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Abstract

In this paper, we present two novel algorithms for information space topological planning that identify topological features
in an information field and use them to plan maximally informative paths for a robot in an information gathering task. These
features provide a way to rapidly incorporate global context into the informative path planning process by partitioning the
state space or the path space of a robot. Our first algorithm, hierarchical hotspot information gathering, uses a topological state
space partitioning by constructing a high-level map of information hotspots. We then solve a global scheduling problem over
the topological graph, the solution of which is then used for path planning by a set of local greedy coverage planners within
each hotspot. Our second algorithm, Topology-Aware Self Organizing Maps, extends the Self Organizing Map algorithm to
discover prominent topological features in the information function. These features are used to perform a topological path
space decomposition to provide a Stochastic Gradient Ascent optimization algorithm with topologically diverse initialization,
improving its performance. In simulated trials and field experiments, we compare the tradeoffs of these two approaches and
show that our methods that leverage topological features of the information field consistently perform competitively or better

than methods that do not exploit these features, while requiring less computation time.

Keywords Informative path planning - Topological path planning - Field robotics - Environmental monitoring

1 Introduction

In field robotics applications, we often wish to deploy robots
as mobile sensor platforms to move through the environment
and collect useful observations in monitoring and inspec-
tion applications across marine, aerial, and ground-based
domains. Planning the path that allows a robot to collect the
most useful observations is known as the Informative Path
Planning Problem (IPPP). One of the main challenges of the
IPPP is that the amount of information collected along a path
is dependent on the whole route of the path, not just the final
state of the robot. Consequently, there is a link between the
distribution of information throughout the environment and
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the distribution of high-quality trajectories through the space
of all possible trajectories. Existing approaches to solving
the IPPP do not take full advantage of the information avail-
able to the robot provided by this distribution. In this paper,
we introduce the concept of Information Space Topologi-
cal Planning (ISTP), an approach to solving the IPPP that
uses topology to describe the structure of the distribution of
information in an environment. Topological planning meth-
ods enable a robot to simultaneously reason over groups of
trajectories that move through the environment relative to
a set of topological features. In ISTP, features are drawn
from the information space of the robot. By constructing a
topological representation using these features, a robot can
reason directly about the global structure of the distribution
of information throughout its environment. Furthermore, by
planning over the different topological trajectory classes, the
robot is able to reduce its decision space considerably. We
hypothesize that by employing ISTP, autonomous systems
will be able to plan non-myopic information gathering paths
more efficiently and effectively.

Existing work in topological path planning uses well-
defined features created by obstacles in the environment to
differentiate between different types of trajectories. Such
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techniques have been successfully used to build topolog-
ical representations of domestic environments (Topp and
Christensen 2006), for planning paths for tethered robots
(Bhattacharya et al. 2010), and for identifying meaningfully
different types of trajectories in a robot’s workspace (Poko-
rny et al. 2016). However, when we consider the IPPP, the
features that separate dissimilar trajectories are not just phys-
ical obstacles in the environment. They also include features
of the information space (i.e. the information reward func-
tion mapped across the region of interest). In order to exploit
these informational topological features, new methods are
required. The key insight of ISTP is that if we can create a
model that captures the distribution of information, we can
exploit it to quickly identify the trajectories that are likely
to be high-quality. While the processes that drive the dis-
tribution of information may be too complex or random to
model, their result, the distribution of information throughout
an environment, is not. Since this distribution is non-uniform,
it contains features, namely peaks and voids in the informa-
tion function, which can be identified and used as topological
features for planning purposes. Furthermore, in many infor-
mative path planning contexts, such as marine data collection
and aerial surveillance, the environment is devoid of any
meaningful physical obstacles that partition a robot’s trajec-
tory space. For the remainder of this paper we will use marine
data collection as an motivating problem. However the con-
cepts introduced and the methods proposed can be applied
to any IPPP instance where decision making happens in a
predominantly continuous space, as opposed to being con-
fined to a discrete set of decision points (e.g. an underground,
indoor, or urban environment).

As a first step in exploring ISTP, we propose and com-
pare two informative path planning algorithms that leverage
different topological planning paradigms to build models of
the information function and then exploit those models to
solve the IPPP. The first of our proposed methods, Hier-
archical Hotspot Information Gathering (HHIG), identifies
information hotspots that are used to construct a topologi-
cal graph of the information function, that can then be used
in a hierarchical informative path planner. While the graph
based approach enables efficient planning at the global level,
it introduces additional constraints to the plans, since the
edges between hotspots are fixed. We address this limitation
in our second contribution, Topology-Aware Self-Organizing
Map (TA-SOM). Our TA-SOM algorithm first uses an adap-
tation of the Self Organizing Map algorithm to identify
prominent topological features in the environment. Then,
we use these features to provide topologically diverse initial
trajectories to a Stochastic Gradient Ascent trajectory opti-
mizer. Our HHIG algorithm and TA-SOM algorithm both
enable robots to plan informative paths more effectively than
existing information gathering methods. The HHIG algo-
rithm offers faster computation than TA-SOM, but TA-SOM
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does not have the same constraints on the full set of tra-
jectories that it can consider, and as a result plans more
effective paths. Previous versions of these methods have
appeared in the following conference papers (McCammon
and Hollinger 2018; McCammon et al. 2020). In this paper,
we compare the approaches HHIG and TA-SOM take to
ISTP. We incorporate improvements to the TA-SOM algo-
rithm in the form of a new information-weighted distance
function for the SOM training, and demonstrate how the
topologically distinct alternatives TA-SOM produces can be
leveraged for multirobot planning. We also present additional
experimentation and comparisons to state-of-the art informa-
tion gathering algorithms and validation of our algorithms in
real-world field trials.

The remainder of this paper is structured as follows.
Section 2 provides an overview of related work in both topo-
logical path planning and autonomous information gathering.
In Sect. 3, we provide our problem formulation and state
key assumptions made by our proposed methods. Section 4
describes our first method, Hierarchical Hotspot Informa-
tion Gathering (HHIG). Section 5 then outlines our second
method, Topology-Aware Self Organizing Maps (TA-SOM).
In Sect. 6, we demonstrate the utility of the two proposed
approaches as well as compare their tradeoffs in simulated
and real-world field trials with state of the art information
gathering algorithms. Finally, in Sect. 7, we offer some
closing remarks, and discuss potential avenues for future
research.

2 Related work

ISTP leverages existing ideas about how robots can use
the topological structure of their environment to plan effi-
ciently, and applies those ideas to the problem of autonomous
information gathering. Topological planning techniques used
in robotic path planning can be broadly divided into two
categories. The first of these categories contains methods
that produce a topological representation of an environment,
which is then used in a hierarchical path planning algorithm.
The second encompasses methods that differentiate the topo-
logical classes of trajectories based on a set of features in the
environment. However, despite the advantages that topolog-
ical methods offer for robot path planning, these methods
have not yet been exploited for robot information gathering.

2.1 Planning with topological representations

Metric environment representations, such as cost fields or
occupancy grids, are commonly used in robotics planning
applications. These methods are location based, meaning that
they provide a label or a value at every location in an environ-
ment. In contrast, topological representations discard specific
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location information, instead only representing the connec-
tivity of salient regions in an environment (Thrun 1998). As
a result, planning on topological maps is significantly more
efficient, since the number of decision points is lower.

Topological mapping techniques have been used to derive
abstract representations of environments from metric maps.
An extensive body of work in this area focuses on segment-
ing indoor environments into regions that correspond with
rooms and hallways (Bormann et al. 2016). A variety of
approaches have been proposed for this task, including graph
clustering and segmentation (Brunskill et al. 2007; Zivkovic
et al. 2006) as well as Voronoi based segmentation (Fried-
man et al. 2007; Thrun 1998). In the graph based methods,
topologically distinct regions are identified by finding cliques
and other clusters of nodes that collectively have low degree,
meaning that they are not ‘strongly’ connected with other
portions of the graph. These clusters, therefore are likely to
represent topologically distinct regions. The Voronoi based
topological segmentation algorithms leverage Voronoi parti-
tioning (Aurenhammer 1991), to segment an area by creating
a set of regions based on a set of seed points. These seed
points, in turn, are created by performing an inflation of
walls and other obstacles, and selecting branching and end
points in the resultant structure. In our proposed methods, we
extend these approaches with alternative means of defining
seed points and branching to allow these techniques to be
applied to general information fields.

Once these high level environmental representations exist,
there are a wide range of ways that the knowledge encoded
within them can be used by robots for path planning. A natural
extension of a topological map is the semantic map. By aug-
menting the topological regions with semantic information,
robots are able to build a human-like understanding of their
environments (Kostavelis et al. 2016). This facilitates inter-
actions with humans (Topp and Christensen 2006), since the
semantic-topological mental representation closely echoes
the mental models that humans build of their surroundings
(McNamara 1986). Topological structure also provides a way
for experts to encode sparse prior information that a robot
can utilize in order to complete its tasks. This background
information has been shown to speed up robotic coverage
planning in domestic environments (Of3wald et al. 2016). In
instances where there is no human expert to provide back-
ground knowledge, a robot can also leverage past experience
to learn the topological structure of environments, and use
that knowledge to predict the topological structure of as-
of-yet unseen portions of a building (Luperto and Amigoni
2019).

One key issue with these approaches to building topo-
logical representations of environments is that they rely on
the existence of a well-defined set of features that can be
used to define the topology of the space. In indoor and
urban environments, obstacles such as walls and buildings

provide this definition. In less-structured field robotics envi-
ronments, it is more difficult to determine what features
separate topologically distinct regions. Examples of such
regions include fronts in salinity and temperature caused
by coastal upwelling (Huyer 1983) as well as Lagrangian
coherent structures (Michini et al. 2014). Both fronts and
Lagrangian coherent structures define regions in the ocean
characterized by distinct dynamics. They are separated by
high gradients in temperature, salinity, or ocean currents.
One approach to creating a topological representation of
these and similar environments is to use a global metric to
identify coherent regions within the space that share key fea-
tures. Typically this is done using a hand-tuned threshold
to isolate areas of interest with isobars in R? and isosur-
faces in R and higher dimensional spaces (Ji et al. 2003;
Lukasczyk et al. 2015). However, thresholding approaches
require hand-tuning the threshold parameter that, in turn,
requires a significant amount of domain knowledge in order
to select the correct value. We address this limitation by
developing methods that do not rely on explicit thresholds.
Instead we use characteristics of the environment in com-
bination with principles such as persistence (Pokorny et al.
2016), to automatically identify meaningful features.

2.2 Planning with topological trajectory classes

In contrast with the previously discussed methods that
directly model the connectivity of the environment, topo-
logical trajectory classes can be used to indirectly capture
the connectivity of a space. They do this by describing the
way that trajectories move through the environment relative
to features, such as obstacles. Consequently, topological tra-
jectory classes partition the robot’s path space rather than
partitioning its state space, like the methods described previ-
ously in Sect. 2.1.

Early work in this area focused on planning paths for
cabled and tethered robots using homotopy classes. A homo-
topy class describes a set of trajectories that all start and
end at the same pair of points, while allowing for a continu-
ous, unobstructed deformation between any two trajectories
within the class (Basener 20006). In their work, Bhattacharya
et al. developed the H-signature, a homotopy invariant that
uniquely describes a trajectory’s homotopy class (Bhat-
tacharya et al. 2012). They used this to construct a homotopy
augmented graph, a topological structure that enabled a robot
to plan a path to a point while constraining the robot’s path to
belong to a pre-specified homotopy class. While homotopy
classes do provide global information about a trajectory, the
information that they contain is not specific to any particular
trajectory, since there are an infinite number of trajectories
in any given homotopy class.

Existing methods which compute homotopy invariants
and homotopy augmented graphs require an explicit map of
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the obstacles and their shapes in order to select the represen-
tative points for each obstacle. Generally, this information is
provided by an occupancy map of the environment. Addi-
tionally, like many search based algorithms, these methods
perform an exhaustive search of the workspace to propa-
gate the homotopy invariant to all sections of the graph.
Consequently, the computational complexity of enumerat-
ing all homotopy classes in an environment scales not only
with the size of the environment and the length of the paths
being considered, but also with the number of obstacles in the
environment (McCammon and Hollinger 2017). As a result,
explicit enumeration of all homotopy classes is challenging
in complex environments.

When the location of obstacles is uncertain, homotopy
invariants can still be computed by applying thresholding to
the uncertainty field at multiple levels, and comparing the
existence of homotopy classes across multiple thresholds
(Bhattacharya et al. 2015). However this adds an addi-
tional layer of computation, since a homotopy augmented
graph must be constructed for each threshold level. A more
efficient approach to discovering topological features in con-
tinuous fields is to use sampling based approaches that
leverage simplicial complexes and persistent homology to
identify prominent topological features (Edelsbrunner et al.
2000, 2006). In robotics applications filtrations of simplicial
complexes have been used to identify topologically dis-
tinct trajectories (Pokorny et al. (2016)). While simplicial
homology methods can efficiently determine whether two
trajectories are topologically distinct, they do not enumer-
ate all possible homology classes, limiting their use for path
planning. To more efficiently identify the topological classes
created by features of continuous information fields, we need
to combine the elements of both types of methods. By first
using persistent homology to identify prominent features,
then using those features to construct a single homotopy
augmented graph, we can still benefit from the abilities of
the simplicial homology methods to discover features in the
environment, while maintaining the ability to define all sets
of homotopy classes.

2.3 Autonomous information gathering

The Informative Path Planning Problem (IPPP) is a widely
researched problem in robotics. It is particularly challenging,
since the size of the space of possible paths scales expo-
nentially with mission duration and, in all but the simplest
environments, the reward function over this space of paths is
nonconvex, containing many local maxima. These facts make
it difficult to find the globally optimal information gathering
path, and the IPPP is well-known as being classified as NP-
Hard (Hollinger and Sukhatme 2014).

Many algorithms have been proposed to solve the IPPP.
Algorithms such as Greedy, Recursive Greedy (Singh et al.
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2007), and Branch and Bound (Binney and Sukhatme 2012)
approach the information gathering problem as a problem
of sequential decision making. In this paradigm, each action
by the robot is evaluated independently. This process means
that at each iteration of the algorithm considers adding a new
action to the robot’s path, but it must evaluate the effects of
this action as it relates to all previous actions. This neces-
sitates the re-evaluation of the entire path reward each time
a new action is considered, making the sequential path con-
struction approach inefficient in evaluating paths in a global
context. Sampling based methods, such as Rapidly explor-
ing Information Gathering (RIG) (Hollinger and Sukhatme
2014), partially address this by sampling from the global
information field; however they too resultin each action being
added to the information tree needing to be evaluated indi-
vidually.

An alternative approach for information gathering is to
use trajectory optimization techniques to refine an preexist-
ing or naive trajectory. In Charrow et al. (2015), the authors
formulate the information gathering problem as a Sequential
Quadratic Programming problem. Doing so requires them to
treat each sensor measurement as independent. To allow for
path dependent rewards, the authors in Popovic et al. (2017)
utilize an evolutionary algorithm to optimize the path of the
robot. However, evolutionary algorithms are computationally
expensive and do not scale well as the problem size increases.

From general trajectory optimization, a number of algo-
rithms such as STOMP (Kalakrishnan et al. 2011), and
EESTO (Jones and Hollinger 2017) have been developed for
problems where analytical gradients are difficult to calculate.
These methods rely on sampling to estimate a gradient for the
desired function. Closest to our work is Jones et al. (2018),
which uses Stochastic Gradient Ascent (SGA) to plan infor-
mative paths for a team of vehicles. However, the authors
only consider a single path initialization and rely on the sam-
pling to be large enough that the paths do not get stuck in
local maxima.

In our work we aim to improve on these existing meth-
ods that solve the IPPP problem by directly incorporating
global information about the topological structure of the
robot’s information space. Our two algorithms, HHIG and
TA-SOM, fall within the topological planning paradigms dis-
cussed in Sects. 2.1 and 2.2, respectively. In our experiments,
we will compare their effectiveness of these approaches, both
in terms of their performance on solving the IPPP, and on
their ability to reduce the computation necessary to produce
effective solutions.

3 Problem formulation and assumptions

In this paper, we consider a typical formulation for the Infor-
mative Path Planning Problem (Singh et al. 2007). We are
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interested in finding an optimal path for a robot, which sat-
isfies the following equation:

P* = argmax{I(P)} s.t. C(P) < B, )]
Peo

where P is a path defined as a series of waypoints in R2.
The optimal path, P*, is the path from the space of all possi-
ble paths @ that maximizes the information function 7 (P),
subject to a budget constraint: that the cost of a path C(P)
must not exceed the robot’s overall mission budget B. Many
different cost functions, such as energy consumed, distance
travelled, or time elapsed, may be used to evaluate the cost of
aparticular path. In this paper we assume that the robot travels
at a constant velocity and that it possesses sufficient actua-
tion that the cost of overcoming environmental disturbances
is negligible. As a result, the energy, distance, and time costs
are interchangeable. However, it is worth noting that our
proposed method is agnostic to the particulars of the cost
function used, and it is a straightforward extension to con-
sider alternatives. In this paper, we define ¥ (-) : R? — [0, 1]
as the information reward function that maps each location
in the environment to the value of observing that location.
The robot’s information reward function, I (P), is the total
amount of information in ¥ within the robot’s sensor radius
as it travels along P.

The two approaches which we propose in this paper both
take ISTP approaches to solve this problem. In general, ISTP
algorithms are defined as algorithms which exploit the topo-
logical structure of the information space to plan informative
paths. The key features of an ISTP algorithm are (1) a method
to identify features from the information space of a robot, (2)
a method to construct a high level topological representation
using these features, and (3) a method for planning using the
topological representation of the information space.

We assume that the distribution of information in the
environment is both known and static. These assumptions
are a consequence of limitations of topological planning
techniques. Topological planning techniques utilize features
within the environment to separate @ into a much smaller set
of trajectory classes. Since our proposed planners are both
one-shot planners (i.e. they do not incorporate replanning),
they must be aware of the existence of the features in the
world in order to account for them in planning. While there
has been some work on topological path planning in partially
known or uncertain environments, the topological features
used by the planners either exist entirely in the known por-
tion of the world (Kim et al. 2013), or a predictive model is
used to make assumptions about the existence of features in
unknown portions of the environment (Saroya et al. 2020).
In both cases, replanning is used to account for the discov-
ery of previously unknown features. Our methods could also
be used in a replanning framework, however this will be

left for future research. Since our methods focus on under-
standing the topology of the information space of a robot,
for the moment we will assume that the robot’s environ-
ment lacks significant obstacles that divide @. For many field
robotics applications, such as aerial and marine operations,
this assumption is true. We leave it as future work to explore
the relationship between the topologies induced by the phys-
ical environment and ISTP.

4 Hierarchical hotspot information
gathering

The first ISTP algorithm we will present is Hierarchi-
cal Hotspot Information Gathering (HHIG). Similar to the
methods for constructing topological graphical environment
representations (Thrun 1998) from indoor environments,
HHIG builds a topological representation of the informa-
tion space by partitioning it into a graph of high-information
hotspots.

The HHIG planner be broken down into three component
steps:

1. Identify hotspots in the environment and construct a com-
pact topological representation of these hotspots and their
connectivity as a graph.

2. Plan amaximally informative path through these hotspots,
deciding which hotspots are worth visiting, scheduling an
amount of time to spend at each of them, and deciding
which edges to use to travel between the chosen hotspots.

3. Transform this high-level plan over the graph into one that
can be executed on a vehicle by creating sub-plans within
each hotspot.

4.1 Topological graph construction

The first step in our approach is to reduce the space of
possible paths by clustering sets of high-value locations into
larger hotspot regions in a way that preserves their underlying
topological connectivity. Using the robot’s estimate of the
normalized information in the environment, ¥ (-), we will
construct a graph G = {V, £} that captures the underlying
topology of W (-).

Eachv; € V = {v1, v2, ..., v,} is a region in space con-
taining one or more points of interest, which we define as
local maxima of ¥ (-). In monitoring tasks, a relative increase
in the occurrence of a phenomena (e.g. the presence phyto-
plankton in the marine domain or pollutant concentration
in the aerial domain), can provide valuable data about the
causes of larger trends in post hoc analysis of the data by
human experts. It is worth noting that just because a location
is identified as a point of interest, does not mean that it will
ultimately be visited by the robot due to constraints on the
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(a) (b)

(c) D

Fig.1 a The selected maxima and minima. b The growth of the labelled regions around each s,,4, and s,,i» € S. ¢ The merging of adjacent maxima
regions and the creation of edges between each hotspot. Finally, d the resultant topological graph G = (V, £) (Color figure online)

robot’s travel, such as a finite energy budget. However, iden-
tifying all such locations enables the robot to reason about
them in the second step of the HHIG planner, discussed in
Sect. 4.2.

Since at the topological level, we do not have a specific
path, and therefore cannot compute /(-), we use an estimate
function T (+). Each v; € V has a corresponding estimate of
its local reward function, f, (t;), which estimates the informa-
tion reward gained in v;, where ¢; is the amount of time spent
at v;. This estimate can be any nondecreasing differentiable
function, and in this work we choose to model it on the expo-
nential reward function defined in Yu et al. (2015), which
captures the submodular nature of the information gathering
task:

[i(t) = a; (1 — e7bi1), )

where q; is the total amount of information contained in v;.
The accumulation rate of information at the hotspot is esti-
mated as b;, which is a function of both the size of the hotspot,
A;, and the sensing radius of the robot, obs;:

obs? x
by = —L——. 3
i A, 3

The vertices of G are connected by a set of edges, £ =
{e1,e2,...,en}, where each ¢; € & consists of a pair of
opposite directed edges (e, & ). Itis possible for a pair of
vertices to be connected by more than one edge. A robot can
only observe the information associated with a given edge,
e; once, by traversing it in either direction (by traversing
either e, or & ). The opposite edges e; and & follow the
same path through R?, and therefore have the same length.
However, representing a bidirectional edge in this way will
allow us to prune our path search space, offering speedups in
the path planning step. This is discussed further in Sect. 4.2.

The process of constructing a topological hotspot graph
is illustrated in Fig. 1. The first step is to identify the local
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maxima and minima of the information field, ¥. We begin
by creating a discrete approximation of the global informa-
tion function by densely sampling it in a regular grid pattern.
Using this discrete approximation of ¥, we collect the local
maxima and minima into two sets Sy, and Sy,ip, respec-
tively. S = Spax N Smin- The elements of S, are Points of
Interest (Pol)s, as they represent locations where there is a
relative increase in the global utility function. Conversely the
elements of S,,;, are locations where there is a relative lack
of the desired phenomena, and therefore should be avoided.
The maxima and minima points for a sample environment
are shown in Fig. la.

Once S is constructed, it is used as the seed points for our
modified Fast Marching (FM) expansion method. As outlined
in Sethian (1999) and Petres et al. (2007), the standard FM
algorithm approximates a solution to the Eikonal equation:

[IVu, Hll =@, j),

where T is a cost function that defines the speed of travel
through the environment, and u is the function that describes
the minimum cost-to-go distance between a point, x; ; in the
environment and a starting location, where u; ; = u(x; ;).
The FM algorithm leverages an upwind scheme to propa-
gate the first-order estimate of u as a wavefront through an
environment. For our purposes, we will use FM as a variable-
rate segmentation method, defining hotspots as regions where
wavefronts that propagate from maxima arrive before wave-
fronts that arrive from minima, as shown in Fig. 1b. On the
Cartesian grid with spacing /& produced by our earlier discrete
sampling of ¥ we can compute an estimate of the magnitude
of the gradient Vu in both the x and y directions at a point
@i, j) with

2 a2 —Xx +x 2
1Vui I ~ 7 = [max(D; §, =D}, 0)

+ max(D;}. =D} 0],
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where the forward and backward steps in the x and y direc-
tions are defined as:

pHr — Uitl,j — Ui D — Uij —ui-1,j
ij = h > T T h ’

D.ﬂ) _ Ui j+1 — Ui j DY = Wi j — Ui j—1
i,j h Y h

The upwind scheme uses a breadth-first update method to
iteratively select a trial point that is moved from the frontier
set to the accepted set. The accepted set consists of all the
nodes that are a part of the expanded area, while the fron-
tier set consists of all the nodes that are adjacent to nodes in
the accepted set but are not included in it. The trial node is
selected as the node in the frontier set with minimal cost, u; ;,
since it is the next node to be visited by the wavefront as it
propagates. Then, we update u for all of the trial node’s neigh-
bors, adding them to the frontier set if they do not already
belong to it.

If a neighbor, x; ; is adjacent to one point or one pair of
opposite points in accepted, termed Pj, then the time-of-first-
arrival at x; j, u; ; is updated according to:

ujj =up +1j,

where up, = min(u(Py)). Similarly if there are at least two
non-opposite adjacent points or pairs of points, P; and P,
with corresponding minimum costs u p; and u p,, then u; ; is
updated by

uj j =min(up,up,) + 7

if 7; ; < |up, —up,|. Otherwise the update is given by

1
wij =5 (MP1 +tup, + \/2fi2,j —(up — “Pz)z) :

We adapt this standard FM formulation by varying 7; ;
based on whether x; ; is a descendant of a member of S4x
or Spyin. We accomplish this by propagating the max and
min labels from the original points of interest. Each time a
node is expanded it inherits the classification of its parent in
accepted. For an x; ; which descends from a syax € Smax,
we define 7; ; as 1 — W (i, j). For an x; ; which descends
from a Syin € Spin, Ti,j = Y (i, j). The result of this is
that regions expanding from maxima expand more easily in
high-information areas, and regions expanding from min-
ima expand more easily to cover low-information areas. This
expansion process is shown in Fig. 1b.

To construct a graph from the labelled regions, we merge
adjacent regions grown from maxima, as depicted in Fig. lc,
and then label each combined region as a hotspot, and add
it to V. The interfaces between regions grown from min-
ima then become the edges between the hotspot vertices.

These interfaces are equidistant between local minima over
¥, and therefore correspond to relatively information-rich
paths between two vertices. The resulting topological graph
for a sample environment is shown in Fig. 1d.

It is possible for the topological graph construction to pro-
duce adisconnected graph in some environments, such as one
where a hotspot is completely enclosed by a single region
grown from a local minima. In this case, we use Fast March-
ing to extend an edge from the isolated hotspot to the nearest
edge or hotspot, connecting it to the graph. It is also possible
for a single hotspot region to entirely enclose a local min-
ima. In this case, the enclosed minima has no effect on the
connectivity of the resulting graph, and the graph contains a
hotspot that bounds one or more areas that are not included
in the hotspot. If a particular domain requires that hotspots
be solid, a simplex-based method such as the one employed
in Pokorny et al. (2016) could be employed to identify and
eliminate the holes in a hotspot. However it is not clear if a
hole that is a result of multiple local minima should be elim-
inated in this manner or not. A more detailed examination of
this is outside the scope of this paper.

4.2 Hotspot scheduling

In order to plan a path using the graph, the robot must
decide which of the vertices it should visit, and in what
order it should visit them. Similar to the orienteering-style
problems discussed in Yu et al. (2015, 2016), the problem
that we seek to solve is to identify an informative schedule,
2 = Ve,En,T), where Vo C V is the set of unique ver-
tices visited along the path, £ C & is the set of edges that
the robot traverses, and 7 is the set of times, #;, spent at each
v; € Vg. However in our approach, we do not restrict the
path that the robot follows to be a tour. Instead, the robot can
begin and end its path at any vertex. As stated in Sect. 3, we
assume that ¥ is static during the planning and execution
of a trajectory. Thus, there is no difference in the estimated
information reward between visiting a vertex twice, or vis-
iting it once for twice as long. If the robot visits the same
vertex multiple times, then the time that the robot is consid-
ered to have spent at the vertex is the sum of all the time that
it spends during each visit.

We begin the scheduling process by constructing a tree
with its root at the vertex of G corresponding to the robot’s
initial position. We then expand the tree by adding child nodes
corresponding to each of the node’s neighbor vertices. These
neighbors include vertices arrived at by following edges back
to previously visited vertices, since it can be necessary to
backtrack in order to visit new, unexplored areas of the graph.
The tree is expanded until the budget constraint,
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is met, where ¢; is the length of edge ¢; € £, and vel, is the
robot’s velocity.

While this can be a potentially large number of paths, this
number is kept relatively low by several factors. Chief among
these is the fact that since we are planning using a graph
constructed from topology of a smoothly varying information
function, the graphs we develop will have no more vertices
than the information function has local maxima. Typically
it will have fewer, since a single hotspot often is produced
from multiple local maxima. In practice, we found that these
graphs rarely consisted of more than 10 vertices. Despite
the low number of paths, graphs with a particularly high
branching factor can lead to an intractable number of possible
paths. To combat this, we prune paths that are guaranteed to
be worse than paths already considered. Since there is no
additional benefit to re-visiting a given vertex multiple times
versus simply remaining at that same vertex for longer during
a previous visit, we can stop expanding the tree if we would
expand the same directed edge again. Attempting to expand
a directed edge that has already been traversed means that
we have previously visited each of the vertices incident to
the edge, and that we have already observed any information
contained within the edge.

Since the vertices of our graph correspond with hotspot
regions, they have nonzero area, and therefore there can be
some distance between the locations in R? where the edges
connect to the vertices. To determine the time, #;, that is spent
at a given vertex on the candidate path, we first compute the
minimum amount of time that the robot is required to spend
in each v; along the path. Each time the robot visits v;, we
compute the amount of time the robot will need to take to
travel between its entry and exit edges. Summed across each
visit to v;, this time, ¢,, is the minimum amount of time
that the robot is required to spend in v;. Using this, we can
compute the amount of our budget remaining, R, using

Vel I€al ¢
R=B-— T — 6
Z vel, ©)

i=1 i=1

In order for the robot to utilize this remaining budget, we
assign each vertex an additional amount of time tl."r where
the total time spent at v; is t; = tl.+ +1 .

We developed a closed-form solution for calculating the
values for 71+ = {t1+, t2+, ., t\J{/le} that maximize

Vel Vel
Z L) s.t. Z " <R, @)

i=1 i=1
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using a Lagrange Multiplier Method (Everett III 1963) to
solve the resource-constraint problem inherent in allocating
R among ti+ € T™T. We construct our Lagrange Function, £,
using the Lagrange Multiplier variable, A,

Vel Vel

M= L) +r|R=D it

i=1 i=1

+ 4+ +
Lt EARRERN AT

®)

We then take the partial derivative with respect to each ti+ €
T, as well as \. Setting these equal to 0 yields the following
system of equations:

r _
Vi<i=Weol —= aibie G 3 =0 (9)
I
Vel
oL .
a:R—Zti =0. (10)

We compute the optimal solution by first selecting an arbi-
trary vertex. Without loss of generality, let this vertex be vy.
We may then solve for the time spent at each other vertex, #;
with respect to the time spent at this reference vertex, 1, by
setting the corresponding pair of equations in Eq. 9 equal to
each other:

—In (‘”b1> + bt 1)
+ —
i = - — (11
1

Substituting Eq. 11 into Eq. 10 yields:

+
1 1+z“’9' n

which we can then use to solve for t]+ .

Taken together, Eqs. 11 and 12 can be used to compute
the optimal values for all tl.+ € T along a given schedule,
2.

The process used to calculate the schedule for the robot is
outlined in Algorithm 1. Since each node in the tree corre-
sponds to a unique path through the graph, for each node in
the tree we can recover this candidate path by re-tracing the
path through the tree from the node to the root. By identify-
ing the set of vertices and edges visited along this path, we
can form an instance of the scheduling problem. By solving
this problem for each unique path, we can select the £2* that
maximizes our expected reward, thus resulting in the opti-
mal schedule for the robot. The effects of this process can be
seen in Fig. 2. As the mission budget increases, the portion
of the environment covered by the robot’s sensor (the region
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()
Fig.2 Informative paths planned by HHIG with budgets of a 1.5 km, b

3.0 km, and ¢ 4.5 km. The area explored by the robot is shown in blue.
As the budget increases, our method is able to balance the additional

Algorithm 1 Hotspot Scheduling

1: function HOTSPOTSCHEDULE(G, B)

2:  tree = constructTree(G, B)

3 for each node in tree do

4: §2 = tracePathToRoot(node, tree)
5: {t1, 12, ..., fjyg|} = schedule(§2)
6
7

" Vol »
1=y
D 2% =argmax gy (1)
8: return 2*

shaded in blue) grows. When the budget is increased from
from 1.5 to 3.0 km, the additional budget is spent exploring
the largest hotspot, as well as exploring a brand new hotspot.
As the budget increases again to 4.5 km, the robot is able to
spend more time in the first hotspot, which at lower budgets
it had simply passed through.

4.3 Path planning

The result of the scheduling algorithm is the optimal topolog-
ical plan over the graph based on the estimated information
content of each hotspot, £2*. In order for a robot to execute
£2*, it must be translated back to a set of actions for the robot
to take in the metric space. Within a vertex v;, the robot must
plan a path, P* that utilizes the allocated budget, t;r, to col-
lect the maximum amount of information within the hotspot
vertex, vj.

We use a greedy-coverage algorithm to quickly compute
apath, P,,, for the robot within v;. This works well, since the
topological hotspot identification and segmentation compo-
nent of our approach identifies areas that are filled with only
high-information areas, making a naive information gather-
ing coverage approach more effective than it would otherwise

X Position (km)

0 .75 1.5 -1.5 -.75 0 .75 1.5
X Position (km)

(c)

information gained by continuing to explore the current hotspot with
the information gained by exploring new hotspots (Color figure online)

be. However, more sophisticated planners, such as Branch
and Bound (Binney and Sukhatme 2012), or stochastic trajec-
tory optimizers, such as STOMP (Kalakrishnan et al. 2011),
could be used to compute better information gathering paths
within a vertex at the expense of additional computation time.

To compute the greedy-coverage path, while the robot has
budget remaining to travel to its goal point (if it has one),
the robot greedily selects the most informative location from
its unvisited neighbors. If no such neighbors exist, it selects
a location randomly. Then, the robot moves to the new goal
and repeats the process. Once the remaining budget is equal
to the distance to the goal point, the robot moves toward the
goal, preferring to move into more informative locations that
it has not yet observed. If there is no goal point, such as on
the last node of the path, then the robot continues to add to
the path greedily until it runs out of budget.

The final path, P*, is produced by combining the paths
along the selected edges with the greedy-coverage paths
within the vertices. Beginning at the robot’s starting loca-
tion, we append the metric space path for each vertex, P,,,
along with the metric space path for each edge, P, , for each
hotspot vertex, v;, and edge, ¢;, in the order that they appear
in the optimal schedule, £2*.

5 Topology-aware self-organizing map

While our HHIG planner captures the topology of informa-
tion through the formation of the hotspot graph, the paths it
can consider are limited by the structure of the hotspot graph.
To address this, instead of partitioning the environment
directly, we can instead partition the space of all possible
paths, @, into topologically distinct homotopy classes. Once
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Y Position (km)
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X Position (km)
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Fig. 3 Training of an SOM on a Gyre world. Darker regions contain
more information. Before training (a), the topological features identi-
fied by the SOM (areas with green edges) are driven by the sampling
noise and indistinguishable from the true topological features, (areas in

this has been accomplished, we can select a representative
path from each homotopy class and use Stochastic Gradient
Ascent to optimize a path within each homotopy class. Fig-
ure 3 illustrates our proposed method, which uses a novel
Topology-Aware Self Organizing Map (TA-SOM) to build
an environment model that can be used to compute unique
homotopy classes.

In many previous domains where topological techniques
have been utilized (e.g. Bhattacharya et al. 2012; Pokorny
et al. 2016), the techniques rely on using physical obstacles
to partition the space into distinct trajectory classes. How-
ever, in field robotics domains such as marine scientific data
collection or aerial surveillance, physical obstacles such as
islands or mountains can be few and far-between. Instead,
we observe that the information function itself can generate
distinct classes of trajectories that span the environment. To
enable the gradient-based optimizer to perform most effec-
tively, the homotopy classes should each contain a single
local maxima, and therefore, the topological features should
be rooted in the local minima of the objective function. How-
ever, for a very noisy information function, there can be a
high number of local minima, which will result in a large
number of homotopy classes. Instead, we only consider the
most important features that induce topological trajectory
classes. Doing so greatly reduces the total number of fea-
tures while maintaining the goal of optimizing trajectories
in regions with near-convex objective functions. To accom-
plish this, we will utilize persistent homology to quantify the
importance of features in the environment.

5.1 Persistent homology
Persistence is a measure of the importance of a topologi-

cal feature. It is computed by taking the difference between
the birth time and death time of a feature. Persistence has
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white). Once trained b the identified regions align with the true features.
The topology of the SOM c is used to identify a set of reference trajecto-
ries in unique homotopy classes. These trajectories are then optimized
using stochastic gradient ascent (d) (Color figure online)

been used to plan paths in uncertain obstacle fields (Kim
et al. 2013), as well as to act as an adaptive threshold to
identify topologically distinct trajectories in an environment
(Zomorodian and Carlsson 2005; Pokorny et al. 2016). This
is accomplished through a persistence diagram, which doc-
uments the birth and death of topological features relative to
a changing threshold parameter. As the threshold increases,
topological features, such as path homotopy classes, holes, or
connected components on a graph come into existence (i.e.
are born). The existence of these features are tracked as the
threshold continues to increase until they either cease to exist
or are merged with a larger feature. At that point the feature
is said to have died. The difference between the value of the
threshold at the feature’s birth and its death is the feature’s
persistence value.

One way to visualize the persistence of multiple topolog-
ical features is through the use of a persistence diagram. An
example diagram that identifies two features for a graph is
shown in Fig. 4. In this case, the filtration parameter is a
threshold on the edge weight: defined as the line integral of
the information field along each edge. Edges with weight
greater than the threshold are added to the graph. As the
filtration parameter increases, connected components merge
into progressively larger components, causing the death of
smaller components as they merge with larger ones. As
components connect they can create holes in the graph trian-
gulation that will eventually die as they are covered over by
the increasing connectivity of the graph.

5.2 Identifying homotopy classes with
self-organizing maps

At a high level, the Self Organizing Map algorithm is a
method for fitting a graph, G = (V, &), to a target func-
tion, ¥ (-) (Kohonen 1990). In robotics applications, SOMs
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Fig.4 An example of a persistence diagram for a simplicial complex.
Using the persistence of 1st order topological features (orange dots), we
identify a persistence threshold (cyan), classify features as ‘persistent’
and ‘ephemeral’, and set a corresponding horizontal filtration threshold
(purple) that is used to alter the SOM topology. Three different filtra-
tion thresholds and their corresponding simplicial complexes are shown
(Color figure online)

have been used as a method to solve the Travelling Salesper-
son Problem (Faigl et al. 2011; Somhom et al. 1997), as well
as the TSP’s common extensions, such as the Orienteering
Problem (Faigl et al. 2016), and other information gathering
tasks (Faigl and Hollinger 2017). However, a significant issue
with existing methods for SOMs is that the topology of the
graph, G, is fixed prior to training. Different graph topologies
can have an enormous impact on final positions of the graph
vertices (Best 2019). Consequently, choosing the correct one
can require a significant amount of domain knowledge.

We propose improving on the existing capabilities of
SOMs by allowing them to alter their network topology
during training, so as to better mirror the structure of the
underlying function. We accomplish this by interleaving the
training process with a series of filtration steps, each of which
modifies the graph topology, removing and adding edges.
Each train-filter cycle forms a training epoch. We continue
training until a stopping condition is met, either a conver-
gence criterion, or simply a maximum number of training
epochs. Pseudocode is given in Algorithm 2. It relies on two
sub-processes, the standard SOM training function, Train-
SOM, and our proposed filtration function, Filtration.

The first step in TrainSOM is to draw a random sample,
Y, from . Then, the closest vertex in V to ¥, v*, is com-
puted. Once v* is known, all the vertices of G (including v*)
are moved toward . The distance each vertex v; € V is

Algorithm 2 Topology-Augmented Self-Organizing Map

1: function TOPOLOGYSOM(I (-), N)
2: V <— DrawSamples(N, 1(-))
& <— DelaunayTriangulation(})
G<«— V. &)
while — stopping do

G «— TrainSOM(G, 1())

G «— Filtration(G, 1(-))
return G

A AR

moved toward v* is based on both an Information-weighted
Euclidean distance between v; and v*, as well as on a
neighborhood function. The information-weighted euclidean
distance is given by

lvy]

Inf tionDist(yr, v) = ————,
nformationDist(y, v) fwl(s)ds

(13)

where v1/ is the line segment between v and V. The infor-
mation distance penalizes both long edges as well as edges
that move through low-information regions. The neighbor-
hood function captures the graph distance along G (i.e. the
number of edges between v; and v*) to the range [0, 1]. We
used a common form for the neighborhood function:

1
1 + GraphDist(vg, vy, G)?’
(14)

Neighborhood(vg, v, G) =

where y is a hand-tuned weighting parameter that controls
the decay of the signal propagation along the graph. We set
y to 5 such that approximately 50% of error is propagated to
the immediate neighbors of v* and 3% of the error signal is
propagated to vertices 2 edges away.

This process of sampling and moving vertices is repeated
until a stopping condition is met. Here the stopping condition
is given by

VI
dllwl =T, (15)
i=0

where T is a small threshold number, in our case 7 = 0.1.
To facilitate convergence, a decreasing discount factor, A,
is used to slowly reduce the magnitude of perturbations to
each vertex during a training epoch. This training process is
outlined in Algorithm 3.

As previously mentioned, there is no provision in the
training of an SOM to allow the topology of G to change
over the course of training. We address this in our Filtra-
tion function, which determines the edges in £ to keep as a
part of the graph, and which edges to prune away. We want
to remove edges that traverse prominent gaps in the infor-
mation function, i.e. large, low-information areas, and keep
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Algorithm 3 Self-Organizing Map

1: function TRAINSOM(G = (V, &), ¥ (+))

2:  while — stopping do

3 Y <— DrawSamples(1, ¥)

4 v* «— argmin, ¢y, (InformationDist(yr, v))

5 for v € V do

6: v <— (v — ¢) x A x Neighborhood(v, v*, G)
7.

8

vV<— v+
return G

edges in high-information regions. We begin by asserting
that our graph forms a simplicial complex, where the ver-
tices in the graph are O-simplices, the edges in the graph
are 1-simplices, and the triangles bounded by cyclic trios of
edges are 2-simplices (Basener 2006). This is true, since the
edges are constructed using a Delaunay Triangulation of the
vertices. With a simplical complex, we can easily construct a
persistence diagram using the Gudhi Topology Library (The
GUDHI Project 2014), charting the lifespan of the 1 and 2-
dimensional topological features.

The next step is to identify a filtration of the simplicial
complex that alters the graph topology around the persis-
tent features of the environment, while ignoring ephemeral
features that might arise as artifacts of the triangulation pro-
cess. Since the ephemeral features greatly outnumber the
persistent ones, this becomes a problem of outlier detection.
To determine which features are ephemeral and which are
persistent, we fit a Weibull distribution to the first-order per-
sistence values. Weibull distributions are used to model the
degradation of systems over time (Rinne 2008), and they
have semi-infinite support (i.e. they are supported over the
range [0, +00)). We define features with a persistence value
beyond the « interval of the fitted Weibull (i.e. the range of
the distribution that contains «% of the total distribution) as
persistent, while each feature with a persistence value within
the « interval is ephemeral. The parameter « is a hand-tuned
one, and in practice we found that using a value of 75%
resulted in good performance.

This operation results in a diagonal persistence threshold,
as seen in Fig. 4. However, this threshold cannot be used
directly to perform the filtration, since it is a property of
the triangulation, not the individual edges. To remove edges
from the graph, we require a horizontal filtration threshold.
To map the persistence threshold to a corresponding filtra-
tion threshold, we compute the set of possible values for the
filtration threshold that maximizes the number of persistent
features in existence. Then, from these, we select the value
that minimizes the number of ephemeral features that exist
simultaneously. Once the filtration set, we remove edges with
a value greater than the filtration threshold. This process is
shown in Fig. 4. Applying the filtration alters topology of the
SOM to be closer to that of the underlying function, allowing
it to fit the function better during subsequent training.

@ Springer

Once a TA-SOM is trained (Fig. 3b), it can be used to
enumerate the possible homotopy classes of trajectories. To
accomplish this, we use the homotopy augmented graph pro-
posed in Bhattacharya et al. (2012). The topological features
identified during training are used as ‘obstacles’ in the cre-
ation of this graph. Using the robot’s current location as a
root, we expand a homotopy augmented graph. To keep the
size of the homotopy augmented graph manageable, we uti-
lize a non-looping constraint, preventing the expansion of
paths that loop more than once around any given obstacle.
We also prevent the expansion of any vertex beyond the
robot’s movement budget, instead adding those vertices to
a boundary set. With the homotopy augmented graph, we
determine the set of homotopy classes that contain trajecto-
ries of interest by applying a quotient map to the unexpanded
neighbors of the boundary vertices, mapping them all to a sin-
gle point. We then determine all homotopy classes between
the root point and the quotient point. For each of these homo-
topy classes, we select its representative path: the path in the
homotopy class that maximizes the objective function, 7(-).
Some example reference trajectories in different topological
classes are shown in Fig. 3c.

While the TA-SOM method does contain several param-
eters that need to be set by hand, many of these, such as
T, A, and the number of training epochs are similar to ones
found in a wide range of optimization algorithms, and they
regulate the speed of convergence of the SOM to avoid local
minima. The key parameters that affect the TA-SOM’s abil-
ity to distinguish true topological features from ephemeral
ones are the persistence threshold parameter, o, as well as
N, the number of vertices in the TA-SOM. If « is too low,
the filtration step will be too permissive, and will result in
some ephemeral features being classified as persistent. This
can be counteracted by increasing N. With additional ver-
tices in the TA-SOM, it is easier to distinguish the ephemeral
features from the persistent ones, reducing the importance of
setting o correctly. However, as is shown in Figs. 7 and 8,
increasing the number of vertices also increases the training
time required.

5.3 Stochastic gradient ascent

Once arepresentative path from each of the homotopy classes
has been identified, we can then proceed to refine the repre-
sentative paths using an optimization algorithm, as shown in
Fig. 3d. To improve performance, we examined several dif-
ferent heuristics for choosing the order in which to perform
optimization on the representative paths. Experimentally, we
found that the best predictor for the quality of the optimized
path was the quality of the unoptimized path. Other met-
rics that we considered were the average path quality within
each homotopy class as well as the number of trajectories in
each homotopy class. However, we found that the average
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path quality had a weaker correlation than best path quality,
and that the number of paths within a homotopy class was
uncorrelated with the quality of the best optimized path.

We use Stochastic Gradient Ascent (SGA) algorithm as the
local optimization function, since the gradient of the infor-
mation gathering objective function is difficult to calculate
analytically due to the path dependence of the reward (Jones
et al. 2018). At a high level, SGA operates by estimating the
gradient by sampling perturbations and recombining them
using a weighting based upon the objective function. Pseu-
docode for the SGA algorithm is presented in Algorithm 4.

SGA requires an initial path, P, and an information objec-
tive function / (-), which computes the path dependent reward
for executing the P in the environment. Then SGA iterates
through each of the waypoints in P, and for each x; € P
a set of K perturbations is generated. Each perturbation is
generated by drawing from a distribution D. This distribu-
tion, D, can take on many different forms but is typically a
zero-mean normal distribution. In this work we define D as
a multivariate normal distribution:

({1 [52)

with zero mean and covariance matrix defined by o, and oy,
which are the variation in the x and y directions respectively.
Note that here we have defined the perturbations as indepen-
dent but this is not required. On each iteration through P, we
consider the vertices in a random order to avoid undesirable
effects of a particular ordering of the path.

After the set of perturbations, €, is generated, each of these
perturbations needs to be scored using the information func-
tion, 7(-). Each of the perturbations, ¢€; € € is independently
applied to P at the given index to generate perturbed path 75k.
Each of these 751( is then scored using 7 (-) to generate a score
vector s. This score vector, s, is then used in conjunction with
€ to calculate the update to that waypoint as:

| IK|
A:}Z Wi X €k, (17)
k=1
where
wy = ¢ (s (18)

is the weighting factor for perturbation €; comparing the
score for ¢; to the maximum and minimum scores calculated
and A is a weighting factor set to 1 in this work. As in the
TA-SOM training algorithm, a discount factor, A, is used to
facilitate convergence.

Algorithm 4 Stochastic Gradient Ascent (SGA)

1: function SGA(P, I(-))

2:  while — stopping do

3 for p € P do

4 € <— genPertubations(D, K)
5: s <— getScores(P, €, p, 1(-))
6: A «— calcGrad(s, €)
7

8

p<—p+AXA
return P

5.4 Analysis

SGA is guaranteed to almost surely converge to a local max-
ima (Kiwiel 2001) given a large number of samples. Our
method seeks to improve the likelihood of SGA converg-
ing to the global maxima instead of being trapped in a local
maxima by partitioning the space of paths into sets of paths
with higher local convexity. Since the globally optimal path is
guaranteed to lie in one of the enumerated homotopy classes,
by sequentially applying optimization within each homotopy
class, we hypothesize that our algorithm is more likely to
find the globally optimal path than blindly performing an
equivalent number of random restarts. In Sect. 6, we con-
firm this hypothesis empirically through comparisons with
an SGA variant that is initialized using a heuristic that does
not include topological information.

5.5 Extension to multi-robot planning

Topologically distinct trajectories offer an elegant way to dis-
tribute different members of a multi-robot team to explore an
environment by assigning different robots to different homo-
topy classes, as described in Kim et al. (2013). By applying
these ideas to our TA-SOM algorithm, we extend the algo-
rithm developed previously in this section to plan for multiple
robots.

The basic premise for the multi-robot informative path
planning is the same as the single robot case. We use the
TA-SOM algorithm defined in Algorithm 2 to identify the
positions of the persistent topological features within the
environment. Then, instead of identifying the most promis-
ing homotopy class for a single robot, in the multi-robot case
we are interested in finding the most promising combination
of homotopy classes for the robot team. Thus, once the TA-
SOM has been trained, for each member of the robot team
we use a Homotopy Augmented Graph (Bhattacharya et al.
2012) to identify all possible homotopy classes of trajecto-
ries. Then, we produce a representative trajectory for each of
these homotopy classes. The result of this is a set of topolog-
ically distinct representative trajectories for each member of
the robot team.

To produce a single plan for the entire team of robots, we
need to assign each robot to a single class and correspond-
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ing representative trajectory, which we will then be able to
optimize. The first step in this process is to evaluate each
combination of the five most promising representative trajec-
tories for each robot and select the five best joint plans. While
this does scale exponentially with the number of robots, we
found that for small numbers of robots (N < 5), this step
did not take more than a few seconds. The second step is to
use the SGA optimizer described in Sect. 5.3 to optimize the
joint plans. In the single-robot case, while generating pertur-
bations (Algorithm 4, Line 4), we perturb each waypoint in
‘P in a random order. To avoid biases in the multi-robot opti-
mization, we not only randomize the order of the waypoints
within a path, but also the order of all waypoints across all
robots’ paths. Once the optimization has converged for each
of the five sets of plans proposed to it, we select the best-
scoring set for execution.

6 Results

To demonstrate the benefits of considering topological fea-
tures while solving the IPPP, we performed several experi-
ments both in simulation, using real-world ocean modelling
datasets, as well as in hardware with an autonomous boat on
a small lake. The first set of experiments we perform demon-
strates the ability of our proposed methods to accurately
capture the salient topological features of the information
field. Then, we evaluate the performance of our methods on
the IPPP.

6.1 Evaluation datasets

Our primary simulated dataset consists of 20 worlds built
using real-world data taken from the Regional Ocean Mod-
elling System (ROMS)! (Shchepetkin and McWilliams
2005). Each ROMS world is created from a 35 by 35 km sec-
tion in the center of Monterey Bay, California and is resolved
at a grid resolution of 700m. Each of the twenty worlds is at
a randomly chosen time throughout 2017. The information
function for these worlds was defined as the magnitude of
the surface salinity gradient, a key identification marker for
the localization of upwelling fronts.

In addition, we use two other datasets to produce worlds
for illustrative purposes. The gyre world, shown in Fig. 3b,
is a hand-constructed environment that contain a quadruple-
gyre system, similar to the worlds used in Kularatne et al.
(2018) for planning in flows. The gyre world is the same
size as the random and ROMS worlds, 35 km by 35 km
at 700m resolution. The information function in this world

! The Monterey Bay ROMS model output is provided by the Cooper-
ative Ocean Prediction System (COPS), and is available through their
website at http://west.rssoffice.com/ca_roms_nowcast_300m.
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is defined as the magnitude of the current flow. Since this
world was hand-constructed from well-defined topological
features, its topology is known a priori, and therefore can be
used to perform quantitative evaluations. Finally, we use a
dataset of bio-acoustic data collected by Slocum Gliders in
2016 in Monterey Bay, California as a real-world example
of phenomena that exhibit hotspot tendencies (Benoit-Bird
et al. 2018). This dataset can be seen in Fig. la.

6.2 Topological feature detection

Both of our proposed methods must be able to to cor-
rectly identify topological features in the environment. In
the HHIG planner, the hotspot regions should cover only
areas of the environment with high levels of information,
while simultaneously ensuring that these hotspots cover all
points of interest in the environment. In the TA-SOM plan-
ner, the trained TA-SOM should have high connectivity in
high information areas, and it should have holes in the SOM
triangulation that correspond with the low information voids
in the environment.

Our first set of experiments assess the effectiveness of the
hotspot segmentation within the HHIG planner. We compare
our Fast Marching segmentation method with threshold-
ing, where each point with information value greater than
a threshold is considered part of a hotspot. We use two dif-
ferent thresholding variants: a static threshold of 0.5, as well
as an adaptive threshold, which is set to capture all Pols. This
is done by setting the threshold value equal to the information
value of the lowest Pol. In Fig. 5, we show each threshold-
ing method on a dataset bioacoustic activity collected by
Slocum gliders in Monterey Bay, California. A qualitative
examination of the three segmentation techniques highlights
the drawbacks of the two standard thresholding approaches
to segmentation. Using a constant threshold set at 0.5, as seen
in Fig. 5b, fails to capture a number of the Pols. Adjusting this
threshold to capture the lowest-valued Pol with an informa-
tion value of 0.05 collects nearly all of the the environment
into one giant hotspot, as can be seen in Fig. 5c. In con-
trast, our proposed Fast Marching hotspot expansion, shown
in Fig. 5a both captures each Point of Interest, as well as
produces a set of discrete, compact, and high-value hotspots.

We compared the three segmentation methods: Fast
Marching, Static Thresholding, and Adaptive Thresholding
across a set of 20 simulated environments drawn from the
ROMS model. In each of these environments, we compared
the methods on both the number of Points of Interest cap-
tured and the hotspot density, which is the percent increase
in average information between the hotspots and the envi-
ronment as a whole. The results of these trials are shown
in Fig 6a, b, respectively. Our method shows an increase in
hotspot density over the adaptive thresholding method, while
maintaining 100% of Points of Interest captured in hotspot
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Fig.5 Comparison of segmentation methods. Areas labeled as hotspots
are shown in red. Segmentation is performed on the map of bioacoustic
data shown in a, normalized to the range [0,1]. a Our fast marching
based method for identifying hotspots. b The hotspots identified using

regions. While our segmentation method does produce less-
dense hotspots when compared to a static threshold, the static
thresholding misses a significant portion of the points of
interest. This is problematic from an ocean science perspec-
tive, since many of the phenomena that we are interested
in monitoring are indicated by a local deviation from the
norm rather than any global value. Furthermore, since the
static threshold is a hand-tuned parameter, setting it correctly
requires a significant amount domain knowledge, while our
Fast Marching Hotspot Segmentation method requires no
such parameter tuning.

To evaluate the ability of our Topology-Aware Self Orga-
nizing Map to learn the topological features, we trained a
TA-SOM twenty times using random initialization on the
gyre world. Since the gyre world has a well-defined topology,
we can compare the number of topological features identi-
fied by the TA-SOM with the true number. We evaluated the
performance of the TA-SOM for zero to five training epochs
and using 100, 200, 300, and 500 vertices. The results for
these experiments can be seen in Fig. 7. At 100 vertices the
TA-SOM struggles to consistently find all of the features
present in the environment. In the remainder, the TA-SOM
is able to smoothly converge to the correct number of fea-
tures. Additionally, the amount of time required to train each
of these maps is shown in Fig. 8. As expected, as the num-
ber of vertices increases the amount of time required to train
the TA-SOM increases. We also note that with no training,
our TA-SOM is simply a randomly constructed PRM, and it
is equivalent to the simplicial complexes used in Pokorny
et al. (2016). These results clearly show that by using the
training process of a Self Organizing Map to refine the sim-
plical complex graph, we are able to improve the performance

static thresholding (activity > 0.5) and ¢ the hotspots identified using
an adaptive threshold set to capture each point of interest (Color figure
online)

of persistence-based simplical complex feature detection.
Based on these results, we chose to use 200 vertices and
three training epochs for a balance of quality-of-fit and com-
putation time.

6.3 Single robot information gathering

In our simulated experiments, we compared the performance
of six different information gathering algorithms outlined
below:

— HHIG—Our Hierarchical Hotspot Information Gather-
ing Planner described in Sect. 4.

TA-SOM—Our Topology-Aware Self Organizing Map
planner described in Sect. 5, using 3 training epochs and
200 vertices. The 5 most promising homotopy classes
identified by the TA-SOM are optimized using SGA.
Path Persistence—A modification of our TA-SOM
framework. Instead of using a Topology-Aware Self
Organizing Map to identify topological features in the
environment, this method uses the algorithm in Bhat-
tacharya et al. (2015) as an alternative method of propos-
ing topologically distinct trajectory classes within the
TA-SOM framework. The method uses the persistence of
homotopy classes identified by creating multiple homo-
topy augmented graphs across multiple thresholds of
the information function to identify a set of persistent
homotopy classes of trajectories. Once the homotopy
classes have been identified, the Path Persistence method
is identical to TA-SOM, with representative trajecto-
ries from the five most persistent homotopy classes
optimized using our SGA framework. Comparisons to
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Fig.6 Results comparing our fast marching hotspot segmentation algo-
rithm to static thresholding (activity> 0.5) and adaptive thresholding
on the simulated ROMS worlds. Both our method and adaptive thresh-
olding capture 100% of points of interest within regions labelled as
hotspots. However, our approach outperforms the adaptive threshold-
ing in terms of hotspot density. The static thresholding method does
produce denser hotspots; however it fails to capture a significant por-
tion of the points of interest in the environment (Color figure online)

this algorithm are meant to demonstrate the computa-
tional benefits of the TA-SOM and HHIG approaches in
identifying topological features of information fields for
planning.

— RRT-OPT—A method that uses a Rapidly exploring
Random Tree (RRT) to quickly build a large number of
paths through the environment (LaValle 1998). Then, the
top five scoring paths to leaf nodes are optimized by SGA.
The RRT provides a set of ranked initializations for the
SGA framework that do not use topological information.
RRT-OPT expands a RRT with 200 vertices.
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Fig. 7 Number of topological features found by the TA-SOM in the
gyre world for different numbers of vertices across up to five training
epochs. The black dashed line at five is the true number of topological
features in this environment (Color figure online)
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Fig. 8 Amount of time to train the TA-SOM for different numbers of
vertices and training epochs in the gyre world (Color figure online)

— BnB—The Branch and Bound informative path planner
(Binney and Sukhatme 2012). Planning on a 700 m reso-
lution grid proved computationally intractable for BnB,
so the results reported here are planned over a grid with
resolution of 3.5 km.

— Greedy—The myopic greedy planner.

We evaluated each algorithm at using three different bud-
gets: 35 km, 70 km, and 105 km. Each robot has a sensor
radius of 3.5 km, and is evaluated on the total amount of
the information within the environment the robot observed.
In planning for marine autonomy, particularly for underwa-
ter vehicles, minimizing time spent on the surface not only
increases the amount of time the robot is conducting its sam-
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pling mission, but also minimizes the risk to the robot. To
incorporate this constraint into our planning, we enforced
an upper limit of 300 seconds of planning time. Since the
TA-SOM, Path Persistence, RRT-OPT, and BnB methods are
anytime algorithms, if the time limit is reached, the planner
uses the best path produced. Each of the planners that incor-
porate our SGA optimizer used 25 optimization iterations to
refine a trajectory to its final form.

The results from these trials are shown in Fig. 9. The first
trend that we notice is, predictably, as the budget increases
from 35 to 105 km, the average score attained by each
robot as well as the computation time required to produce
each path increases. Secondly, the three topological methods,
HHIG, TA-SOM, and Path Persistence all maintain com-
petitive performance with each other, and outperform the
non-topological methods at the higher budgets. Using a
planning budget of 35 km, all six methods perform com-
petitively. As the budget increases to 70 km, the TA-SOM
and Path Persistence methods significantly outperforms all
the non-topological methods, while HHIG only significantly
outperforms BnB and Greedy (p < 0.05). Finally, with a bud-
get of 105 km, the topological methods on average, all collect
more information than the non-topological planners. HHIG,
TA-SOM, and Path Persistence were able to collect a respec-
tive average of 63.04%, 64.39%, and 65.78% of the total
information across the 20 environments. In comparison, the
non-topological methods: RRT-OPT, Branch and Bound, and
Greedy attained an average of 48.01%, 54.50%, and 58.02%,
respectively. With this budget, HHIG, TA-SOM, and Path
Persistance all perform significantly better than Branch and
Bound and RRT-OPT (p < 0.05). While the topological meth-
ods do not have statistically significant performance gains
over Greedy at this budget, they do perform better on aver-
age, and have considerably lower variance in performance,
suggesting that they more reliably find better paths with fewer
exceptionally poor outliers.

The planning horizon also affects the importance of non-
myopic decision making. At lower budgets, (i.e. with shorter
paths), in a given environment there are fewer topological
decisions to make. This reduces the impact that considering
topological features can have relative to the non-topological
methods, equalizing their performance. On the other hand,
longer planning budgets increase the number of unique topo-
logical classes in an environment. As a result, reasoning over
the space of possible classes is more informative, and there-
fore more valuable, leading to increased performance of the
topological methods, as can be seen comparing Fig. 9a with
c. The non-topological, non-myopic planners struggle with
the largest planning horizon, reflecting how the expanded
decision space impacts their ability to converge to the global
optimal path. Due to the size of the environment, Branch and
Bound struggles, particularly with higher planning budgets,
where it failed to converge to its graph-optimal path within

the 300 s planning time. It is worth noting that Branch and
Bound uses a graph resolution five times coarser than that
used by the HHIG or Greedy algorithms. At an equal res-
olution, the size of the decision problem is intractable for
Branch and Bound, and it failed to converge for any of the
three budgets tested. Taken together, these results support our
hypothesis that the additional global context about the struc-
ture of the information distribution provided by ISTP enables
more effective and more efficient non-myopic planning.
Comparing the three planners that leverage ISTP, we can
see that TA-SOM, and Path Persistence, all have competi-
tive performance with each other across all three planning
budgets. Instead, they are differentiated by the amount of
computation time required to achieve their levels of per-
formance. The HHIG algorithm requires significantly less
computation than TA-SOM or Path Persistence. This differ-
ence can be attributed to the fact that the HHIG algorithm uses
a different topological planning paradigm than the other two
topological methods. HHIG constructs a sparse topological
graph, which captures the adjacency of different information
hotspots. The key decision making and scheduling happens
on this graph. In practice, we found that the size and degree
of these graphs tend to be small, usually with 4 or 5 hotspots
and a degree of about 3. Even though HHIG must search
through all possible schedules on this graph, the small size
makes this a manageable search. In contrast, both the TA-
SOM and Path Persistence algorithms rely on homotopy
augmented graphs (Bhattacharya et al. 2012) to enumerate
the topological trajectory classes created by the features in
the environment. In the TA-SOM algorithm, we create a sin-
gle homotopy augmented graph after the TA-SOM has been
trained. The Path Persistence algorithm, since it is using the
persistence of homotopy classes across multiple threshold
levels, requires a homotopy augmented graph for each thresh-
old of the information function. Consequently, constructing
a homotopy augmented graph must be repeated a number
of times determined by the number of thresholds used to
compute path feature persistence. Increasing the resolution
of these thresholds provides a more accurate measure of the
path persistence at the cost of additional computation time.

6.4 Multi-robot information gathering

The final set of experiments examined the ability of the TA-
SOM and Path Persistence methods to scale in multi-robot
information gathering. Since the core of both methods uti-
lizes homotopy information to divide the space of possible
paths into topologically distinct trajectory classes, they each
have a natural extension to the multi-robot planning prob-
lem. We compare these two methods with a baseline Greedy
algorithm. We do not extend our HHIG planner to the multi-
robot case, since the inclusion of multiple robots into the
topological graph scheduling problem is less of a straightfor-
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Fig.9 Violin plots showing the percentage of information collected by a single robot (a—c¢) and computation time required for planning (d—f) for

mission budgets of 35 km, 70 km, and 105 km (Color figure online)

ward extension, and beyond the scope of the work presented
here. The results from these experiments showing both the
information collected and the computation time is shown in
Figs. 10 and 11, respectively.

In terms of performance in the information gathering task,
the multi-robot results mirror the single-robot results. Gen-
erally, both ISTP methods outperform the non-topological
baseline. However, there is one exception. At a team size of
five robots, the Path Persistence algorithm achieved a score of
zero. The reason for this can be seen in the computation time
results. As the number of robots increases, the computation
times for all three methods increases. While our TA-SOM
method manages to stay beneath the 300 s time limit for all
team sizes, the Path Persistence quickly scales to the maxi-
mum computation time. This highlights a key advantage of
our TA-SOM algorithm over the Path Persistence method.
Both the TA-SOM and Path Persistence methods are com-
prised of two main steps: first a processing step to identify
unique homotopy classes for each robot, and second an opti-
mization step where the best homotopy classes are jointly
optimized. For TA-SOM the computational expense of the
first step is largely independent of the number of robots,
since all robots can use the same trained self organizing
map. Homotopy information, then, needs to only be com-
puted once for each robot. In contrast the Path Persistence
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Fig. 10 Multi-robot Score. With a team size of 5 robots, the Path Per-
sistence method failed to produce a plan in all 20 of the trials, resulting
in an average score of 0 (Color figure online)

method must compute a homotopy augmented graph multiple
times for each robot. The effects of this difference becomes
apparent when the robot team size grows to the point where
the Path Persistence algorithm is unable to complete the first
step in the allotted time. It is unable to produce any paths,
and therefore achieves a score of zero.
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Fig. 11 Multi-robot computation time. As the number of robots
increases, TA-SOM scales to the maximum computation time more
efficiently (Color figure online)

6.5 Field testing

To validate the performance of our topological planning
algorithms, we ran experiments using a Platypus Lutra
autonomous boat (Platypus, LLC 2014), shown in Fig. 12,
at Ireland Lane Pond, near Corvallis, Oregon. We tested
four different algorithms, our HHIG algorithm, our TA-SOM
algorithm, along with the Path Persistence variant and Greedy
algorithm, which we use as a baseline. We conducted three
trials for each algorithm, one from each of three different
starting locations: the first near our deployment point on the
north shore of the pond, the second near a backup deploy-
ment point on the southeastern shore, and the third in the
center of our deployment region. For the information func-
tion, we used a map of the magnitude bottom gradient, taken
within a bounded region of the lake and normalized into the
range [0,1]. This map was produced by completing a dense
survey of the pond with the Lutra’s sonar and combining the
observations into a single map using a Gaussian Process with
an RBF kernel. All nine of the plans were planned offline,
then executed using the Lutra. The results from all nine paths
are shown in Table 1, and the best-performing trajectories,
those from the northern deployment location are shown in
Fig. 15. The results from these trials mirror our simulated
results, with the three topological methods outperforming
the greedy baseline, both in actual information collected and
in the expected reward from the planned paths.

The topological representations built by our algorithms are
shown in Figs. 13 and 14. Qualitatively, both representations
effectively capture the underlying structure of the informa-
tion field. In the hotspot map, the contours of the hotspots
follow those of the darker high information regions, while
in the trained TA-SOM, our algorithm has discovered infor-

Fig. 12 Platypus Lutra autonomous boat with lowrance depth sonar
used in field trial experiments (Platypus, LLC 2014) (Color figure
online)

Table 1 Percentage of total information collected by the robot at each
of three starting locations

Central (%) Southeast (%) North (%)
HHIG 19.88 18.56 20.21
TA-SOM 22.56 19.62 22.51
Path Per. 22.23 21.85 21.23
Greedy 16.97 1543 17.63

Bold numbers indicate the best performance at each starting location

mation voids in the low information region in the southern
half of the experiment region. The effects of these represen-
tations can be seen in their corresponding paths in Fig. 15.
The behaviors shown are representative of the behavior of all
three algorithms at the other two starting locations. The path
produced by the TA-SOM planner wraps around the western
side of the void, skirting it, while reaching the high informa-
tion region in the south. Meanwhile, the path produced by
the hotspot algorithm diverts to the high information region
in the west, before continuing to the area in the south. In con-
trast to the topological methods, the greedy algorithm fails
to realize the existence of the information to the west, and
becomes stuck in the local maxima at the south.

7 Conclusion

In this paper, we have introduced the idea of Information
Space Topological Planning, and presented two algorithms
that use different topological paradigms to incorporate infor-
mation about the global structure of an information field to
improve the performance of a robot in the Informative Path
Planning Problem. In our Hierarchical Hotspot Information
Gathering algorithm, we showed that, we can produce a high
level discrete model of the information distribution by iden-
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1.0 tifying information hotspots in an environment. Using this
Hotspot sy
Region graph, we can schedule a robot’s time among the hotspots,
Hotspot enabling it to efficiently plan non-myopically. Our second
Graph Edge algorithm, Topology Aware Self-Organizing Maps, method
extends self-organizing maps to allow them to adapt their
topology around prominent features in the environment.
Using this, we can identify a set of topologically distinct
trajectory classes that, in turn, can be utilized to generate
a set of reference trajectories that span the local maxima
of the space of possible paths in the information gathering
task. These trajectories enable improved performance from
a local optimizer, Stochastic Gradient Ascent, allowing it to
more easily find paths closer to a global optimum.

In simulated trials, we showed that our topological meth-
Ll o0 ods were able to outperform methods that do not consider the

topological information, since they are able to reason non-
Fig. 13 Hotspots on Ireland Ln Pond (Color figure online) myopically about the global structure of the information field.
Additionally, we compared our proposed methods for identi-
fying topological features, and showed that when adapted to
the information gathering problem, our methods maintained
competitive performance, while incorporating the topologi-
cal information more efficiently, requiring significantly less
computation time to do so, and providing better scaling in an
extension to multi-robot information gathering.

The main limitation of this work is that it assumes that
the robot has prior knowledge about the information field in
order to build a model of its topological structure. While
in some applications, such as those where the robot can
benefit from satellite data or prior surveys, this assumption
is valid, it limits the applicability of the proposed meth-
ods in unknown environments. In future work, we would
like to reexamine this assumption and investigate ways that
0.0 topological features could be identified in real-time so they

can be exploited in unknown and partially known environ-
Fig. 14 Trained TA-SOM on Ireland Ln Pond (Color figure online) ments. Another avenue for future research is to apply these
techniques in time-varying environments. Since topological
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Fig. 15 Sample paths from the northern starting location. The shaded southern corner after travelling down the east side of the experiment
regions show the area covered by the Lutra’s 5 m sensing radius as region, the TA-SOM (a) and HHIG (b) planners both visit the high
it traveled along its path. While the Greedy path (d) gets stuck in the information area in the west (Color figure online)
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representations contain unique information about the struc-
ture of the environment that is independent of the layout in
metric space, plans made in a topological space may remain
useful even if the metric environment changes. Furthermore,
changes in the topological structure of an environment may
provide insights about when a robot should replan.

References

Aurenhammer, F. (1991). Voronoi diagrams—A survey of a fundamen-
tal geometric data structure. ACM Computing Surveys (CSUR),
23(3), 345-405.

Basener, W. F. (2006). Topology and its applications. New York: Wiley.

Benoit-Bird, K. J., Welch, T. P, Waluk, C. M., Barth, J. A., Wangen,
L., McGill, P, et al. (2018). Equipping an underwater glider with
a new echosounder to explore ocean ecosystems. Limnology and
Oceanography: Methods, 16(11), 734-749.

Best, G. (2019). Planning algorithms for multi-robot active perception.
PhD thesis, University of Sydney.

Bhattacharya, S., Ghrist, R., & Kumar, V. (2015). Persistent homology
for path planning in uncertain environments. /[EEE Transactions
on Robotics, 31(3), 578-590.

Bhattacharya, S., Kumar, V., & Likhachev, M. (2010). Search-based
path planning with homotopy class constraints. In Proceedings of
the AAAI conference on artificial intelligence, Atlanta, Georgia,
pp- 1230-1237.

Bhattacharya, S., Likhachev, M., & Kumar, V. (2012). Topological con-
straints in search-based robot path planning. Autonomous Robots,
33(3), 273-290.

Binney, J., & Sukhatme, G. S. (2012). Branch and bound for infor-
mative path planning. In Proceedings of the IEEE international
conference on robotics and automation, Minneapolis, Minnesota,
pp- 2147-2154.

Bormann, R., Jordan, F., Li, W., Hampp, J., & Higele, M. (2016).
Room segmentation: Survey, implementation, and analysis. In Pro-
ceedings of the IEEE international conference on robotics and
automation, Stockholm, Sweden, pp. 1019-1026.

Brunskill, E., Kollar, T., & Roy, N. (2007). Topological mapping
using spectral clustering and classification. In Proceedings of the
IEEE/RSJ international conference on intelligent robots and sys-
tems, San Diego, California, pp. 3491-3496.

Charrow, B., Kahn, G., Patil, S., Liu, S., Goldberg, K., Abbeel, P,
Michael, N., & Kumar, V. (2015). Information-theoretic planning
with trajectory optimization for dense 3d mapping. In Proceedings
of robotics: Science and systems, Rome, Italy, Vol. 11.

Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2000). Topological
persistence and simplification. In Proceedings 41st annual sympo-
sium on foundations of computer science, IEEE, pp. 454—463.

Edelsbrunner, H., Morozov, D., & Pascucci, V. (2006). Persistence-
sensitive simplification functions on 2-manifolds. In Proceedings
of the twenty-second annual symposium on computational geom-
etry, pp. 127-134.

Everett, H, I. I. I. (1963). Generalized Lagrange multiplier method for
solving problems of optimum allocation of resources. Operations
Research, 11(3), 399-417.

Faigl, J., & Hollinger, G. A. (2017). Autonomous data collection using a
self-organizing map. IEEE Transactions on Neural Networks and
Learning Systems, 29(5), 1703-1715.

Faigl, J., Kulich, M., Vonasek, V., & Preucil, L. (2011). An application
of the self-organizing map in the non-Euclidean traveling salesman
problem. Neurocomputing, 74(5), 671-679.

Faigl, J., Pénicka, R., & Best, G. (2016). Self-organizing map-based
solution for the orienteering problem with neighborhoods. In Pro-

ceedings of the IEEE international conference on systems, man,
and cybernetics, Budapest, Hungary, pp. 1315-1321.

Friedman, S., Pasula, H., & Fox, D. (2007). Voronoi random fields:
Extracting topological structure of indoor environments via place
labeling. In Proceedings of the international joint conference on
artificial intelligence, Vol. 7, Hyderabad, India, pp. 2109-2114.

Hollinger, G. A., & Sukhatme, G. S. (2014). Sampling-based robotic
information gathering algorithms. The International Journal of
Robotics Research, 33(9), 1271-1287.

Huyer, A. (1983). Coastal upwelling in the California current system.
Progress in Oceanography, 12(3), 259-284.

Ji, G., Shen, H.-W., & Wenger, R. (2003). Volume tracking using higher
dimensional iso surfacing. In Proceedings of the IEEE computer
society visualization conference, Seattle, Washington, pp. 28-36.

Jones, D., & Hollinger, G. A. (2017). Planning energy-efficient trajecto-
ries in strong disturbances. I[EEE Robotics and Automation Letters,
2(4), 2080-2087.

Jones, D., Kuhlman, M. J., Sofge, D. A., Gupta, S. K., & Hollinger, G. A.
(2018). Stochastic optimization for autonomous vehicles with
limited control authority. In Proceedings of the IEEE/RSJ inter-
national conference on intelligent robots and systems, Madrid,
Spain, pp. 2395-2401.

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., & Schaal, S.
(2011). STOMP: Stochastic trajectory optimization for motion
planning. In Proceedings of the IEEE international conference
on robotics and automation, Shanghai, China, pp. 4569-4574.

Kim, S., Bhattacharya, S., Ghrist, R., & Kumar, V. (2013). Topologi-
cal exploration of unknown and partially known environments. In
2013 IEEE/RSJ international conference on intelligent robots and
systems, Tokyo, Japan, pp. 3851-3858.

Kiwiel, K. C. (2001). Convergence and efficiency of subgradient meth-
ods for quasiconvex minimization. Mathematical Programming,
90(1), 1-25.

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE,
78(9), 1464-1480.

Kostavelis, 1., Charalampous, K., Gasteratos, A., & Tsotsos, J. K.
(2016). Robot navigation via spatial and temporal coherent seman-
tic maps. Engineering Applications of Artificial Intelligence, 48,
173-187.

Kularatne, D., Bhattacharya, S., & Hsieh, M. A. (2018). Going with the
flow: A graph based approach to optimal path planning in general
flows. Autonomous Robots, 42(7), 1369-1387.

LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for
path planning. Princeton: Citeseer.

Lukasczyk, J., Maciejewski, R., Garth, C., & Hagen, H. (2015).
Understanding hotspots: A topological visual analytics approach.
In Proceedings of the SIGSPATIAL international conference on
advances in geographic information systems, ACM, Seattle, Wash-
ington, pp. 36-46.

Luperto, M., & Amigoni, F. (2019). Predicting the global structure of
indoor environments: A constructive machine learning approach.
Autonomous Robots, 43(4), 813-835.

McCammon, S., & Hollinger, G. A. (2017). Planning and executing
optimal non-entangling paths for tethered underwater vehicles. In
Proceedings of the IEEE international conference on robotics and
automation, Singapore, pp. 3040-3046.

McCammon, S., & Hollinger, G. A. (2018). Topological hotspot iden-
tification for informative path planning with a marine robot. In
Proceedings of the IEEE international conference on robotics and
automation, Brisbane, Australia, pp. 4865—4872.

McCammon, S., Jones, D., & Hollinger, G. A. (2020). Topology-aware
self organizing maps for robotic information gathering. In Pro-
ceedings of the IEEE/RSJ international conference on intelligent
robots and systems, Las Vegas, Nevada (Virtual), pp. 1717-1724.

McNamara, T. P. (1986). Mental representations of spatial relations.
Cognitive Psychology, 18(1), 87-121.

@ Springer



842

Autonomous Robots (2021) 45:821-842

Michini, M., Hsieh, M. A., Forgoston, E., & Schwartz, 1. B. (2014).
Robotic tracking of coherent structures in flows. IEEE Transac-
tions on Robotics, 30(3), 593-603.

OBwald, S., Bennewitz, M., Burgard, W., & Stachniss, C. (2016).
Speeding-up robot exploration by exploiting background infor-
mation. I[EEE Robotics and Automation Letters, 1(2), 716-723.

Petres, C., etal. (2007). Path planning for autonomous underwater vehi-
cles. IEEE Transactions on Robotics, 23(2), 331-341.

Platypus, L. L. C. (2014). The Lutra Prop.

Pokorny, F. T., Hawasly, M., & Ramamoorthy, S. (2016). Topological
trajectory classification with filtrations of simplicial complexes
and persistent homology. The International Journal of Robotics
Research, 35(1-3), 204-223.

Popovié, M., Hitz, G., Nieto, J., Sa, 1., Siegwart, R., & Galceran, E.
(2017). Online informative path planning for active classification
using UAVS. In Proceedings of the IEEE international conference
on robotics and automation, Singapore, pp. 5753-5758.

Rinne, H. (2008). The Weibull distribution: A handbook. Boca Raton:
CRC Press.

Saroya, M., Best, G., & Hollinger, G. A. (2020). Online exploration of
tunnel networks leveraging topological cnn-based world predic-
tions. In Proceedings of the IEEE/RSJ international conference
on intelligent robots and systems, Las Vegas, Nevada (Virtual).

Sethian, J. A. (1999). Level set methods and fast marching methods:
Evolving interfaces in computational geometry, fluid mechanics,
computer vision, and materials science (Vol. 3). Cambridge: Cam-
bridge University Press.

Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional
oceanic modeling system (ROMS): A split-explicit, free-surface,
topography-following-coordinate oceanic model. Ocean Mod-
elling, 9(4), 347-404.

Singh, A., Krause, A., Guestrin, C., Kaiser, W. J., & Batalin, M. A.
(2007). Efficient planning of informative paths for multiple robots.
In Proceedings of the international joint conference on artificial
intelligence, Vol. 7, pp. 2204-2211.

Somhom, S., Modares, A., & Enkawa, T. (1997). A self-organising
model for the travelling salesman problem. Journal of the Opera-
tional Research Society, 48(9), 919-928.

The GUDHI Project. (2014). GUDHI user and reference manual.

Thrun, S. (1998). Learning metric-topological maps for indoor mobile
robot navigation. Artificial Intelligence, 99(1), 21-71.

Topp, E. A., & Christensen, H. 1. (2006). Topological modelling for
human augmented mapping. In Proceedings of the IEEE/RSJ inter-
national conference on intelligent robots and systems, Beijing,
China, pp. 2257-2263.

Yu, J., Aslam, J., Karaman, S., & Rus, D. (2015). Anytime planning of
optimal schedules for a mobile sensing robot. In Proceedings of
the IEEE/RSJ international conference on intelligent robots and
systems, Hamburg, Germany, pp. 5279-5286.

Yu, J., Schwager, M., & Rus, D. (2016). Correlated orienteering problem
and its application to persistent monitoring tasks. /[EEE Transac-
tions on Robotics, 32(5), 1106-1118.

@ Springer

Zivkovic, Z., Bakker, B., & Krose, B. (2006). Hierarchical map build-
ing and planning based on graph partitioning. In Proceedings of
the IEEE international conference on robotics and automation,
Orlando, Florida, pp. 803-809.

Zomorodian, A., & Carlsson, G. (2005). Computing persistent homol-
ogy. Discrete & Computational Geometry, 33(2), 249-274.

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

Seth McCammon is a Postdoc-
toral Scholar in the Applied Ocean

St’igfﬁ?n“‘ Physics and Engineering (AOPE)
; Department at Woods Hole
Oceanographic  Institution. He

completed his Ph.D. in Robotics
at Oregon State University (2021).
He received his B.S. in Computer
Science with an emphasis in Al
and Machine Learning at North-
western Universiy (2015). His
research interests include using
topological techniques to enable
robots to reason about the envi-
ronments they operate within.

Geoffrey Hollinger is an Asso-
ciate Professor in the Collabora-
tive Robotics and Intelligent Sys-
tems (CoRIS) Institute at Oregon
State University. He has previ-
ously held research positions at
the University of Southern Cali-
fornia, Intel Research Pittsburgh,
University of  Pennsylvania’s
GRASP Laboratory, and NASA’s
Marshall Space Flight Center. He
received his Ph.D. (2010) and M.S.
(2007) in Robotics from Carnegie
Mellon University and his B.S. in
General Engineering along with
his B.A. in Phllosophy from Swarthmore College (2005). He is a
recipient of the ONR YIP award (2017) and the NSF CAREER award
(2019).



	Topological path planning for autonomous information gathering
	Abstract
	1 Introduction
	2 Related work
	2.1 Planning with topological representations
	2.2 Planning with topological trajectory classes
	2.3 Autonomous information gathering

	3 Problem formulation and assumptions
	4 Hierarchical hotspot information gathering
	4.1 Topological graph construction
	4.2 Hotspot scheduling
	4.3 Path planning

	5 Topology-aware self-organizing map
	5.1 Persistent homology
	5.2 Identifying homotopy classes with self-organizing maps
	5.3 Stochastic gradient ascent
	5.4 Analysis
	5.5 Extension to multi-robot planning

	6 Results
	6.1 Evaluation datasets
	6.2 Topological feature detection
	6.3 Single robot information gathering
	6.4 Multi-robot information gathering
	6.5 Field testing

	7 Conclusion
	References




