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Abstract—Increase in the number of antennas in the front-end
increases the volume of data to be processed at the back-end. This
establishes a need for acceleration in back-end processing. To
solve the issue of high volume data processing at back-end, a GPU
is utilized. Acceleration for Least Squares channel estimation and
demodulation of uplink OFDM symbols is provided by using
a combination of CPU and GPU at the back-end. Single user
uplink scenario is implemented in near real-time manner using
the USRP platform present in the Large scale antenna systems
in ORBIT Testbed. The number of antennas and FFT length
are varied to provide different scenarios for comparison. The
performance of both CPU and GPU is compared for each process.

Index Terms—OFDM, Massive MIMO, Large scale antenna
systems, GPU, Software Defined Radio, acceleration

I. INTRODUCTION

For next-gen wireless systems, Massive MIMO (Multiple
Input Multiple Output) systems play an important part in
providing diversity and spatial multiplexing for increasing
the overall throughput of a wireless system. Massive MIMO
systems are used in mmWave communication for providing
diversity and increasing the transmit and receive gain of
the systems, and can provide spatial multiplexing which can
satisfy the high throughput requirements in multi-user systems
like LTE and Wi-Fi.

Large Scale Antenna systems, which are used for Massive
MIMO implementation, are being included in various stan-
dards in next-gen systems, and so flexibility is very important
at the front-end for both testing and application of standards,
in terms of front-end radio features as well as back-end
processing applications for precoding and decoding of data.
Software Defined Radios (SDRs) provide flexibility in terms
of front-end radio features such as carrier frequency, sampling
rate, front-end gain, etc. The flexibility at front-end combined
with software based back-end processing can be very useful
in applying existing as well as new algorithms for uplink and
downlink processing with ease and very less use of additional
hardware resources.

Fig. 1 shows the maximum throughput, both theoretical and
practical values, from front-end SDRs to back-end servers
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Fig. 1: The front-end to back-end throughput with respect
to variations in the number of antennas and bandwidth per
antenna

based on the bandwidth and the number of antennas. This
is taken from simultaneous data reception with variation in
the number of antennas and bandwidth of the Massive MIMO
mini-rack present in ORBIT Testbed in WINLAB. Detailed
explanation of each part of the front-end system will be in
Section II. It is seen that there is a linear increase in throughput
with respect to both, increase in the number of antennas and
increase in bandwidth, as seen in Fig. 1. Data is sent to back-
end servers via a 10 Gigabit ethernet link. The 10 Gigabit
link entails a maximum limit to the number of antennas and
the bandwidth that can be used for wireless transmission and
reception.

Considering the increase in data volume as shown in Fig.
1, fast and efficient performance of back-end processing
systems is needed. Using hardware based solutions such as
FPGA and ASIC seems as an attractive idea. But hardware
based implementation does not provide enough flexibility for
application of different algorithms since the hardware archi-
tecture will be tailored for specific algorithms and standards
to provide the necessary computing gain. Also hardware based978-1-5386-9223-3/19/$31.00 ©2019 IEEE



Fig. 2: ORBIT Testbed in WINLAB, Rutgers University

implementation with flexibility can be expensive as compared
to its software counterpart. Flexibility being very important for
both application and testing of varying algorithms at the back-
end, this paper uses software based solutions for application
of the algorithms.

But, implementation of algorithms using software needs
speed and efficiency, especially considering the high data vol-
ume. A GPU can be used for acceleration of demodulation for
real-time processing of received signals GPU can be used to
provide the required parallelization which effectively increases
speed of computation. Some examples of acceleration for
back-end processing of communication systems are shown in
[1], [2]. To show the acceleration in received signal processing,
this paper considers the uplink scenario, where a single user
sends OFDM data to a multi-antenna base station. We compare
the performance of single core implementation using Intel
Xeon CPU [3] with a Nvidia Tesla K40m GPU [4] for channel
estimation and demodulation of OFDM symbols. Performance
is compared on a symbol level so that the execution time of
each algorithm used can be recorded which in turn shows the
effect of each algorithm on the overall execution time.

The outline of the paper is as follows. Section II gives
details of systems being used with the details and timeline
for implementation. Section III shows the results of the exper-
iments and explains the output. Finally, Section IV concludes
the paper and gives some remarks about the future directions
to be taken.

II. IMPLEMENTATION DETAILS

A. Components used for implementation

For implementing the demodulation of OFDM symbols, we
use ORBIT Testbed present in WINLAB, Rutgers University.
The hardware and software components used are as follows,

1) ORBIT Testbed: ORBIT is the largest academic indoor
wireless testbed. It consists of a 20x20 grid of computing
nodes with more that 100 SDRs connected to the nodes [5],
[6]. All the nodes are connected to a central console from
which control functions can be performed on every node. The
testbed also has small sandboxes for smaller experiments and
testing codes before conducting actual large-scale experiments.

Fig. 3: Massive MIMO mini-racks. 4 such racks on each corner
of the ORBIT Testbed. Each rack consists of 8 USRP X310s
and 32 antennas

The testbed can be remotely accessed from any part of the
globe with an Internet connection. Access to the central
console of the testbed is provided from which each node can
be controlled and accessed.

2) USRP B210 and X310 Software Defined Radio (SDR):
The SDRs in the grid are various types of USRPs (Universal
Software Radio Peripherals) such as N210s, B210s and X310s
[7]–[9]. USRPs consist of 2 radio front-ends, to which 4
antennas are connected, 2 per front-end giving Full Duplex
communication capabilities. Each front-end is controlled by
a common motherboard consisting of an FPGA with blocks
for accessing the front-end radios and for up-conversion and
down-conversion from and to baseband respectively. Various
RF parameters can be set for each front-end from the node
via the motherboard.

3) Massive MIMO Racks: On the corners of the testbed,
there are 4 Massive MIMO mini-racks, as shown in Fig. 3.
Each rack has 32 antennas connected to 8 USRP X310s. These
X310s are connected to a switch, which connects the USRPs to
back-end servers via a 10 Gigabit Ethernet connection. Also,
the USRPs are connected to all the nodes in the grid via a 1
Gigabit Ethernet connection. Since there are 4 such mini-racks,
there are a total of 128 antennas which can provide co-located
as well as semi-distributed sub-6 GHz Massive MIMO.

4) OctoClock: The nodes on the corners of the testbed are
synchronized in both time and frequency using an OctoClock
[10]. The OctoClock converts synchronizing signals received
from GPS satellite to PPS (Pulse Per Second) signal for
time synchronization, and 10 MHz clock signal for frequency
synchronization. These nodes in the corner of the testbed can
be synchronized externally in both time and frequency and
can be used to perform collective experiments over multiple
nodes.

5) Intel Xeon CPU E5-2630 v3: This CPU has 8 physical
cores and 16 logical cores (threads). It has a processor base



Fig. 4: Implementation outline

frequency of 2.4 GHz, 64 GB of memory with maximum
memory bandwidth of 59 GBps, and 20 MB of cache for fast
memory access. Detailed specifications are given in [3].

6) Nvidia Tesla K40 GPU: This GPU has 2880 processor
cores with a memory clock of 3 GHz, 12 GB of device global
memory, and a constant memory of 64 kB. Kepler architecture
based GK110 chip is used in the GPU. This chip has a CUDA
compute capability of 3.5 which adds features such as dynamic
parallelism and Hyper-Q. More specifications are given in [4],
[11].

7) CUDA: CUDA is a platform created by Nvidia and used
for acceleration of processes using parallel computing. CUDA
based drivers are used to run applications on Nvidia GPUs.
CUDA functions and APIs (Application Programming Inter-
faces) can be used to parallelize and speed-up the processes by
tailoring the implementation to the Nvidia GPU architectures.

B. Implementation specifications and outline

Fig. 4 shows the timeline of the implementation. For im-
plementing the uplink scenario and OFDM demodulation, we
use a wireless node in the ORBIT Testbed for transmission of
OFDM symbols. The OFDM frames are generated in Matlab.
The OFDM frames generated consist of a maximum length PN
sequence for packet detection. The first OFDM symbol after
the PN sequence is the channel estimation symbol. All OFDM
symbols after the channel estimation symbol are the QAM
modulated data symbols. This OFDM frame is transmitted
using the wireless node in the ORBIT grid. The frame is
received on all the antennas of the MIMO rack in the testbed.
The grid node and the all the USRPs in the MIMO rack
are synchronized using OctoClock for time and frequency
synchronization.

The received signal is down-converted to baseband and then
transferred to the back-end servers via 10 Gigabit ethernet
link. At the back-end servers, the received baseband signal
is correlated with the same maximum length PN sequence to

Fig. 5: GPU architecture [11]

find the beginning of the OFDM packet sequence. Using this
correlation, the offset to the first OFDM frame is calculated.
From there each OFDM frame is saved to a shared memory
on a symbol-to-symbol basis for further processing by CPU
and GPU applications.

• Shared Virtual Memory: Shared Virtual Memory is
a virtual memory space that can be created by a user
level application and accessed by multiple applications
via shared memory IDs. In an architecture with multiple
applications, a master application can create and free the
shared memory with read-write access, while the slave
applications only have read-write access to the shared
memory. The shared memory has indexes to large arrays
used to store the OFDM frames. Shared memory helps
facilitate real-time computation by allowing multiple ap-
plications simultaneous access to the OFDM frames.

The back-end applications then reads the OFDM symbol
from the shared memory in the same manner it is written into
the shared memory. The first OFDM symbol read from the
shared memory is used for block based Least Squares channel
estimation [12]. After channel estimation, each OFDM symbol
is used for demodulation. The demodulation is performed in
a symbol-to-symbol basis so that the performance can be
averaged over multiple symbols. Before channel estimation
or demodulation, the cyclic prefix for each OFDM symbol
is removed and FFT is computed. Computation is performed
for the symbol of each received antenna. All demodulated
symbols are then aggregated and stored in a file for further
offline processing and visualization.

C. GPU implementation details

For implementation, the GPU architecture show in Fig. 5 is
taken into consideration. The GPU processors are divided in
a grid. Each thread has a Local Memory, each block consists
of a Shared Memory which all threads within the block can
access and all blocks have an access of Global Memory [11].

Consider a multi-antenna system with N number of an-
tennas receiving OFDM symbols with M sub-carriers. For
channel estimation and demodulation, processes such as read-
ing of OFDM symbols, dropping of Cyclic Prefix and FFT
are common. For FFT, the batch based FFT functions are
used to accelerate the processing and FFTs for symbols of
all antennas are computed in parallel. For channel estimation,



Fig. 6: Example of Array Reduction technique used for
parallelizing summation [13]

Parameter Value
Number of transmitting antennas 1

Number of receiving antennas 1 to 16
Carrier Frequency 5.4 GHz

Bandwidth per antenna 10 MHz
Modulation OFDM

Channel Estimation Least Squares
Sub-carriers 64, 1024

Cyclic Prefix length 16, 72 resp.
Number of modulated 100000 approx.

samples
PN Sequence length 255

TABLE I: Parameters for the experiments

Least Squares algorithm, which is division of each received
sub-carrier of the first received OFDM symbol of each re-
ceived antenna with the Pilot symbols [12]. M threads, each
consisting a single sub-carrier value in their local memory and
N blocks, each for one receiving antenna, consisting of M
threads are used for parallelization of Least Squares algorithm.

For combining the received OFDM symbols of all antennas,
Maximal Ratio Combining (MRC) [14] is used. M blocks are
used in parallel in a single grid each consisting of N threads.
Each block has data of a single sub-carrier of the OFDM
symbols of all received antennas stored in shared memory.
Then, using parallel reduction, the summation of all values of
data stored in shared memory is performed [13]. An examples
of parallel array reduction for summation is shown in Fig. 6.
Parallelizing summation reduces the computational complexity
to O(logN) as compared to sequential summation for which
the complexity is O(N).

Processes such as Cyclic Prefix dropping and fftshift are
implemented in CPU as these require data transfer within
memory for which the processing time is less in CPU.

III. EXPERIMENTS AND RESULTS

The outline mentioned in Section II is used to compare the
performance of the CPU and GPU for OFDM demodulation.
For comparison of performance, number of antennas and FFT
size are varied. As shown in Table I, the FFT lengths of
OFDM symbols used are 64 and 1024. For each of the two
FFT lengths, the antennas are varies from 1 to 16. 5 GHz
frequency band is used with 10 MHz bandwidth. While Fig.
1 shows that the maximum limit of network is reached at 20

Fig. 7: Execution time for channel estimation and demodu-
lation w.r.t. number of antennas for OFDM symbols with 64
sub-carriers

Fig. 8: Execution time for channel estimation and demodula-
tion w.r.t. number of antennas for OFDM symbols with 1024
sub-carriers

MHz, data volume for bandwidth greater than 10 MHz cannot
be handled by the server systems. The number of symbols
in the OFDM frame vary according to the FFT length and
the number of QAM samples to be modulated in an OFDM
frame. The execution time for each function be performed is
recorded. Acceleration is then calculated using the CPU and
GPU times for each function. The demodulation time of each
OFDM symbol is averaged and compared.

Figs. 7 and 8 show the the execution times for CPU and
GPU for Least Squares channel estimation and demodulation
of OFDM symbols with 64 and 1024 sub-carriers respectively.
The execution time consists of symbol read, dropping of
Cyclic Prefix, FFT, and Least Squares for channel estimation
or MRC for demodulation. The increase in execution time



Fig. 9: Average acceleration for Least Squares channel estima-
tion and demodulation w.r.t. number of antennas. Graphs are
for 1024 length FFT and 64 length FFT based OFDM symbols

for CPU is drastic whereas for GPU is minimal due to sub-
carrier and antenna level parallelization. When the number
of antennas is low, the CPU execution time is less than
GPU. Increase in execution time for GPU is due to data
transfer latency between CPU and GPU. Since the acceleration
provided due to parallelization is not enough to offset the data
transfer latency, the time consumption when using GPU is
much higher than that of CPU.

Fig. 9 shows the acceleration obtained after using a GPU.
Due to the acceleration provided by FFT computation and
computation of Least Squares for OFDM, for 1024 sub-carrier
based OFDM symbols, average speed-up of channel estimation
is much better than for 64 sub-carrier based OFDM symbols.
This dependence on the FFT length creates a limit on the
usability of the back-end server systems. Acceleration on a
symbol-to-symbol basis can be provided only for very large
scale antenna systems where the functions for which the high
number of GPU cores can be utilized simultaneously.

IV. CONCLUSION AND FUTURE WORK

To solve the issue of increasing volumes of data to be
processed due to increase in the number of antennas, we used
GPU as a processing alternative at the back-end to CPU and
FPGA. The trend of increase in acceleration with increase in
number of antennas shows promise for utilization of GPU for
applications like Massive MIMO.

But the increase in speed being dependent on characteris-
tics such as FFT length and number of antennas limits the
advantages that GPU based processing can offer. So, we will
be considering parallelization on a larger scale, such as that
of an OFDM frame, instead of an OFDM symbol.

At this point the bandwidth per antenna is kept constant
while the number of antennas are increased. So, if the band-
width and number of antennas are increased simultaneously,
the volume of incoming data cannot be served by a single link

or a single server. So, utilization of distributed algorithms and
distributed server systems needs to be considered.

The source code can be found at https://github.com/
bhargav0410/gpu-accel-ofdm-ls-mrc.git
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