that we always have p = O(klogn) in this step, and hence ¢, is
upper bounded by a uniform value t = ©(c~!(1 — ¢)~1s(logn)(log k + loglogn)).
5. Reduce to computing #(k,s)-CLIQUE for G(n,c,s) hypergraphs. We use
Lemma 3.10 to construct Az from A such that As runs in time

T(Asz,n) = O((nk)* + s*k*2F log?(nk) + 2% - T(A, nk))

and such that A3 has error probability at most § < 2F /Y.

As in the theorem statement, let Y 4(n,c, s, k) = (C(c™*(1—c)~!)s(logn)(log k +
log log n))(]:), where C' > 0 is a large constant to be determined. If we take C' large
enough, then T4 > (lOt)(f:). In this case, since (’Z) > k > 3 without loss of generality,

the error § of A3 will be at most § < 2¥/T, < 1/(5t)(§) < 1/(4t(§)), which is what

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-61

we needed for the fourth step. It remains to put the runtime bounds together,

T(B,n) =0 ((nk)s + (log n*)? + (log n*) - (m? (’;) llog)’
+ (’;) : (N(k log n)t log(N) log(k log n) + 4¥¢() - (T(A, nk) + (nk)S))>>
- O<n5k3 (’;)3(61(1 — ¢)"D)s(logn)*(log k + loglog n)?
+logn) - Ty (T(A k) + (n8)"))
= O((logn) - (10t)(2) - n* + (logn) - T - (T(A, nk) + (nk)*)),

where we have used that (’;) > 3 without loss of generality. The last term dominates
k

since Ty > (10t)(), and thus
T(B,n) =0O((logn) - Yy - (T(A,nk) + (nk)?)).

This completes the proof. 0

Proof of Theorem 2.9. The proof of item 1 of Theorem 2.9 is analogous to the
proof of Theorem 2.8, except that it does not use the Chinese remainder theorem
(Proposition 3.4). Moreover, special care is needed in order to ensure that the field
F over which we compute the polynomial P, s in the intermediate steps is large
enough that we may use the random self-reducibility of polynomials.

Our goal is to construct an algorithm B that solves PARITY-(k, s)-CLIQUE with
error probability < 1/3 on any s-uniform hypergraph x. We are given an algorithm A
that solves PARITY-(k, s)-CLIQUE with probability of error < 1/Yp; on hypergraphs
drawn from G(n, ¢, s). We will construct the following intermediate algorithms in our
reduction:

e Algorithm Ay that solves PARITY-(k, s)-CLIQUE with error probability < 1/3
for any worst-case k-partite hypergraph.

e Algorithm A;(w) that computes P, ks p,(w) on inputs w ~ Unif[FY.] for
K= f10g2(12(§))-\ with error probability < 1/3.

e Algorithm As(y) that computes P, ks, (y) on inputs y ~ Unif[FY] with
error probability < do; the required value of do will be determined later on.

o Algorithm A3z(z) that computes P, i s 7, (%) on inputs z ~ G(nk,c, s, k) with
error probability < d3; the required value of d3 will be determined later on.

We construct algorithm B from Ay, Ag from A, As from Ag, and A3 from A:

1. Reduce to computing PARITY-(k, $)-CLIQUE for k-partite hypergraphs. We use
Lemma 3.3 to construct B from Ag, such that B runs in time

T(B,n) = T(Ao,n) + O((nk)").
2. Reduce to computing P, ;. s F,. on random inputs in FJ.. Note that by Proposi-

tion 3.5, if we can compute P, 1 s F,. for worst-case inputs, then we can solve PARITY-
(k, s)-CLIQUE. We use Lemma 3.6 to construct Ay from A; such that Ag runs in time

T(Ag,n) = O(k*(N +D*)D + D -T(Ay,n)) = O(ns (i)zﬁ + (i) “T(Aq, n)).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-62 BOIX-ADSERA, BRENNAN, AND BRESLER

3. Reduce to computing P, . s 5, on random inputs in FY. We use Lemma 3.7 to
construct A; from Ay such that A; runs in time
k

T(A1,n) < O(N&* + £(2) . T(4s,n))

and has error probability at most ds - %(%) on random inputs w ~ Unif[F}.]. Thus, A,
must have error probability at most d2 < 1/ (3,%(’;)) on random inputs in y ~ Unif[F}']
for this step of the reduction to work.

4. Reduce to computing P, k. sw, on random inputs in {0, 1}N. We use Lemma

3.9 to construct As from As such that As runs in time
T(Az,n) = O(Ntlog(N/v) + #(2) -T(Asz,n))

for some t = O(c™ (1 — ¢)"!(slog(n) + log(1/7))). The error probability of Ay on
random inputs z ~ G(nk, ¢, s, k) will be at most do < 53~t(§) +7. Since we require error
probability at most dg < 1/(35(,;)) of algorithm Ay (z) on inputs z ~ G(nk,c, s, k), we
set v = 1/(10/€(§)) and require d5 < 1/(10(t/£)(§)), which is sufficient. For this choice
of 7, we have t = O(c™'(1 — ¢)~!(slog(n) + (*) loglog (¥))).

5. Reduce to computing PARITY-(k, s)-CLIQUE for G(n,c, s) hypergraphs. We use
Lemma 3.11 to construct Az from A such that Az runs in time

T(As,n) = O((nk)® + s*k32% log® (nk) + 2% - T(A, nk))

and such that A3 has error probability at most §3 < 2%/ Pl
As in the theorem statement, let

Tpi(n,c s k)2 (C(c_l(l =))s(logh) (s logn + (i) loglog (i)))

for some large enough constant C.

()

k
s

If we take C' large enough, then (Iit)<) < % .9 k. T p,1, as desired. In this case,
the error of Ag on uniformly random inputs will be at most 1/3, which is what we
needed. Putting the runtime bounds together,

15, = 0((n(¥) w004 W ()

o (k>2ﬁ4 n (;‘“) (4st)) (DA, k) + (nk)s))

_0 <n (’;)2(<1og n) -t log? 5+ k%) + Ty - (T(A,nk) + <nk>5>)

if we choose C' > 0 large enough. Since (’;) > k > 3 without loss of generality, the
second term dominates and

T(B,n) = O(Tp, - (T(A,nk) + (nk)*)).

For item 2 of the theorem, we restrict the inputs to come from G(n,1/2,s),
and we achieve a better error tolerance, because algorithm Ajs is the same as A,.
This means that we may skip step 4 of the proof of item 1. In particular, we only
need d3 = dg < 1/(3n(§)). So algorithm A only needs to have error < 1/Ypa, for

A

YTpa(k,s) = (Cslog k:)(k) It is not hard to see that, skipping step 4, the algorithm
B that we construct takes time T'(B,n) = O(Ypa - (T(A,nk) + (nk)®)). d

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-63

4. Random binary expansions modulo p. We fix some notation to be used
throughout this section. Let p be a prime number, let ¢ € (0,1/2], and let go,...,q: €
[c, 1 — ¢] be probabilities. Let Z = (Z(,..., Z®) € {0,1}**! be a vector of indepen-
dent, biased Bernoulli random variables such that Z(*) ~ Ber(g;) for all i € {0,...,t}.
In this section, we consider the distributions of random binary expansions modulo p,
of the form

Z® ot 4 z(=D cgt=1 4 4 720 (mod p).

We show that for ¢ polylogarithmic in p, these distributions become close to uniformly
distributed over FF,,. This is then used to go in the other direction, producing approx-
imately independent Bernoulli variables that are the binary expansion of a number
with a given residue. The special case of this argument in which the Bernoulli variables
are unbiased has already appeared in an earlier work by Goldreich and Rothblum [44].
In that case, the proof of correctness is much simpler, because the Fourier-analytic
tools used below can be avoided.

For p > 2, the main result of the section is the following slightly more general
restatement of Lemma 3.8. It implies that we can efficiently sample biased binary
expansions, conditioned on the expansion being equivalent to some x modulo p.

LEMMA 4.1 (restatement of Lemma 3.8). There ezists an absolute constant
K > 0 such that the following holds. Let p > 2 be prime, let € > 0, and let
t > K-ct(1—c)tlog(p/e)logp. Then there exists an O(ptlog(1/e€)log(p))-time
randomized algorithm that, given = € ¥y, outputs Z, = (ZQ(CO), .. .,Zg(f)) € {0,1}+1
satisfying ZE:O 2.7 =z (mod p) almost surely. Moreover, if R ~ Unif[F,], then
dTv(,C(ZR),C(Z)) < €.

Our argument uses finite Fourier analysis on F,. Given a function f : F, = R,
define its Fourier transform to be f : F, — C, where f(t) = Zg;(l) (z)w'® and
w = €*7/P_ In this section, we endow F, with the total ordering of {0,1,...,p — 1}
as elements of Z. Given a set S, let 25 = {2s : s € S}. We begin with a simple
claim showing that sufficiently long geometric progressions with ratio 2 in F,, contain
a middle residue modulo p.

CrLAamM 4.2. Suppose thatay, ..., ar € F, is a sequence with a; # 0 and a;11 = 2a;
for each 1 <i <k —1. Then, if k > 1+41logy(p/3), there is some j with & < a; < %p.

Proof. Let S={zx € F,:x <p/3} and T = {z € F, : x > 2p/3}. Observe that
2SNT = 0 and SN 2T = (), which implies that there is no ¢ such that a; and a;1
are both in S and T. Therefore, if (a1, as,...,ax) contains elements of both S and
T, there must be some j with a; € (SUT)¢ and the claim follows. It thus suffices to
shows that (a1, as,. .., ay) cannot be entirely contained in one of S or T'. First consider
the case that it is contained in S. Define the sequence (a}, as,...,a},) of integers by
aj,q = 2aj for each 1 <4 <k —1 and let a € [1,p/3) be such that a} = a; (mod p).
It follows that a} = a; (mod p) for each i and a) > 28=! > p/3. Now consider the
smallest j with a’ > p/3. Then p/3 > a}_; = a}/2 by the minimality of j, and
p/3 < aj < 2p/3, which is a contradiction. If the sequence is contained in T, then
(—ay,—as,...,—ay) is contained in S and using the same argument for this sequence
proves the claim. O

We now bound the total variation between the distribution of random binary
expansions modulo p and the uniform distribution. In Appendix C, we show that
Lemma 4.3 is tight assuming there are infinitely many Mersenne primes.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-64 BOIX-ADSERA, BRENNAN, AND BRESLER

LEMMA 4.3. There exists an absolute constant K > 0 such that the following
holds. Let p > 2 be prime, let e > 0, and lett > K -c~*(1—c¢)"log(p/e) log p. Define
the random variable Y = Y_ 2" - Z() € {0,...,2*1 — 1}, and define the random
variable X € F, by X =Y (mod p). Then, letting L(X) denote the law of X, we
have

dry(L(X), Unif[F,]) <e.

Proof. Let f : F, — R be the probability mass function of X. By definition, we
have that

t t
N e N

z€{0,1}t+1 \i=0 i=0
Now observe that f (s) is given by

f<s>=§f<w>w”= 2 (ﬁq?(l—qi)”i) (wr=im02=)
=0

z€{0,1}t+1 \i=0

t
ZH(l—qZ‘-i-qi'wQ['s)-
=0

The last equality follows directly from expanding the product. Note that the con-
stant function 1 has Fourier transform p-1(,_oy. By Cauchy-Schwarz and Parseval’s
theorem, we have that

4 - dpy (LX), Unif[F,])* = |If —p " - 1F <p-lIf =" - 153 = I = Lio=oy I3
t ;2
:ZH‘l_Qi+Qi'w2 el
570 =0

Note that |1 — ¢ + ¢ - w®| < 1 by the triangle inequality for all a € F,, and ¢ € (0, 1).
Furthermore, if a € F), is such that p/3 < a < 2p/3 and ¢ € [¢,1 — ¢], then we have
that

1—q+q-w'® =1 —q)*+¢*+2q¢(1 — q) cos(2ma/p)

=1-2¢(1 —q) (1 —cos(2ma/p))
<1-—2¢(1—¢)(1—cos(4n/3))
=1-3c¢(1-¢)

since cos(x) is maximized at the endpoints on the interval & € [27/3, 47 /3] and ¢(1—q)
is minimized at the endpoints on the interval [¢,1 — ¢]. Now suppose that ¢ is such
that

log(4€*/p)
b= Logu —3c(1—0))

Fix some s € F,, with s # 0. By Claim 4.2, any [1 + log,(p/3)] consecutive terms of
the sequence s,2s,...,2's € F,, contain an element between p/3 and 2p/3. Therefore,

log(4€? /p)
log(1—3c(1—c))

[1+ tomato/3 = © (71— o) towtoo o)

this sequence contains at least m = [W such terms, which implies that

¢ 1')2 462
[1|t -0 +aw®| <-3c1-)" <=
; D
=0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-65

by the inequality above and the fact that each term in this product is at most 1. Since
this holds for each s # 0, it now follows that

t
;2
4-dry (£(X), UniflF,)* < ST ‘1 gt Wt <4
s#01=0

and thus dry (£(X), Unif[F,]) < €, proving the lemma. O

Using the above lemma, we can now prove the main result of this section for
p > 2. The idea is to rejection sample Z = (Z(©, ..., Z®) conditioned on X = z
(mod p).

Proof of Lemma 4.1. Define the random variable ¥ = EZ_O 20 70 € {o,...,

2!71 1}, and define the random variable X € F, by X =Y (mod p), as in Lemma 4.3.
Let K > 0 be large enough that, by Lemma 4.3, we have

dry (£(X), Unif[E,]) < ¢/(2p).

We sample a random variable Y, € {0,..., 2" — 1} by rejection sampling from the
distribution £(Y) until receiving an element congruent to modulo p or reaching the

cutoff of log(e/2)
B Ay N oo(1/e
= gty | = © twesti/o)

rounds, in which case we stop and set Y, to an arbitrary value congruent to z. We

then return Z, = (Z;(EO), ey Zi,”), the binary expansion of Y, from lowest-order bit
to highest-order bit.

By construction, it holds that $¢_, 27 - 720 =V, =2 (mod p) almost surely.
Furthermore, the runtime bound follows because each sample from £(Y) can be ob-
tained in O(t) time by sampling Z(®, Z(M .. Z® and forming the number with
binary digits Z®), 2= .. Z©) Checking whether this number is congruent to z
modulo p takes O(tlog(p)) time by Theorem 3.3 of [72].

It remains to prove that (Z;O), ol Z;t)) is close to (Z(, ..., Z®) in total varia-
tion if x is chosen uniformly in IF,. We begin by considering the case of fixed = € IF,.
Let Y, be a random variable with the conditional law £(Y;) £ L(Y|Y =z (mod p)).
If we receive a sample from L£(Y) congruent to z by the mth round of rejection

sampling, then it is exactly sampled from L£(Y,). Therefore, dry(L(Yy), L(Y)) is
upper bounded by the probability that the rejection sampling scheme fails to output
a sample. Now note that the probability that a sample is output in a single round is

PIX = a] > 1/p — drv (£(X), UniflF,]) > 1/p — ¢/(2p) > 1/(2p)

by the definition of total variation. By the independence of sampling in different
rounds, the probability that no sample is output is at most

(1-PX =)™ <(1-1/(2p))" <¢/2.
So we may conclude that, for any fixed x € F,,
dTV(ﬁ(}}w)a L(Yz)) <€/2.
Now let R ~ Unif[[F,]. By the above inequality, we have

(4.1) doy(L(V), L(YR)) < & 3 drv(L(Ye), L(Ya)) < /2.

z€lF,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-66 BOIX-ADSERA, BRENNAN, AND BRESLER

We now bound the total variation distance between £(Yg) and L(Y). Let X' ~ L(X)
be independent of the other variables, and note that L(Yx/) = L(Y) since, for any
y € {0,...,2!"1 — 1}, Bayes’ rule implies

(
:IP’(YX/—yIX'—y (mod p)) - P(X'=y (mod p))
=PY =y|Y=y (modp)) PY =y (modp))
=P(Y =y).

So by the data processing inequality, since =z — Y, is a Markov transition sending R
to Yg and X’ to Yy,

drv(L(Y), L(YR)) = drv(L(Yx), L(YR))
(4.2) < drv(L(X"), £(R)) = dry (£(X), Unif[F,]) < /2.

Finally, since (Zg), cee ZI(%O)) is the binary expansion of Yz, and (2, ..., Z(©) is the
binary expansion of Y, the data processing inequality implies

(4.3) dpv(L(ZW0, ... ZW), £z, ..., Z0)) < dey(L(YR), LY)).
We bound the right-hand side of (4.3) with the triangle inequality, (4.1), and (4.2):

dov(L(Z0, ..., Z20), £(Zz©, ..., z1))
< drv(L(YR), L(YR)) + drv(L(YR), L(Y)) < ¢/2 +€¢/2 = €.

This completes the proof. 0
We conclude with a sampling result analogous to Lemma 4.1 but for p = 2.

LEMMA 4.4 (sampling lemma for p = 2). There exists a constant K > 0
such that the following holds. Let € > 0 and t > Kc™ (1 — ¢)7tlog(1/€). Then
there exists an O(tlog(1/€))-time randomized algorithm that, given x € Fa, outputs
Z, = (Zg(go), . .,Zg(gt)) € {0,1}1 satisfying Z'E:O 70 =z (mod 2) almost surely.
Moreover, if R ~ Unif[Fy], then drv(L(ZR), L(Z)) < .

Proof. By induction on ¢, one may show that

t t
, 1 (1 —2g;
P E 70 = (mod 2) :§+w.

If ¢ satisfies the lower bound ¢ > [log(e/4)/ log(|1—2¢|)]+1 = O(c1(1—c)~tlog(1/e)),
it holds that drv(L£(Y_y, Z® (mod 2)), £L(R)) < min(1/4,¢/2).

The proof now proceeds analogously to the proof of Lemma 4.1. We sample Z, =
(Zéo), e Zit)) by rejection sampling from £(Z) until receiving a vector whose sum is
congruent to z modulo 2, or cutting off at ©(log(1/¢)) rounds. This takes O(tlog(1/¢))
time, because it consists of at most O(log(1/e)) rounds of sampling fresh copies of
Z ~ Ber(g;) for all i € {0,...,t} and checking whether 3>'_ Z) = z (mod 2). Let
Z, be a random variable with the conditional law £(Z,) £ £(Z | Z = = (mod 2)).
Then the rejection sampling outputs Z, satisfying drv(£(Z,), £(Z.)) < €/2, s0

(44) dT\/(,C(ZR),E(ZR)) S 6/2.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-67

Further, by applying the data processing inequality with Markov kernel z — Z,, with
reasoning analogous to the proof of (4.2), we derive

(4.5) drv(L(Zr), L(Z)) < dov(L(R), £L(Zio 2 (mod 2))) < ¢/2.

Combining (4.4) and (4.5) with the triangle inequality yields dpv(£(Zg),L(Z))
<e. |

5. Algorithms for counting k-cliques in G(n, ¢, s). In this section, we con-
sider several natural algorithms for counting k-cliques in G(n, ¢, s) with ¢ = ©(n~%)
for some a € (0,1). The main objective of this section is to show that, when k
and s are constant, these algorithms all run faster than all known algorithms for
#(k, s)-CLIQUE on worst-case hypergraphs and nearly match the lower bounds from
our reduction for certain k, ¢, and s. This demonstrates that the average-case com-
plexity of #(k, s)-CLIQUE on Erdés—-Rényi hypergraphs is intrinsically different from
its worst-case complexity. As discussed in section 2.2, this also shows the necessity of
a slowdown term comparable to T in our worst-case to average-case reduction for
#(k, s)-CLIQUE. We begin with a randomized sampling-based algorithm for counting
k-cliques in G(n, ¢, s), extending well-known greedy heuristics for finding k-cliques in
random graphs. We then present an improvement to this algorithm in the graph case
and a deterministic alternative.

5.1. GREEDY-RANDOM-SAMPLING. In this section, we consider a natural
greedy algorithm GREEDY-RANDOM-SAMPLING for counting k-cliques in an s-uniform
hypergraph G ~ G(n, ¢, s) with ¢ = ©(n~%). Given a subset of vertices A C [n] of G,
define cNg(A) to be

cNg(A) = {v e V(G)\A: BU{v} € E(G) for all (s — 1)-subsets B C A}

or, in other words, the set of common neighbors of the vertices in A. The algorithm
GREEDY-RANDOM-SAMPLING maintains a set S of k-subsets of [n] and for T iterations
does the following:
1. Sample distinct starting vertices vy, v, ...,vs_1 uniformly at random, and
proceed to sample the remaining vertices vs, vs41, . .., v iteratively such that
Vi4+1 is chosen uniformly at random from CNg(v1,ve, ..., v;) if it is nonempty.
2. If k vertices {vy,va,...,v;} are chosen, then add {vy,ve,..., v} to S if it is
not already in S.
This algorithm is an extension of the classical greedy algorithm for finding log, n sized
cliques in G(n,1/2) in [54, 45], the Metropolis process examined in [51], and the greedy
procedure solving k-CLIQUE on G(n, ¢) with ¢ = © (n=2/(*=1) discussed by Rossman
in [71]. These and other natural polynomial time search algorithms fail to find cliques
of size (1 4 €)logyn in G(n,1/2), even though its clique number is approximately
2log, n with high probability [59, 64]. Our algorithm GREEDY-RANDOM-SAMPLING
extends this greedy algorithm to count k-cliques in G(n,c,s). In our analysis, we
will see a phase transition in the behavior of this algorithm at k£ = 7 for some 7
smaller than the clique number of G(n,c, s). This is analogous to the breakdown of
the natural greedy algorithm at cliques of size logs n on G(n,1/2).

Before analyzing GREEDY-RANDOM-SAMPLING, we state a simple classical lemma
counting the number of k-cliques in G(n,c¢,s). This lemma follows from linearity
of expectation and Markov’s inequality. Its proof is included in Appendix D for
completeness.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-68 BOIX-ADSERA, BRENNAN, AND BRESLER

LEMMA 5.1. For fized a € (0,1) and s, let k > s be the largest positive integer
satisfying (") < s. If G ~ G(n, ¢, s), where c = O(n™%), then E[|cl;(G)|] = (Z)c(i)

Kk+2

and w(G) < k+ 1+t with probability at least 1 — O(n’at(l*sfl)(sfl)) for any fixed
nonnegative integer t, where the constant in the O(-) notation can depend on t.

In particular, this implies that the clique number of G(n, ¢, s) is typically at most
(slafl)ﬁ + 5. In the graph case of s = 2, this simplifies to 2a~! 4 2. In the next
subsection, we give upper bounds on the number of iterations T' causing all k-cliques in
G to end up in S and analyze the runtime of the algorithm. The subsequent subsection
improves the runtime of GREEDY-RANDOM-SAMPLING for graphs when s = 2 through
a matrix multiplication postprocessing step. The last subsection gives an alternative
deterministic algorithm with a similar performance to GREEDY-RANDOM-SAMPLING.

5.2. Sample complexity and runtime of GREEDY-RANDOM-SAMPLING.
In this section, we analyze the runtime of GREEDY-RANDOM-SAMPLING and give up-
per bounds on the number of iterations T needed for the algorithm to terminate
with S = clx(G). The dynamic set S needs to support search and insertion of k-
cliques. Consider labelling the vertices of G with elements of [n] and storing the
elements of S in a balanced binary search tree sorted according to the lexicographic
order on [n]*. Search and insertion can each be carried out in O(log|clx(G)]) =
O(klogn) time. It follows that each iteration of GREEDY-RANDOM-SAMPLING there-
fore takes O(kn + klogn) = O(n) time as long as k = O(1). Outputting |S] in
GREEDY-RANDOM-SAMPLING therefore yields an O(nT) time algorithm for #(k, s)-
CLIQUE on G(n,c¢, s) that succeeds with high probability.

The following theorem provides upper bounds on the minimum number of itera-
tions T needed for this algorithm to terminate with S = cl;(G) and therefore solve
#(k, s)-CLIQUE. Its proof is deferred to Appendix E.

THEOREM 5.2. Let k and s be constants, and let ¢ = O(n~%) for some o € (0,1).
Let T be the largest integer satisfying a(szl) < 1, and suppose that

k
s

T> 2 +1e(1) (3logn)*—N0+) if k> 7 41,
- onke(5) (log n) 1+ ifk<t+1

for some ¢ > 0. Then GREEDY-RANDOM-SAMPLING run with T iterations termi-
nates with S = cl(G) with probability 1 — n=“M) over the random bits of the algo-
rithm GREEDY-RANDOM-SAMPLING and over the choice of random hypergraph G ~
G(n,c,s).

Implementing S as a balanced binary search tree and outputting |S| in GREEDY-
RANDOM-SAMPLING yields the following algorithmic upper bounds for #(k, s)-CLIQUE
with inputs sampled from G(n,c, s).

COROLLARY 5.3. Suppose that k and s are constants, and suppose ¢ = O(n~%)
for some a € (0,1). Let T be the largest integer satisfying a(szl) < 1. Then the
following hold:

1. If k > 7+ 1, there is an O(nTH’O‘(T?l)) time randomized algorithm solving
#(kzls))-CLIQUE on inputs sampled from G(n,c, s) with probability at least 1 —
n~ <\,

2. If k < 741, there is an O~(nk+1_0‘(§>) time randomized algorithm solving
#(k:zls))—CLIQUE on inputs sampled from G(n,c, s) with probability at least 1 —
n~Y\,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-69

By Lemma 5.1, the hypergraph G ~ G(n, ¢, s) has clique number w(G) < k + 2
with probability 1 — 1/poly(n), where x > s is the largest positive integer satisfying
a(sfl) < s. In particular, when k£ > k + 2 in the theorem above, the algorithm
outputting zero succeeds with probability 1 —1/poly(n) and #(k, s)-CLIQUE is trivial.
For there to typically be a nonzero number of k-cliques in G(n, ¢, s), it should hold

-1
that 0 < o < 5(’2:}) . In the graph case of s = 2, this simplifies to the familiar

condition that 0 < o < % We also remark that when k& < 741, the runtime of this
algorithm is an O(n) factor off from the expectation of the quantity being counted,
the number of k-cliques in G ~ G(n, ¢, s).

5.3. Postprocessing with matrix multiplication. In this section, we im-
prove the runtime of GREEDY-RANDOM-SAMPLING as an algorithm for #(k, s)-CLIQUE
in the graph case of s = 2. The improvement comes from the matrix multipli-
cation step of Nesetfil and Poljak from their O (nka/3J+(k (mod 3))) time worst-
case algorithm for #(k,2)-CLIQUE [62]. Our improved runtime for the algorithm
GREEDY-RANDOM-SAMPLING is stated in the following theorem.

THEOREM 5.4. Suppose that k > 2 is a fized positive integer and ¢ = O(n~%),
where 0 < a < % is also fized. Then there exists a randomized algorithm solving
#(k,2)-CLIQUE on inputs sampled from G(n,c) with probability 1 —n~<(1)
in O(nw(k/3]+w—wa((k43])) time.

Proof. Label the vertices of an input graph G ~ G(n, ¢) with the elements of [n].

Consider the following application of GREEDY-RANDOM-SAMPLING with postprocess-
ing:

that runs

1. Run GREEDY-RANDOM-SAMPLING to compute the two sets of cliques S; =
clix/3)(G) and So = cli/31(G) with the number of iterations 7" as given in
Theorem 5.2.

2. Construct the matrix M; € {0, 1}511XI51] with rows and columns indexed by
the elements of Sy such that (M1)ap = 1 for A,B € S; if AU B forms a
clique of G and all labels in A are strictly less than all labels in B.

3. Construct the matrix My € {0, 1}151/%I921 with rows indexed by the elements
of S; and columns indexed by the elements of S3 such that (M2)4 5 =1 for
A € 5y and B € S5 under the same rule that AU B forms a clique of G and
all labels in A are strictly less than all labels in B. Construct the matrix M3
with rows and columns indexed by S5 analogously.

4. Compute the matrix product

M} ifk=0 (mod 3),

Mp = M1M2 ifk=1 (mod 3),

5. Output the sum of entries

Z (Mp)aB

(A,B)eS

where S is the support of M7 if k=0 (mod 3) and S is the support of My if
k£ 0 (mod 3).
We will show that this algorithm solves #(k, 2)-CLIQUE with probability 1 — n~«()
when k£ =1 (mod 3). The cases when k£ = 0,2 (mod 3) follow from a nearly identi-
cal argument. By Theorem 5.2, the first step applying GREEDY-RANDOM-SAMPLING

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-70 BOIX-ADSERA, BRENNAN, AND BRESLER

succeeds with probability 1 —n~“("). Note that (Mp)a p counts the number of | k/3]-
cliques C' in G such that the labels of C are strictly greater than those of A and less
than those of B and such that A U C and C'U B are both cliques. If it further holds
that (M2)4,p =1, then AU B is a clique and AU B U C is also a clique. Therefore,
the sum output by the algorithm exactly counts the number of triples (A, B, C) such
that AU BUC is a clique, |A| = |C| = |k/3], |B| = [k/3], and the labels of C are
greater than those of A and less than those of B. Observe that any clique C € cli(G)
is counted in this sum exactly once by the triple (A4, B,C), where A consists of the
lowest |k/3] labels in C, B consists of the highest [k/3] labels in C, and C contains
the remaining vertices of C. Therefore, this algorithm solves #(k, 2)-CLIQUE as long
as step 1 succeeds.

It suffices to analyze the additional runtime incurred by this postprocessing. Ob-
serve that the number of cliques output by a call to GREEDY-RANDOM-SAMPLING
with 7T iterations is at most 7. Also note that if o < %, then 7 > L%j —1. If
k > 3, then it follows that 7 +1 > |%] > [£]. It follows by Theorem 5.2 that

max{|S1], |52} = O(nfk/?»]ﬂfa(rkgﬂ)), Note that computing the matrix Mp takes
0 (max{|Sy], |S2|}¥) = O(n“”“/?’wawa(““éﬂ)

. . A 2%/3],2&(%/31) . .
of the algorithm run in O(n 2) time, which completes the proof of the
theorem since the matrix multiplication constant satisfies w > 2. 0

) time. Now observe that all other steps

We remark that for simplicity, we have ignored minor improvements in the runtime
that can be achieved by more carefully analyzing step 4 in terms of rectangular matrix
multiplication constants if k¥ # 0 (mod 3). Note that the proof above implicitly used
a weak large deviations bound on |cli(G)|. More precisely, it used the fact that if
GREEDY-RANDOM-SAMPLING with T iterations succeeds, then |cli(G)| < T. Theorem
5.2 thus implies that |clx(G)| is upper bounded by the minimal settings of T in the
theorem statement with probability 1 —n=“(1) over G ~ G(n,c, s).

When k < 741, these upper bounds are a polylog(n) factor from the expectation
of |clg(G)|. While this was sufficient in the proof of Theorem 5.4, stronger upper
bounds will be needed in the next subsection to analyze our deterministic iterative
algorithm. The upper tails of |clx(G)|, and more generally of the counts of small
subhypergraphs in G(n,c,s), have been studied extensively in the literature. We
refer the reader to [75, 50, 49, 25] for a survey of the area and recent results. Given a
hypergraph H, let N(n,m, H) denote the largest number of copies of H that can be
constructed in an s-uniform hypergraph with at most n vertices and m hyperedges.
Define the quantity

Mg (n,c) = max {m < (Z) :N(n,m,H") < nIVEIINEED] g1 all H' C H})

The following large deviations result from [30] generalizes a graph large deviations
bound from [49] to hypergraphs to obtain the following result.

THEOREM 5.5 (Theorem 4.1 from [30]). For every s-uniform hypergraph H and
every fived € > 0, there exists a constant C(e, H) such that for all n > |V (H)| and
c € (0,1), it holds that

P[Xp > (1+ eE[Xy]] < exp (=C(e, H) - Mu(n,c)),

where X is the number of copies of H in G ~ G(n,c,s).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-71

Proposition 4.3 in [30] shows that if H is a d-regular s-uniform hypergraph and
¢ >n~5/% then Mg(n,c) = O(nc?). This implies that

(5.1) P ||clx(G)] > (1 +¢) (Z) c(i)] < exp (—C (e,8,k)-n (kfl))

as long as ¢ > n~s'(F=9)/(k=D! " This provides strong bounds on the upper tails of
el (G)| that will be useful in the next subsection.

5.4. Deterministic iterative algorithm for counting in G(n,c, s). In this
section, we present an alternative deterministic algorithm IT-GEN-CLIQUES achieving
a similar runtime to GREEDY-RANDOM-SAMPLING. Although they have very different
analyses, the algorithm IT-GEN-CLIQUES can be viewed as a deterministic analogue
of GREEDY-RANDOM-SAMPLING. Both are constructing cliques one vertex at a time.
The algorithm IT-GEN-CLIQUES takes in cutoffs Cs_1,Cs, ..., Cy and generates sets
Ss_1,8%,...,S as follows:

1. Initialize Ss_1 to be the set of all (s — 1)-subsets of [n].

2. Given the set S;, for each vertex v € [n], iterate through all subsets A € S;
and add AU {v} to S;+1 if AU {v} is a clique and v is larger than the labels
of all of the vertices in A. Stop if ever |S;+1]| > Ciy1.

3. Stop once Si has been generated, and output Sk.

Suppose that C; are chosen to be any high probability upper bounds on the number
of t-cliques in G ~ G(n,c¢, s) such as the bounds in Theorem 5.5. Then we have the
following guarantees for the algorithm IT-GEN-CLIQUES.

THEOREM 5.6. Suppose that k and s are constants and ¢ = ©(n~%) for some
€ (0,1). Let T and K be the largest integers satisfying (")) <1 and a(,",) <'s,

and let Cy = Qntc(:) for each s <t < k. Then IT-GEN-CLIQUES with the cutoffs C}
outputs Sy, = cly(G) with probability 1 —n=<") where the following hold:

1. The runtime of IT-GEN-CLIQUES i$ O(r+2-o(7])) fr+2<k<rk+1.

2. The runtime of IT-GEN-CLIQUES is O(n —a("2)) if k<7142

Proof. Suppose that k < k + 1. We first show that Sy = cli(G) with probability
1 —n~“M in the algorithm IT-GEN-CLIQUES. By a union bound and (5.1), it follows
that |cl;(G)| < C; for each s < t < k with probability at least 1 — (k — s + 1)n~*()
since k < k + 1. The following simple induction argument shows that S; = cl;(G) for
each s —1 <t < k conditioned on this event. Note that cls_1(G) is by definition the
set of all (s — 1)-subsets of [n], and thus S;_1 = cls_1(G). If S = cl;(G), then each
(t 4+ 1)-clique C of G is added exactly once to Siy1 as AU {v}, where v is the vertex
of C with the largest label and A = C\{v} € cl;(G) are the remaining vertices. Now
note that the runtime of IT-GEN-CLIQUES is

k—1 0 (nr+27a(Tfl)> ifr+2<k<k+1,
Of > nC|=0 (iy (”Ct)) = ha(*21) .
t=s—1 STISIERT O<n s) ifk<t+2

since k = O(1). To see the second inequality, note that log, (Cy11/Cy) = 1—a(, ")) +
O(1/logn). This implies that Ciy; = Q(Cy) if t < 7 and C; = O(C,4q) for all

s <t < k. This completes the proof of the theorem. 0

We remark that in the case of ¥ < 7 4 1, IT-GEN-CLIQUES attains a small
runtime improvement over GREEDY-RANDOM-SAMPLING. However, the algorithm

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-72 BOIX-ADSERA, BRENNAN, AND BRESLER

GREEDY-RANDOM-SAMPLING can be modified to match this runtime up to a polylog(n)
factor by instead generating the (k — 1)-cliques of G and applying the last step of
IT-GEN-CLIQUES to generate the k-cliques of G. We also remark that IT-GEN-CLIQUES
can also be used instead of GREEDY-RANDOM-SAMPLING in step 1 of the algorithm in
Theorem 5.4, yielding a nearly identical runtime of O(n“’ [k/31—wa(5] _1)) for #(k, 2)-
CLIQUE on inputs sampled from G(n, c).

6. Extensions and open problems. In this section, we outline several exten-
sions of our methods and problems left open after our work.

Improved average-case lower bounds. A natural question is whether tight average-
case lower bounds for #(k, s)-CLIQUE can be shown above the k-clique percolation
threshold when s > 3 and whether the constant C' in the exponent of our lower bounds
for the graph case of s = 2 can be improved from 1 to w/9.

Ruaising error tolerance for average-case hardness. A natural question is whether
the error tolerance of the worst-case to average-case reductions in Theorems 2.8 and
2.9 can be increased. We remarked in the introduction that for certain choices of k,
the error tolerance cannot be significantly increased—for example, when k = 3log, n,
the trivial algorithm that outputs 0 on any graph has subpolynomial error on graphs
drawn from G(n,1/2) but is useless for reductions from worst-case graphs. Neverthe-
less, for other regimes of k, such as when k = O(1) is constant, counting k-cliques
with error probability less than 1/4 on graphs drawn from G(n,1/2) appears to be
nontrivial. It is an open problem to prove hardness for such a regime. In general,
one could hope to understand the tight tradeoffs between computation time, error
tolerance, k, ¢, and s for k-clique counting on G(n,c, s).

Hardness of approximating clique counts. Another interesting question is whether
it is hard to approximate the k-clique counts, within some additive error ¢, of hyper-
graphs drawn from G(n, ¢, s). Since the number of k-cliques in G(n, ¢, s) concentrates

around the mean p ~ (Onk with standard deviation o, one would have to choose
€ < o for approximation to be hard.

Inhomogeneous Erdds—Rényi hypergraphs. Consider an inhomogeneous Erdos—
Rényi hypergraph model, where each hyperedge e is independently chosen to be in the
hypergraph with probability c(e). Also suppose that we may bound c¢(e) uniformly
away from 0 and 1 (that is, ¢(e) € [¢,1 — ¢] for all possible hyperedges e and for
some constant ¢). We would like to prove that #(k,s)-CLIQUE and PARITY-(k, s)-
CLIQUE are hard on average for inhomogeneous Erdés—Rényi hypergraphs. Unfortu-
nately, this does not follow directly from our proof techniques because step 5 in the
proof of Theorems 2.8 and 2.9 breaks down due to the inhomogeneity of the model.
Nevertheless, steps 14 still hold, and therefore we can show that #(k,s)-CLIQUE
and PARITY-(k, s)-CLIQUE are average-case hard for k-partite inhomogeneous Erdds—
Rényi hypergraphs—when only the edges e that respect the k-partition are chosen to
be in the hypergraph with inhomogeneous edge-dependent probability c(e) € [¢,1—¢].

Appendix A. Reduction from DECIDE-(k, s)-CLIQUE to PARITY-(k, s)-
CLIQUE. The following is a precise statement and proof of the reduction from
DECIDE-(k, s)-CLIQUE to PARITY-(k, s)-CLIQUE claimed in section 2.1.

LEMMA A.1. Given an algorithm A for PARITY-(k, s)-CLIQUE with error proba-
bility < 1/3 on any s-uniform hypergraph G, there exists an algorithm B that runs in
time O(k2*|A|) and solves DECIDE-(k, 5)-CLIQUE with error < 1/3 on any s-uniform
hypergraph G.

Proof. Let cli(G) denote the set of k-cliques in hypergraph G = (V, E). Consider

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-73

the polynomial

Pg(zy) = Z H:L'v (mod 2)

Secly (G)ves

over the finite field Fo. If G has a k-clique at vertices S C V, then Pg is nonzero,
because Pg(lg) = 1. If G has no k-clique, then Pg is zero. Therefore, deciding
whether G has a k-clique reduces to testing whether or not Py is identically zero. Pg
is of degree at most k, so if Pg is nonzero on at least one input, then it is nonzero
on at least a 27" fraction of inputs. One way to see this is that if we evaluate Pg at
all points a € {0,1}™, the result is a nonzero Reed—Muller codeword in RM (k, m).
Since the distance of the RM (k,m) code is 2™~* and the block-length is 2™, the
claim follows [61]. We therefore evaluate Pg at ¢ - 2* independent random inputs for
some large enough ¢ > 0, accept if any of the evaluations returns 1, and reject if all of
the evaluations return 0. Each evaluation corresponds to calculating PARITY-(k, s)-
CLIQUE on a hypergraph G’ formed from G by removing each vertex independently
with probability 1/2. As usual, we boost the error of A by running the algorithm
O(k) times for each evaluation and using the majority vote. 0

Appendix B. Proof of Lemma 3.6. We restate and prove Lemma 3.6.

LEMMA B.1 (Theorem 4 of [41]). Let F be a finite field with |F| = q elements. Let
N >0and1 <D <q/12. Let f : FN — F be a polynomial of degree at most D. If
there exists an algorithm A running in time T(A, N) such that

Ponuniepni[A(z) = f(2)] > 2/3,

then there exists an algorithm B running in time O((N + D?)Dlog? ¢+ T(A, N) - D)
such that for any x € FN it holds that P[B(x) = f(x)] > 2/3.

Proof. Our proof of the lemma is based off of the proof that appears in [8]. The
only difference is that in [8], the lemma is stated only for finite fields whose size
is a prime. Suppose we wish to calculate f(z) for x € FN. In order to do this,

choose y1, 2 S Unif[FY], and define the polynomial g(t) = x + ty; + t>y2, where
t € F. We use A to evaluate f(g(t)) at m different values ¢y, ...,t,, € F. This takes
O(mN log® g+m-T(A, N)) time. Suppose without loss of generality that D > 9. Since
g(t;) and g(t;) are pairwise independent and uniform in FV for any distinct ¢;,¢; # 0,
by the second-moment method, with probability > 2/3, at most (m — 2D)/2 of our
evaluations of f(g(t)) will be incorrect if we take m = 12D. Thus, since f(g(t)) is a
univariate polynomial of degree at most 2D, we may use Berlekamp—Welch to recover
f(g(0)) = f(z) in O(m?) arithmetic operations over F, each of which takes O(log?)
time. |

Appendix C. Tightness of bounds in section 4. In this appendix, we
briefly discuss the tightness of the bounds on ¢ in Lemma 4.3 and how the case of
¢ = 1/2 differs from ¢ # 1/2. Note that if ¢; = 1/2 for each 4, then Y = Z§=o Z® .
is uniformly distributed on {0,1,...,2!"t — 1}. Tt follows that the random variable
X €T, defined by X =Y (mod p) satisfies

drv (L(X), UniffE,]) = 37 [p~' = PX = a]|, = %—1;) < P
z€F),

if 0 < a <p—1issuch that 27! = a (mod p). Here | - | denotes |z|, = max(x,0).
Therefore, X is within total variation of 1/poly(p) of Unif[F,] if t = Q(logp). However,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-74 BOIX-ADSERA, BRENNAN, AND BRESLER

note that for ¢ constant and ¢ = 1/poly(p), our lemma requires that ¢ = Q(log? p).
This raises the following question: Is the additional factor of log p necessary or an
artifact of our analysis? We answer this question with an example suggesting that
the extra log p factor is in fact necessary and that the case ¢ = 1/2 is special.
Suppose that p is a Mersenne prime with p = 2" — 1 for some prime r, and for
simplicity, take ¢; = 1/3 for each . Observe by the triangle inequality that

FO| =3 (@) =) wr| < [1f =71, =2 dav (£(X), Unif[F,)

z€F,

Now suppose that ¢ = ar — 1 for some positive integer a. As shown in the lemma, we
have

where the second equality is due to the fact that the sequence 2% has period r modulo

p. Now observe that since g + % - cos(z) > e_”Q, we have that

r—1 r—1
5 4 2T . 47 92 A7 227 -1
||(9+9.cos(p.2z>)2exp<—p2E 21>:exp(—p2- 3 >:Q(1),

=0 =0

which implies that a should be Q(r) for f(1) to be polynomially small in p. Thus,
the extra logp factor is necessary in this case and our analysis is tight. Note that
in the special case of ¢ = 1/2, the factors in the expressions for f(s) are of the form
% + % -w?"% which can be arbitrarily close to zero. We remark that the construction,
as stated, relies on there being infinitely many Mersenne primes. However, it seems
to suggest that the extra log p factor is necessary. Furthermore, similar examples can
be produced with p that are not Mersenne, as long as the order of 2 modulo p is

relatively small.

Appendix D. Clique counts in sparse Erdés—Rényi hypergraphs. We
prove the following classical lemma from section 5.1.

LEMMA D.1. For fized o € (0,1) and s, let k > s be the largest positive integer
k
satisfying (") < s. If G ~ G(n, ¢, s), where c = O(n™%), then E[|clx(G)|] = (Z)c(>
and w(G) < Kk + 1+t with probability at least 1 — O(n_at(l_sq)(:ﬁ)) for any fized
nonnegative integer t, where the constant in the O(-) notation can depend on t.

Proof. Let C' > 0 be such that ¢ < Cn™¢ for sufficiently large n. For any given
set {v1,va,...,v;} of k vertices in [n], the probability that all hyperedges are present
k

among {v1,va,...,vr} and thus these vertices form a k-clique in G is (5. Linearity

of expectation implies that the expected number of k-cliques is E[|cl(G)|] = (Z)c(k)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-75

Now consider taking k = k + 2 + ¢t and note that

: -1 2
= o) ey (<22 (5 o)
S K -

l: n+2)

< C(),',Lfozt(lfsfl)(si1 ,

where we use (”:‘_li't) > ('jﬂ) + t(’:t;) by iteratively applying Pascal’s identity, as

well as a(’:ﬂ) > sand k > k+2. Observe that k = O(1) and thus c(®) = O(1). Now,

by Markov’s inequality, it follows that Plw(G) > k] = P[|clx(G)] > 1] < E[|cle(G)]],
completing the proof of the lemma. 0

Appendix E. Analysis of GREEDY-RANDOM-SAMPLING. This section is
devoted to proving Theorem 5.2, which is restated below for convenience.

THEOREM E.1. Let k and s be constants, and let ¢ = ©(n~%) for some o € (0,1).
Let T be the largest integer satisfying a(11) < 1, and suppose that

S

k
s

T> o7 1e(T) (3logn) -1+ if k> 141,
- 2nkel)(1ogn)1+E ifk<t+1

for some ¢ > 0. Then GREEDY-RANDOM-SAMPLING run with T iterations termi-
nates with S = clx(G) with probability 1 — n=“M) over the random bits of the algo-
rithm GREEDY-RANDOM-SAMPLING and over the choice of random hypergraph G ~
G(n,c,s).

Proof. We first consider the case where £k > 7 4+ 1. Fix some € > 0, and let
v = (v1,V2,...,v;) be an ordered tuple of distinct vertices in [n]. Define the random

variable
k—1

Zy=nn—1)---(n—s+2) H |eNGg (v, v2,y ..y 01)]
i=s5—1
The key property of Z, is that, in each iteration of GREEDY-RANDOM-SAMPLING, the
probability that the k vertices v1, v, ..., v are chosen in that order is exactly 1/7,.
The proof of this theorem will proceed by establishing upper bounds on Z, that hold
for all k-cliques v with high probability over the randomness of G, which will yield a
bound on the number of iterations T needed to exhaust all such k-cliques in G.
Consider the following event over the sampling G ~ G(n, ¢, s):

A, = {ZU > ZnTHc(Trl)(S logn)F=1=70%9) and {vy,v,..., 05} € clk(G)}.

We now proceed to bound the probability of A, through simple Chernoff and union
bounds over (G. In the next part of the argument, we condition on the event that

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-76 BOIX-ADSERA, BRENNAN, AND BRESLER

{v1,v2,...,v;} forms a clique in G. For each i € {s —1,s,...,k — 1}, let Y, ; be
the number of common neighbors of v1,va, ..., v; in V(G)\{v1,va,...,vr}. Note that
Yo Bin(n —k, c(sil)) and that |ONg(v1,ve,...,v;)] = k —i+Y,,;. The standard
Chernoff bound for the binomial distribution implies that for all §; > 0,

P [|CNG(U1,v2,...,vi)| >k—i+(1+6)(n— k)c(sil):|

< exp (- % (n- k)cCl)) :

2+ 6;

Now define k; to be '

ki =(n— k)*lcf(sil) - (logn)*te
for eachi € {s—1,s,...,k—1}. Let §; = \/k; if i < 7 and §; = k; if i > 7. Note that
for sufficiently large n, §; < 1if ¢ < 7 and §; > 1 if i > 7. These choices of §; ensure
that the Chernoff upper bounds above are each at most exp (—%(log n)He) for each
7. A union bound implies that with probability at least 1 — kexp (—%(log n)”f), it
holds that

lONG (v1, v, . 03)| <k — i+ (14 8;)(n — k)els2) < (1+ 26;)(n — k)els21)

for all ¢ and sufficiently large n. Here we used the fact that §;(n — k)c(sil) = w(1) for

all ¢ by construction and k¥ = O(1). Observe that (1 + 24;)(n — k‘)c(sil) < 3(logn)tte
for all ¢ > 7 + 1. These inequalities imply that

log Z, < logn®~! + Z log ((1 +28;)(n — k)c(si1)>

i=s5—1

+(k—1—7)(1+¢€)log(3logn)

logn™ ™ + (1 '
<logn™" + (logc) Z (sl)

1=s—1

+ XT: log(1 +26;) + (k — 1 —7)(1 + €) log(3logn)

1=s—1
< log (nr+lc(”§1)) +(k—1—-7)(1+¢€)log(3logn)+ 2 Z i
i=s—1
< log (nTHc(T)) + (k—1—7)(1+¢)log(3logn) + o(1).
The last inequality holds since 7 = O(1) and since §; < (logn)z+2 nataelly) = o(1)

for all ¢ < 7, because of the definition that a(szl) < 1. In summary, we have shown
that for sufficiently large n,

P [ZU > 971" (31og n) (F-1-7(1+9)

{v1,v9,..., 0} € clk(G)]

< kexp <;(10g n)”e) =n @0

for any k-tuple of vertices v = (v1,va,...,v;). Since P[{vy,va,..., v} € clx(G)] =
k

c(’:), we have that P[A4,] < (=) = =« for each k-tuple v. Now consider the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COUNTING CLIQUES IN E-R GRAPHS FOCS19-77

event
B = {Zv < 2nT+lc(7rl)(310g n) k=114 for all v

such that {vy,ve,...,v5} € clk(G)}.

Note that B = Uj,_yuples » Av and a union bound implies that P[B] > 1 -3 P[A4,] >
1 —nF.n=*0 =1 - =« gince there are fewer than n* k-tuples v.

We now show that as long as B holds over the random choice of G, then the
algorithm GREEDY-RANDOM-SAMPLING terminates with S = cli(G) with probabil-
ity 1 — n=“® over the random bits of GREEDY-RANDOM-SAMPLING, which com-
pletes the proof of the lemma in the case k > 7 + 1. In the next part of the
argument, we consider G conditioned on the event B. Fix some ordering v =
(v1,v9,...,v;) of some k-clique C = {v1,v2,...,v;} in G. Recall that in any one
of the T iterations of GREEDY-RANDOM-SAMPLING, the probability that the k ver-
tices vy, va, ..., v are chosen in that order is exactly 1/Z,. Since the T iterations of
GREEDY-RANDOM-SAMPLING are independent, we have that

T
1 T
P [v is never chosen in a round] = (1— —) <exp|——) =n~¢W
Z 7,

v

since T is chosen so that T' > Z,(log n)3(1+6) for all k-tuples v, given the event B.
Since there are at most n* possible v, a union bound implies that every such v is chosen
in a round of GREEDY-RANDOM-SAMPLING with probability at least 1 —n* .n=«(1) =
1 —n~*M over the random bits of the algorithm. In this case, S = cli(G) after the
T rounds of GREEDY-RANDOM-SAMPLING. This completes the proof of the theorem
in the case k > 7 + 1.

We now handle the case k < 7+ 1 through a nearly identical argument. Define &;
as in the previous case, and set §; = \/k; forall i € {s—1,s,...,k—1}. By the same
argument, for each k-tuple v we have with probability 1 — n~“() over the choice of
G that

k-1 _
log Z, < logn®~! + Z log ((1 +26:)(n — k)c(sil))
i=s—1

k—1 . k—1
& i
< logn qL(logc)'Z1 (8_1> +2 Z 0

i=5— i=s5—1
= log (nkc(k)) +o(1),
where again 0; < (logn)%‘*‘%n*?r%a(szl) =o(1) for all i < k—1 < 7. Define the
event
B = {Zv < 2n%¢(®) for all v such that {v1,v2,..., 01} € clk(G)} .

Note that T is such that T > Z,(logn)!T¢ for all v if B’ holds. Now repeating the
rest of the argument from the k& > 7 + 1 case shows that P[B’] > 1 —n~“() and that
GREEDY-RANDOM-SAMPLING terminates with S = cli(G) with probability 1 — n~w®

over its random bits if G is such that B’ holds. This completes the proof of the
theorem. 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-78 BOIX-ADSERA, BRENNAN, AND BRESLER

Acknowledgments. We thank Oded Goldreich and the anonymous reviewers
for helpful feedback that greatly improved the exposition. We also thank Frederic
Koehler, Dheeraj Nagaraj, and Austin Stromme for inspiring discussions on related
topics.

REFERENCES

[1] M. AjTAl, Generating hard instances of lattice problems, in Proceedings of the Twenty-Eighth
Annual ACM Symposium on Theory of Computing, 1996, pp. 99-108.
[2] N. ALoN AND R. B. BoPPANA, The monotone circuit complezity of Boolean functions, Combi-
natorica, 7 (1987), pp. 1-22.
. ALoN, M. KRIVELEVICH, AND B. SUDAKOV, Finding a large hidden clique in a random graph,
Random Structures Algorithms, 13 (1998), pp. 457—-466.
[4] K. AMANO AND A. MARUOKA, A superpolynomial lower bound for a circuit computing the
clique function with at most (1/6)loglogn negation gates, STAM J. Comput., 35 (2005),
pp. 201-216, https://doi.org/10.1137/S0097539701396959.
[5] B. P. AMES AND S. A. Vavasis, Nuclear norm minimization for the planted clique and biclique
problems, Math. Program., 129 (2011), pp. 69-89.
[6] A. ATSERIAS, I. BONACINA, S. F. DE REZENDE, M. LAURIA, J. NORDSTROM, AND A. RAZBOROV,
Clique is hard on average for regular resolution, in Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, 2018, pp. 866-877.
[7] E. BACH, J. DRISCOLL, AND J. SHALLIT, Factor refinement, J. Algorithms, 15 (1993), pp. 199—
222.
[8] M. BALL, A. ROSEN, M. SABIN, AND P. N. VASUDEVAN, Average-case fine-grained hardness,
in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
2017, pp. 483-496.
[9] B. BaraAK, S. B. HoPKINS, J. KELNER, P. KOTHARI, A. MOITRA, AND A. POTECHIN, A nearly
tight sum-of-squares lower bound for the planted clique problem, in Proceedings of the 57th
Annual ITEEE Symposium on Foundations of Computer Science, 2016, pp. 428-437.
[10] Q. BERTHET AND P. R1GOLLET, Complexity Theoretic Lower Bounds for Sparse Principal Com-
ponent Detection, in Proceedings of the 26th Annual Conference on Learning Theory, 2013,
pp. 1046-1066.

[11] A. BoGDANOV AND L. TREVISAN, Average-case complexity, Found. Trends Theor. Comput. Sci.,
2 (2006), pp. 1-106.

[12] A. BoapANOV AND L. TREVISAN, On worst-case to average-case reductions for NP problems,
SIAM J. Comput., 36 (2006), pp. 1119-1159, https://doi.org/10.1137/S0097539705446974.

[13] B. BoLLOBAS AND O. RIORDAN, Clique percolation, Random Structures Algorithms, 35 (2009),
Pp. 294-322.

[14] M. BRENNAN AND G. BRESLER, Optimal average-case reductions to sparse PCA: From weak
assumptions to strong hardness, in Proceedings of the 32nd Annual Conference on Learning
Theory, 2019, pp. 469-470.

[15] M. BRENNAN, G. BRESLER, AND W. HULEIHEL, Reducibility and computational lower bounds
for problems with planted sparse structure, in Proceedings of the 31st Annual Conference
on Learning Theory, 2018, pp. 48-166.
[16] M. BRENNAN, G. BRESLER, AND W. HULEIHEL, Universality of computational lower bounds for
submatriz detection, in Proceedings of the 32nd Annual Conference on Learning Theory,
2019, pp. 417-468.
~Y. CA1, A. PAVAN, AND D. SIVAKUMAR, On the hardness of permanent, in Proceedings of the
16th Annual Symposium on Theoretical Aspects of Computer Science, Springer, Berlin,
1999, pp. 90-99.
[18] C. CALABRO, R. IMPAGLIAZZO, V. KABANETS, AND R. PATURI, The complezity of unique k-SAT:
An isolation lemma for k-CNFs, J. Comput. System Sci., 74 (2008), pp. 386—-393.

[19] J. CHEN, X. HuaNGg, I. A. KANJ, AND G. X14A, Strong computational lower bounds via param-
eterized complezity, J. Comput. System Sci., 72 (2006), pp. 1346-1367.

[20] Y. CHEN, Incoherence-optimal matriz completion, IEEE Trans. Inform. Theory, 61 (2015),
pp. 2909-2923.

[21] Y. CHEN AND J. Xu, Statistical-computational tradeoffs in planted problems and submatriz
localization with a growing number of clusters and submatrices, J. Mach. Learn. Res., 17
(2016), 27.

[22] A. CoJA-OGHLAN AND C. EFTHYMIOU, On independent sets in random graphs, Random Struc-
tures Algorithms, 47 (2015), pp. 436—486.

<«
z

—
i
(-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/S0097539701396959
https://doi.org/10.1137/S0097539705446974

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

34]

(35]

(36]

COUNTING CLIQUES IN E-R GRAPHS FOCS19-79

M. DALIRROOYFARD, A. LINCOLN, AND V. V. WILLIAMS, New techniques for proving fine-

Y

R

I.

Y.

ac o o

o

<

o

o U

O

Q O

w

wn

grained average-case hardness, in Proceedings of the 61st Annual IEEE Symposium on
Foundations of Computer Science, 2020, pp. 774-785.

. DEKEL, O. GUREL-GUREVICH, AND Y. PERES, Finding hidden cliques in linear time with
high probability, Combin. Probab. Comput., 23 (2014), pp. 29-49.

. DEMARCO AND J. KAHN, Tight upper tail bounds for cliques, Random Structures Algorithms,
41 (2012), pp. 469-487.

DERENYI, G. PALLA, AND T. VICSEK, Clique percolation in random networks, Phys. Rev.
Lett., 94 (2005), 160202.

DESHPANDE AND A. MONTANARI, Finding hidden cliques of sizey/N/e in nearly linear time,
Found. Comput. Math., 15 (2015), pp. 1069-1128.

. N. DOROGOVTSEV, A. V. GOLTSEV, AND J. F. MENDES, Critical phenomena in complex

networks, Rev. Mod. Phys., 80 (2008), pp. 1275-1336.

. G. DowNEY AND M. R. FELLOWS, Fized-parameter tractability and completeness 11: On
completeness for W[1], Theoret. Comput. Sci., 141 (1995), pp. 109-131.

. DUDEK, J. POLCYN, AND A. RUCINSKI, Subhypergraph counts in extremal and random hy-
pergraphs and the fractional g-independence, J. Combin. Optim., 19 (2010), pp. 184-199.

. FEIGE, D. GAMARNIK, J. NEEMAN, M. Z. RAcz, AND P. TETALI, Finding cliques using few
probes, Random Structures Algorithms, 56 (2020), pp. 142-153.

. FEIGE AND R. KRAUTHGAMER, Finding and certifying a large hidden clique in a semirandom
graph, Random Structures Algorithms, 16 (2000), pp. 195-208.

. FEIGE AND C. LUND, On the hardness of computing the permanent of random matrices,
in Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing,
1992, pp. 643-654.

. FEIGE AND D. RON, Finding hidden cliques in linear time, in Proceedings of the 21st Inter-
national Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis
of Algorithms (AofA’10), Discrete Math. Theor. Comput. Sci. Proc., 2010, pp. 189-203.

. FEIGENBAUM AND L. FORTNOW, Random-self-reducibility of complete sets, SIAM J. Comput.,

22 (1993), pp. 994-1005, https://doi.org/10.1137/0222061.

. FELDMAN, E. GRIGORESCU, L. REYZIN, S. VEMPALA, AND Y. XIAO, Statistical algorithms
and a lower bound for detecting planted cliques, in Proceedings of the Forty-Fifth Annual
ACM Symposium on Theory of Computing, 2013, pp. 655-664.

. GAMARNIK AND E. C. KiziLDAG, Computing the partition function of the Sherrington-
Kirkpatrick model is hard on average, in Proceedings of the IEEE International Symposium
on Information Theory, 2020, pp. 2837-2842.

. GAMARNIK AND M. SUDAN, Limits of local algorithms over sparse random graphs, in Pro-
ceedings of the 5th ACM Conference on Innovations in Theoretical Computer Science,
2014, pp. 369-376.

. GAO, Normal Bases over Finite Fields, Ph.D. thesis, University of Waterloo, Waterloo, ON,

Canada, 1993.

GEMMELL, R. LipToN, R. RUBINFELD, M. SUDAN, AND A. WIGDERSON, Self-

testing/correcting for polynomials and for approzimate functions, in Proceedings of the

Twenty-Third Annual ACM Symposium on Theory of Computing, 1991, pp. 33-42.

. GEMMELL AND M. SUDAN, Highly resilient correctors for polynomials, Inform. Process. Lett.,
43 (1992), pp. 169-174.

. GOLDREICH, On counting t-cligues mod 2, in Electronic Colloquium on Computational
Complexity (ECCC), 2020, pp. 20-104.

. GOLDREICH AND G. RoTHBLUM, Counting t-cliques: Worst-case to average-case reductions
and direct interactive proof systems, in Proceedings of the 59th Annual IEEE Symposium
on Foundations of Computer Science, 2018, pp. 77-88.

. GOLDREICH AND G. N. ROTHBLUM, Worst-case to average-case reductions for subclasses of
P, in Computational Complexity and Property Testing, Springer, Cham, 2020, pp. 249-295.

. R. GRIMMETT AND C. J. MCDIARMID, On colouring random graphs, Math. Proc. Cambridge
Philos. Soc., 77 (1975), pp. 313-324.

. E. HAJEK, Y. Wu, AND J. XU, Computational Lower Bounds for Community Detection on
Random Graphs, in Proceedings of the 28th Annual Conference on Learning Theory, 2015,
pp. 899-928.

. HIRAHARA AND N. SHIMIZU, Nearly optimal average-case complexity of counting bicliques

under SETH, in Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), SIAM, Philadelphia, 2021, pp. 23462365, https://doi.org/10.1137/1.
9781611976465.140.

. ITA1 AND M. RODEH, Finding a minimum circuit in a graph, SIAM J. Comput., 7 (1978),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/0222061
https://doi.org/10.1137/1.9781611976465.140
https://doi.org/10.1137/1.9781611976465.140

Downloaded 02/01/22 to 18.9.61.111 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FOCS19-80 BOIX-ADSERA, BRENNAN, AND BRESLER

[49]
/50]
51]
/52]
53]
/54]
/55]

[56]

S.

S.

o H

o o »

pp. 413-423, https://doi.org/10.1137/0207033.

JANSON, K. OLESZKIEWICZ, AND A. RUCINSKI, Upper tails for subgraph counts in random
graphs, Israel J. Math., 142 (2004), pp. 61-92.

JANSON AND A. RUCINSKI, The infamous upper tail, Random Structures Algorithms, 20
(2002), pp. 317-342.

I. JERRUM, Large cliques elude the Metropolis process, Random Structures Algorithms, 3

(1992), pp. 347-359.

. JUELS AND M. PEINADO, Hiding cliques for cryptographic security, Des. Codes Cryptogr.,

20 (2000), pp. 269-280.

. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer Compu-

tations, Plenum, New York, 1972, pp. 85-103.

. M. KARP, Probabilistic analysis of some combinatorial search problems, in Algorithms and

Complexity: New Directions and Recent Results, Academic Press, New York, 1976.

. KOIRAN AND A. ZouziAs, Hidden cliques and the certification of the restricted isometry

property, IEEE Trans. Inform. Theory, 60 (2014), pp. 4999-5006.

. KUCERA, Ezpected complexity of graph partitioning problems, Discrete Appl. Math., 57

(1995), pp. 193-212.

. J. LipTON, New directions in testing, in Distributed Computing and Cryptography, DIMACS

Ser. Discrete Math. Theoret. Comput. Sci. 2, AMS, Providence, RI, 1991, pp. 191-202.

. MA AND Y. Wu, Computational barriers in minimazx submatriz detection, Ann. Statist., 43

(2015), pp. 1089-1116.

. McDi1ARMID, Colouring random graphs, Ann. Oper. Res., 1 (1984), pp. 183-200.
. MCSHERRY, Spectral partitioning of random graphs, in Proceedings of the 42nd Annual IEEE

Symposium on Foundations of Computer Science, 2001, pp. 529-537.

. E. MULLER, Application of Boolean algebra to switching circuit design and to error detection,

Trans. IRE Prof. Group Electron. Comput., 3 (1954), pp. 6-12.

. NESETRIL AND S. POLJAK, On the complexity of the subgraph problem, Comment. Math.

Univ. Carolin., 26 (1985), pp. 415-419.

. PaLLA, I. DERENYI, AND T. VICSEK, The critical point of k-clique percolation in the Erdés—

Rényi graph, J. Stat. Phys., 128 (2007), pp. 219-227.

. PITTEL, On the probable behaviour of some algorithms for finding the stability number of a

graph, Math. Proc. Cambridge Philos. Soc., 92 (1982), pp. 511-526.

. RAHMAN AND B. VIRAG, Local algorithms for independent sets are half-optimal, Ann.

Probab., 45 (2017), pp. 1543-1577.

. A. RAzBOROV, Lower bounds for the monotone complexity of some Boolean functions, Soviet

Math. Dokl., 31 (1985), pp. 354-357.

. REGEV, On lattices, learning with errors, random linear codes, and cryptography, J. ACM,

56 (2009), 34.

. REGEV, The learning with errors problem, in Proceedings of the 25th Annual IEEE Confer-

ence on Computational Complexity, 2010, pp. 191-204.

. RossMAN, On the constant-depth complexity of k-clique, in Proceedings of the Fortieth

Annual ACM Symposium on Theory of Computing, 2008, pp. 721-730.

. RossMAN, The monotone complexity of k-clique on random graphs, in Proceedings of the

51st Annual IEEE Symposium on Foundations of Computer Science, 2010, pp. 193-201.

. ROsSMAN, Lower bounds for subgraph isomorphism, in Proceedings of the International

Congress of Mathematicians, World Scientific, Hackensack, NJ, 2018, pp. 3425-3446.

. SHoupr, A Computational Introduction to Number Theory and Algebra, Cambridge Univer-

sity Press, Cambridge, UK, 2009.

. SUDAN, Decoding of Reed Solomon codes beyond the error-correction bound, J. Complexity,

13 (1997), pp. 180-193.

. G. VALIANT, The complexity of enumeration and reliability problems, SIAM J. Comput., 8

(1979), pp. 410-421, https://doi.org/10.1137/0208032.

. H. Vu, A large deviation result on the number of small subgraphs of a random graph,

Combin. Probab. Comput., 10 (2001), pp. 79-94.

. YUSTER, Finding and counting cliques and independent sets in r-uniform hypergraphs,

Inform. Process. Lett., 99 (2006), pp. 130-134.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/0207033
https://doi.org/10.1137/0208032

	Introduction
	Overview of main results
	Overview of reduction techniques
	Related work on worst-case to average-case reductions
	Notation and preliminaries

	Problem formulations and average-case lower bounds
	Clique problems and worst-case fine-grained conjectures
	Average-case lower bounds for counting k-cliques in G(n, c, s)

	Worst-case to average-case reduction for G(n, c, s)
	Worst-case reduction to k-partite hypergraphs
	Counting k-cliques as a low-degree polynomial
	Random self-reducibility: Reducing to random inputs in FN
	Reduction to evaluating the polynomial on G(nk,c,s,k)
	Reduction to counting k-cliques in G(n,c,s)
	Proofs of Theorems 2.8 and 2.9

	Random binary expansions modulo p
	Algorithms for counting k-cliques in G(n, c, s)
	GREEDY-RANDOM-SAMPLING
	Sample complexity and runtime of GREEDY-RANDOM-SAMPLING
	Postprocessing with matrix multiplication
	Deterministic iterative algorithm for counting in G(n, c, s)

	Extensions and open problems
	Appendix A. Reduction from DECIDE-(k,s)-CLIQUE to PARITY-(k,s)-CLIQUE
	Appendix B. Proof of Lemma 3.6
	Appendix C. Tightness of bounds in section 4
	Appendix D. Clique counts in sparse Erdős–Rényi hypergraphs
	Appendix E. Analysis of GREEDY-RANDOM-SAMPLING
	Acknowledgments
	References

